用户名: 密码: 验证码:
公路源重金属对路域环境的影响及其迁移规律
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
公路建设在带动经济发展的同时,也导致了一些环境问题,并引起学术界的广泛关注。本文运用系统科学理论与方法,将路域环境各因素看作是相互联系的统一整体,从重金属“源→路径→汇→影响”角度出发,研究交通源重金属迁移及对路域环境的影响。以河南省公路(G310、S337)为例,采集路旁土壤、小麦、水稻、大气颗粒物、降水、地表水样品,用ICP-MS分析其Cd、Cr、Cu、Ni、Pb、Zn等重金属含量。对不同耕作方式下路旁土壤重金属含量进行泛克里格插值分析,开展路旁土壤、小麦、水稻、地表水公路源重金属含量、分布、污染状况和风险评价,从线源颗粒物扩散模型出发,对路旁大气颗粒物和路旁土壤重金属空间分步进行拟合,较好地揭示了路源重金属迁移和沉降规律。经研究,得出以下主要结论:
     (1)公路交通对路域土壤、水体、生物、大气环境都有重大影响。公路源重金属产生后,赋存于大气颗粒物中,随其进行干湿沉降,最终通过干湿沉降汇于地表水及土壤,引起路域环境重金属积累,甚至发生污染。建立公路源重金属迁移模型和路旁土壤重金属空间分布模型,并使用大气颗粒物、大气颗粒物重金属及土壤重金属含量进行模型验证。该模型对于大气颗粒物、大气颗粒物重金属含量实测值拟合效果较好,对土壤重金属含量实测值拟合效果很好。
     (2)耕作方式及重金属特性对路旁土壤重金属空间分布具有强烈影响。克里格空进插值分析表明,杏花营断面旱旱轮作的路旁土壤重金属呈现出与道路平行的条带状空间分布,其中Cr和Cu含量呈指数递减分布,Pb、Ni、Zn和Cd呈偏态分布,峰值出现在距路基30~50m之间。重金属分布类型与该元素主要赋存的大气颗粒物粒径有关,赋存于较大颗粒物上的重金属在道路两侧呈指数递减分布模式,相反则呈偏态分布模式。与此相反,杜良段面水旱轮作的土壤重金属含量呈斑点状或斑块状分布,与距路基距离的相关性较差。这主要是淹水条件增强了重金属水平迁移所致。
     (3)路旁土壤环境已发生不同程度重金属污染,存在一定的潜在生态风险、健康风险。以国家土壤环境二级质量标准为基准的重金属污染指数法评价表明,杏花营断面和项店断面路旁土壤重金属单项、综合污染均为安全级别;杜良断面土壤Ni在路基100m(南侧)和500m(北侧)范围内达到轻度污染,Zn在距路基140和150m(南侧)处的样点达到轻度污染,Cu、Cd、Pb和Cr均为安全级别,杜良断面土壤重金属综合污染总体为安全级别。以对照样土壤重金属含量为基准的地积累指数评价表明,土壤6种重金属均出现不同程度的污染。杏花营断面南侧土壤Cr在距路基0~30m之间达到中度污染,35~120m之间达到轻度污染;北侧土壤Cr在距路基15m左右达到中度污染,0~10、20~120m之间达到轻度污染;杏花营断面Cu、Zn、Ni、Cd和Pb的轻度污染带出现在距路基80m范围之内。杜良断面土壤Pb、Ni、Zn、Cr、Cu出现局部区域的中度污染,Cd造成局部区域的轻度污染;项店断面土壤Cr、Ni、Zn、Cu、Cd局部达到轻度污染,Pb为安全级别。以对照样土壤重金属含量为基准的潜在生态风险指数评价表明,杏花营土壤Cd达到中等生态风险的样点数占总样数的82.43%,杜良断面为45.07%,项店断面为87.83%;杜良断面土壤Pb达到中等生态风险的样点数占总样点的8.45%,其余样点均为轻微风险。3个断面土壤均存在重金属综合潜在生态风险。3个断面土壤重金属的单项和综合非致癌和致癌健康风险甚小,可忽略。
     (4)G310公路两侧200m范围内粮食作物(水稻、小麦)重金属含量显著高于对照样点。样点小麦籽粒Cr、Ni和Pb全部污染,其中Pb属于重度污染,Cr达到轻度污染、中度污染和重度污染的样点数分别占总样数的2.70%、16.22%和81.08%,Ni达到轻度污染、中度污染和重度污染的样点数占总样数分别为8.11%、40.54%和51.35%,Cu、Cd和Zn达到分轻度污染的样点数占总样数的89.19%、9.11%和45.95%。水稻Cr为重度污染,Ni达到轻度污染、中度污染和重度污染的样点数分别占总样数的19.44%、16.67%和11.11%;Pb达到轻度污染的样点数占总样数的25.00%;Cu、Zn和Cd为未污染。小麦籽粒综合污染指数达到重度污染水平。水稻籽粒重金属多为中度污染,部分达到重度污染。小麦Cr、Pb存在非致癌健康风险,Cu、Cd、Zn和Ni无明显的非致癌健康风险,有综合非致癌健康风险,小麦Cr风险占总风险的52.16%,为主要非致癌风险因子,Pb风险占总风险的26.59%,为次要风险因子。水稻Cr存在非致癌健康风险,Cu、Pb、Zn、Cd和Ni无明显的非致癌健康风险,Cr风险占总风险82.90%,也是主要非致癌风险因子。小麦和水稻的Cr、Pb存在非致癌健康总风险,Cu总体存在健康总风险,Zn、Cd和Ni的不存在健康总风险,小麦和水稻存在重金属综合非致癌健康总风险。
     (5)与对照样点相比,距路基200m范围内的地表水体6种重金属含量显著升高,造成部分地表水环境的污染。地表水Cu达到轻度污染、中度污染和重度污染的样点数分别占总样数的16.67%、8.33%和8.33%;Zn达到轻度污染的样点数占总样数的4.17%。路域降水中的重金属含量也高于对照样点,但没有造成污染。
     (6)路域大气颗粒物迁移距离与其粒径呈负相关,粒径越小,迁移越远。大气颗粒物重金属含量空间分布有指数和偏态两种分布类型,其中Pb和Cr属于指数递减分布趋势,Cd、Cu、Ni和Zn属于偏态分布。重金属所赋存颗粒物粒径从大到小依次为Cd=Cu>Cr>Ni>Pb。路域大气环境出现Pb的中度或重度污染,颗粒物的粒径越小,污染程度越重。路域大气颗粒物重金属存在综合非致癌和致癌健康风险,Cr为主要健康风险因子。
Although the road is one of the important powers of economic progress, development of road also caninduce a lot of environmental problems. In the past few decades, these environmental problems are alwayshot topic. In the study, on the basis of ‘source-path-acceptor-effect’ of heavy metals, environmental effectsand migration rule of traffic-source heavy metals were investigated, using theories and methods of SystemScience.310thNational Highway and337thProvincial Highway were chosen as the research objects.Roadside soils, wheat, rice, ambient particulate matter, precipitation andsurface water were collected assamples, and their heavy metals (Pb, Cu, Ni, Cr, Cd and Zn) were detected by the inductively coupledplasma mass spectrometry (ICP-MS) respectively according to the recommended standard method. Spatialdistribution of heavy metals concentrations by applying Universal Kriging interpolation model,concentration, PollutionIndex&Risk Index of heavy metals in soils, wheat, rice, ambient particulate matter,precipitation&surface water were analysed. Meanwhile, roadside atmospheric particulate and the spatialconcentration distribution of roadside heavy metals was fitted using line source particle diffusion model.The main results were as follows:
     (1) Highway traffic has great effect on heavy metals in soil, plant, airand water in road-domainenvironment. Since the traffic-source heavy metals appear, they are adsorbed by and migrate with ambientparticulate matters, finally, they are imported into soils and water. As a result, traffic-source heavy metalshave been accumulated in road-domain environment, and caused environment polluted. The models ofmigration in air and spatial distribution in soils for traffic-source heavy metals were built, and verified bythe measured concentrations. The spatial distributions of ambient particulate matter&its heavy metalconcentrations were well fitted by the model, and the spatial distributions of soil heavy metalconcentrations were better fitted by.
     (2) The different tillage systems and characteristics of heavy metals have great effects on spatialdistribution of heavy metals in roadside soils.The distributions of metal concentrations in upland-uplandrotationfield were strips parallel to the highway stretching. The concentrations of Cr and Cu decreasedexponentially with the distance from the roadbed, however, the concentrations of Cd, Pb, Ni and Znrevealed an asymmetrical distribution with the distance, which increased firstly, reached their highest values between30and50m away from the roadbed, and then gradually decreased to the control values.Distribution types have significant relationship with sizes of ambient particulate matters whichtraffic-source heavy metals are adsorbed by. Being adsorbed by the larger ambient particulate matters,heavy metal concentrations reveal an exponential distribution. While they are adsorbed by the smaller ones,their concentrations reveal an asymmetrical distribution. In contrast, heavy metal concentrations showedirregular patch distribution in paddy-upland rotation field, resulted from waterlogged condition changingpH, Eh of soils, leading to horizontal migration of soil heavy metals.
     (3) Traffic-source heavy metals have posed pollution, certain potential ecological risk and health riskon road-domain soil environment. According to the second index in the national standards for soil quality,the assessment by pollution index indicates that it was in not polluted states on Xinghuaying&Xiangdiantransect. On Duliang transect, Ni was in light polluted states within100meter away from the roadbed onthe south side, and within500meter on the north side. Zn was in light polluted at the position of140&150meter away from the roadbed on the south side. The others were in not polluted states. Totally, heavymetals were in comprehensive not polluted state on the three transects. Making a reference to the controlvalues, the assessment by geoaccumlation index of heavy metal shows that six heavy metals were indifferent polluted states. On Xinghuaying transect, Cr was in middle polluted states within30meters, andin slight polluted states between35~120meters away from the roadbed on the south side. Cr was in middlepolluted states at the position of15meter, and in slight polluted states between35~120&20~120metersaway from the roadbed on the north side. Cu, Zn, Cd and Pb appear light polluted at some positions within80meters away from roadbed on both sides. On Duliang transect, Pb, Ni, Zn, Cr and Cu were in middlepolluted states in part regions, Cd was in light polluted in part regions. On Xiangdian transect, Cr, Ni, Zn,Cu and Cd were in middle polluted states in part regions, Pb was in light polluted in part regions. Making areference to the control values, the assessment by potential ecological risk index of heavy metals shows thatthere was comprehensive milddle potential ecological risk on all transects. Cd in middle potentialecological risk states was82.43%on Xinghuaying transect,45.07%on Duliang transect, and87.83%onXiangdian transect. Pb in middle risk state was8.45%on Duliang transect. While, all the others were inlight risk states. CR and TCR on all transects were lower than the standard suggested by US EPA whichmeant where may be carcinogenic riskpossibility, and Cr is the main factor of potential ecological risks.
     (4) The concentrations of heavy metals in grain crops within200m away from roadbed weredistinguishably higher than the control values. Pb in wheat samples were all in heavy polluted states. Thewheat sample number of Cr achieving slight polluted state, middle pollutedstate and heavy polluted staterespectively accounted for2.70%,16.22%and81.08%of the total sample number. The wheat samplenumber of Ni achieving slight polluted state, middle polluted state and heavy polluted state respectivelyaccounted for8.11%,40.54%and51.35%. While the wheat sample number of Cu, Cd&Pb achievingslight polluted state respectively accounted for89.19%,9.11%and45.95%. Cr in rice samples were all atheavy polluted state. The rice sample number of Ni achieving slight polluted state, middle pollutedstate andheavy polluted state respectively accounted for19.44%,16.67%and11.11%of the total sample number.Therice sample number of Pb achieving slight polluted state accounted for25.00%. While Cu, Cd&Znwere in not polluted state.The metals in wheat had comprehensive heavy polluted index, and the metals inrice partly had comprehensive midlle polluted index, partly had comprehensive heavy polluted index. Cr&Pb in wheat had non-carcinogen risk possibility, while Cu、Cd、Zn&Ni had not non-carcinogen riskpossibility. Heavy metals in wheat had comprehensive non-carcinogen risk possibility. Cr in wheat is thefirst main factor of non-carcinogen risk possibility, for the risk of Cr accounted for52.16%of the total risk.And Pb is the second main factor of non-carcinogen risk possibility, for the risk of Cr accounted for26.59%of the total risk. Cr in rice had non-carcinogen risk possibility, while Pb, Cu, Cd, Zn&Ni had notnon-carcinogen risk possibility. Heavy metals in rice had comprehensive non-carcinogen risk possibility. Crin rice is main factor of non-carcinogen risk possibility, for the risk of Cr accounted for82.90%of the totalrisk. Cr&Pb in wheat&rice had non-carcinogen risk possibility, while Cu, Cd, Zn&Ni had notnon-carcinogen risk possibility. Heavy metals in wheat&rice had comprehensive non-carcinogen riskpossibility.
     (5) Highway traffic had great effect on road-domain water environment. The concentrations of heavymetals in surface water200m away from roadbed were distinguishably higher that the control values, evenpart of surfacewaterhad been polluted. The surfacewater sample number of Cr achieving slight pollutedstate, middle pollutedstate and heavy polluted state respectively accounted for16.67%,8.33%and8.33%of the total sample number. And the number of Zn achieving slight polluted state accounted for4.17%.Highway traffic had great effect on roadside precipitation but it did not cause roadside precipitation polluted.
     (6) Ambient particulate matter in road-domain environmentwas mainly affected by wind direction androad towards. The migration distance of ambient particulate matter is negatively correlated with its size.The larger ambient particulate matter is the nearer its migrationis. The effects of atmospheric particulate onspatial distributions of heavy metals mainly occurred in the downwind region of road-domain environment.They revealedtwo type distributions: exponentialdistribution (Pb&Cr)&skew distribution (Cd, Cu, Ni&Zn). The sizes of atmospheric particulate, absorbing heavy metals, are in decreasing order ofCd=Cu>Cr>Ni>Pb. Pb achieved middle or heavy polluted state in road-domain environment, and thesmallerambient particulate matter is, the more serious its pollutionis. Heavy metals of ambient particulatematter hadcomprehensive non-carcinogen (carcinogen) risk possibility, and Cr is main factor ofriskpossibility.
引文
Adeleke A. Adeniyi, Olabisi J. Owoade.2010. Total petroleum hydrocarbons and trace heavy metals inroadside soils along the Lagos–Badagry expressway, Nigeria [J]. Environ Monit Assess,167:625–630.
    Affum H A,Oduro-Afriyie K, Nartey V K.2008. Biomonitoring of airborne heavy metals along a majorroad in Accra, Ghana [J]. Environmental Monitoring and Assessment,137(1-3):15-24.
    Akbar K F,Hale W H G, Headley A D, et al.2006. Heavy Metal Contamination of Roadside Soils ofNorthern England [J]. Soil&Water Res.,1(4):158–163.
    Al-Chalabi A, Hawker D.2000. Distribution of vehicular lead in roadside soils of major roads of Brisbane,Austrilia[J]. Water, Air, and soil pollution,118(3/4):299-310.
    Al-Chalabia A S, Hawker D.2006. Response of vehicular lead to the presence of street dust in theatmospheric environment of major roads [J]. Science of The Total Environment,206(2-3):195-202.
    ALE PLESNI AR.2005. Heavy Metal Contamination of roadside Soil along Ljubljana-Obrezje Highway[J]. RMZ-Materials and Geoenvironment,52(2):403-218.
    Alloway B J, Jackson A P, Morgan H.1990. The accumulation of cadmium by vegetables grown on soilscontaminated from a variety of sources [J]. Sci Total Environ.,91:223-36.
    Ball J E, JenksR, Aubourg D.2002. An assessment of the availability of pollutant constituents on roadsurfaces [J]. The Science of The Total Environment,209(2-3):243-254.
    Biasioli M,BarberisR, Ajmone-Marsan F.2006. The influence of a large city on some soil properties andmetals content [J]. Science of The Total Environment,356(1-3):154-164.
    Blok J.2005. Environmental exposure of road borders to zinc [J]. Science of The Total Environment,348(1-3):173-190.
    B ckstr m M, Nilsson U, H kansson K, et al.2003. Speciation of Heavy Metals in Road Runoff andRoadside Total Deposition [J]. Water, Air,&Soil Pollution,147,(1-4):343-366.
    B ckstr mM, KarlssonS, AllardB.2004. Metal leachability and anthropogenic signal in roadside soilsestimated from sequential extraction and stable lead isotopes [J].Environmental Monitoring andAssessment,90(1/3):135-160.
    Camilla W, Maria V.2006. Particles and associated metals in road runoff during snowmelt and rainfall [J].Science of the Total Environment,362:143–156.
    Cannon H L, Bowles J M.1962. Contamination of vegetation by tetraethyl lead [J]. Science.137(3532):765-766
    Chen G L, Li D W, Liu J, et al.2010. Heavy metal pollution and health risk assessment in the vicinity of theabandoned pyrite smelting slag[J]. Disaster Advances,3(4):362-366.
    Chen T B, Wong J W C, Zhou HY, et al.1997. Assessment of trace metal distribution and contamination insurface soils of Hong Kong [J]. Environmental Pollution,96(1):61-68
    Chen W P, Li L P, Chang A C, et al.2009. Characterizing the soil-solution partitioning coefficient and plantuptake factor of As, Cd, and Pb in Califomia croplands[J]. Agr Ecosyst Environ,129(1-3):212-220.
    Chen X, Xia X H, Zhao Y, et al.2010. Heavy metal concentrations in roadside soils and correlation withurban traffic in Beijing, China[J]. Journal of Hazardous Materials,181:640–646.
    Chow T J.1970. Lead accumulation in roadside soil and grass [J]. Nature.225(17):295-296.
    De Miguel E, Llamas J F, Chacón E, et al.1997. Origin and patterns of distribution of trace elements instreet dust: Unleaded petrol and urban lead [J]. Atmospheric Environment,31(17):2733-2740.
    Efroymson R A, Smaple B E, Suterll G W.2001. Uptake of inorganic chemicals from soil byplant leaves regressions of field data [J]. Environ Toxico Chem,20(11):2561-2571.
    Ellis JB and Revitt D M.1982. Incidence of heavy metals in street surface sediments: Solubility and grainsize studies. Water, Air,&Soil Pollution,17(1):87-100.
    Fakayode S O, Olu-Owolabi B I.2003. Heavy metal contamination of roadside topsoil in Osogbo,Nigeria:its reationship to traffic density and proximity to highways [J]. Eviornmental Geology,44(2):150-157.
    Feng J, Zhao J, Zhang W.2012. Spatial distribution and controlling factors of heavy metals contents inpaddy soil and crop grains of rice-wheat cropping system along highway in EastChina[J].EnvironGeochemHealth,34(5):605-614.
    Feng Jinfei, Wang Yinxi, Zhao Jian, et al.2011. Source attributions of heavy metals in rice plant alonghighway in Eastern China [J].Journal of Environmental Sciencss,23(7):1158-1164.
    Fernández J A, Carballeira A.2001. Evaluation of contamination, by different elements, in terrestrialmosses[J]. Archives of environmental contamination and toxicology,40(4):461-468.
    Ferreira-Baptista L,De Miguel E.2005.Geochemistry and riskassessment of street dust in Luanda,Angola:atropical urbanenvironment[J].Atmospheric Environment,39(25):4501-4512.
    Franz Zehetner, Ulrike Rosenfellner, Axel Mentler, et al.2008. Distribution of Road Salt Residues, HeavyMetals and Polycyclic Aromatic Hydrocarbons across a Highway-Forest Interface [J].Water, Air,&Soil Pollution,198(1-4):125-132.
    Garcia R, MillánE.1998. Assessment of Cd, Pb and Zn contamination in roadside soils and grasses fromGipuzkoa (Spain)[J]. Chemosphere,37(8):1615-1625.
    Gratani L, Taglioni S, Crescente M F.1992. The accumulation of lead in agricultural soil and vegetationalong ahighway[J]. Chemosphere.24(5):941-949.
    Gr eti I, Ghariani R H A G.2008.Potential health risk assessment for soil heavy metalcontamination in thecentral zone of Belgrade (Serbia)[J]. Journal of the Serbian Chemical Society,73(8-9):923-934.
    Guney M,Onay TT,Copty NK.2010. Impact of Overland Traffic on Heavy Metal Levels in Highway Dustand Soils of Istanbul, Turkey [J]. Environmental Monitoring and Assessment,164(1-4):101-110.
    Hafen M R, Brinkman R.1996. Analysis of lead in soils adjacent to an interstate highway in Tampa, Florida[J]. Environmental Geochemistry and Health,18(4):171-179.
    Hallberg M, Renman G, Lundbom T.2007. Seasonal Variations of Ten Metals in Highway Runoff and theirPartition between Dissolved and Particulate Matter [J]. Water, Air,&Soil Pollution,181(1-4):183-191.
    H kanson L.1980. An ecological risk index for quality pollution control:asediment ecologicalapproach[J].WaterResearch,14:975-1001.
    Harrision R M, Tilling R, Romero M S C, et al.2003. A study of trace metals and polycyclic aromatichydrocarbons in the roadside environment [J]. Atmospheric Environment,37(17):2391-2402.
    Hashisho Z, EL-Fadel M.2004. Impacts of traffic-induced lead emissions on air, soil and blood lead levelsin Beirut [J]. Environmental monitoring and assessment.93(1-3):185-202.
    Herngren L, Goonetilleke A,AyokoG A.2006. Analysis of heavy metals in road-deposited sediments [J].Analytica Chimica Acta,571:270-278.
    Hirokazu Ozaki, Izumi Watanabe, Katsuji Kuno.2004. As, Sb and Hg distribution and pollution sources inthe roadside soil and dust around Kamikochi, Chubu Sangaku National Park, Japan [J]. GeochemicalJournal,38:473-484.
    Howari F M,Abu-Rukah Y, Goodell P C.2004. Heavy metal pollution of soils along North Shuna-AqabaHighway, Jordan [J]. International Journal of Environment and Pollution,22(5):597-607.
    Jaradat Q M, Momani K A.1999. Contamination of Roadside Soil, Plants, and Air With Heavy Metals inJordan, A Comparative Study [J]. Turk J Chem,23:209-220.
    Jaradat Q M, Massadeh A M, Momani K A, et al.2010. The spatial distribution of Pb, Cd, Zn, and Cu inagricultural roadside soils [J]. Soil and Sediment Contamination,19(1):58-71.
    Juknevi iusS,Maty iūt-Jodkonien D, Sabien1N.2007. Contamination of soil and grass by heavy metalsalong the main roads in Lithuania [J]. EKOLOGIJA.,53(3):70-74.
    Kazuyuki Suzuki, Toru Yabuki, Yoshiro Ono.2009. Roadside Rhododendron pulchrum leaves asbioindicators of heavy metal pollution in traffic areas of Okayama, Japan [J]. EnvironmentalMonitoring and Assessment,149,(1-4):133-141.
    Kocher B, Wessolek G, Stoffregen H.2005. Water and heavy metal transport in roadside soil [J]. Pedosphere.15(6):746-753.
    Lai H Y, Hseu Z Y, Chen T C, et al.2010.Health risk-based assessment and management of heavymetals-contaminated soil sites in Taiwan[J]. International Journal of Environmental Research andPublic Health,7(10):3595-3614.
    Li F R,Kang L F,Gao X Q, et al.2007. Traffic-Related Heavy Metal Accumulation in Soils and Plants inNorthwest China [J]. Soil and Sediment Contamination,16(5):473-484.
    Lim H S, Lee J S, Chon H T, et al.2008. Heavy metal contamination and health risk assessment in thevicinity of the abandoned Songcheon Au–Ag mine in Korea[J]. Journal of Geochemical Exploration,296(2-3):223-230.
    Mahera B A, Mooreb C, Matzkac J.2008. Spatial variation in vehicle-derived metal pollution identified bymagnetic and elemental analysis of roadside tree leaves [J]. Atmospheric Environment,42:364-373.
    Manno E,Varrica D,Dongarra G.2006. Metal distribution in road dust samples collected in an urban areaclose to a petrochemical plant at Gela, Sicily [J]. Atmospheric Environment,40:5929–5941.
    Miguel E de,Llamas J F,Chacón E.1997. Origin and patterns of distribution of trace elements in street dust:Unleaded petrol and urban lead [J]. Atmospheric Environment,31(17):2733-2740
    Mudre J M,NeyJ J.1986. Patterns of accumulation of heavy metals in the sediment of roadside streams [J].Archives of Environmental Contamination and Toxicology,15(5):489-493.
    Muller G.1969. Index of geoaccumulation in sediments of the Rhine river [J].Geojournal,2(3):108-118.
    Münch D.1993. Concentration profiles of arsenic, cadmium, chromium, copper, lead, mercury, nickel, zinc,vanadium and polynuclear aromatic hydrocarbons (PAH) in forest soil beside an urban road [J].Science of the Total Environment,138(1-3):47-55.
    Nyangababo J T.2001. Trace Metal Concentrations in Squirrel (Sciurus vulgaris) and Black Rat (Rattusmuridae) Inhabiting Roadside Ecosystem [J]. Bull. Environ. Contam. Toxicol.,66:714-718.
    OkunolaO J, UzairuA, Ndukwe G.2007. Levels of trace metals in soil and vegetation along major andminor roads in metropolitan city of Kaduna, Nigeria [J]. African Journal of Biotechnology,6(14):1703-1709.
    Oncel M S, Zedef V, Mert S.2004. Lead contamination of roadside soils and plants in the highwaysbetween Istanbul and Sakarya, NW Turkey [J]. Fresenius Environmental Bulletin,13(12):1525-1529.
    Oztas T, AtaS.2002. Distribution patterns of lead accumulation in roadside soils: a case study fromErzurum, Turkey [J]. International Journal of Environment and Pollution,18(2):190-196.
    Pal S K, Wallis S G,Arthur S.2011. Assessment of heavy metals emission from traffic on road surfaces [J].Central European Journal of Chemistry,9(2):314-319.
    Peng H B, LiuY G, Li J, et al.2007. An ecological risk assessment for heavy metals of the Lead-Zinc oretailings[J]. Ecological Economy,66(3):217-224.
    Provoost J, Comelis C, Swartjes F.2006. Comparison of soil clean-up standards for trace elements betweencountries: Why do they differ?[J]. J Soil Sedinents,6(3):173-181.
    Qiu H Y.2010. Studies on the Potential Ecological Risk and Homology Correlation of Heavy Metal in theSurface Soil[J]. Journal of Agricultural Science,2(2):194-201.
    Ramakrishnaiah H, Somashekar R K.2002. Heavy Metal Contamination in Roadside Soil and TheirMobility in Relations to pH and Organic Carbon [J]. Soil and Sediment Contamination,11(5):643-654.
    Riga-karandinos A N, Saitanis C J, Arapis G.2006. First Study of Anthropogenic Platinum Group Elementsin Roadside Top-soils in Athens, Greece [J]. Water, Air, and Soil Pollution.172:3-20
    Saeedi M, HosseinzadehM,JamshidiA,et al.2009. Assessment of heavy metals contamination and leachingcharacteristics in highway side soils, Iran [J]. Environmental Monitoring and Assessment,151(1-4):231-241.
    SinghAK.2011. Elemental chemistry and geochemical partitioning of heavy metals in road dust fromDhanbad and Bokaro regions, India [J]. Environmental Earth Sciences,62(7):1447-1459.
    Sithole S D, Moyo N.1993. An assessment of lead pollution from vehicle emissions along selectedroadways in Harare [J]. International Journal of Environment and Analytical Chemistry,53(1):1-12.
    Sternbeck J, Sjodin A,Andreasson K.2002. Metal emissions from road traffic and the influence ofresuspension—results from two tunnel studies [J]. Atmospheric Environment,36:4735–4744.
    Sutherland R A.2003. A First Look at Platinum in Road-Deposited Sediments and Roadside Soils,Honolulu, Oahu, Hawaii [J]. Arch. Environ. Contam. Toxicol.,44:430–436.
    Sutherland R A, Tolosa C A.2001. Variation in total and extractable elements with distance from roads in anurban watershed, Honolulu, Hawaii [J]. Water, Air, and Soil Pollution,127(1-4):315-338.
    Sutherland R A,TolosaC A,Tack F M G, et al.2000. Characterization of Selected Element Concentrationsand Enrichment Ratios in Background and Anthropogenically Impacted Roadside Areas [J]. Arch.Environ. Contam. Toxicol.,38:428–438.
    Sutherland R A, Day J P, Bussen J O.2003. Lead Concentrations, Isotope Ratios, and source Apportionmentin Road Deposited Sediments, Honolulu, Oahu, Hawaii [J]. Water, Air, and Soil Pollution,142:165–186.
    Swaileh K M,Rabaya N,Salim R, et al.2001. Concentrations of heavy metals in roadside soils, plants, andlandsnails from the West Bank, Palestine [J]. J Environ Sci Health A Tox Hazard Subst EnvironEng.,36(5):765-778.
    Swaileh K M, Hussein R M, Abu-Elhaj S.2004. Assessment of heavy metal contamination in roadsidesurface soil and vegetation from the West Bank [J]. Arch Environ Contam Toxicol,47(1):23-30.
    Sánchez-Martin M J, Sánchez-CamazanoM, LorenzoL F.2000. Cadmium and Lead Contents in Suburbanand Urban Soils from Two Medium-Sized Cities of Spain: Influence of Traffic Intensity [J]. Bull.Environ. Contam. Toxicol.,64:250-257.
    Teichman J, Coltrin D, Prouty K.1993. A survey of lead contamination in soil along Interstate880,Alameda County, California. American Industrial Hygiene Association Journal,54(9):557-559.
    Tu C, Wang S Q, Zheng C R.2000. Combined pollution and pollution index of heavy metals in red soil [J].Pedoshphere,10(2):117-124.
    Turer D G, Maynard J B, Sansalone J J.2001. Heavy metal contamination in soils of urban highways:Comparison between runoff and soil concentration at Cincinnati, Ohio [J]. Water, Air, and SoilPollution.132(3-4):293-314.
    Turer D G, Maynard J B.2003. Heavy metal contamination in highway soils, comparison of Corpus Christi,Texas and Cincinnati, Ohio shows organic matter is key to mobility [J]. Clean Technology andEnvironmental Policy,4(4):235-245.
    US. EPA.1989. Risk assessment guidance for superfund, vol.Ⅰ: Human health evaluation manual [R].Washington, DC: Office of Emergency and Remedial Response,
    US EPA.1991. Risk assessment guidance for superfund, vol.Ⅰ: Human health evaluation manual [R].Washington, DC: Office of Emergency and Remedial Response.
    US EPA.2002. Supplemental guidance for developing soil screening levels for superfund Sites[S].Washington, DC: Office of Emergency and Remedial Response.
    US EPA.2004. Risk Assessment Guidance for Superfund, vol.Ⅰ: Human health evaluation manual(part E,Supplemental guidance from dermal risk assessment) interim [S]. Washington, DC: Office ofEmergency and Remedial Response.
    Van Bohemen H D, Van De Laak W H J.2003. The influence of road infrastructure and traffic on soil, water,and air quality [J]. Environmental Management.31(1):50-68.
    Vandenabeele W J, Wood O L.1972. The distribution of lead along a line source (highway)[J].Chemosphere.(5):221-226.
    Wang J D, Ren H M, Liu J S, et al.2006. Distribution of Lead in urban soil and it's potentail risk inShenyang City, China[J]. Chinese Geographical Sciance,12(2):127-132.
    Wang X S, Qin Y, Chen Y K.2006. Heavy metals in urban roadside soils, Part1: effect of particle sizefractions on heavy metals partitioning [J]. Environmental Geology,50(7):1061-1066.
    Wang X S, Qin Y, Chen Y K.2007. Leaching Characteristics of Arsenic and Heavy Metals in UrbanRoadside Soils Using a Simple Bioavailability Extraction Test [J]. Environmental Monitoring andAssessment,129(1-3):221-226.
    Ward N I, Reeves R D, Brooks R R.1975. Lead in soil and vegetation along a New Zealand state highwaywith low traffic volume [J]. Environmental Pollution,9(4):43-251.
    Wheeler G L, Rolfe G L.1979. The relationship between daily traffic volume and the distribution of lead inroadside soil and vegetation [J]. Environmental Pollution,18(4):265-274.
    Zechmeister H G,Dullinger S, HohenwallnerD et al.2006. Pilot study on road traffic emissions (PAHs,heavy metals) measured by using mosses in a tunnel experiment in Vienna, Austria [J]. EnvironmentalScience and Pollution Research,(13):398-405.
    Zehetner F,Rosenfellner U,Mentler A,et al.2008. Distribution of road salt residues, heavy metals andpolycyclic aromatic hydrocarbons across a highway-forest interface[J].Water,Air, and SoilPollution,198(1-4):125-132.
    Zimová M, uri M, Spěvác ková V, et al.2001. Health risk of urban soils contaminated by heavymetals[J]. International Journal of Occupational Medicine and Environmental Health,14(3):231-234.
    白义,施时迪,齐鑫,等.2011.台州市路桥区重金属污染对土壤动物群落结构的影响[J].生态学报,31(2):421-430.
    曹立新,李惕川,刘莹,等.1995.公路边土壤和水稻中铅的分布、累积及临界含量[J].环境科学,16(6):66-68.
    曹希寿.1994.区域环境风险评价与管理初探[J].中国环境科学,14(6):465-470.
    曹洪法,沈英娃.生态风险概述[J].环境化学,1991,10(3):26-29.
    常静,刘敏,李先,等.2009.上海地表灰尘重金属污染的健康风险评价[J].中国环境科学,29(5):548-554.
    常卫民,陈诚.2009.104国道江苏段公路两侧重金属污染现状调查[J].能源环境保护,23(3):43-46.
    车飞,于云江,胡成,等.2009.沈抚灌区土壤重金属污染健康风险评价[J].农业环境科学学报,28(7):1439-1443.
    陈长林,李晓所,张勤,等.2006.公路交通对土壤重金属污染的研究[J].公共卫生与预防医学,17(6):19-21.
    陈翠翠,梁锦陶,韩玉兰,等.2010.太原市敦化污灌区重金属污染的潜在生态风险评价及垂直分布特征[J].中国农学通报,26(10):314-318.
    陈广斌.2009.路面径流污染特性及其控制措施[J].污染防治技术,22(4):63-66.
    楚蓓,李取生,蔡莎莎,等.2008.珠江口湿地土壤重金属潜在生态风险评价[J].海洋环境科学,27(3):250-250.
    戴树桂,朱坦,白志鹏.1995.受体模型在大气颗粒物源解析中的应用和进展[J].中国环境科学,15(4):252-257.
    杜振宇,邢尚军,宋玉民,等.2007.山东省高速公路两侧土壤的铅污染及绿化带的防护作用[J].水土保持学报,21(5):175-179.
    杜平,马建华,韩晋仙.2009.开封市化肥河污灌区土壤重金属潜在生态风险评价[J].地球与环境,37(4):436-440.
    丁中元.1989.重金属在土壤-作物中分布规律研究[J].环境科学,10(5):78-84.
    方晓明,刘哲皙,刘中志,等.2005.沈阳市丁香地区土壤重金属污染及生态风险评价[J].环境保护科学,31(4):45-47.
    方晰,金文芬,李开志,等.2010.长沙市韶山路沿线不同绿地土壤重金属含量及其潜在生态风险[J].水土保持研究,24(3):64-70.
    冯金飞.2010.高速公路沿线农田土壤和作物的重金属污染特征及规律[R].南京:南京农业大学.
    冯秀娟,肖敏志,阎思诺,等.2011.赣州不同级公路沿线农田土壤重金属污染评价研究[J].有色金属科学与工程,2(1):68-72.
    高贵春,秦敬文,贾微,等.1985.原子吸收法测定大气悬浮颗粒物中重金属样品前处理方法的探讨[J].环境科学保护,(04):29-34.
    龚伟群,李恋卿,潘根兴,等.2006.杂交水稻对Cd的吸收与籽粒积累:土壤和品种的交互影响[J].环境科学,27(8):1647-1653.
    谷蕾,宋博,仝致琦,等.2012.连霍高速不同通车时间路旁土壤重金属潜在生态风险评价[J].地理科学进展,31(5):632-638.
    谷蕾,仝致琦,宋博,等.2012.基于不同通车时间的路旁土壤重金属健康风险:以连霍高速郑州-商丘段为例[J].环境科学,33(10):3577-3584.
    郭广慧,雷梅,陈同斌,等.2008.交通活动对公路两侧土壤和灰尘中重金属含量的影响[J].环境科学学报,28(10):1937-1945.
    郭广慧,宋波.2010.城市土壤重金属含量及其对儿童健康风险的初步研究——以四川省宜宾市为例[J].长江流域资源与环境,19(8):946-952.
    国家环境保护局,国家技术监督局.土壤环境质量标准(GB15618-1995)[DB/OL].(2011-08-17)[1996-03-01] http://kjs.mep.gov.cn/hjbhbz/bzwb/trhj/trhjzlbz/199603/t19960301_82028.htm.
    国家环境监测总站.1990.中国土壤元素背景值[M].北京:中国环境科学出版社,93-256.
    郭平,谢忠雷,李军,等.2005.长春市土壤重金属污染特征及其潜在生态风险评价[J].地理科学,25(1):108-112.
    郭瑞刚,范崇辉,赵政阳.2007.汽车尾气对公路两侧苹果的Pb污染研究[J].西北林学院学报,22(2):200-202.
    郭之慧,陈同斌,宋波,等,2007.陈玉成.中国公路交通的重金属排放及其对土地污染的初步研究[J].地理研究,26(5):922-930.
    贺婧,周民,钟艳霞.2010.109国道永宁段公路两侧土壤中铅和镉的污染评价[J].江苏农业科学,(4):369-370.
    郭仲伟.1978.风险分析与决策[M].北京,机械工业出版社.1-20.
    胡爱兵,李子富,张书函,等.2010.城市道路雨水水质研究进展[J].给水排水,36(13):123-127.
    胡二邦.2000.环境风险评价实用技术和方法[M].北京,中国环境科学出版社.1-20.
    华明,朱佰万,廖启林,等.2008.江苏主要公路两侧农田土壤重金属污染现状初步研究[J].地质学刊,32(3):165-171.
    黄明霞.2009.公路两侧土壤中重金属污染的测定和环境影响评价[J].安徽农业科学,37(19):9099-9100.
    黄勇强,厉晶晶.2009.高速公路路域土壤重金属污染及植物修复研究进展[J].安徽农业科学,37(7):3216-3218.
    黄忠臣,王崇臣,王鹏,等.2008.北京地区部分公路两侧土壤中铅和镉的污染现状与评价[J].环境化学,27(2):267-268.
    贾琳,杨林生,欧阳竹,等.2008.典型农业区农田土壤重金属潜在生态风险评价[J].农业环境科学学报,28(11):2270-2276.
    姜林,王岩.2004.场地环境评价指南[M].北京:中国环境科学出版社.45-47.
    阚文杰,吴启堂.1994.一个定量综合评价土壤肥力的方法初探[J].土壤通报,25(6):245-247.
    孔德秀,姜守俊.2008.用模糊数学法评价高速公路两侧土壤的污染程度[J].环境研究与监测,21(2):6-9
    孔德秀,姜守俊.2008.衡枣高速公路两侧土壤重金属的污染状况[J].城市环境与城市生态.21(3):34-36.
    孔德秀,姜守俊.2008.高速公路两侧土壤污染的实例分析[J].广东公路交通,(3):38-40.
    兰天水,林健,陈建安,等.2003.公路旁土壤中重金属污染分布及潜在生态危害的研究[J].海峡预防医学杂志,9(1):4-6.
    李宝洁,赵帅,于俊英,等.2012.青岛滨海高速公路路面径流金属污染研究[J].海洋湖沼通报,(2):123-128.
    李波,林玉锁,张孝飞,等.2005.沪宁高速公路两侧土壤和小麦重金属污染状况[J].农业生态环境,21(3):50-53.
    李波,林玉锁,张孝飞,等.2005.宁连高速公路两侧土壤和农产品中重金属污染的研究[J].农业环境科学学报,24(2):266-269.
    李贺,石峻青,沈刚,等.2009.高速公路雨水径流重金属污染特性研究[J].环境科学,30(6):1621-1626.
    李剑,马建华,宋博.2010.郑汴路路旁土壤-小麦系统重金属积累及其健康风险评价[J].植物生态学报2009,33(3):624-628.
    李静静,李云飞,张宁,等.2012.合肥市经开区路面径流中重金属污染特征分析[J].安徽农业科学,40(30):14905-14908.
    李磊,李剑,马建华.2010. RBF神经网络在土壤重金属污染评价中的应用[J].环境科学与技术,33(5):191-195
    李鱼,董德明,吕晓君,等.2004.汽车尾气中铅对公路两侧土壤的污染特征[J].生态环境,13(4):549-552.
    李名升,佟连军.2008.辽宁省污灌区土壤重金属污染特征与生态风险评价[J].中国生态农土学报,16(6):1517-1522.
    李玉,俞志明,宋秀贤.2006.运用主成分分析(PCA)评价海洋沉积物中重金属污染来源[J].环境科学,27(1):137-141.
    李其林,刘光德,郭义.2004.公路两侧土壤和蔬菜中重金属的含量特征[J].环境科学与技术,26(6):35-37.
    李卿,何璐君,谯莉萍等.2008.贵州茶园土壤中重金属元素含量的检测与分析[J].贵州农业科学,36(3):164-166.
    李文军,谷蕾,马建华.2008.连霍高速郑商段路旁土壤重金属积累初探[J].气象与环境科学,31(3):38-42.
    李湘凌,周涛发,殷汉琴.2010.基于层次聚类法和主成分分析法的铜陵市大气降尘污染元素来源解析研究[J].地质论评,56(2):283-288.
    李艳利,李成杰,杨小燕.2010.焦克公路沿线土壤中重金属的污染分布及形态分析[J].河南理工大学学报(自然科学版),29(6):831-836.
    李仰征,马建华.2011.高速公路旁土壤重金属污染及不同林带防护效应比较[J].水土保持学报,25(2):105-109.
    李泽琴,侯佳渝,王奖臻.2008.矿山环境土壤重金属污染潜在生态风险评价模型探讨[J].地球科学进展,23(5):509-516.
    林健,邱卿如,陈建安,等.2000.公路旁土壤中重金属和类金属污染评价[J].环境与健康杂志,17(5):284-286.
    林啸,刘敏,侯立军,等.2007.上海城市土壤和地表灰尘重金属污染现状及评价[J].中国环境科学,27(5):613-618.
    刘世梁,崔宝山,温敏霞,等.2008.路域土壤重金属含量空间变异的影响因素[J].环境科学学报,28(2):253-260.
    刘坤,李光德,张中文,等.2008.城市道路土壤重金属污染及潜在生态危害评价[J].环境科学与技术,31(2):124-127.
    刘庆坦,王静,史衍玺,等.2008.基于GIS的县域土壤重金属健康风险评价——以浙江省慈溪市为例[J].土壤通报,39(3):63-64.
    刘玉萃,李保华,吴明作.1997.大气-土壤-小麦生态系统中铅的分布于迁移规律研究[J].生态学报,17(4):418-425.
    卢宁川,冉文静,杨芳.2010.交通源路域土壤——植物系统中重金属污染研究安徽农业通报,10(1):142-146.
    马东升,张辉.1998.公路重金属污染的形态特征及其解吸、吸持能力探讨[J].环境化学,17(6):564-568.
    马宝艳,张学林.2000.吉林省区域环境中硒的生态风险评价[J].中国环境科学,20(1):91-96.
    马建华,李剑,宋博.2007.郑汴路不同运营路段路旁土壤重金属分布及污染分析[J].环境科学学报,27(10):1734-1743.
    马建华,李剑.2008.郑汴公路路尘、路沟底泥和路旁土壤重金属分布[J].西南交通大学学报,43(2):285-291.
    马建华,谷蕾,李文军.2009.连霍高速郑商段路旁土壤重金属积累及潜在风险[J].环境科学,30(3):894-899.
    马建华,王晓云,侯千,等.2011,城市幼儿园地表灰尘重金属污染及潜在生态风险[J],地理研究,30(3):486-495
    马挺军,林炳荣,贾昌喜.2010.再生水中重金属元素聚类分析和主成分分析[J].中国农学通报,26(24):318-321.
    毛志瑛.2009.交通干道路面径流的重金属调查分析[J].仪器仪表与分析监测,(2):34-36.
    南忠仁,李吉均.2001.几种统计学方法在环境影响因子辨识中的应用[J].农业生态环境,17(2):59-63.
    聂发挥,李田,王朔.2009.上海市公路雨水径流中重金属的形态及分布特征[J].湖南大学学报(自然科学版),36(3):76-80.
    彭景,李泽琴,侯家渝.2007.地积累指数法及生态危害指数评价法在土壤重金属污染中的应用及探讨[J].广东微量元素科学,14(8):13-17.
    彭军龙,张学民.2011.路面径流水环境下的交通承载力分析[J].环境科学与技术,34(11):180-184.
    钱鹏,郑祥民,周立旻.2010.312国道沿线土壤、灰尘重金属污染现状及影响因素[J].环境化学,29(6):1139-1146.
    秦明周,赵杰.2000.城乡结合部土壤质量变化特点与可持续性利用对策——已开封市为例[J].地理学报,55(5):545-554.
    邱超,刘汉湖,刘伟.2010.徐州市三环南路土壤重金属污染特征[J].徐州工程学院学报(自然科学版),25(4):36-41.
    阮宏华,姜志林.1999.城郊公路两侧主要森林类型铅含量及分布规律[J].应用生态学报,10(3):362-364.
    邵劲松,高芹,余云飞,等.2011.沪宁高速公路两侧水稻中重金属污染研究[J].江苏农业科学,39(3):543-544.
    施鹏程,陆桂红,耿玉清.2009.京北城区公路绿化带土壤重金属污染[J].城市环境与城市生态,22(6):35-38.
    石元值,马立峰,文炎,等.2001.汽车尾气对茶园土壤和茶叶中铅、铜、镉元素含量的影响[J].茶叶,27(4):21-24.
    孙龙,韩立君,曹军,等.2007.公路两侧土壤、植物污染及防治对策[J].防护林科技,(4):99-103.
    孙龙,韩丽君,穆立蔷,等.2008.绥满公路路侧典型植被区土壤重金属污染特征及评价研究[J].土壤通报,39(5):1149-1154.
    孙龙,韩丽君,何东坡.2009.绥满公路两侧森林区土壤-植被重金属的分布特征及污染评价[J].林业科学,45(9):72-78.
    孙艳丽,马建华,李剑.2010.郑汴路路旁土壤重金属积累及其潜在风险评估[J].土壤通报,41(5):1184-1190.
    索有瑞,黄雅丽.1996.西宁地区公路两侧土壤和植物中铅含量及其评价[J].环境科学,17(2):74-76.
    汤国安,杨昕.2006.ArcGIS地理信息系统空间分析实验教程[M].北京:科学出版社.372-425.
    田雷,董德明,魏强,等.2011.3种空间插值方法在道路尘中Pb监测数据统计处理中的应用比较[J].吉林大学学报(理学版),49(5):964-968.
    田鹏,杨志峰,李迎霞.2009.公路地表灰尘及径流中颗粒物附着重金属对比研究[J].环境污染与防治,31(6):14-18.
    王超,周继良,陈向明,等.2010.高速公路两侧土壤中重金属污染的测定和环境影响评价[J].信阳农业高等专科学校学报,20(3):129-130.
    王成,郄光发,杨颖,任启文.2007.高速路林带对车辆尾气重金属污染的屏障作用[J].林业科学,43(3):1-7.
    王初;陈振楼;王京,等.2008.上海市崇明岛公路两侧土壤重金属污染研究[J].长江流域资源与环境,17(1):105-108.
    王芳,魏芳.2009.石家庄裕华路西段道路尘与表土重金属污染[J].环境科学与管理,34(10):131-134.
    王海东,方风满,谢宏芳.2010.芜湖市区土壤重金属污染评价及来源分析[J].城市环境与城市生态,23(4):36-40.
    王慧,郭晋平,张芸香,等.2010.公路绿化带对路旁土壤重金属污染格局的影响及防护效应———以山西省主要公路为例[J].生态学报,30(22):6218-6226.
    王济,张浩,曾希柏,等.2009.贵阳市城区路侧土壤重金属分布特征及污染评价[J].环境科学研究,22(8):950-955.
    王劲峰.2006.空间分析[M].北京:科学出版社.76-84.
    王利,陈振楼,许世远,等.2007.上海市延安高架道路沿线绿地土壤中重金属的分布与评价[J].土壤通报,38(1):203-205.
    王鹏,贾学秀,涂明,等.2008.北京某道路外侧土壤重金属形态特征与污染评价[J].环境科学与技术,35(6):165-172.
    王世纪,简中华,罗杰.2006.浙江省台州市路桥区土壤重金属污染特征及防治对策[J].地球与环境,34(1):35-43.
    王淑淳.2002.食品卫生检验技术手册[M].北京:化学工业出版社:166-256.
    王学锋,姚远鹰.2011.107国道两侧土壤重金属分布及潜在生态危害研究[J].土壤通报,2011,42(1):174-148.
    王晓云,马建华,侯千等.2011.开封市幼儿园地表灰尘重金属积累及健康风险[J].环境科学学报,31(3):584-593.
    王莹,董霁红.2009.徐州矿区充填复垦地重金属污染的潜在生态风险评价[J].煤炭学报,34(5):650-655.
    王再岚,何江,智颖飙,等.2006.公路旁侧土壤-植物系统中的重金属分布特征[J].南京林业大学学报(自然科学版),30(4):15-20.
    王政权.1999.地统计学及其在生态学中的应用[M].北京:科学出版社.32-35
    魏丹,迟凤琴,史文娇,等.2007.黑龙江南部黑土区土壤重金属空间分异规律研究[J].农业系统科学与综合研究,23(1):65-68,73.
    吴刚,郑明新.2011.环鄱阳湖区高速公路周边土壤重金属特征分析[J].华东交通大学学报,28(4):89-93.
    谢云峰,陈同斌,雷梅,等.2010.空间插值模型对土壤Cd污染评价结果的影响[J].环境科学学报,30(4):847-854
    徐非,谢争.2008.污染土壤六价铬的测定[J].环境监测管理与技术,20(5):42-43.
    徐永荣,冯宗炜,王春夏.2002.绿带对公路两侧土壤重金属含量的影响研究[J].湖北农业科学,(5):75-77.
    徐有宁,张江华,赵阿宁,等.2008.小秦岭某金矿区农田土壤重金属污染的潜在生态危害评价[J].地质通报,17(8):1272-1278.
    许海,邵婉晨,李光辉,等.2009.沪宁高速公路(常州段)两侧农田土壤重金属污染状况检测评价[J].江苏农业学报,25(1):123-126.
    易秀.2007.西安市污灌区土壤中重金属潜在生态危害评价[J].干旱区资源与环境,21(3):119-120.
    殷云龙,宋静,骆永明,等.2005.南京市城乡公路绿地土壤重金属变化及其评价[J].土壤学报,42(2):206-210.
    余爱华,王大明,赵曜.2010.高速公路沿线土壤重金属污染特征与评价[J].森林工程,26(4):59-63.
    余海龙,顾卫,姜伟,等.2006.高速公路路域土壤质量退化演变的研究[J].水土保持学报,20(4):195-198.
    余海龙,顾卫,袁帅.2008.路域土壤特征及其成因研究[J].水土保持研究,15(6):49-52.
    余海龙,顾卫.2010.太原市绕城高速公路路域土壤特性与重金属污染评价研究[J].水土保持研究,17(6):49-52,58.
    郁建桥,温丽,王霞,等.2008.京沪高速公路两侧土壤重金属污染状况的研究[J].生命科学仪器,2008,6(8):58-61.
    郁建桥,温丽,王霞,等.2008.高速公路两侧土壤、气态颗粒物和树叶中重金属污染相关性研究[J].中国农业科技导报,10(4):109-113.
    曾光明,卓利,钟政林等.1998.水环境健康风险评价模型[J].水科学进展,9(3):212-217.
    张超,马建华,李剑.2009.改进型模糊数学法在土壤重金属污染分析中的应用[J].安徽农业科学,37(4):1763–1766.
    张凤英,阎百兴,潘月鹏等.2010.松花江沉积物重金属时空变化与来源分析[J].云南农业大学学报(自然科学版),25(5):670-674.
    张辉,马东升.1998.公路重金属污染的形态特征及其解吸、吸持能力探讨[J].环境化学,17(6):564-568.
    张厚坚,王兴润,陈春云,等.2010.典型铬渣污染场地健康风险评价及修复指导限值[J].环境科学学报,30(7):1445-1450.
    张玲,夏畅斌,陈平,等.2009.公路沿线土壤重金属污染研究[J].湘潭师范学院学报(自然科学版),31(1):124-127.
    张丙华.2007.公路沿线土壤中重金属的含量分布[J].环境科学与技术,30(2):55-57.
    张红振,骆永明,章海波,等.2010.水稻、小麦籽粒砷、镉、铅富集系数分布特征及规律[J].环境科学,31(2):488-495.
    张厚坚,王兴润,陈春云,等.2010.典型铬渣污染场地健康风险评价及修复指导限值[J].环境科学学报,30(7):1445-1450.
    张建强,白石清,渡边泉.2006.城市道路粉尘、土壤及行道树的重金属污染特征[J].西南交通大学学报,41(1):68-73.
    张茂林,傅大放.2007.江苏省高速公路路域土壤铅污染现状与评价[J].现代交通技术,4(6):79-81.
    张世远,李光德,徐玉新,等.2009.城市道路两侧土壤重金属污染模糊评价[J].山东农业大学学报(自然科学版),40(1):83-87.
    张书海,林树生.2000.交通干线铅污染对两侧土壤和蔬菜的影响[J].环境监测管理与技术,12(3):27-28、36.
    赵彦锋,郭恒亮,孙志英.2008.基于土壤学知识的主成分分析判断土壤重金属来源[J].地理科学,28(1):45-50.
    中华人民共和国农业部.2005. NY861-2004粮食(含谷物、豆类、薯类)及制品中铅、铬、镉、汞、砷、铜、锌等八种元素限量[S].
    中华人民共和国卫生部,中华人民共和国科技部,中华人民共和国国家统计局.2004.2002年中国居民营养与健康状况调查报告[R]. http://wenku.baidu.com/view/9a490c4dc850ad02de8041ea.html.
    钟晓兰,周生路,赵其国.2007.长江三角洲地区土壤重金属污染特征及潜在生态风险评价—以江苏太仓市为例[J].地理科学,27(3):395-400.
    钟政林,曾光明,杨春平.1996.环境风险评价研究进展[J].环境科学进展,4(6):17-21.
    朱伟,边博,阮爱东.2007.镇江城市道路沉积物中重金属污染的来源分析[J].环境科学,28(7):1584-1589.
    朱彦卓,滕洪辉.2010.四平周边地区公路两侧土壤重金属测定与分析[J].吉林师范大学学报(自然科学版),(3):69-71.
    朱宇恩,赵烨,李强,等.2011..北京城郊污灌土壤-小麦(Triticum aestivum)体系重金属潜在健康风险评价[J].农业环境科学学报,30(2):263-270.
    杨宝玲,郑阿宝,阮宏华.2012.沪宁高速公路绿色通道道路建设对土壤重金属污染的影响.南京林业大学(自然科学版),36(1):149~151.
    杨胜香,易浪波,刘佳,等.2012.湘西花垣矿区蔬菜重金属污染现状及健康风险评价[J].农业环境科学学报,31(1):17-23.
    杨世勇,谢建春.2010.芜铜高速公路旁土壤中铅、镉迁移规律及其潜在生态风险评价[J].信阳师范学院学报(自然科学版),20(1):97-100,108.
    杨奕如,殷云龙,於朝广,等.2009.205国道两侧农田土壤和水稻叶片及糙米中重金属含量的空间分布特征[J].植物资源与环境学报,18(2):73-79.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700