用户名: 密码: 验证码:
解糖假苍白杆菌Pseudochrobactrum saccharolyticum LY10还原Cr(Ⅵ)的机制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
铬是一种重要的工业原料,被广泛地应用于印染、电镀、制革、合金生产等行业中。由于对含铬废物的不合理处理处置,导致了严重的土壤铬污染问题。铬在环境中主要以Cr(Ⅵ)和Cr(Ⅲ)两种价态存在。其中,Cr(Ⅵ)具有致畸、致癌等高毒性;而Cr(Ⅲ)化合物的溶解度低,生物毒性小。因此,将高毒性的Cr(Ⅵ)还原为Cr(Ⅲ)是Cr(Ⅵ)解毒和铬污染土壤修复的基本思路。与传统的化学还原法相比,利用微生物还原Cr(Ⅵ)具有经济、环境友好等优势,在大面积、中低浓度铬污染土壤修复中具有广泛的应用前景。
     由于铬污染土壤多呈碱性、高盐的特点,因此,本论文以高pH、高盐分含量、高Cr(Ⅵ)浓度作为选择压力,筛选获得耐盐耐碱的土著Cr(Ⅵ)还原微生物——解糖假苍白杆菌LY10(Pseudochrobactrum saccharolyticum LY10),并对其还原行为进行了研究。继而采用透射电镜-能谱(TEM-EDS)、X射线吸收光谱(XAS)、电子顺磁共振(EPR)、X射线荧光光谱(XRF)和软X射线谱学显微光束线等现代微结构分析技术系统研究了该微生物的Cr(Ⅵ)还原位置,微生物作用下铬的分子形态变化,以及非饱和生物膜对铬的吸收还原规律。从分子水平上初步阐明了解糖假苍白杆菌P. saccharolyticum LY10还原Cr(Ⅵ)的分子机制,旨在为铬污染土壤微生物修复提供理论依据和技术支撑。研究成果主要包括:
     (1)筛选获得了耐盐耐碱的土著Cr(Ⅵ)还原微生物。从铬污染土壤筛选获得四株Cr(Ⅵ)还原微生物,分别命名为菌株LY6、LY8. LY10和LY11。根据生理生化特性和16SrRNA基因序列同源性比对,分别鉴定为:不解糖假苍白杆菌、溶血不动杆菌、解糖假苍白杆菌和干丘亮杆菌;首次报道了不解糖假苍白杆菌和解糖假苍白杆菌的Cr(Ⅵ)耐受和还原能力;在四株微生物中,解糖假苍白杆菌LY10表现出耐盐、耐碱、耐Cr(Ⅵ)的综合优势,并具有较强的Cr(Ⅵ)还原能力和细胞存活能力,可耐受400mg L-1Cr(Ⅵ)、60g L-1NaCl、pH11.3,并能在156mg L-1Cr(Ⅵ)胁迫下存活12d以上。菌株LY10为后续研究提供了一种良好材料。
     (2)考察了菌株LY10的Cr(Ⅵ)还原行为。氧气的存在是菌株LY10生长和进行Cr(Ⅵ)还原的基本所需,其优化的Cr(Ⅵ)还原条件是:培养温度28℃,pH8.3, NaCl添加浓度量20gL-1,菌体接种量1.47×109cells mL-1,在该优化条件下,菌株LY10可在96h内将55mg L-1Cr(Ⅵ)全部去除:1mM Fe(Ⅲ)可促进菌株LY10对Cr(Ⅵ)的还原,1mM Zn(Ⅱ)和Al(Ⅲ)则具有抑制作用;LY10对Cr(Ⅵ)的还原可分为先快后慢两个阶段,初始阶段(0~72h)内的Cr(Ⅵ)还原过程符合一级反应动力学,在最优还原条件下,一级反应速率常数达到最大值(0.0445h-1)。
     (3)明确了菌株LY10的Cr(Ⅵ)还原位置。菌株LY10主要通过胞外还原的方式去除培养液中Cr(Ⅵ),绝大多数铬存在于培养液中,菌体细胞对铬的固定量较少(5.1%~7.1%);在亚细胞水平上,胞外多聚物和细胞壁是细胞中铬的主要分布区,仅有少量铬进入到细胞质内;胞外多聚物在菌株LY10耐受Cr(Ⅵ)和还原Cr(Ⅵ)过程中发挥着重要作用,是菌株LY10的主要Cr(Ⅵ)还原位置;在高浓度Cr(Ⅵ)胁迫条件下,LY10分泌出更多的胞外多聚物包裹于细胞外,一方面通过还原作用将高毒性Cr(Ⅵ)进行还原,另一方面通过吸附作用对重金属铬进行拦截。通过细胞壁的进一步截留作用,从而有效阻止毒性铬进入细胞体内。
     (4)阐明了菌株LY10作用过程中铬的分子形态变化。在菌株LY10的作用下,Cr(Ⅵ)先接受一个电子生成中间产物Cr(Ⅴ),随后再经过两个电子的传递生成稳定产物Cr(Ⅲ);在单细胞水平,绝大多数Cr(Ⅵ)和Cr(Ⅲ)都分布在细胞周边的胞外多聚物中,仅有少量Cr(Ⅵ)进入细胞并分布于细胞质内,胞外还原产物Cr(Ⅲ)则被截留在胞外多聚物和细胞壁中;菌体中的铬绝大部分为Cr(Ⅲ),其中,53.6%的铬以磷酸铬类似物的形式存在,此外还包含少量的醋酸铬(24.4%)和硫酸铬(19.7%)。
     (5)揭示了在类似土壤的水份非饱和环境中,LY10非饱和生物膜对铬的吸收还原规律。生物膜对铬的吸收累积是一个快速的过程,在吸收转运前期(10~30min),铬主要分布在生物膜底部靠近培养基层,转运中期(1~12h),铬在生物膜底端和生物膜顶端均有聚集,并随着培养时间的延长,顶端铬富集区逐渐往底部趋近,在吸收转运后期(24h),铬主要在生物膜底部距培养基层10~45um区域内富集;在水平方向,距生物膜中心内径r1=0.4cm、外径r2=1.2cm的环形区域是铬的主要富集区;生物膜对Cr(Ⅵ)的还原迅速而彻底,培养12h时已将吸收转运的铬全部还原为Cr(Ⅲ),还原后的Cr(Ⅲ)主要以磷酸铬形式存在。
As an important industrial material, chromium is widely used in pigment manufacturing, electroplating, leather tanning, and alloy production. The inappropriate disposal of Cr(VI)-containing byproducts and uncontrolled release of Cr(VI) wastes have caused serious environmental pollution problems. Although chromium can exist in a variety of valence states, Cr(VI) and Cr (III) predominate in the environment because of their stability. Cr(Ⅵ) is highly soluble, oxidizing, mutagenic and carcinogenic. In contrast, Cr (Ⅲ) compounds are generally sparingly soluble, with low mobility and toxicity. Thus, the reduction of Cr(Ⅵ) to Cr(Ⅲ) can provide a useful method for Cr(Ⅵ) detoxification. Bioremediation, using multifarious microorganisms to reduce toxic Cr(Ⅵ) to Cr(Ⅲ), offers a cost-effective and eco-friendly alternative to traditional chemical method, especially when dealing with Cr(Ⅵ)-containing wastes at low-to-mid concentrations.
     In this study, high pH, high salinity and high concentration of Cr(Ⅵ) were used as selective pressures to isolate alkaliphilic and halotolerant Cr(Ⅵ)-reducing bacteria. The Cr(Ⅵ)-reducing behavior of a novel potent strain—P.saccharolyticum LY10was studied. Its Cr(Ⅵ)-reducing and immobilizing mechanisms (including the reducing site, the speciation change of chromium, and the chromium accumulation by unsaturated biofilm) were also further investigated by using transmission electron microscopy and energy dispersive X-ray spectroscopy (TEM-EDS), X-ray absorption spectroscopy (XAS), electron paramagnetic resonance (EPR), X-ray fluorescence microprobe (XRF) and soft X-ray spectromicroscopy. Results from this series of studies illustrated the mechanism of Cr(Ⅵ) reduction by Pseudochrobactrum saccharolyticum LY10, and would provide theory basis for microbial bioremediation of chromate-contaminated soil. The main results of this research are as follows:
     (1) Four indigenous bacteria, named LY6, LY8, LY10and LY11, were isolated from Cr(Ⅵ)-contaminated soil. Based on biochemical analysis and16S rRNA gene sequencing, strain LY6was identified as Pseudochrobactrum asaccharolyticum, strain LY8was identified as Acinetobacter haemolyticus, strain LY10was identified as Pseudochrobactrum saccharolyticum, and strain LY11was identified as Leucobacter aridicollis. It was for the first time the species of Pseudochrobactrum asaccharolyticum and Pseudochrobactrum saccharolyticum were reported for Cr(VI) resistance and removal. Among the four Cr(VI) resistant isolates, strain LY10displayed comprehensive advantages for surperior alkali-tolerance, halotolerance, Cr(VI) tolereace, as well as Cr(VI)-reducing ability and cell viability. Strain LY10could tolerate400mg L-1Cr(Ⅵ),60g L-1NaCl, pH11.3, and even survived at concentrations of156mg L'1Cr(VI) for more than12days. Because of its comprehensive advantages, P. saccharolyticum LY10was used for further studies.
     (2) The Cr(VI)-reducing behavior of P. saccharolyticum LY10was studied. It was found that oxygen was the basic requirement for bacterial growth and effective Cr(VI)-reducing activity of strain LY10. The optimum conditions for its efficient Cr(VI) reduction were temperature28℃, initial pH8.3,20g L-1NaCl, and1.47×109cells mL-1of cell density. Under these combined opitimal conditions, strain LY10could completely reduce55mg L-1within96h. The Cr(VI)-reducing ability was enhanced by1mM Fe(Ⅲ), but hindered by the presence of1mM Zn(II) and Al(III). The Cr(VI) bioreduction during the long period involved two distinct reaction stages, including an initial rapid reduction process followed by a slower removal stage. Further kinetic analysis demonstrated that the bioreduction during the initial72h could be well described by the first-order kinetic model. Under combined optimal conditions, the maximum reduction rate of (4.45±0.1)×10-2h-1was achieved.
     (3) The Cr(VI)-reducing site of the P. saccharolyticum LY10was investigated. Results demonstrated that most of the Cr(VI) was reduced outside the cell. The majority of the Cr remained in the culture solution, and only quite a few were immobilized in the bacterial cell (5.1%~7.1%). Subcellular analysis indicated that most of the immobilized Cr was located in the extracellular polymeric substances (EPS) and cell wall. EPS was of vital importance for the Cr(Ⅵ) tolerance, and was the main Cr(Ⅵ) reduction site of strain LY10. When LY10was treated with high concentration of Cr(Ⅵ), more EPS was produced and encrusted around the cells. On the one side, the toxic Cr(VI) could be reduced by the soluable reduction enzyme in the EPS. On the other side, EPS and cell wall could further immobilized the chromium and prevented the cell from the damage effect caused by toxic Cr(Ⅵ).
     (4) The molecular speciation change of chromium was studied when Cr(Ⅵ) interact with microorganism. It was found that P. saccharolyticum LY10transiently reduces Cr(Ⅵ) with a one-electron shuttle to form Cr(Ⅴ), followed by a two-electron transfer to generate Cr(III). Most of Cr(Ⅵ) and Cr(Ⅲ) were located in the EPS. Only a few of Cr(Ⅵ) entered the cell and distributed in the cytoplasm. On the contrary, the extracellular reduction product of Cr (Ⅲ) could not enter the wall, and was trapped in the EPS and cell wall. XAFS study further verified that the chromium immobilized by the cells was in the Cr(Ⅲ) state, and most of Cr(Ⅲ) was bond with phosphate (53.6%), acetate (24.4%) and sulphate (19.7%).
     (5) The chromium accumulation and reduction process were investigated for unsaturated P. saccharolyticum LY10bio film. Results demonstrated that the sorption of chromium by biofilm was rapid. At the initial accumulation stage (10-30min), most of chromium was located at the bottom of the biofilm. Then, chromium was transported to the whole biofilm, and accumulated both at the bottom and the upper side of the biofilm (1~12h). When the biofilm was incubated for24h, chromium precipitated in a10-45um layer near the media-biofilm interface.In the horizontal direction, the ring area with inner diameter (r1) of0.4cm and outer diameter (r2) of1.2cm was the main distribution area for chromium. XAFS results indicated that P. saccharolyticum LY10biofilm could effciently reduce Cr(Ⅵ), with chromium being completely reduced within12h. Most of reduced Cr(Ⅲ) precipitated as chromium phosphate.
引文
Ackerley, D. F., Barak, Y., Lynch, S. V., Curtin, J., Matin, A. Effect of chromate stress on Escherichia coli K-12. Journal of Bacteriology 2006,188(9):3371-3381.
    Ackerley, D. F., Gonzalez, C. F., Keyhan, M., Blake, R., Matin, A. Mechanism of chromate reduction by the Escherichia coli protein, NfsA, and the role of different chromate reductases in minimizing oxidative stress during chromate reduction. Environmental Microbiology 2004,6(8):851-860.
    Al Hasin, A., Gurman, S. J., Murphy, L. M., Perry, A., Smith, T. J., Gardiner, P. H. E. Remediation of chromium(Ⅵ) by a methane-oxidizing bacterium. Environmental Science and Technology 2010,44(1):400-405.
    Alvarez, A. H., Moreno-Sanchez, R., Cervantes, C. Chromate efflux by means of the ChrA chromate resistance protein from Pseudomonas aeruginosa. Journal of Bacteriology 1999,181(23):7398-7400.
    Alvarez, S., Jerez, C. A. Copper ions stimulate polyphosphate degradation and phosphate efflux in Acidithiobacillus ferrooxidans. Applied and Environmental Microbiology 2004,70(9):5177-5182.
    Amoozegar, M. A., Ghasemi, A., Razavi, M. R., Naddaf, S. Evaluation of hexavalent chromium reduction by chromate-resistant moderately halophile, Nesterenkonia sp. strain MF2. Process Biochemistry 2007,42(10):1475-1479.
    Anderson, R. A. Chromium as an essential nutrient for humans. Regulatory Toxicology and Pharmacology 1997,26(1):S35-S41.
    Auerbach, I. D., Sorensen, C., Hansma, H. G., Holden, P. A. Physical morphology and surface properties of unsaturated Pseudomonas putida biofilms. Journal of Bacteriology 2000,182(13):3809-3815.
    Ayres, R. U. Toxic heavy metals materials cycle optimization. Proceedings of the National Academy of Sciences of the United States of America 1992,89(3): 815-820.
    Banaiee, N., Kincaid, E. Z., Buchwald, U., Jacobs, W. R., Ernst, J. D. Potent inhibition of macrophage responses to IFN-gamma by live virulent Mycobacterium tuberculosis is independent of mature mycobacterial lipoproteins but dependent on TLR2. Journal of Immunology 2006,176(5): 3019-3027.
    Barrera-Diaz, C. E., Lugo-Lugo, V., Bilyeu, B. A review of chemical, electrochemical and biological methods for aqueous Cr(VI) reduction. Journal of Hazardous Materials 2012,223-224:1-12.
    Beleza, V. M., Boaventura, R. A., Almeida, M. F. Kinetics of chromium removal from spent tanning liquors using acetylene production sludge. Environmental Science and Technology 2001,35(21):4379-4383.
    Bhide, J. V., Dhakephalkar, P. K., Paknikar, K. M. Microbiological process for the removal of Cr(VI) from chromate-bearing cooling tower effluent. Biotechnology Letters 1996,18(6):667-672.
    Bigger, J. W. Treatment of staphylococcal infections with penicillin-By intermittent sterilisation. Lancet 1944,2:497-500.
    Boopathy, R. Factors limiting bioremediation technologies. Bioresource Technology 2000,74(1):63-67.
    Bridgewater, L. C.,Manning, F. C. R., Woo, E. S., Patierno, S. R. DNA-polymerase arrest by adducted trivalent chromium. Molecular Carcinogenesis 1994,9(3): 122-133.
    Brito, E. M. S., Pinon-Castillo, H. A., Guyoneaud, R., Caretta, C. A., Gutierrez-Corona, J. F., Duran, R., Reyna-Lopez, G.E., Nevarez-Moorillon, G. V., Fahy, A., Goni-Urriza, M. Bacterial biodiversity from anthropogenic extreme environments:a hyper-alkaline and hyper-saline industrial residue contaminated by chromium and iron. Applied Microbiology and Biotechnology 2012.
    Brown, S. D., Thompson, M. R., VerBerkmoes, N. C., Chourey, K., Shah, M., Zhou, J. Z., Hettich, R. L., Thompson, D. K. Molecular dynamics of the Shewanella oneidensis response to chromate stress. Molecular and Cellular Proteomics 2006,5(6):1054-1071.
    Camargo, F. A. O., Okeke, B. C., Bento, F. M., Frankenberger, W. T. In vitro reduction of hexavalent chromium by a cell-free extract of Bacillus sp. ES 29 stimulated by Cu2+. Applied Microbiology and Biotechnology 2003,62(5-6):569-573.
    Canada, H. Guidelines for Canadian Drinking Water Quality Summary Table Prepared by the Federal-Provincial-Territorial Committee on Drinking Water of the Federal-Provincial-Territorial Committee on Health and the Environment. 2010.
    Caravelli, A. H., Giannuzzi, L., Zaritzky, N. E. Reduction of hexavalent chromium by Sphaerotilus natans a filamentous microorganism present in activated sludges. Journal of Hazardous Materials 2008,156(1-3):214-22.
    Cervantes, C, Campos-Garcia, J., Devars, S., Gutierrez-Corona, F., Loza-Tavera, H., Torres-Guzman, J. C., Moreno-Sanchez, R. Interactions of chromium with microorganisms and plants. FEMs Microbiology Reviews 2001,25(3): 335-347.
    Chai, L. Y., Huang, S. H., Yang, Z. H., Peng, B., Huang, Y., Chen, Y. H. Cr (VI) remediation by indigenous bacteria in soils contaminated by chromium-containing slag. Journal of Hazardous Materials 2009a,167(1-3): 516-522.
    Chai, L. Y, Huang, S. H., Yang, Z. H., Peng, B., Huang, Y, Chen, Y H. Hexavalent chromium reduction by Pannonibacter phragmitetus BB isolated from soil under chromium-containing slag heap. Journal of Environmental Science and Health Part a-Toxic/Hazardous Substances & Environmental Engineering 2009b,44(6):615-622.
    Chambless, J. D., Hunt, S. M., Stewart, P. S. A three-dimensional computer model of four hypothetical mechanisms protecting biofilms from antimicrobials. Applied and Environmental Microbiology 2006,72(3):2005-2013.
    Chao, W. L., Harteneck, B. D., Liddle, J. A., Anderson, E. H., Attwood, D. T. Soft X-ray microscopy at a spatial resolution better than 15nm. Nature 2005, 435(7046):1210-1213.
    Chardin, B., Dolla, A., Chaspoul, F., Fardeau, M. L., Gallice, P., Bruschi, M. Bioremediation of chromate:thermodynamic analysis of the effects of Cr(VI) on sulfate-reducing bacteria. Applied Microbiology and Biotechnology 2002, 60(3):352-360.
    Chen, G. C., Chen, X. C., Yang, Y. Q., Hay, A. G., Yu, X. H., Chen, Y. X. Sorption and distribution of copper in unsaturated pseudomonas putida CZ1 biofilms as determined by X-ray fluorescence microscopy. Applied and Environmental Microbiology 2011,77(14):4719-4727.
    Chen, Z., Huang, Z. P., Cheng, Y.J., Pan, D. M., Pan, X. H., Yu, M. J., Pan, Z. Y, Lin, Z., Guan, X., Wu, Z. Y.Cr(VI) uptake mechanism of Bacillus cereus. Chemosphere 2012,87(3):211-216.
    Cheng, Y. J., Yan, F. B., Huang, F., Chu, W. S., Pan, D. M., Chen, Z., Zheng, J. S., Yu, M. J., Lin, Z., Wu, Z. Y. Bioremediation of Cr(VI) and immobilization as Cr(III) by Ochrobactrum anthropi. Environmental Science and Technology 2010,44(16):6357-6363.
    Cheung, K. H., Gu, J. D. Chromate reduction by Bacillus megaterium TKW3 isolated from marine sediments. World Journal of Microbiology and Biotechnology 2005,21(3):213-219.
    Cheung, K. H., Gu, J. D. Mechanism of hexavalent chromium detoxification by microorganisms and bioremediation application potential:A review. International Biodeterioration and Biodegradation 2007,59(1):8-15.
    Chirwa, E. M. N., Smit, E. H. R. Simultaneous Cr(VI) reduction and phenol degradation in a trickle bed bioreactor:shock loading response. IBIC2010:2nd International Conference on Industrial Biotechnology 2010,20:55-60.
    Chirwa, E. M. N., Wang, Y. T. Simultaneous chromium(VI) reduction and phenol degradation in a fixed-film coculture bioreactor:reactor performance. Water Research 2001,35(8):1921-32.
    Chirwa, E. N., Wang, Y. T. Simultaneous chromium(VI) reduction and phenol degradation in an anaerobic consortium of bacteria. Water Research 2000, 34(8):2376-2384.
    Chourey, K., Thompson, M. R., Morrell-Falvey, J., VerBerkmoes, N. C, Brown, S. D., Shah, M., Zhou, J. Z., Doktycz, M., Hettich, R. L., Thompson, D. K. Global molecular and morphological effects of 24-hour chromium(VI) exposure on Shewanella oneidensis MR-1. Applied and Environmental Microbiology 2006, 72(9):6331-6344.
    Chrysochoou, M., Johnston, C. Reduction of chromium (VI) in saturated zone sediments by calcium polysulfide and nanoscale zerovalent iron derived from green tea extract. GeoCongress 2012:State of the Art and Practice in Geotechnical Engineering 2012:3959-3967.
    Comte, S., Gulbaud, G., Baudu, M. Biosorption properties of extracellular polymeric substances (EPS) resulting from activated sludge according to their type: soluble or bound. Process Biochemistry 2006,41(4):815-823.
    Costa, M. Potential hazards of hexavalent chromate in our drinking water. Toxicology and Applied Pharmacology 2003,188(1):1-5.
    Costerton, J. W., Cheng, K. J., Geesey, G G, Ladd, T. I., Nickel, J. C, Dasgupta, M., Marrie, T. J. Bacterial biofilms in nature and disease. Annual Review of Microbiology 1987,41:435-464.
    Danhorn, T., Fuqua, C. Biofilm formation by plant-associated bacteria. Annual Review of Microbiology 2007,61:401-422.
    Daulton, T. L., Little, B. J., Lowe, K., Jones-Meehan, J. Electron energy loss spectroscopy techniques for the study of microbial chromium(VI) reduction. Journal of Microbiological Methods 2002,50(1):39-54.
    De Flora, S. Threshold mechanisms and site specificity in chromium(VI) carcinogenesis. Carcinogenesis 2000,21(4):533-541.
    Desai, C, Jain, K., Madamwar, D. Evaluation of in vitro Cr(VI) reduction potential in cytosolic extracts of three indigenous Bacillus sp. isolated from Cr(VI) polluted industrial landfill. Bioresource Technology 2008a,99(14):6059-69.
    Desai, C., Jain, K., Madamwar, D. Hexavalent chromate reductase activity in cytosolic fractions of Pseudomonas sp. G1DM21 isolated from Cr(VI) contaminated industrial landfill. Process Biochemistry 2008b,43(7):713-721.
    Desjardin, V., Bayard, R., Huck, N., Manceau, A., Gourdon, R. Effect of microbial activity on the mobility of chromium in soils. Waste Management 2002,22(2): 195-200.
    Dhal, B., Thatoi, H. N., Das, N. N., Pandey, B. D. Chemical and microbial remediation of hexavalent chromium from contaminated soil and mining/metallurgical solid waste:A review. Journal of Hazardous Materials 2013,250-251:272-291.
    Dogan, N. M., Kantar, C., Gulcan, S., Dodge, C. J., Yimaz, B. C., Mazmanci, M. A. Chromium(VI) bioremoval by pseudomonas bacteria:role of microbial exudates for natural attenuation and biotreatment of Cr(VI) contamination. Environmental Science and Technology 2011,45(6):2278-2285.
    Ehrlich, H. L. How microbes mobilize metals in ores:A review of current understandings and proposals for further research. Minerals and Metallurgical Processing 2002,19(4):220-224.
    Elangovan, R., Abhipsa, S., Rohit, B., Ligy, P., Chandraraj, K. Reduction of Cr(VI) by a. Bacillus sp. Biotechnology Letters 2006,28(4):247-252.
    EPA, U. S. IRIS toxicological. Review of hexavalent chromium. U.S.Environmental Protection Agency, Washington, DC, EPA/635/R-10/004A.2010.
    Fang, L. C., Wei, X., Cai, P., Huang, Q. Y, Chen, H., Liang, W., Rong, X. M. Role of extracellular polymeric substances in Cu(II) adsorption on Bacillus subtilis and Pseudomonas putida.BioTesource Technology 2011,102(2):1137-1141.
    Fein, J. B., Fowle, D. A., Cahill, J., Kemner, K., Boyanov, M., Bunker, B. Nonmetabolic reduction of Cr(VI) by bacterial surfaces under nutrient-absent conditions. Geomicrobiology Journal 2002,19(3):369-382.
    Fukai, R. Valency state of chromium in seawater. Nature 1967,213(5079):901.
    Fulladosa, E., Desjardin, V., Murat, J. C, Gourdon, R., Villaescusa, I. Cr(Ⅵ) reduction into Cr(Ⅲ) as a mechanism to explain the low sensitivity of Vibrio fischeri bioassay to detect chromium pollution. Chemosphere 2006,65(4): 644-650.
    Gao, Y., Xia, J. Chromium contamination accident in China:viewing environment policy of China. Environmental Science and Technology 2011,45(20): 8605-8606.
    Garavaglia, L., Cerdeira, S. B., Vullo, D. L. Chromium (VI) biotransformation by beta-and gamma-Proteobacteria from natural polluted environments:A combined biological and chemical treatment for industrial wastes. Journal of Hazardous Materials 2010,175(1-3):104-110.
    Garg, S. K., Tripathi, M., Srinath, T. Strategies for chromium bioremediation of tannery effluent. Reviews of Environmental Contamination and Toxicology 2012,217:75-140.
    Gibb, H. J., Lees, P. S., Pinsky, P. F., Rooney, B. C. Lung cancer among workers in chromium chemical production. American Journal of Industrial Medicine 2000, 38(2):115-26.
    Goulhen, F., Gloter, A., Guyot, F., Bruschi, M. Cr(Ⅵ) detoxification by Desulfovibrio vulgaris strain Hildenborough:microbe-metal interactions studies. Applied Microbiology and Biotechnology 2006,71(6):892-897.
    Guha, H., Jayachandran, K., Maurrasse, F. Kinetics of chromium (Ⅵ) reduction by a type strain Shewanella alga under different growth conditions. Environmental Pollution 2001,115(2):209-218.
    Guha, H., Jayachandran, K., Maurrasse, F. Microbiological reduction of chromium(Ⅵ) in presence of pyrolusite-coated sand by Shewanella alga Simidu ATCC 55627 in laboratory column experiments. Chemosphere 2003,52(1):175-183.
    Han, X., Wong, Y. S., Wong, M. H., Tam, N. F. Biosorption and bioreduction of Cr(Ⅵ) by a microalgal isolate, Chlorella miniata. Journal of Hazardous Materials 2007,146(1-2):65-72.
    Hansmeier, N., Chao, T. C., Puhler, A., Tauch, A., Kalinowski, J. The cytosolic, cell surface and extracellular proteomes of the biotechnologically important soil bacterium Cornyebacterium efficiens YS-314 in comparison to those of Corynebacterium glutamicum ATCC 13032. Proteomics 2006,6(1):233-250.
    Harrison, J. J., Ceri, H., Roper, N. J., Badry, E. A., Sproule, K. M., Turner, R. J. Persister cells mediate tolerance to metal oxyanions in Escherichia coli. Microbiology-Sgm 2005a,151:3181-3195.
    Harrison, J. J., Turner, R. J., Ceri, H. Persister cells, the biofilm matrix and tolerance to metal cations in biofilm and planktonic Pseudomonas aeruginosa. Environmental Microbiology 2005b,7(7):981-994.
    Harrison, J. J., Ceri, H., Yerly, J., Rabiei, M., Hu, Y. P., Martinuzzi, R., Turner, R. J. Metal ions may suppress or enhance cellular differentiation in Candida albicans and Candida tropicalis biofilms. Applied and Environmental Microbiology 2007,73(15):4940-4949.
    He, M. Y., Li, X. Y., Liu, H. L., Miller, S. J., Wang, G. J., Rensing, C. Characterization and genomic analysis of a highly chromate resistant and reducing bacterial strain Lysinibacillus fusiformis ZC1. Journal of Hazardous Materials 2011, 185(2-3):682-688.
    Higham, D. P., Sadler, P. J., Scawen, M. D. Effect of cadmium on the morphology, membrane integrity and permeability of pseudomonas putida. Journal of General Microbiology 1986,132:1475-1482.
    Hirst, C. N., Cyr, H., Jordan, I. A. Distribution of exopolymeric substances in the littoral sediments of an oligotrophic lake. Microbial Ecology 2003,46(1): 22-32.
    Holt, J. G., Krieg, N. R., Sneath, P. H. A., Staley, J. T., Williams, S. T. Bergey's manual of determinative bacteriology (9th edition). Baltimore, Williams and Wilkins. 1994.
    Hu, P., Brodie, E. L., Suzuki, Y., McAdams, H. H., Andersen, G. L. Whole-genome transcriptional analysis of heavy metal stresses in Caulobacter crescentus. Journal of Bacteriology 2005,187(24):8437-8449.
    Ibrahim, A. S. S., El-Tayeb, M. A., Elbadawi, Y. B., Al-Salamah, A. A. Bioreduction of Cr (VI) by potent novel chromate resistant alkaliphilic Bacillus sp. strain KSUCr5 isolated from hypersaline Soda lakes. African Journal of Biotechnology 2011,10(37):7207-7218.
    Jacobsen, C, Wirick, S., Flynn, G, Zimba, C. Soft X-ray spectroscopy from image sequences with sub-100 nm spatial resolution. Journal of Microscopy-Oxford 2000,197:173-184.
    Jan, T. K., Young, D. R. Chromium speciation in municipal wastewaters and seawater. Journal Water Pollution Control Federation 1978,50(10):2327-2336.
    Jardine, P. M., Fendorf, S. E., Mayes, M. A., Larsen, I. L., Brooks, S. C, Bailey, W. B. Fate and transport of hexavalent chromium in undisturbed heterogeneous soil. Environmental Science and Technology 1999,33(17):2939-2944.
    Jones, J. B., Chase, A. R., Harris, G. K. Evaluation of the Biolog GN microplate system for identification of some plant-pathogenic bacteria. Plant Disease 1993,77(6):553-558.
    Kadiiska, M. B., Xiang, Q. H., Mason, R. P. In-Vivo Free-Radical Generation by Chromium(VI):an electron spin resonance spin-trapping investigation. Chemical Research in Toxicology 1994,7(6):800-805.
    Katz, S. A., Salem, H. The toxicology of chromium with respect to its chemical speciation:a review. Journal of Applied Toxicology 1993,13(3):217-224.
    Keasling, J. D. Regulation of intracellular toxic metals and other cations by hydrolysis of polyphosphate. Bioremediation of Surface and Subsurface Contamination 1997,829:242-249.
    Keim, C. N., Lins, U., Farina, M. Elemental analysis of uncultured magnetotactic bacteria exposed to heavy metals. Canadian Journal of Microbiology 2001, 47(12):1132-1136.
    Kemner, K. M., Kelly, S. D., Lai, B., Maser, J., O'Loughlin, E. J., Sholto-Douglas, D., Cai, Z. H., Schneegurt, M. A., Kulpa, C. F., Nealson, K. H. Elemental and redox analysis of single bacterial cells by X-ray microbeam analysis. Science 2004,306(5696):686-687.
    Keyhan, M., Ackerley, D. F., Matin, A. Targets of improvement in bacterial chromate bioremediation. Proceedings of the Second International Conference on Remediation of Contaminated Sediments 2003.
    Khasim, D. I., Kumar, N. V. N., Hussain, R. C. Environmental contamination of chromium in agricultural and animal products near a chromate industry. Bulletin of Environmental Contamination and Toxicology 1989,43(5): 742-746.
    Kilic, N. K., Stensballe, A., Otzen, D. E., Donmez, G0 Proteomic changes in response to chromium(Ⅵ) toxicity in Pseudomonas aeruginosa. Bioresource Technology 2010,101(7):2134-2140.
    Kong, S., Johnstone, D. L., Yonge, D. R., Petersen, J. N., Brouns, T. M. Long-term intracellular chromium partitioning with subsurface bacteria. Applied Microbiology and Biotechnology 1994,42(2-3):403-407.
    Kong, S., Yonge,D. R., Johnstone, D. L., Petersen, J. N., Brouns, T. M.Chromium distribution in subcellular components between fresh and starved subsurface bacterial consortium. Biotechnology Letters 1992,14(6):521-524.
    Konovalova, V. V., Dmytrenko, G. M., Nigmatullin, R. R., Bryk, M. T., Gvozdyak, P. I. Chromium(VI) reduction in a membrane bioreactor with immobilized Pseudomonas cells. Enzyme and Microbial Technology 2003,33(7):899-907.
    Kotas, J., Stasicka, Z. Chromium occurrence in the environment and methods of its speciation. Environmental Pollution 2000,107(3):263-283.
    Lievremont, D., Bertin, P. N., Lett, M. C. Arsenic in contaminated waters: Biogeochemical cycle, microbial metabolism and biotreatment processes. Biochimie 2009,91(10):1229-1237.
    Liu, C, Zachara, J. M. Uncertainties of Monod kinetic parameters nonlinearly estimated from batch experiments. Environmental Science and Technology 2001,35(1):133-41.
    Liu, C. X., Gorby, Y. A., Zachara, J. M., Fredrickson, J. K., Brown, C. F. Reduction kinetics of Fe(Ⅲ), Co(Ⅲ), U(Ⅵ) Cr(Ⅵ) and Tc(Ⅶ) in cultures of dissimilatory metal-reducing bacteria. Biotechnology and Bioengineering 2002a,80(6):637-649.
    Liu, N., Luo, S. H., Yang, Y. Y, Zhang, T. M., Jin, J. N., Liao, J. L. Biosorption of americium-241 by Saccharomyces cerevisiae. Journal of Radioanalytical and Nuclear Chemistry 2002b,252(1):187-191.
    Liu, Y., Fang, H. H. P. Precipitates in anaerobic granules treating sulphate-bearing wastewater. Water Research 1998,32(9):2627-2632.
    Llagostera, M., Garrido, S., Guerrero, R., Barbe, J. Induction of sos genes of Escherichia coli by chromium compounds. Environmental Mutagenesis 1986, 8(4):571-577.
    Ma, Z. M., Zhu, W. J., Long, H. Z., Chai, L. Y., Wang, Q. W. Chromate reduction by resting cells of Achromobacter sp. Ch-1 under aerobic conditions. Process Biochemistry 2007,42(6):1028-1032.
    Macaskie, L. E., Bonthrone, K. M., Yong, P., Goddard, D. T. Enzymically mediated bioprecipitation of uranium by a Citrobacter sp.:a concerted role for exocellular lipopolysaccharide and associated phosphatase in biomineral formation. Microbiology-Uk 2000,146:1855-1867.
    Mangaiyarkarasi, M. S. M., Vincent, S., Janarthanan,S., Rao, T. S., Tata, B. V. R. Bioreduction of Cr(VI) by alkaliphilic Bacillus subtilis and interaction of the membrane groups. Saudi Journal of Biological Sciences 2011,18(2):157-167.
    Margesin, R., Schinner, F. Potential of halotolerant and halophilic microorganisms for biotechnology. Extremophiles 2001,5(2):73-83.
    Marsh, T. L., McInerney, M. J. Relationship of hydrogen bioavailability to chromate reduction in aquifer sediments. Applied and Environmental Microbiology 2001,67(4):1517-1521.
    Mazoch, J., Tesarik, R., Sedlacek, V, Kucera, I., Turanek, J. Isolation and biochemical characterization of two soluble iron(III) reductases from Paracoccus denitrificans. European Journal of Biochemistry 2004,271(3):553-562.
    McLean, J., Beveridge, T. J. Chromate reduction by a pseudomonad isolated from a site contaminated with chromated copper arsenate. Applied and Environmental Microbiology 2001,67(3):1076-1084.
    Megharaj, M., Avudainayagam, S., Naidu, R. Toxicity of hexavalent chromium and its reduction by bacteria isolated from soil contaminated with tannery waste. Current Microbiology 2003,47(1):51-54.
    Middleton, S. S., Bencheikh-Latmani, R., Mackey, M. R., Ellisman, M. H., Tebo, B. M., Criddle, C. S. Cometabolism of Cr(Ⅵ) by Shewanella oneidensis MR-1 produces cell-associated reduced chromium and inhibits growth. Biotechnology and Bioengineering 2003,83(6):627-637.
    Miranda, A. T., Gonzalez, M. V., Gonzalez, G., Vargas, E., Campos-Garcia, J., Cervantes, C. Involvement of DNA helicases in chromate resistance by Pseudomonas aeruginosa PAO1. Mutation Research-Fundamental and Molecular Mechanisms of Mutagenesis 2005,578(1-2):202-209.
    Morais, P. V., Francisco, R., Branco, R., Chung, A. P., da Costa, M. S. Leucobacter chromiireducens sp. nov, and Leucobacter aridicollis sp. nov., two new species isolated from a chromium contaminated environment. System Applied Microbiology 2004,27(6):646-52.
    Morokutti, A., Lyskowski, A., Sollner, S., Pointner, E., Fitzpatrick, T. B., Kratky, C, Gruber, K., Macheroux, P. Structure and function of YcnD from Bacillus subtilis, a flavin-containing oxidoreductase. Biochemistry 2005,44(42): 13724-13733.
    Morris, C. E., Monier, J. M. The ecological significance of biofilm formation by plant-associated bacteria. Annual Review of Phytopathology 2003,41: 429-453.
    Myers, C. R., Carstens, B. P., Antholine, W. E., Myers, J. M. Chromium(VI) reductase activity is associated with the cytoplasmic membrane of anaerobically grown Shewanella putrefaciens MR-1. Journal of Applied Microbiology 2000,88(1): 98-106.
    Nancharaiah, Y. V., Dodge, C., Venugopalan, V. P., Narasimhan, S. V., Francis, A. J. Immobilization of Cr(VI) and its reduction to Cr(III) phosphate by granular biofilms comprising a mixture of microbes. Applied and Environmental Microbiology 2010,76(8):2433-2438.
    NOM-127-SSA1-1994. Norma Oficial mexicana NOM-127-SSA1-1994, "Salud ambiental, agua para usoy consumo humano-limites permisibles de calidad y tratamientos a que debe someterse el agua para su potabilizacion".1994.
    Ohtake, H., Fujii, E., Toda, K. A survey of effective electron-donors for reduction of toxic hexavalent chromium by Enterobacter cloacae (strain-Hol). Journal of General and Applied Microbiology 1990,36(3):203-208.
    Okeke, B. C, Laymon, J., Crenshaw, S., Oji, C. Environmental and kinetic parameters for Cr(VI) bioreduction by a bacterial monoculture purified from Cr(VI)-resistant consortium. Biological Trace Element Research 2008, 123(1-3):229-41.
    Omoike, A., Chorover, J. Spectroscopic study of extracellular polymeric substances from Bacillus subtilis:Aqueous chemistry and adsorption effects. Biomacromolecules 2004,5(4):1219-1230.
    Opperman, D. J., van Heerden, E. A membrane-associated protein with Cr(VI)-reducing activity from Thermus scotoductus SA-01. FEMs Microbiology Letters 2008,280(2):210-218.
    Palmer, C. D., Wittbrodt, P. R. Processes Affecting the Remediation of Chromium-Contaminated Sites. Environmental Health Perspectives 1991,92: 25-40.
    Park, C. H., Keyhan, M., Wielinga, B., Fendorf, S., Matin, A. Purification to homogeneity and characterization of a novel Pseudomonas putida chromate reductase. Applied and Environmental Microbiology 2000,66(5):1788-1795.
    Park, D., Yun, Y. S., Jo, J. H., Park, J. M. Mechanism of hexavalent chromium removal by dead fungal biomass of Aspergillus niger. Water Research 2005, 39(4):533-40.
    Parkar, S. G., Flint, S. H., Palmer, J. S., Brooks, J. D. Factors influencing attachment of thermophilic bacilli to stainless steel. Journal of Applied Microbiology 2001,90(6):901-908.
    Pechova, A., Pavlata, L. Chromium as an essential nutrient:a review. Veterinarni Medicina 2007,52(1):1-18.
    Pesti, M., Gazdag, Z., Belagyi, J. In vivo interaction of trivalent chromium with yeast plasma membrane, as revealed by EPR spectroscopy. FEMs Microbiology Letters 2000,182(2):375-380.
    Peterson, M. L., Brown, G. E., Parks, G. A., Stein, C. L. Differential redox and sorption of Cr(Ⅲ/Ⅵ) on natural silicate and oxide minerals:EXAFS and XANES results. GeochimicaEtCosmochimicaActa 1997,61(16):3399-3412.
    Petrilli, F. L., De Flora, S. Toxicity and mutagenicity of hexavalent chromium on Salmonella typhimurium. Applied and Environmental Microbiology 1977, 33(4):805-9.
    Plaper, A., Jenko-Brinovec, S., Premzl, A., Kos, J., Raspor, P. Genotoxicity of trivalent chromium in bacterial cells. Possible effects on DNA topology. Chemical Research in Toxicology 2002,15(7):943-949.
    Prakasham, R. S., Merrie, J. S., Sheela, R., Saswathi, N., Ramakrishna, S. V. Biosorption of chromium VI by free and immobilized Rhizopus arrhizus. Environmental Pollution 1999,104(3):421-427.
    Priester, J. H., Olson, S. G, Webb, S. M., Neu, M. P., Hersman, L. E., Holden, P. A. Enhanced exopolymer production and chromium stabilization in Pseudomonas putida unsaturated biofilms. Applied and Environmental Microbiology 2006, 72(3):1988-1996.
    Rahman, M. U., Gul, S., Haq, M. Z. U. Reduction of chromium (VI) by locally isolated Pseudomonas sp. C-171. Turkish Journal of Biology 2007,31: 161-166.
    Ramirez-Diaz, M. I., Diaz-Perez, C, Vargas, E., Riveros-Rosas, H., Campos-Garcia, J., Cervantes, C. Mechanisms of bacterial resistance to chromium compounds. Biometals 2008,21(3):321-32.
    Renninger, N., Knopp, R., Nitsche, H., Clark, D. S., Keasling, J. D. Uranyl precipitation by Pseudomonas aeruginosa via controlled polyphosphate metabolism. Applied and Environmental Microbiology 2004,70(12): 7404-7412.
    Riveros-Rosas, H., Julian-Sanchez, A., Villalobos-Molina, R., Pardo, J. P., Pina, E. Diversity, taxonomy and evolution of medium-chain dehydrogenase/reductase superfamily. European Journal of Biochemistry 2003,270(16):3309-3334.
    Romanenko, V. I., Korenkov, V. N. Pure culture of bacteria utilizing chromates and bichromates as hydrogen acceptors in growth under anaerobic conditions. Mikrobiologiia 1977,46(3):414-417.
    Ryan, M. P., Williams, D. E., Chater, R. J., Hutton, B. M., McPhail, D. S. Why stainless steel corrodes. Nature 2002,415(6873):770-774.
    Saleh, F. Y., Parkerton, T. F., Lewis, R. V., Huang, J. H., Dickson, K. L. Kinetics of chromium transformations in the environment. Science of the Total Environment 1989,86(1-2):25-41.
    Saxena, D. K., Murthy, R. C, Jain, V. K., Chandra, S. V. Fetoplacental maternal uptake of hexavalent chromium administered orally in rats and mice. Bulletin of Environmental Contamination and Toxicology 1990,45(3):430-435.
    Shen, H., Wang, Y. T. Characterization of enzymatic reduction of hexavalent chromium by Escherichia coli ATCC 33456. Applied and Environmental Microbiology 1993,59(11):3771-3777.
    Shen, H., Wang, Y. T. Modeling simultaneous hexavalent chromium reduction and phenol degradation by a defined coculture of bacteria. Biotechnology and Bioengineering 1995,48(6):606-13.
    Shi, X. L., Dalal, N. S. On the hydroxyl radical formation in the reaction between hydrogen-peroxide and biologically generated chromium(V) species. Archives of Biochemistry and Biophysics 1990,277(2):342-350.
    Slonczewski, J. L., Fujisawa, M., Dopson, M., Krulwich, T. A. Cytoplasmic pH measurement and homeostasis in bacteria and archaea. Advances in Microbial Physiology 2009,55:1-79.
    Smalla, K., Wachtendorf, U., Heuer, H., Liu, W. T., Forney, L. Analysis of BIOLOG GN substrate utilization patterns by microbial communities. Applied and Environmental Microbiology 1998,64(4):1220-1225.
    Smith, N. Science with soft x rays. Physics Today 2001,54(1):29-34.
    Sperling, M., Xu, S. K., Welz, B. Determination of chromium(Ⅲ) and chromium(Ⅵ) in water using flow-injection online preconcentration with selective adsorption on activated alumina and flame atomic-absorption spectrometric detection. Analytical Chemistry 1992,64(24):3101-3108.
    Srivastava, J., Chandra, H., Tripathi, K., Naraian, R., Sahu, R. K. Removal of chromium (VI) through biosorption by the Pseudomonas spp. isolated from tannery effluent. Journal of Basic Microbiology 2008,48(2):135-139.
    Stasinakis, A. S., Thomaidis, N. S., Mamais, D., Karivali, M., Lekkas, T. D. Chromium species behaviour in the activated sludge process. Chemosphere 2003,52(6):1059-1067.
    Stearns, D. M., Wetterhahn, K. E. Reaction of chromium(Ⅵ) with ascorbate produces chromium(V), chromium(IV), and carbon-based radicals. Chemical Research in Toxicology 1994,7(2):219-230.
    Steinberger, R. E., Allen, A. R., Hansma, H. G., Holden, P. A. Elongation correlates with nutrient deprivation in Pseudomonas aeruginosa-unsaturated biofilms. Microbial Ecology 2002,43(4):416-423.
    Steinberger, R. E., Holden, P. A. Extracellular DNA in single-and multiple-species unsaturated biofilms. Applied and Environmental Microbiology 2005,71(9): 5404-5410.
    Stepanauskas, R., Glenn, T. C, Jagoe, C. H., Tuckfield, R. C., Lindell, A. H., McArthur, J. V. Elevated microbial tolerance to metals and antibiotics in metal-contaminated industrial environments. Environmental Science and Technology 2005,39(10):3671-8.
    Sugden, K. D., Rigby, K. M., Martin, B. D. Oxidative activation of the human carcinogen chromate by arsenite:A model for synergistic metal activation leading to oxidative DNA damage. Toxicology in Vitro 2004,18(6):741-748.
    Sun, X. F., Wang, S. G., Zhang, X. M., Chen, J. P., Li, X. M, Gao, B. Y., Ma, Y. Spectroscopic study of Zn2+and Co2+ binding to extracellular polymeric substances (EPS) from aerobic granules. Journal of Colloid and Interface Science 2009,335(1):11-17.
    Tebo, B. M., Obraztsova, A. Y. Sulfate-reducing bacterium grows with Cr(Ⅵ), U(Ⅵ), Mn(Ⅵ), and Fe(Ⅲ) as electron acceptors. FEMs Microbiology Letters 1998, 162(1):193-198.
    Teitzel, G. M., Parsek, M. R. Heavy metal resistance of biofilm and planktonic Pseudomonas aeruginosa. Applied and Environmental Microbiology 2003, 69(4):2313-2320.
    Tessier, A., Campbell, P. G. C, Bisson, M. Sequential extraction procedure for the speciation of particulate trace metals. Analytical Chemistry 1979,51(7): 844-851.
    Ueshima, M., Ginn, B. R., Haack, E. A., Szymailowski, J. E. S., Fein, F. B. Cd adsorption onto Pseudomonas putida in the presence and absence of extracellular polymeric substances. Geochimica Et Cosmochimica Acta 2008, 72(24):5885-5895.
    Urone, P. F. Stability of colorimetric reagent for chromium, s-diphenylcarbazide, in various solvents. Analytical Chemistry 1955,27(8):1354-1355.
    Valdman, E., Erijman, L., Pessoa, F. L. P., Leite, S. G. F. Continuous biosorption of Cu and Zn by immobilized waste biomass Sargassum sp. Process Biochemistry 2001,36(8-9):869-873.
    Viti, C, Pace, A., Giovannetti, L. Characterization of Cr(Ⅵ)-resistant bacteria isolated from chromium-contaminated soil by tannery activity. Current Microbiology 2003,46(1):1-5.
    Vranes, J., Leskovar, V. Significance of microbial biofilm occurence in the pathogenesis and treatment of chronic infections. Medicinski Glasnik 2009, 6(2):147-165.
    Wang, P. C., Mori, T., Komori, K., Sasatsu, M., Toda, K., Ohtake, H. Isolation and characterization of an Enterobacter cloacae strain that reduces hexavalent chromium under anaerobic conditions. Applied and Environmental Microbiology 1989,55(7):1665-1669.
    Wang, P. C., Mori, T., Toda, K., Ohtake, H. Membrane-associated chromate reductase activity from Enterobacter cloacae. Journal of Bacteriology 1990,172(3): 1670-1672.
    Wang, Y. T., Chirwa, E. M. Simultaneous removal of Cr(Ⅵ) and phenol in chemostat culture of E. coli ATCC 33456 and P. putida DMP-1. Water Science and Technology 1998,38(8-9):113-119.
    Wani, R., Kodam, K. M., Gawai, K. R., Dhakephalkar, P. K. Chromate reduction by Burkholderia cepacia MCMB-821, isolated from the pristine habitat of alkaline crater lake. Applied Microbiology and Biotechnology 2007,75(3): 627-632.
    Watt, S. A., Wilke, A., Patschkowski, T., Niehaus, K. Comprehensive analysis of the extracellular proteins from Xanthomonas campestris pv. campestris B100. Proteomics 2005,5(1):153-167.
    Wielinga, B., Mizuba, M. M., Hansel, C. M., Fendorf, S. Iron promoted reduction of chromate by dissimilatory iron-deducing bacteria. Environmental Science and Technology 2001,35(3):522-527.
    Williams, J. W., Silver, S. Bacterial-resistance and detoxification of heavy-metals. Enzyme and Microbial Technology 1984,6(12):530-537.
    Word Health Organization. Chromium in drinking-water background document for development of WHO. Guidelines for drinking-water quality,2nd ed. Health criteria and other supporting information. Geneva.1996.
    Workentine, M. L., Harrison, J. J., Stenroos, P. U., Ceri, H., Turner, R. J. Pseudomonas fluorescens' view of the periodic table. Environmental Microbiology 2008,10(1):238-250.
    Yang, C. P., Cheng, Y. J., Ma, X. Y., Zhu, Y., Holman, H. Y., Lin, Z., Wang, C. Surface-mediated chromate-resistant mechanism of Enterobacter cloacae bacteria investigated by atomic force microscopy. Langmuir 2007,23(8): 4480-4485.
    Ye, Q., Roh, Y., Carroll, S. L., Blair, B., Zhou, J. Z., Zhang, C. L., Fields, M. W. Alkaline anaerobic respiration:Isolation and characterization of a novel alkaliphilic and metal-reducing bacterium. Applied and Environmental Microbiology 2004,70(9):5595-5602.
    Zakaria, Z. A., Aruleswaran, N., Kaur, S., Ahmad, W. A. Biosorption and bioreduction of Cr(VI) by locally isolated Cr-resistant bacteria. Water Science and Technology 2007a,56(8):117-123.
    Zakaria, Z. A., Zakaria, Z., Surif, S., Ahmad, W. A. Biological detoxification of Cr(VI) using wood-husk immobilized Acinetobacter haemolyticus. Journal of Hazardous Materials 2007b,148(1-2):164-71.
    Zakaria, Z. A., Zakaria, Z., Surif, S., Ahmad, W. A. Hexavalent chromium reduction by Acinetobacter haemolyticus isolated from heavy-metal contaminated wastewater. Journal of Hazardous Materials 2007 c,146(1-2):30-8.
    Zhang, K. D., Li, F. L. Isolation and characterization of a chromium-resistant bacterium Serratia sp. Cr-10 from a chromate-contaminated site. Applied Microbiology and Biotechnology 2011,90(3):1163-1169.
    Zheng, H. R., Li, R. N., Cao, S. X. Comment on "chromium contamination accident in China:viewing environment policy of China". Environmental Science and Technology 2011,45(23):9822-9822.
    Zhou, J. Z., Xia, B. C, Treves, D. S., Wu, L. Y, Marsh, T. L, O'Neill, R. V., Palumbo, A. V., Tiedje, J. M. Spatial and resource factors influencing high microbial diversity in soil. Applied and Environmental Microbiology 2002,68(1): 326-334.
    柴立元,龙腾发,唐宁,庄明龙,阂小波.微生物治理碱性含铬废水的试验研究.中南大学学报(自然科学版)2005,36(5):816-820.
    陈光村.恶臭假单胞菌CZ1非饱和生物膜耐受和累积重金属的分子机制.[浙江大学博士学位论文].杭州,浙江大学.2011.
    陈丽娟.强化Achromobacter sp. CH-1解毒铬渣的研究.[中南大学硕士学位论文].长沙,中南大学.2009.
    东秀珠,蔡妙英.常见细菌系统鉴定手册.北京,科学出版社.2001.
    冯易君,讲家理,向芹,李福德.共存离子对硫酸盐还原菌处理含铬废水的影响研究.环境污染与防治1995,17(4):15-18.
    高孟秋.结核分枝杆菌持留菌的检测及临床意义探讨.[北京市结核病胸部肿瘤研究所博士学位论文].北京,北京市结核病胸部肿瘤研究所.2006.
    康春莉,郭晶,郭平,赵宇侠,董德明.自然水体生物膜有机组分对Pb2+的吸附特性及其影响因素.高等学校化学学报2005,26(11):2043-204.
    李福德,李昕,吴乾菁,赵晓红,吴全珍,刘大江.微生物法治理电镀废水新技术.工业给排水1997,23(6):25-29.
    李辉,石璐,张国芳,杜鹃,米云龙.蜡状芽孢杆菌SY对镉的吸附机制.科技导报2010,28(7):59-62.
    李雄.铬渣的细菌解毒工艺研究.[中南大学硕士学位论文].长沙,中南大学.2006.
    刘磊.某市铬渣污染场地风险评价与修复技术筛选.[浙江大学硕士学位论文].杭州,浙江大学.2010.
    龙腾发.还原Cr(Ⅵ)的特异功能菌的选育及其解毒铬的初步研究.[中南大学硕士学位论文].长沙,中南大学.2005.
    龙腾发,柴立元,傅海洋.碱性介质中还原高浓度Cr(Ⅵ)细菌的分离及其特性.应用与环境生物学报2006,12(1):80-83.
    龙腾发,柴立元,郑粟,闵小波.生物法解毒六价铬技术的应用现状与进展.安全与环境工程2004,11(3):22-25.
    马锦民,瞿建国,夏君,李福德.失活微生物和活体微生物处理含铬(Ⅵ)废水研究进展.环境科学与技术2006,29(4):103-105.
    马锦民,张烂漫,夏君,瞿建国,李福德.微生物处理含铬(Ⅵ)废水的研究进展.江苏化工2005,33(2):46-49.
    马泽民. Achromobacter sp. CH-1菌解毒铬渣的研究.[中南大学博士学位论文].长沙,中南大学.2009.
    潘毓萱.结核分枝杆菌持留性和持留菌的界定.中华结核和呼吸杂志2004,27(4):264-266.
    潘毓萱,陆宇.《结核分枝杆菌持留性、潜伏性和药物耐受性》一文读后感.中华结核和呼吸杂志2005,28(2):141-143.
    乔胜英.土壤理化性质实验指导书.武汉,中国地质大学出版社有限责任公司.2012.
    申如香,瞿建国,张晓旗,杨晶.微生物法处理冷轧含铬(Ⅵ)废水的试验研究.上海化工2001,1:4-7.
    苏长青.铬污染土壤中Cr(Ⅵ)的微生物还原及Cr(Ⅲ)的稳定性研究.[中南大学硕士学位论文].长沙,中南大学.2009.
    孙国玉,沈世泽.微生物法处理电镀铬废水的应用.海洋科学1985,2:43-47.
    汪洋.高浓度含铬(Ⅵ)废水的微生物解毒研究.[重庆医科大学硕士学位论文].重庆,重庆医科大学.2007.
    王兵.铬渣堆场重污染土壤微生物修复及Cr(Ⅵ)污染阻隔研究.[中南大学硕士学位论文].长沙,中南大学.2010.
    吴淑杭,周德平,吕卫光,姜震方,徐亚同.硫酸盐还原菌修复铬(Ⅵ)污染土壤研究.农业环境科学学报2007,26(2):467-471.
    肖伟,王磊,李倬锴.六价铬还原细菌Bacillus cereus S5.4还原机理及酶学性质研究.环境科学2008,29(3):751-755.
    许友泽.铬渣堆场污染土壤微生物修复工艺研究.[中南大学硕士学位论文].长沙,中南大学.2009.
    杨频,高飞.生物无机化学原理.北京,科学出版社.2002.
    张祥志,许子健,甄香君,王勇,郭智,严睿,常睿,周冉冉,邰仁忠.基于软X射线谱学显微双能衬度图像的元素空间分布研究.物理学报2010,59(7):4535-4541.
    中华人民共和国国家标准.《生活饮用水卫生标准GB5749-2006》.2006.
    周渝生,俞勇梅,白凌,夏署演,李福德,李听.生物法处理宝钢冷轧含铬废水的研究进展.钢铁2005,40(6):76-79.
    朱文杰.Leucobacter sp. CRBI菌还原铬(Ⅵ)的机理及其在铬渣解毒中的应用.[中南大学博士学位论文].长沙,中南大学.2008.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700