用户名: 密码: 验证码:
苕溪流域地表水水质综合评价与非点源污染模拟研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
尽管在工业点源与城镇生活污水控制治理方面取得重大进展,我国水污染问题仍然严重,农田化肥径流、农药以及集约化畜禽养殖排放等非点源污染已经成为流域地表水主要污染源之一。为有效地控制流域非点源污染,需要制定与执行科学可行的计划,而流域水质评价与非点源负荷定量评估则为此提供重要的决策依据。本研究主要针对流域地表水水质综合评价与非点源污染模拟进行研究。以太湖苕溪流域为研究区域,主要研究内容包括:应用自组织特征映射(Self-Organizing Map, SOM)与哈斯图技术(Hasse Diagram Technique, HDT)对流域地表水水质进行综合评价;基于支持向量机方法建立流域各项地表水水质分类模型并予以优化;建立苕溪流域HSPF模型对非点源污染负荷进行定量化模拟评估。主要结论如下:
     (1)应用自组织映射与哈斯图方法对地表水水质监测数据集进行分类、建模、解释与评估,揭示了流域水质特征。选取高锰酸盐指数、氨氮、总氮与总磷指标进行HDT综合分析,结果反映流域上游水质较好,中、下游水质相对较差;敏感性分析表明西苕溪流域的高锰酸盐指数、总氮以及总磷存在较大的环境风险。
     (2)基于支持向量机方法,选取径向基函数为核函数,建立溶解氧、高锰酸盐指数、氨氮、总氮和总磷的支持向量机分类模型,并使用交叉检验与网格搜索对模型参数进行优化。将优化后的模型应用于苕溪流域水质评价,结果显示所建立的模型具有良好的分类性能,优于传统线性判别分析与二次判别分析的分类能力。
     (3)运用GIS、BASINS等建立了HSPF模型所需要的空间数据库与属性数据库,建立了苕溪流域HSPF模型,并对模型的水文、泥沙、营养盐等模拟模块分别进行了校正与验证。采用用相对误差(RE)以及Nash-Suttcliffe效率系数(Ens)对模型模拟效果进行评估。结果表明水文模块参数是适合的,模型HSPF对流量具有较好的模拟能力。对泥沙、营养物氮、磷的模拟效果“一般”。总体上,模拟结果可接受,模拟精度基本满足要求,可用于苕溪流域非点源污染过程模拟。
     (4)利用HSPF模型对2007年苕溪流域非点源污染总氮、总磷负荷进行估算,并与调查值比较,结果显示苕溪流域非点源总氮负荷模拟值是10698t,调查值是9003t,相对误差为18.83%;非点源总磷负荷模拟值为1695t,调查值为1499t,相对误差为13.8%;流域非点源总氮、总磷负荷分别占总污染负荷的51.5%与42.7%。苕溪流域非点源污染已经成为重要的污染源。
     (5)对苕溪流域农业非点源类型进行HDT敏感性分析,表明流域农业非点源污染负荷主要影响因素是种植业与养殖业污染。根据HSPF对苕溪各子流域总氮、总磷输出结果作哈斯图分析,结合非点源耕地土壤的氮、磷养分负荷,确定了苕溪流域非点源污染重点控制区域。基于种植业不同施肥管理措施情景分析表明,减少化肥施用量对非点源污染削减具有一定的效果,但并不显著;基于畜禽养殖污染非点源污染控制的情景分析表明,畜禽养殖污染物排放削减50%,总氮与总磷削减率分别达到13.56%与18.73%。最后,对苕溪流域非点源污染的治理提出了建议。
Despite the government has made major advances in the control of industrial and domestic point sources of water pollution, water pollution is still a critical problem in China as nonpoint source (NPS) pollution from runoff of fertilizer, pesticides, and discharges from intensive animal production facilities is becoming a major source of water pollution. Development and implementation of a viable and scientific action plan is required to effectively control nonpoint source pollution. Surface water quality assessment and quantitative evaluation of nonpoint source loads can provide an important support for decision-making. The goal of this study is to assess the water quality of surface water and to quantify the pollution loadings coming from nonpoint source. Tiaoxi watershed within Taihu was selected as the study area, and the main research work was made up of:(a) comprehensive evaluation for the surface water quality using self-organizing map (SOM) and Hasse Diagram Technique (HDT),(b) establishment and optimization of the classification models based on support vector machine (SVM), and (c) establishment of HSPF model for quantitative simulation and evaluation of nonpoint source pollution loads for Tiaoxi watershed. The main conclusions of the study were as follows:
     (1) SOM and HDT were used to classify, model, interpret and evaluate the monitoring data for surface water quality, which displayed the water quality characteristics within Western Tiaoxi watershed. The water quality parameters like permanganate index, ammonia nitrogen (NH3-N), total nitrogen (TN) and total phosphorus (TP) were selected for HDT comprehensive analysis and the results showed that water quality was better in the upstream, but relatively worse in the midstream and downstream. Sensitivity analysis showed that CODMn, TN and TP were important factors with high environmental risk.
     (2) Support vector machine (SVM) classification models were constructed using a radial basis function (RBF). These models were used for classification according to dissolved oxygen (DO), permanganate index, NH3-N, TN, or TP, and cross-validation and grid-search were applied to find satisfactory parameters for RBF for the improved models. Then the improved models were made used of assess water quality within Tiaoxi watershed. The results showed that the SVM classification (SVC) models performed relatively better than the Linear Discriminant Analysis (LDA) and Quadratic Discriminant Analysis (QDA) models for classification.
     (3) The spatial and attribute database for Tiaoxi watershed were established by using GIS and BASINS, and HSPF model was built. In the process, HSPF model was calibrated and validated for hydrology, sediment and nutrient respectively. Relative error (RE) and Nash-Suttcliffe efficiency coefficient (Ens) were used to assess the model. The results showed that the hydrology parameters were suitable; the model had a good capability for the flow, but only general capability for sediment and nutrient like nitrogen and phosphorus. In general, the simulation was acceptable. The accuracy could basically meet the requirements, and the model can be used for nonpoint source pollution within Tiaoxi watershed.
     (4) By using of HSPF model, quantitative evaluation of the loads of TN and TP from nonpoint source pollution in Tiaoxi watershed in2007was carried out, and the values were compared with baseline surveys afterwards. It showed that the simulated TN load was10698t, and the surveys was9003t, where the relative error was18.83%; the simulated TP load was1695t, and the surveys was1499t, with a relative error of13.8%. Nonpoint source pollution accounted for51.5%of all nitrogen pollution and42.7%of all phosphorus, and was a major pollution source in Tiaoxi watershed.
     (5) The HDT sensitivity analysis for the agricultural nonpoint sources in Tiaoxi watershed indicated that the main factors of nonpoint source pollution loads were the pollution from farming and livestock poultry industry and aquaculture. According to HDT analysis based on the output of TN and TP in sub-basin in Tiaoxi watershed using HSPF model, combined with the cultivated soil loads for TN and TP from nonpoint sources, the key control area were determined. Scenario analysis based on the fertilizer application showed that reducing the amount of chemical fertilizer could reduce the output of nonpoint source, but not significantly. Scenario analysis based on controlling the nonpoint source pollution from livestock pollution showed that TN and TP reduction rate reached13.56%and18.73%when reducing the livestock emission by50%. Finally, some suggestions were given for controlling the nonpoint source pollution within Tiaoxi watershed.
引文
[1]张维理,武淑霞,冀宏杰,et al.中国农业面源污染形势估计及控制对策Ⅰ.21世纪初期中国农业面源污染的形势估计[J].中国农业科学,2004,37(7):1008-1017.
    [2]中华人民共和国环境保护部.2010年中国环境状况公报[EB/OL] (Jun 2,2011)[Jan14,2013].
    [3]国家统计局.第一次全国污染源普查公报[EB/OL] (Feb 11,2010)[Jan 14,2013].
    [4]黄锡荃,苏法崇,梅安新.中国的河流[M].上海:商务印书馆1995.
    [5]彭文启,张祥伟.现代水环境质量评价理论与方法[M].北京:化学工业出版社,2005:1-25.
    [6]NANCY DIERSING F K N M S. Water Quality:Frequently Asked Questions[R]. Florida: Florida Keys National Marine Sanctuary,2009.
    [7]徐祖信.我国河流单因子水质标识指数评价方法研究[J].同济大学学报(自然科学版),2005,33(3):32 1-325.
    [8]WU Q, ZHAO C, ZHANG Y. Landscape river water quality assessment by Nemerow pollution index[C]//Landscape river water quality assessment by Nemerow pollution index. Mechanic Automation and Control Engineering (MACE),2010 International Conference on. IEEE:2117-2120.
    [9]李亚男,李岩,张廷,et al.天津市北塘排污河不同水期的水质状况评价[J].中国给水排水,2008,24(22):102-1 05.
    [10]HORTON R K. An index number system for rating water quality[J]. Journal of Water Pollution Control Federation,1965,37(3):300-306.
    [11]LUMB A, SHARMA T, BIBEAULT J-F. A review of genesis and evolution of water quality index (WQI) and some future directions[J]. Water Quality, Exposure and Health,2011,3(1): 11-24.
    [12]BROWN R M, MCCLELLAND N I, DEININGER R A, et al. A water quality index-do we dare?[J]. Water Sewage Works,1970,117:339-343.
    [13]BROWN R M, MCCLELLAND N I, DEININGER R A, et al. A water quality index-crashing the psychological barrier[C]//A water quality index-crashing the psychological barrier. Advances in water pollution research Proceedings of the sixthinternational conference held in Jerusalem June 18-23,1972.787-797.
    [14]BROWN R, MCCLELLAND N, DEININGER R, et al. Validating the WQI[C]//Validating the WQI. National Meeting on Water Resources Engineering of the American Society for Civil Engineers.
    [15]BROWN R, MCCLELLAND N. Up from chaos:the water quality index as an effective instrument in water quality management[R]. Ann Arbor:National Sanitation Foundation, 1974.
    [16]ROSS S. An index system for classifying river water quality[J]. Water Pollution Control, 1977,76(1):113-122.
    [17]ZADEH L A. Fuzzy Sets[J]. Information and Control,1965,8(3):338-353.
    [18]李如忠.水质评价理论模式研究进展及趋势分析[J].合肥工业大学学报(自然科学版),2005,28(4):369-373.
    [19]LU R S, LO S L, HU J Y. Analysis of reservoir water quality using fuzzy synthetic evaluation[J]. Stochastic Environmental Research and Risk Assessment,1999,13(5): 327-336.
    [20]LIU L, ZHOU J, AN X, et al. Using fuzzy theory and information entropy for water quality assessment in Three Gorges region, China[J]. Expert Systems with Applications,2010, 37(3):2517-2521.
    [21]任珺.黄河上游水质分析与污染治理对策研究[M].北京:中国环境科学出版社,2008:1-287.
    [22]韩晓刚,黄廷林,陈秀珍.基于主成分分析的原水水质模糊综合评价[J].人民黄河,2010,32(9):62-65.
    [23]邹志红,云逸,王惠文.两阶段模糊法在海河水系水质评价中的应用[J].环境科学学报,2008,28(4):799-803.
    [24]LU X, LI L Y, LEI K, et al. Water quality assessment of Wei River, China using fuzzy synthetic evaluation[J]. Environmental Earth Sciences,2010,60(8):1693-1699.
    [25]SPINELLA S, OSTOICH M, ANILE A M. River water quality assessment with fuzzy interpolation[J]. Ecological Chemistry and Engineering S-Chemia I Inzynieria Ekologiczna S,2008,15(2):245-262.
    [26]邹志红,孙靖南,任广平.模糊评价因子的熵权法赋权及其在水质评价中的应用[J].环境科学学报,2005,25(4):552-556.
    [27]陈守煜,李亚伟.基于模糊人工神经网络识别的水质评价模型[J].水科学进展,2005,16(1):88-91.
    [28]徐兵兵,张妙仙,王肖肖.改进的模糊层次分析法在南苕溪临安段水质评价中的应用[J].环境科学学报,2011,31(9):2066-2072.
    [29]张先起,梁川.基于熵权的模糊物元模型在水质综合评价中的应用[J].水利学报,2005,36(9):1057-1061.
    [30]LIU D J, ZOU Z H. Water quality evaluation based on improved fuzzy matter-element method[J]. Journal of Environmental Sciences-China,2012,24(7):1210-1216.
    [31]ZHAO W G, WANG L Y. Water Quality Evaluation based on Multiclass Fuzzy Support Vector Machine[M].//DU Z Y, SUN X B. Environment Materials and Environment Management Pts 1-3.2010:708-711.://WOS:000291337700147 http://www.scientific.net/AMR.113-116.708.
    [32]WANG J, LU X, TIAN J, et al. Fuzzy synthetic evaluation of water quality of Naoli River using parameter correlation analysis[J]. Chinese Geographical Science,2008,18(4): 361-368.
    [33]JU-LONG D. Control problems of grey systems[J]. Systems & Control Letters,1982,1(5): 288-294.
    [34]邓聚龙.灰色控制系统[J].华中工学院学报,1982,10:9-18.
    [35]吴雅琴.水质灰色关联评价方法[J].甘肃环境研究与监测,1998,11(3):24-27.
    [36]陈丽华,臧荣鑫,王宏伟.人工神经网络及其在水质信息检测中的应用[M].北京:国防工业出版社,2011:1-143.
    [37]王洪梅,卢文喜,辛光,et al.灰色聚类法在地表水水质评价中的应用[J].节水灌溉, 2007,(5):20-22.
    [38]SYLVESTER R O, CARLSON D A, BERGERSON W W, et al. Computer analysis of water quality data[J]. Journal (Water Pollution Control Federation),1962,34(6):605-615.
    [39]周丰,郭怀成,黄凯,et al.基于多元统计方法的河流水质空间分析[J].水科学进展,2007,18(4):544-551.
    [40]孙国红,沈跃,徐应明,et al.基于多元统计分析的黄河水质评价方法[J].农业环境科学学报,2011,30(6):1193-1199.
    [41]FENG Z, HUAICHENG G U O, YONG L I U, et al. A new approach for water quality assessment based on multivariate statistical analysis and Radial Basis Function Neural Networks[J]. Acta Scientiae Circumstantiae,2007,27(5):846-853.
    [42]刘小楠,崔巍.主成分分析法在汾河水质评价中的应用[J].中国给水排水,2009,25(18):105-108.
    [43]刘路,高品,陈刚,et al.城市河流各水期水质变化分析[J].中国环境监测,2012,28(2):115-118.
    [44]TANRIVERDI C, ALP A, DEMIRKIRAN A R, et al. Assessment of surface water quality of the Ceyhan River basin, Turkey[J]. Environmental Monitoring and Assessment,2010, 167(1-4):175-184.
    [45]UDAYAKUMAR P, ABHILASH P P, OUSEPH P P. Assessment of water quality using principal component analysis--a case study of the Mangalore coastal region, India[J]. J Environ Sci Eng,2009,51(3):179-186.
    [46]万金保,曾海燕,朱邦辉.主成分分析法在乐安河水质评价中的应用[J].中国给水排水,2009,25(16):104-108.
    [47]BROWN C E. Applied multivariate statistics in geohydrology and related sciences[M]. Springer,1998:131-146.
    [48]BU H M, TAN X, LI S Y, et al. Water quality assessment of the Jinshui River (China) using multivariate statistical techniques[J]. Environmental Earth Sciences,2010,60(8): 1631-1639.
    [49]张利田,卜庆杰,杨桂华,et al.环境科学领域学术论文中常用数理统计方法的正确使用问题[J][J].环境科学学报,2007,27(1):171-173.
    [50]LEE T, YANG C-N. Statistical theory of equations of state and phase transitions. Ⅱ. Lattice gas and Ising model[J]. Physical Review,1952,87(3):410-419.
    [51]HOPFIELD J J. Neural networks and physical systems with emergent collective computational abilities[J]. Proceedings of the national academy of sciences,1982,79(8): 2554-2558.
    [52]HOPFIELD J J, TANK D W. Computing with neural circuits-A model[J]. Science,1986, 233(4764):625-633.
    [53]GOVINDARAJU R S, ARTIFIC A T C A. Artificial Neural Networks in Hydrology. I: Preliminary Concepts[J]. Journal of Hydrologic Engineering,2000,5(2):115-123.
    [54]KALTEH A M, HIORTH P, BEMDTSSON R. Review of the self-organizing map (SOM) approach in water resources:Analysis, modelling and application[J]. Environmental Modelling & Software,2008,23(7):835-845.
    [55]CHON T S. Self-Organizing Maps applied to ecological sciences[J]. Ecological Informatics, 2011,6(1):50-61.
    [56]华祖林,钱蔚,顾莉.改进型LM-BP神经网络在水质评价中的应用[J].水资源保护,2008,24(4):22-25.
    [57]邹志红,王学良.基于随机样本的BP模型在水质评价中的应用[J].环境工程,2007,25(1):69-71.
    [58]韩涛,李怀恩,彭文启.基于MATLAB的神经网络在湖泊富营养化评价中的应用[J].水资源保护,2005,21(1):24-26.
    [59]CHEN D J, LU J, SHEN Y N. Artificial neural network modelling of concentrations of nitrogen, phosphorus and dissolved oxygen in a non-point source polluted river in Zhejiang Province, southeast China[J]. Hydrological Processes,2010,24(3):290-299.
    [60]KUO J T, HSIEH M H, LUNG W S, et al. Using artificial neural network for reservoir eutrophication prediction[J]. Ecological Modelling,2007,200(1-2):171-177.
    [61]周丰,郭怀成,刘永,et al.基于多元统计分析和RBFNNs的水质评价方法[J].环境科学学报,2007,27(5):846-853.
    [62]朱艺峰,施慧雄,金成法,et al.象山港海域水质时空格局的自组织特征映射神经网络识别[J].环境科学学报,2012,32(5):1236-1246.
    [63]ASTEL A, TSAKOUSKI S, BARBIERI P, et al. Comparison of self-organizing maps classification approach with cluster and principal components analysis for large environmental data sets[J]. Water Research,2007,41(19):4566-4578.
    [64]TSAKOVSKI S, ASTEL A, SIMEONOV V. Assessment of the water quality of a river catchment by chemometric expertise[J]. Journal of Chemometrics,2010,24(11-12): 694-702.
    [65]SU S L, ZHI J J, LOU L P, et al. Spatio-temporal patterns and source apportionment of pollution in Qiantang River (China) using neural-based modeling and multivariate statistical techniques[J]. Physics and Chemistry of the Earth,2011,36(9-11):379-386.
    [66]李伟,姚笑颜,梁志伟,et al.基于自组织映射与哈斯图方法的地表水水质评价研究[J].环境科学学报,2013,33(3):893-903.
    [67]陈永灿,付健,刘昭伟,et al.三峡水库蓄水前后近坝水域的水质评价与分析[J].水力发电学报,2007,26(4):51-55.
    [68]门宝辉,梁川.水质量评价的物元分析法[J].哈尔滨工业大学学报,2003,35(003):358-361.
    [69]林衍,顾恒岳,周富春.湖泊水质富营养化评价的物元分析法[J].环境工程,1996,1 4(5):44-49.
    [70]樊文艳,吴国元.水质综合评价物元模型的建立与应用[J].上海环境科学,2000,19(5):205-207.
    [71]蔡文.物元分析[M].广东高等教育出版社,1987.
    [72]王玲杰,孙世群,田丰.不确定性数学分析方法在河流水质评价中的应用[J].合肥工业大学学报:自然科学版,2004,11:1425-1429.
    [73]FRIEDMAN J H, TUKEY J W. A projection pursuit algorithm for exploratory data analysis[J]. Computers, IEEE Transactions on,1974,100(9):881-890.
    [74]FRIEDMAN J H. Exploratory projection pursuit[J]. Journal of the American statistical association,1987,82(397):249-266.
    [75]金菊良,魏一鸣,丁晶.水质综合评价的投影寻踪模型[J].环境科学学报,2001,2](4):431-434.
    [76]付强,付红,王立坤.基于加速遗传算法的投影寻踪模型在水质评价中的应用研究[J].地理科学,2003,23(2):236-239.
    [77]徐红敏,杨天行.基于支持向量机分类算法的湖泊水质评价研究[J].吉林大学学报(地球科学版),2006,36(4):570-573.
    [78]CAO J A, HU H S, QIAN S X, et al. Research on the water quality forecast method Based on SVM[M].//RYU J, CHONG K T, IKEURA R, et al. Icmit 2009:Mechatronics and Information Technology.2010.://WOS:000283486400004 http://proceedings.spiedigitallibrary.org/data/Conferences/SPIEP/10257/750005 1.pdf.
    [79]FENG L J, HE H M. Evaluation on the Surface Water Quality Based on LS-SVM[M].2010.
    [80]LIU J P, ZHANG Y C, QIAN X, et al. Modeling chlorophyll-a in Taihu Lake with machine learning models[M].2009.
    [81]VOIGT K, BRUGGEMANN R, PUDENZ S. A multi-criteria evaluation of environmental databases using the Hasse Diagram Technique (ProRank) software[J]. Environmental Modelling & Software,2006,21(11):1587-1597.
    [82]VOIGT K, BRUGGEMANN R, PUDENZ S. Chemical databases evaluated by order theoretical tools[J]. Analytical and Bioanalytical Chemistry,2004,380(3):467-474.
    [83]刘国东,丁晶.水环境中不确定性方法的研究现状与展望[J].环境科学进展,1996,4(4):46-53.
    [84]胡雪涛,陈吉宁,等.非点源污染模型研究[J].环境科学,2002,23(3):124-128.
    [85]LINE D E, MCLAUGHLIN R A, OSMOND D L, et al. Nonpoint sources[J]. Water environment research,1998:895-912.
    [86]LAZARUS R J. Nonpoint Source Pollution[J].1977.
    [87]CORBITT R A. Standard handbook of environmental engineering[M].2nd. New York: McGRAW-HILL,1999.
    [88]李怀恩.流域非点源污染模型研究进展与发展趋势[J].水资源保护,1996,(2):14-18.
    [89]ONGLEY E D, ZHANG X L, YU T. Current status of agricultural and rural non-point source Pollution assessment in China[J]. Environmental Pollution,2010,158(5): 1159-1168.
    [90]张维理,徐爱国,冀宏杰,et al.中国农业面源污染形势估计及控制对策Ⅲ.中国农业面源污染控制中存在问题分析[J].中国农业科学,2004,37(7):1026-1033.
    [91]张秋玲,陈英旭,俞巧钢,et al.非点源污染模型研究进展[J].应用生态学报,2007,18(8):1886-1890.
    [92]于涛,孟伟,EDWIN, et al.我国非点源负荷研究中的问题探讨[J].环境科学学报,2008,28(3):401-407.
    [93]USEPA. National Management Measures to Control Nonpoint Source Pollution from Agriculture[R]. Washington, DC:US Environmental Protection Agency, Office of Water, 2003.
    [94]邢可霞.流域非点源污染模拟及不确定性研究[D].北京:北京大学,2005.
    [95]CRAWFORD N H, LINSLEY R K. Digital simulation in hydrology' Stanford watershed model 4[R]. Stanford, CA 94305 USA:Stanford University,1966.
    [96]DONIGIAN A S. Agricultural runoff management (ARM) model version II:refinement and testing[M]. Environmental Protection Agency, Office of Research and Development, Environmental Research Laboratory,1977.
    [97]DONIGIAN A S, CRAWFORD N H. Modeling nonpoint pollution from the land surface[M]. US Environmental Protection Agency, Office of Research and Development, Environmental Research Laboratory,1976.
    [98]JOHANSON R C, DAVIS H H. Users manual for hydrological simulation program-Fortran (HSPF)[M]. Environmental Research Laboratory, Office of Research and Development, US Environmental Protection Agency,1980.
    [99]BICKNELL B R,IMHOFF J C, KITTLE JR J L, et al. Hydrological Simulation Program-FORTRAN, User's Manual for Release 11[J]. Environmental Research Laboratory, Office of Research and Development, US Environmental Protection Agency. Athens. Georgia,1996.
    [100]JEWELL T K, ADRIAN D D. SWMM stormwater pollutant washoff functions[J]. Journal of the Environmental Engineering Division,1978,104(5):1036-1040.
    [101]USDA. CREAMS:A field-scale model for chemicals, runoff and erosion from agricultural management systems[R]. Washton D.C.:USDA,1980.
    [102]WILLIAMS J. JONES C, DYKE P. Modeling approach to determining the relationship between erosion and soil productivity [J]. Transactions of the American Society of Agricultural Engineers,1984,27(1).
    [103]LEONARD R A. KNISEL W G, STILL D A. GLEAMS:Groundwater Loading Effects of Agricultural Management Systems[J]. Transactions of ASAE,1987,30:1403-1418.
    [104]YOUNG R A. ONSTAD C, BOSCH D, et al. AGNPS:A nonpoint-source pollution model for evaluating agricultural watersheds[J]. Journal of soil and water conservation,1989, 44(2):168-173.
    [105]BEASLEY D, HUGGINS L, MONKE E. ANSWERS:A model for watershed planning[J]. Transactions of the ASAE,1980,23(4).
    [106]WILLIAMS J R, NICKS A D, ARNOLD J G. SWRRB-A simulator for water resources in rural basins[J]. ASCE Hydraulics Journal,1985,111(6):970-986.
    [107]WILSON B N, BARFIELD B J, WARNER R C, et al. SEDIMOT II:A design hydrology and sedimentology model for surface mine lands[C]//SEDIMOT II:A design hydrology and sedimentology model for surface mine lands. Proceedings 1981 National Symposium on Surface Mine Hydrology, Sedimentology and Reclamation, College of Engineering, Lexington, KY University of Kentucky.
    [108]ABBOTT M B, BATHURST J C, CUNGE J A, et al. An introduction to the European Hydrological System-Systeme Hydrologique Europeen,"SHE",1:History and philosophy of a physically-based, distributed modelling system[J]. Journal of hydrology, 1986,87(1):45-59.
    [109]ABBOTT M. BATHURST J, CUNGE J, et al. An introduction to the European Hydrological System-Systeme Hydrologique Europeen,"SHE",2:Structure of a physically-based, distributed modelling system[J]. Journal of hydrology,1986,87(1): 61-77.
    [110]BEVEN K. WARREN R, ZAOUI J. SHE:towards a methodology for physically-based distributed forecasting in hydrology[J]. IAHS Publ.1980,129:133-137.
    [111]LEAVESLEY G H, LICHTY R, TROUTMAN B, et al. Precipitation-runoff modeling system:User's manual[R]. Washington D.C.:US Geological Survey,1983.
    [112]DONIGAN A S, IMHOFF J C, BICKNELL B R, et al. Application Guide for Hydrological Simulation Program:FORTRAN(HSPF)[J]. EPA-600/3-84-065 June 1984 Environmental Research Laboratory, Athens, GA 177 p,19 fig,17 tab,3 app,20 ref 68-01-6207,1984.
    [113]WOOLHISER D A, SMITH R E, GOODRICH D C. KINEROS, A kinematic runoff and erosion model, documentation and user manual[R]. Fort Collins,Colo.:USDA Agricultural Research Service,1990.
    [114]ARNOLD J G, SRINIVASAN R, MUTTIAH R S, et al. Large area hydrologic modeling and assessment part 1:Model developmentl[J]. Journal of the American Water Resources Association,1998,34(1):73-89.
    [115]LEE M S, PARK G, PARK M J, et al. Evaluation of non-point source pollution reduction by applying Best Management Practices using a SWAT model and QuickBird high resolution satellite imagery[J]. Journal of Environmental Sciences,2010,22(6):826-833.
    [116]PISINARAS V, PETALAS C, GIKAS G D, et al. Hydrological and water quality modeling in a medium-sized basin using the Soil and Water Assessment Tool (SWAT)[J]. Desalination,2010,250(1):274-286.
    [117]TALEBIZADEH M, MORID S, AYYOUBZADEH S A, et al. Uncertainty Analysis in Sediment Load Modeling Using ANN and SWAT Model[J]. Water Resources Management, 2010,24(9):1747-1761.
    [118]AKHAVAN S, ABEDI-KOUPAI J, MOUSAVI S F, et al. Application of SWAT model to investigate nitrate leaching in Hamadan-Bahar Watershed, Iran[J]. Agriculture Ecosystems & Environment,2010,139(4):675-688.
    [119]AHMAD H M N. Modeling hydrology and nitrogen export for the Thomas Brook Watershed with SWAT[D]. Canada:Dalhousie University,2010.
    [120]ZHANG Q L, CHEN Y X, JILANI G, et al. Model AVSWAT apropos of simulating non-point source pollution in Taihu lake basin[J]. Journal of Hazardous Materials,2010. 174(1):824-830.
    [121]KIM J W, PACHEPSKY Y A, SHELTON D R, et al. Effect of streambed bacteria release on E. coli concentrations:Monitoring and modeling with the modified SWAT[J]. Ecological Modelling,2010,221(12):1592-1604.
    [122]PAI N. Geospatial tools and techniques for watershed management using SWAT 2009[D]. Arkansas,United States:University of Arkansas,2011.
    [123]WANG Y. Calibrating Shenandoah watershed SWAT model using a nonlinear groundwater algorithm[D]. Maryland,United States:University of Maryland, College Park,2011.
    [124]GIRI S, NEJADHASHEMI A P, WOZNICKI S A. Evaluation of targeting methods for implementation of best management practices in the Saginaw River Watershed[J]. J Environ Manage,2012,103C:24-40.
    [125]BINGNER R, THEURER F. AnnAGNPS:estimating sediment yield by particle size for sheet and rill erosion[C]//AnnAGNPS:estimating sediment yield by particle size for sheet and rill erosion. Proceedings of the Sediment:Monitoring, Modeling, and Managing,7th Federal Interagency Sedimentation Conference.
    [126]BOURAOUI F, BRAUD I, DILLAHA T, et al. ANSWERS:a nonpoint source pollution model for water, sediment and nutrient losses[M].//V.P. S, FREVERT D K. Mathematical models of small watershed hydrology and applications. Highlands Ranch, Colo. (USA),: Water Resources Publications, LLC,2002:833-882.
    [127]OGDEN F, JULIEN P, SINGH V, et al. CASC2D:A two-dimensional, physically-based, Hortonian hydrologic model[J]. Mathematical models of small watershed hydrology and applications,2002:69-112.
    [128]HORTON R E. The role of infiltration in the hydrologic cycle[J]. Trans Am Geophys Union,1933,14:446-460.
    [129]BORAH D, XIA R, BERA M, et al. DWSM-a Dynamic Watershed Simulation Model[M]. //SINGH V P, FREVERT D. Mathematical models of small watershed hydrology and applications. Highlands Ranch, Colo. (USA):Water Resources Publications, LLC,2002: 113-166.
    [130]REFSGAARD J C, STORM B, REFSGAARD A. Recent developments of the Systeme Hydrologique Europeen(SHE) towards the MIKE SHE[J]. International Association of Hydrological Sciences, Publication,1995, (231):427-434.
    [131]THOMPSON J, S RENSON H R, GAVIN H, et al. Application of the coupled MIKE SHE/MIKE 11 modelling system to a lowland wet grassland in southeast England [J]. Journal of hydrology,2004,293(1):151-179.
    [132]V ZQUEZ R, FEYEN L, FEYEN J, et al. Effect of grid size on effective parameters and model performance of the MIKE-SHE code[J]. Hydrological Processes,2002,16(2): 355-372.
    [133]LAHLOU M, SHOEMAKER L, CHOUDHURY S, et al. Better assessment science integrating point and nonpoint sources (BASINS), version 2.0. Users manual[R]. Tetra Tech, Inc., Fairfax, VA (United States); EarthInfo, Inc., Boulder, CO (United States); Environmental Protection Agency, Standards and Applied Science Div., Washington, DC (United States),1998.
    [134]KINERSON R S, KITTLE J L, DUDA P B. BASINS:Better Assessment Science Integrating Point and Nonpoint Sources[M].//MARCOMINI A, Ⅱ G W S, CRITTO A. Decision Support Systems for Risk-Based Management of Contaminated Sites. LLC: Springer,2009:375-398.
    [135]DANIEL E B, CAMP J V, LEBOEUF E J, et al. Watershed Modeling Using GIS Technology:A Critical Review[J]. Journal of Spatial Hydrology,2011,10(2):13-28.
    [136]王晓燕.非点源污染过程机理与控制管理——以北京密云水库流域为例[M].北京:科学出版社,2011:16-18.
    [137]鲍全盛,王华东.我国水环境非点源污染研究与展望[J].地理科学,1996,16(1):66-72.
    [138]WISCHMEIER W H, SMITH D D. A universal soil-loss equation to guide conservation farm planning[J]. Transactions 7th int Congr Soil Sci,1960,1:418-425.
    [139]刘枫,王华东,刘培桐.流域非点源污染的量化识别方法及其在于桥水库流域的应用[J].地理学报,1988,43(4):329-339.
    [140]于秀玲.非点源污染对密云水库水质的影响[J].中国环境科学研究院环境科学论文集(1980-1990),1990,31:1980-1990.
    [141]夏青,庄大邦,廖庆宜.计算非点源污染负荷的流域模型[J].中国环境科学,1985, 5(4):23-30.
    [142]王昕皓.非点源污染负荷计算的单元坡面模型法[J].中国环境科学,1985,5(5):62-67.
    [143]陈一兵,K.O.TROUWBORST.土壤侵蚀建模中ANSWERS及地理信息系统ARC/ INFO(?)R的应用研究[J]-土壤侵蚀与水土保持学报,1997,3(2):1-13.
    [144]陈一兵.ANSWERS土壤侵蚀模型及其应用[J].土壤农化通报,1998,13(2):28-32.
    [145]郑丙辉.流域非点源污染负荷模型及其对湖泊生态环境影响的研究[D].成都:四川联合大学,四川大学,1997.
    [146]沈旭.HSPF(8.0)流域水文水质模型原理剖析与应用初探[D].南京:南京大学,1993.
    [147]李怀恩,沈晋.非点源污染负荷计算的单位线法[J].西北水资源与水工程,1991,2(4):19-27.
    [148]李怀恩,沈冰.暴雨径流污染负荷计算的响应函数模型[J].中国环境科学,1997,17(1):15-18.
    [149]BORAH D K, BERA M. Watershed-scale hydrologic and nonpoint-source pollution models:Review of mathematical bases[J]. Transactions of the ASAE,2003,46(6): 1553-1566.
    [150]杨桂莲,郝芳华,刘昌明,et al.基于SWAT模型的基流估算及评价——以洛河流域为例[J].地理科学进展,2003,(05):463-471.
    [151]张雪松,郝芳华,杨志峰,et al.基于SWAT模型的中尺度流域产流产沙模拟研究[J].水土保持研究,2003,(04):38-42.
    [152]赖格英.太湖流域1960s~1990s营养物质输移的评估研究——基于分布式环境水文模型SWAT的数值模拟[D].南京:中国科学院南京地理与湖泊研究所,2005.
    [153]许其功,刘鸿亮,沈珍瑶,et al.茅坪河流域非点源污染负荷模拟[J].环境科学,2006,27(11):2176-2181.
    [154]范丽丽,沈珍瑶,刘瑞民,et al.基于SWAT模型的大宁河流域非点源污染空间特性研究[J].水土保持通报,2008,28(4):133-137.
    [155]李家科,刘健,秦耀民,et al.基于SWAT模型的渭河流域非点源氮污染分布式模拟[J].西安理工大学学报,2008,24(3):278-285.
    [156]王中根,朱新军,夏军,et al.海河流域分布式swat模型的构建[J].地理科学进展,2008,27(4):1-6.
    [157]张楠,周祖昊,张占庞,et al.基于SWAT的污染物产输时间分布特性分析[J].人民黄河,2008,30(6):57-57.
    [158]荣琨,陈兴伟,刘梅冰,et al.晋江西溪流域土地利用变化对非点源污染影响的SWAT模拟[J].农业环境科学学报,2009,28(7):1488-1493.
    [159]张秋玲.基于SWAT模型的平原区农业非点源污染模拟研究[D].杭州:浙江大学,2010.
    [160]李爽.基于SWAT模型的南四湖流域非点源氮磷污染模拟及湖泊沉积的响应研究[D].济南:山东师范大学,2012.
    [161]王飞儿,吕唤春,陈英旭,et al.基于AnnAGNPS模型的千岛湖流域氮、磷输出总量预测[J].农业工程学报,2003,19(6):281-284.
    [162]李家科,李怀恩,李亚娇,et al.基于AnnAGNPS模型的陕西黑河流域非点源污染模 拟[J].水土保持学报,2008,22(6):81-88.
    [163]洪华生,黄金良,张珞平,et al. AnnAGNPS模型在九龙江流域农业非点源污染模拟应用[J].环境科学,2005,26(4):63-69.
    [164]黄金良,洪华生,杜鹏飞,et al.AnnAGNPS模型在九龙江典型小流域的适用性检验[J].环境科学学报,2005,25(8):1135-1142.
    [165]贾宁凤,段建南,李保国,et al.基于AnnAGNPS模型的黄土高原小流域土壤侵蚀定量评价[J].农业工程学报,2006,22(12):23-27.
    [166]贾宁凤,李旭霖,陈焕伟,et al. AnnAGNPS模型数据库的建立一一以黄土丘陵沟壑区砖窑沟流域为例[J].农业环境科学学报,2006,25(2):436-441.
    [167]林青慧.基于AnnAGNPS模型的非点源污染定量研究一一以潮白河流域为例[D].北京:中国科学院地理科学与资源研究所,2007.
    [168]马建,鲁彩艳,赵倩,et al. AnnAGNPS模型土壤数据库的建立——以柴河上游小流域为例[J].农业环境科学学报,2010,29(B03):151-155.
    [169]赵倩,马建,问青春,et al.应用AnnAGNPS模型模拟柴河上游农业非点源污染[J].农业环境科学学报,2010,29(2):344-351.
    [170]邹桂红,崔建勇.基于AnnAGNPS模型的农业非点源污染模拟[J].农业工程学报,2007,23(12):11-17.
    [171]曾远,张永春,张龙江,et al. GIS支持下AGNPS模型在太湖流域典型圩区的应用[J].农业环境科学学报,2006,25(3):761-765.
    [172]陈欣,郭新波.采用AGNPS模型预测小流域磷素流失的分析[J].农业工程学报,2000,16(5):44-47.
    [173]梅立永,赵智杰,黄钱,et al.小流域非点源污染模拟与仿真研究——以HSPF模型在西丽水库流域应用为例[J].农业环境科学学报,2007,26(1):64-70.
    [174]邢可霞,郭怀成,孙延枫,et al.基于HSPF模型的滇池流域非点源污染模拟[J].中国环境科学,2004,24(2):229-232.
    [175]张恒,曾凡棠,房怀阳,et al.基于HSPF及回归模型的淡水河流域非点源负荷计算[J].环境科学学报,2012,32(4):856-864.
    [176]张哲.HSPF水文模型机理及应用研究——以河北太行山区绿化方案制订为例[D].石家庄:河北师范大学,2007.
    [177]董延军,邓家泉,李杰,et al.基于HSPF的东江分布式水文模型构建[J].长江科学院院报,201 1,(09):57-63.
    [178]牛志明,解明曙,等.ANSWER-2000在小流域土壤侵蚀过程模拟中的应用研究[J].水土保持学报,2001,15(3):56-60.
    [179]潘沛,刘凌,梁威.非点源污染模型ANSWERS-2000的水文子模型研究[J].水土保持研究,2008,15(1):103-106.
    [180]郝芳华,杨胜天,程红光,et al.大尺度区域非点源污染负荷计算方法[J].环境科学学报,2006,26(3):375-383.
    [181]SMITH R A, SCHWARZ G E, ALEXANDER R B. Regional interpretation of water-quality monitoring data[J]. Water Resources Research,1997,33(12):2781-2798.
    [182]BOUGHTON W. A review of the USDA SCS curve number method[J]. Soil Research, 1989,27(3):511-523.
    [183]USDA S. National Engineering Handbook, Section 4:Hydrology[J]. Washington, DC. 1972.
    [184]CRAWFORD N H, LINSLEY R K. Digital simulation in hydrology'Stanford Watershed Model 4[J].1966.
    [185]WILLIAMS J R. Sediment-yield prediction with universal equation using runoff energy factor[J]. Present and prospective technology for predicting sediment yields and sources, 1975,40:244-252.
    [186]FOSTER G, LANE L J. User requirements:USDA, water erosion prediction project (WEPP) Draft 6.3[R]. National Soil Erosion Research Laboratory, USDA,1987.
    [187]BICKNELL B, IMHOFF J, KITTLE JR J, et al. User's Manual for Hydrological Simulation Program-FORTRAN, HSPF, Version 12[R]. Mountain View, California, USA: AQUA TERRA Consultants,2001.
    [188]DANIEL E B, CAMP J V, LEBOEUF E J, et al. Watershed modeling and its applications: A state-of-the-art review[J]. Open Hydrology Journal,2011,5:26-50.
    [189]LIU Z-J, WELLER D E. A stream network model for integrated watershed modeling[J]. Environmental Modeling and Assessment,2008,13(2):291-303.
    [190]REFSGAARD J. Terminology, modelling protocol and classification of hydrological model codes[M].//ABBOTT M B, REFSGAARD J C. Distributed hydrological modelling. Springer,1996:17-40.
    [191]MELONE F, BARBETTA S, DIOMEDE T, et al. Review and selection of hydrological models-integration of hydrological models and meteorological inputs [M]. RISK AWARE-INTEREG ⅢB CADSES programme. Gennaio, Italy.2005:1-34.
    [192]董延军,李杰,郑江丽,et al.流域水文水质模拟软件(HSPF)应用指南[M].郑州:黄河水利出版社,2009:1-12.
    [193]USEPA. Handbook for Developing Watershed Plans to Restore and Protect Our Waters[R]. Washington, DC:United States Environmental Protection Agency,Office of Water.Nonpoint Source Control Branch,2008.
    [194]WHITTEMORE R, ICE G. TMDL at the crossroads [J]. Environmental Science &Technology,2001,35(11):249A.
    [195]SALTMAN T. Making TMDLs work[J]. Environmental Science & Technology,2001, 35(11):248A.
    [196]柯强,赵静,王少平,et al.最大日负荷总量(TMDL)技术在农业面源污染控制与管理中的应用与发展趋势[J].生态与农村环境学报,2009,25(1):85-91.
    [197]BORAH D K, BERA M. Watershed-scale hydrologic and nonpoint-source pollution models:Review of applications[J]. Transactions of the ASAE,2004,47(3):789-803.
    [198]NEITSCH S L, ARNOLD A G, KINIRY J R, et al. Soil and Water Assessment Tool Theoretical Documentation Version 2009[R]. Temple, Texas:Grassland, Soil and Water Research Laboratory, Agricultural Research Service, Blackland Research Center, Texas Agricultural Experiment Station,,2011.
    [199]ABBASPOUR K C, VEJDANI M, HAGHIGHAT S. SWAT-CUP Calibration and Uncertainty Programs for SWAT, DEC 10-13,2007 [C]. Christchurch, NEW ZEALAND MODELLING & SIMULATION SOC AUSTRALIA & NEW ZEALAND INC,2007: 1603-1609.
    [200]BACU V, MIHON D, RODILA D, et al. Grid based architectural components for SWAT model calibration[C]//Grid based architectural components for SWAT model calibration. High Performance Computing and Simulation (HPCS),2011 International Conference on. IEEE:193-199.
    [201]NARASIMHAN B, SRINIVASAN R, BEDNARZ S, et al. A comprehensive modeling approach for reservoir water quality assessment and management due to point and nonpoint source pollution[J]. Trans ASABE,2010,53(5):1605-1617.
    [202]ZHANG Q, CROOKS R. Toward an Environmentally Sustainable Future:Country Environmental Analysis of the People's Republic of China[R]. Mandaluyong City, Philippines:Asian Development Bank,2012.
    [203]YANG J, REICHERT P, ABBASPOUR K C, et al. Comparing uncertainty analysis techniques for a SWAT application to the Chaohe Basin in China[J]. Journal of hydrology, 2008,358(1-2):1-23.
    [204]廖谦,沈珍瑶.农业非点源污染模拟不确定性研究进展[J].生态学杂志,2011,30(7):1542-1550.
    [205]PATIL A, DENG Z Q, MALONE R F. Input data resolution-induced uncertainty in watershed modelling[J]. Hydrological Processes,2011.25(14):2302-2312.
    [206]SETEGN S G, SRINIVASAN R, MELESSE A M, et al. SWAT model application and prediction uncertainty analysis in the Lake Tana Basin, Ethiopia[J]. Hydrological Processes,2010,24(3):357-367.
    [207]SHEN Z, HONG Q, YU H, et al. Parameter uncertainty analysis of non-point source pollution from different land use types[J]. Science of the Total Environment,2010,408(8): 1971-1978.
    [208]KHALIL B, OUARDA T. Statistical approaches used to assess and redesign surface water-quality-monitoring networks[J]. Journal of Environmental Monitoring,2009,11(11): 1915-1929.
    [209]ZHOU F, HUANG G H, GUO H C, et al. Spatio-temporal patterns and source apportionment of coastal water pollution in eastern Hong Kong[J]. Water Research,2007, 41(15):3429-3439.
    [210]ZHANG Y, GUO F, MENG W, et al. Water quality assessment and source identification of Daliao river basin using multivariate statistical methods[J]. Environmental Monitoring and Assessment,2009,152(1-4):105-121.
    [211]ZHOU F, LIU Y, GUO H C. Application of multivariate statistical methods to water quality assessment of the watercourses in northwestern new territories, hong kong[J]. Environmental Monitoring and Assessment,2007,132(1-3):1-13.
    [212]JIN Y H, KAWAMURA A, PARK S C, et al. Spatiotemporal classification of environmental monitoring data in the Yeongsan River basin, Korea, using self-organizing maps[J]. Journal of Environmental Monitoring,2011,13(10):2886-2894.
    [213]TSAKOVSKI S, SIMEONOV V. Hasse diagram technique as exploratory tool in sediment pollution assessment [J]. Journal of Chemometrics,2011,25(5):254-261.
    [214]TAULER R, LACORTE S, GUILLAM N M, et al. Chemometric modeling of main contamination sources in surface waters of Portugal [J]. Environmental toxicology and chemistry,2004,23(3):565-575.
    [215]ASTEL A, MALEK S. Multivariate modeling and exploration of environmental n-way data from bulk precipitation quality control[J]. Journal of Chemometrics,2008,22(11-12): 738-746.
    [216]KOHONEN T. The self-organizing map[J]. Neurocomputing,1998,21(1-3):1-6.
    [217]BRUGGEMANN R, VOIGT K, RESTREPO G, et al. The concept of stability fields and hot spots in ranking of environmental chemicals[J]. Environmental Modelling & Software, 2008,23(8):1000-1012.
    [218]LERCHE D, BR GGEMANN R, S RENSEN P, et al. A comparison of partial order technique with three methods of multi-criteria analysis for ranking of chemical substances[J]. Journal of Chemical Information and Computer Sciences,2002,42(5): 1086-1098.
    [219]国家环境保护总局《水和废水监测分析方法》编委会.水和废水监测分析方法[M].4th北京:中国环境科学出版社,2002.
    [220]KOHONEN T. Self-Organized Formation of Topologically Correct Feature Maps[J]. Biological Cybernetics,1982,43(1):59-69.
    [221]KOHONEN T. Self-Organizing Representations[J]. Acta Polytechnica Scandinavica-Applied Physics Series,1983, (138):80-85.
    [222]VESANTO J. Using SOM in data mining[D]. Espoo,Finland:Helsinki University of Technology Department of Computer Science and Engineering,2000.
    [223]JUHA VESANTO, JOHAN HIMBERG, ESA ALHONIEMI, et al. SOM Toolbox for MATLAB 5[R]. Laboratory of Computer and Information Science,Helsinki University of Technology,2000.
    [224]DAVIES D, BOULDIN D. A Cluster Separation Measure[J]. Pattern Analysis and Machine Intelligence, IEEE Transactions on,1979, PAMI-1(2):224-227.
    [225JBRUGGEMANN R, PATIL G P. Multicriteria prioritization and partial order in environmental sciences[J]. Environmental and Ecological Statistics,2010,17(4):383-410.
    [226]BRUGGEMANN R, VOIGT K. Basic Principles of Hasse Diagram Technique in Chemistry[J]. Combinatorial Chemistry & High Throughput Screening,2008,11(9): 756-769.
    [227]PUDENZ S. Pro Rank-Software for partial order ranking[J]. Match-Communications in Mathematical and in Computer Chemistry,2005,54(3):611-622.
    [228]李哲,郭劲松,方芳,et al.三峡水库小江回水区不同TN/TP水平下氮素形态分布和循环特点[J].湖泊科学,2009,4:509-517.
    [229]URIARTE E A, MARTN F D. Topology Preservation in SOM[J]. International Journal of Applied Mathematics and Computer Sciences,2005,1(1):19-22.
    [230]BR GGEMANN R, SCHWAIGER J, NEGELE R. Applying Hasse diagram technique for the evaluation of toxicological fish tests[J]. Chemosphere,1995,30(9):1767-1780.
    [231]H KANSON L, EKLUND J M. Relationships Between Chlorophyll, Salinity, Phosphorus, and Nitrogen in Lakes and Marine Areas[J]. Journal of Coastal Research,2010:412-423.
    [232]于兴修,杨桂山,欧维新.非点源污染对太湖上游西苕溪流域水环境的影响[J].湖泊科学,2003,15(1):49-55.
    [233]金黎明,张奇,李恒鹏,et al.西苕溪流域非点源氮污染特征[J].农业环境科学学报,2011,30(7):1385-1390.
    [234]HOWARTH R, PAERL H W. Coastal marine eutrophication:Control of both nitrogen and phosphorus is necessary[J]. Proceedings of the National Academy of Sciences of the United States of America,2008,105(49):103.
    [235]BRYHN A C, H KANSON L. Coastal eutrophication:Whether N and/or P should be abated depends on the dynamic mass balance [J]. Proceedings of the National Academy of Sciences of the United States of America,2009,106(1):E3.
    [236]SCHINDLER D W, HECKY R, FINDLAY D, et al. Eutrophication of lakes cannot be controlled by reducing nitrogen input:results of a 37-year whole-ecosystem experiment[J]. Proceedings of the national academy of sciences,2008,105(32):11254-11258.
    [237]CORTES C, VAPNIK V. Support-vector networks[J]. Machine learning,1995,20(3): 273-297.
    [238]LIAO Y, XU J Y, WANG Z W. Application of biomonitoring and support vector machine in water quality assessment[J]. Journal of Zhejiang University-Science B,2012,13(4): 327-334.
    [239]CRISTIANINI N, SHAWE-TAYLOR J. An introduction to support vector machines and other kernel-based learning methods[M]. Cambridge university press,2000.
    [240]顾亚祥,丁世飞.支持向量机研究进展[J].计算机科学,2011,38(2):14-17.
    [241]VAPNIK V N. An overview of statistical learning theory[J]. Neural Networks, IEEE Transactions on,1999,10(5):988-999.
    [242]CANNATARO M, GUZZI P H, SARICA A. Data mining and life sciences applications on the grid[J]. Wiley Interdisciplinary Reviews-Data Mining and Knowledge Discovery,2013, 3(3):216-238.
    [243]ASEFA T, KEMBLOWSKI M, URROZ G, et al. Support vector machines (SVMs) for monitoring network design[J]. Ground Water,2005,43(3):413-422.
    [244]SINGH K P, B AS ANT N, GUPTA S. Support vector machines in water quality management[J]. Analytica Chimica Acta,2011,703(2):152-162.
    [245]ARYAFAR A, GHOLAMI R, ROOKI R, et al. Heavy metal pollution assessment using support vector machine in the Shur River, Sarcheshmeh copper mine, Iran[J]. Environmental Earth Sciences,2012,67(4):1191-1199.
    [246]管军,徐立中,石爱业.基于支持向量机的水质监测数据处理及状况识别与评价方法[J].计算机应用研究,2006,(9):36-38.
    [247]戴宏亮.基于智能遗传算法与复合最小二乘支持向量机的长江水质预测与评价[J].计算机应用研究,2009,26(1):79-81.
    [248]LI Z Z, XIE Y B, YI J J. The Eutrophication Evaluation of Dongting Lake Based on Support Vector Machine[M].2009.
    [249]毕温凯,袁兴中,唐清华,et al.基于支持向量机的湖泊生态系统健康评价研究[J].环境科学学报,2012,32(8):1984-1990.
    [250]李家科,李怀恩,赵静.支持向量机在非点源污染负荷预测中的应用[J].西安建筑科技大学学报:自然科学版,2006,38(6):756-760.
    [251]CANU S, GRAND VALET Y, GUIGUE V, et al. SVM and Kernel Methods Matlab Toolbox [M]. Perception Systemes et Information, INSA de Rouen, Rouen, France.2005.
    [252]CHANG C C, LIN C J. LIBSVM:a library for support vector machines[J]. ACM Transactions on Intelligent Systems and Technology (TIST),2011,2(3):27.
    [253]GUNN S R. Support Vector Machines for Classification and Regression[R]. Faculty of Engineering, Science and Mathematics School of Electronics and Computer Science,University of Southampton,1998.
    [254]HSU C W, CHANG C C, LIN C J. A practical guide to support vector classification[R]. Taipei:National Taiwan University,2003.
    [255]KNERR S, PERSONNAZ L, DREYFUS G, et al. Single-layer learning revisited:A stepwise procedure for building and training a neural network[J]. Optimization Methods and Software,1990,1:23-34.
    [256]CAO J, HU H S, QIAN S X, et al. Research on Water Quality Assessment Method based on Multi-class Support Vector Machines, Icarv,2008:1661-1665.
    [257]CHEN Y, QIN B, TEUBNER K, et al. Long-term dynamics of phytoplankton assemblages: Microcystis-domination in Lake Taihu, a large shallow lake in China[J]. Journal of Plankton Research,2003,25(4):445-453.
    [258]ZHANG Q, CROOKS R. Environmental Strategy for the 12th Five-Year Plan Period: What Can the People's Republic of China Learn from the 11th Five-Year Plan?[R]. Mandaluyong City:Asian Development Bank,2011.
    [259]孟伟,张楠,张远,et al.流域水质目标管理技术研究(Ⅰ)——控制单元的总量控制技术[J].环境科学研究,2007,20(4):1-8.
    [260]刘鸿亮,李小平.湖泊营养物控制的国家战略[J].环境保护,2007,(14):16-19.
    [261]孟伟.中国流域水环境污染综合防治战略[J].中国环境科学,2007,27(5):712-716.
    [262]NASR A, BRUEN M, JORDAN P, et al. A comparison of SWAT, HSPF and SHETRAN/GOPC for modelling phosphorus export from three catchments in Ireland [J]. Water Research,2007,41(5):1065-1073.
    [263]邢可霞,郭怀成,孙延枫,et al.流域非点源污染模拟研究——以滇池流域为例[J].地理研究,2005,24(4):549-558.
    [264]何泓杰.基于HSPF模型的流溪河流域非点源污染负荷估算[D].广州:华南理工大学,2011.
    [265]刘仙.基于BASINS/HSPF模型的岩溶槽谷区地下水模拟研究[D].重庆:西南大学,2009.
    [266]DUDA P B, KITTLE J L, HUMMEL P R, et al. Leveraging an Open Framework for Expanded Modeling Capabilities in BASINS 4.0[J]. Proceedings of the Water Environment Federation,2009,2009(6):441-450.
    [267]USEPA. Better Assessment Science Integrating point and Nonpoint Sources (BASINS), version 4.0. User's Manual[R]. Washington, DC:U.S. Environmental Protection Agency, Office of Water,2007.
    [268]DONIGIAN JR A S, IMHOFF J C, CONSULTANTS A T. From the Stanford model to BASINS:40 years of watershed modeling[R]. Washington, DC,2002.
    [269]DUDA P, KITTLE JR J, GRAY M, et al. WinHSPF-An Interactive Windows Interface to HSPF:User's Manual[J]. US EPA Office of Water, Washington DC,2001.
    [270]李兆富,刘红玉,李燕.HSPF水文水质模型应用研究综述[J].环境科学,2012,(07): 2217-2223.
    [271]《苕溪运河志》编纂委员会.苕溪运河志(上册)[M].北京:中国水利水电出版社,2010:217-285.
    [272]浙江省水利厅.浙江省河流简明手册[M].西安:西安地图出版社,1999:57-64.
    [273]湖州市江水利志编委员会.湖州市水利志[M].北京:中国大百科全书出版社,1995.
    [274]《长兴县水利志》编纂委员会.长兴县水利志[M].北京:中国大百科全书出版社,1996.
    [275]安吉县水利志编纂委员会.安吉县水利志[M].北京:方志出版社,2005.
    [276]浙江省水文志编纂委员会.浙江省水文志[M].北京:中华书局,2000.
    [277]施麟宝,孙晓霞.东,西苕溪河网及太湖水质数学模拟[J].河口与海岸工程,1991,2:33-48.
    [278]MILLER C L. The theory and application of the digital terrain model[D]. Massachusetts Institute of Technology Massachusetts Institute of Technology Dept of Civil and Sanitary Engineering,1958.
    [279]邬伦,刘瑜,张晶,et al.地理信息系统——原理、方法和应用[M].北京:科学出版社,2008.
    [280]李丹.基于SWAT模型安吉县非点源污染模拟[D].杭州:浙江大学,2012.
    [281]CHAPLOT V. Impact of DEM mesh size and soil map scale on SWAT runoff, sediment, and N03-N loads predictions[J]. Journal of hydrology,2005,312(1):207-222.
    [282]薛亦峰.基于HSPF模型的潮河流域非点源污染模拟研究[D].北京:首都师范大学,2009.
    [283]DONIGIAN JR A, IMHOFF J, KITTLE JR J. HSPFParm:An Interactive Database of HSPF Model Parameters[R]. Washington D.C.:Office of Water, United States Environmental Protection Agency,1999.
    [284]USEPA. BASINS Technical Note 6:Estimating Hydrology and Hydraulic Parameters for HSPF[R]. Washington, D.C.:Office of water, United States Environmental Protection Agency,2000.
    [285]金婧靓.SWAT模型在苕溪流域非点源污染研究中的应用[D].杭州:浙江大学,2011.
    [286]DONIGIAN A. Watershed model calibration and validation:The HSPF experience:Water Environment Federation,2002:44-73.
    [287]GALLAGHER M, DOHERTY J. Parameter estimation and uncertainty analysis for a watershed model[J]. Environmental Modelling & Software,2007,22(7):1000-1020.
    [288]GALA S S R. HSPF modeling of nonpoint sources in Tickfaw River watershed[D]. Louisiana, United States:University of New Orleans,2007.
    [289]USEPA. BASINS Technical Note 8:Sediment Parameters and Calibration Guidance for HSPF[R]. Washington, D.C.:Office of water, United States Environmental Protection Agency,2006.
    [290]戴枫勇.SWAT模型在环太湖丘陵地区非点源污染研究中的应用[D].南京:河海大学,2007.
    [291]曹志洪,林先贵,杨林章,et al.论“稻田圈”在保护城乡生态环境中的功能——I.稻田土壤磷素径流迁移流失的特征[J].土壤学报,2005,42(5):799-804.
    [292]钱秀红,徐建民,等.杭嘉湖水网平原农业非点源污染的综合调查和评价[J].浙江大 学学报:农业与生命科学版,2002,28(2):147-150.
    [293]段亮,段增强,常江.地表管理与施肥方式对太湖流域旱地氮素流失的影响[J].农业环境科学学报,2007,26(3):813-818.
    [294]段亮,常江,段增强.地表管理与施肥方式对太湖流域旱地磷素流失的影响[J].农业环境科学学报,2007,26(1):24-28.
    [295]梁涛,于兴修,等.西苕溪流域不同土地类型下氮元素输移过程[J].地理学报,2002,57(4):389-396.
    [296]许朋柱,秦伯强,HORST, et al.太湖上游流域农业土地的氮剩余及其对湖泊富营养化的影响[J].湖泊科学,2006,18(4):395-400.
    [297]李恒鹏,杨桂山,黄文钰,et al.太湖上游地区面源污染氮素入湖量模拟研究[J].土壤学报,2007,44(6):1063-1069.
    [298]李兆富,杨桂山,李恒鹏.西笤溪流域不同土地利用类型营养盐输出系数估算[J].水土保持学报,2007,21(1):1-4.
    [299]李兆富,杨桂山,李恒鹏.西苕溪典型小流域土地利用对氮素输出的影响[J].中国环境科学,2005,25(6):678-681.
    [300]许海,刘兆普,焦佳国,et al.太湖上游不同类型过境水氮素污染状况[J].生态学杂志,2008,27(1):43-49.
    [301]李国栋,胡正义,杨林章,et al.太湖典型菜地土壤氮磷向水体径流输出与生态草带拦截控制[J].生态学杂志,2006,25(8):905-910.
    [302]张大弟,张晓红.上海市郊4种地表径流污染负荷调查与评价[J].上海环境科学,1997,16(9):7-11.
    [303]朱梅,吴敬学,张希三.海河流域畜禽养殖污染负荷研究[J].农业环境与发展,2010,29(8):1558-1565.
    [304]熊慧欣,赵秀兰,徐轶群.规模化畜禽养殖污染的防治[J].家畜生态,2004,25(4):249-251.
    [305]黄欢,汪小泉,韦肖杭,et al.杭嘉湖地区淡水水产养殖污染物排放总量的研究[J].中国环境监测,2007,23(2):94-97.
    [306]陈家长,胡庚东,瞿建宏,et a1.太湖流域池塘河蟹养殖向太湖排放氮磷的研究[J].农村生态环境,2005,21(1):21-23.
    [307]章明奎,李建国,边卓平.农业非点源污染控制的最佳管理实践[J].浙江农业学报,2005,17(5):244-250.
    [308]高龙华.遥感与GIS技术下的流域非点源污染模型研究[D].南京:河海大学,2006.
    [309]王方浩,马文奇,窦争霞,et al.中国畜禽粪便产生量估算及环境效应[J].中国环境科学,2006,26(5):614-617.
    [310]朱兆良.农田中氮肥的损失与对策[J].土壤与环境,2000,9(1):1-6.
    [311]OENEMA O, VAN LIERE L, PLETTE S, et al. Environmental effects of manure policy options in The Netherlands [J]. Water Science and Technology,2004,49(3):101-108.
    [312]陈荷生,华瑶青.太湖流域非点源污染控制和治理的思考[J].水资源保护,2004,20(1):33-36.
    [313]王凯军.畜禽养殖污染防治技术与政策[M].北京:化学工业出版社,环境科学与工程 出版中心,2004.
    [314]祁俊生.农业面源污染综合防治技术[M].重庆:西南交通大学出版社,2009.
    [315]杨林章,施卫明,薛利红,et al.农村面源污染治理的 “4R”理论与工程实践——总体思路与 “4R” 治理技术[J].农业环境科学学报,2013,(1):1-8.
    [316]薛利红,杨林章,施卫明,et al.农村面源污染治理的 “4R”,理论与工程实践——源头减量技术[J].农业环境科学学报,2013,32(5):881-888.
    [317]王浩.湖泊流域水环境污染治理的创新思路与关键对策研究[M].北京:科学出版社,2010.
    [318]杨林章,冯彦房,施卫明,et al.我国农业面源污染治理技术研究进展[J].中国生态农业学报,2013,21(1).

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700