用户名: 密码: 验证码:
羊肉特征香气成分的鉴定及其肉味香精的制备
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
羊肉加工副产物(骨骼、尾油及肚油等)资源极其丰富,但其深加工利用技术匮乏。目前国内羊肉香精产品普遍存在天然感差、留香时间短、特征风味不明显等问题,严重制约羊肉香精产业化的发展,因此开发天然、高附加值产品势在必行。本文以羊肉加工副产品的开发利用为目标,在构建羊肉特征风味指纹图谱的基础上,采用酶解技术和调控氧化技术等手段,通过羊骨可控酶解和羊脂定向氧化,开发高品质的天然羊肉香精。主要研究内容如下:
     采用SPME-GC-MS和GC-O分析技术同时结合聚类分析的方法建立了羊肉特征风味指纹图谱。利用色谱指纹图谱相似度和主成分分析对所建的羊肉风味指纹图谱可靠性进行评定,结果表明利用所建立的指纹图谱信息可以有效评价待测样品与合格样品偏离程度;另外采用PLS-DA方法分别建立了不同种类肉类产品的定性判别模型,不同种类肉类样品分类变量的模型预测值与实测值相关系数均在0.89以上,对检测集样本的识别率为100%。通过对未参与建模的样品进行分析,结果表明利用所建羊肉指纹信息结合PLS-DA判别分析法能有效地检测和准确地判别羊肉和其他肉类产品,同时可以准确的对掺假样品进行识别,为羊肉的品质评价、质量控制及羊肉香精的制备提供科学依据与方法。
     以水解度和可溶性氮含量为指标,筛选出合适的蛋白酶,通过二次通用旋转回归设计建立了羊骨蛋白Alcalase酶与Flavourzyme酶双酶分步酶解的回归模型。以感官分析为指标,结合GC-MS-O分析,考察不同水解度羊骨蛋白酶解液作为Maillard反应底物对MPF产品的影响,结果如下:以不同水解度羊骨酶解液为前体制备的MPF产品在某一个或几个感官属性相对较强,其中水解度在25.92%的MPF样本表现出明显的羊肉味、肉味和烤香,水解度在30.89%的MPF样本则表现出较高的仿真度和回味感,结果证实水解度在25.92%~30.89%的羊骨蛋白酶解液为前体制备的样品可以产生种类较多的香气活性物质。对选定的36种代表羊肉风味特征风味物质和感官分析数据进行PLSR相关性分析,再次证实水解度在25.92%~30.89%的羊骨蛋白酶解液可作为Maillard反应的最适反应底物,其酶解工艺条件如下:在底物浓度为20%的羊骨粉中,经热处理后降温到55℃,调节pH为8.5,加入3000U/g(蛋白质)的Alcalase酶水解3h~4h,再加入3000U/g(蛋白质)~3500U/g(蛋白质)的Flavourzyme酶,酶解2.5h~3h。
     对不同氧化条件下获得的羊脂的化学指标(PV、p-AV和AV)和氧化过程中各种挥发性化合物成分的变化进行了研究,结果表明:氧化温度和氧化时间对于羊脂中挥发性化合物种类和含量具有显著影响。利用PLSR分析建立了各种挥发性化合物与化学指标之间的相关性模型,找出了各个化学指标与具体的挥发性成分的显著相关性,掌握了羊脂的氧化规律,为实施羊脂的定向调控氧化提供依据。
     通过描述性感官分析和GC-MS分析,比较了未氧化羊脂和不同氧化状态羊脂的Maillard反应产品,结果表明,在热反应过程中氧化羊脂对于模拟或加强羊肉特征风味具有重要作用。以不同氧化程度的羊脂为前体制备的羊肉香精产品在某一个或几个感官属性相对较强,通过温和氧化羊脂(S5)制备的羊肉香精(MFS5)表现出明显的羊肉味、肉味、脂肪香和高的仿真度。结合电子鼻响应值、感官分析数据和19种重要化合物的相关性分析确证了温和氧化羊脂作为Maillard反应的前体可以产生羊肉特征风味。温和氧化羊脂的制备工艺条件如下:称取100g羊脂,反应温度为140℃,空气流速为60L/(h·100g)脂肪,氧化3h,此条件下获得的温和氧化羊脂的P.V.、A.V.和p-A.V.分别为287.61meq/kg·羊脂、5.11mgKOH/g、262.52。
     考察不同反应条件对Maillard制备的MPF的影响,结果表明pH、反应温度和反应时间对于MPF样品整体风味具有显著的影响,过高或过低的pH和反应温度以及过短或过长的反应时间均不利于MPF整体风味的呈香。采用均匀设计实验优化了制备MPF风味基料的模式Maillard反应体系,具体反应配方为:羊骨蛋白酶解液(DH%=25%,底物浓度为20%)100.0g、半胱氨酸1.369g、丙氨酸0.2g、牛磺酸2.5g、硫胺素2.5g、葡萄糖4.0g、HVP1.428g、氧化羊脂(PV287.61meq/kg、p-AV262.52、AV5.11mgKOH/g)12.0g;模式体系反应的最优条件为反应初始pH6.5、反应温度125℃、反应时间180min。该Maillard反应模式体系可以制备出特征风味明显、香气协调的天然高品质的羊肉香精。
There are a variety of by-products of lamb (such as bones, tail oil and belly oil).However, the usage of these by-products is single due to lack of technology to producehigh-end products and weak effort to develop products. Currently, domestic mutton flavorsusually feel unnatural and the fragrance can only last for a short time. The characteristicflavor is often not obvious. These issues have seriously limited development of motton flavorsindustry. It is imperative to develop natural and high value added products. This study aims atupgrade of byproducts from mutton processing and tries to develop high quality naturalmutton flavors by processing by-products of mutton (i.e. bones and mutton tallow), such ascontrolled enzymatic hydrolysis of bones and oriented oxidation of mutton tallow foodprocessing technology based on the characteristic fingerprint of mutton flavor. The maincontents of this study are as follows:
     The characteristic fingerprint of mutton flavor based on SPME-GC-MS, GC-O andcluster analysis was prepared. The reliability of characteristic fingerprint of mutton flavor wasassessed according to similarity of the characteristic fingerprint and principal componentanalysis (PCA). The results showed that the proposed characteristic fingerprint can effectivelyevaluate the deviation of testing sample and qualified sample; in addition, a qualitativediscriminant model for different species of meat was developed by use of PLS-DA method.All correlation coefficients of predicted value and actual value of categorical variable fordifferent species of meat samples were above0.89. The samples were100%recognized.Analysis of samples that were not involved in model establishment showed that characteristicinformation of mutton flavors and PLS-DA discriminant analysis together were able toeffectively detect and accurately discriminate mutton and other meat products. In addition,adulterated samples can also be accurately identified. This study will provide a scientific basisand method for quality assessment of mutton, quality control and preparation of muttonflavors.
     Proper protease was filtered out according to degrees of hydrolysis (DH) and solublenitrogen content. Quadratic general rotational regression model was established for Alcalase(protease of sheep bones) and flavourzyme. The impacts of hydrolysates of sheep boneprotein (SBPH) with different DHs on mutton process flavors (MPF) products were examinedby sensory analysis and GC-MS-O analysis. The results were as follows: when protein SBPHwith different DHs were used as precursors, one or several sensory attributes were relativelystrong; MPF samples presented obvious mutton flavor and roasted smell at DH of25.92%;when DH was30.89%, MPF samples showed high degree of simulation and aftertaste sense.The experimental results demonstrated that SBPH as precursors can be used to producevarious active aroma substances when the DH was in the range of25.92%-30.89%. PLSRcorrelation analysis was conducted for total of36characteristic lamp flavor compounds andsensory data. The correlation analysis results also indicated that hydrolysates of sheep boneswith hydrolysis degree of25.92%-30.89%were the most appropriate substrate for Maillardreaction. The conditions for enzymatic process were as follows: after thermal treatment, the sheep bone meal (20%) was cooled down to55℃. pH vas adjusted to8.5. Alcalase (3000U/gprotein) was added to hydrolyze for3h-4h. Then, flavourzyme (3000-3500U/g protein) wasadded to hydrolyze for2.5h-3h.
     Chemical index of mutton tallow oxidation (PV, p-AV and AV) and compositions andcontents of all volatile compounds during thermal oxidation process in different conditionswere studied. The results showed that temperature and duration of oxidation greatlyinfluenced the compositions and contents of volatile compounds in mutton tallow. PLSRmodel was developed for each volatile compound and chemical index. The significantcorrelations between chemical index and specific volatile compounds were identified. Theunderstanding of mutton tallow oxidation process provides basis for oriented oxidationregulation of mutton tallow.
     Both of non-oxidized mutton tallow and oxidized mutton tallow were involved inMaillard reaction. The products were compared through sensory description and GC-MSanalysis. The results showed that oxidized mutton tallow was important to stimulate orstrengthen characteristic mutton flavor in the course of thermal reaction. The MFSs usingmutton tallow with different degrees of oxidation as precursor were strong in one or severalsensory attributes. MFS5prepared with mildly oxidized mutton tallow (S5) presented obvioustaste of mutton and fat, which was a high degree of simulation. The correlation analysisagainst response of electronic nose, sensory data and19kinds of important chemicals alsoindicated that the mildly oxidized mutton tallow, as precursor of Maillard reaction, cangenerate characteristic mutton flavor. The preparation of mildly oxidized mutton tallow wasas follows:100g mutton tallow was oxidized for3h at140℃with air flow rate of60L/h(h·100g). The P.V., A.V. and p-A.V. of mildly oxidized mutton tallow generated in suchcondition were287.61meq/kg·mutton tallow,5.11mg KOH/g and262.52, respectively.
     The impacts of different conditions on preparation of MPF by Maillard reaction wereinvestigated. The results indicated that pH, temperature and duration had significant impactson flavor of MPF samples. If the pH and temperature were too high or too low, or reactionduration was too long or too short, it was not conducive to flavor of MPF. In addition,uniform design was adopted to optimize the Maillard reaction system for preparation of MPFsubstrates. The integrants of substrates included: protease hydrolyzate of sheep bone(100.0g), cysteine (1.369g), alanine (0.2g), taurine (2.5g), thiamine (2.5g), glucose (4.0g),HVP(1.428g), oxidized mutton tallow(12.0g, PV287.61meq/kg、p-AV262.52、AV5.11mgKOH/g); The optimal reaction condition is as initial pH of6.5,125℃and180min. ThisMaillard reaction system can be used to prepare natural high-quality mutton flavors withobvious characteristic flavor, which provided reference for development of byproducts frommeat processing.
引文
[1] Daniel C,Wies C,Robert D,et al. Two-dimensional correlation analysis of the effect of temperature onthe fingerprint of wines analysed by mass spectrometry electronic nose [J]. Sensors Actuat. B-Chem.,2010,145(2):628-634.
    [2] Tistaert C,Dejaegher B,Hey den YV. Chromatographic separation techniques and data handingmethods for herbal fingerprints: A review [J]. Anal. Chim. Acta,2011,690(2):148-161.
    [3] Marti MP, Busto〇,Guasch J. Application of a headspace mass spectrometry system to thedifferentiation and classification of wines according to their origin,variety and ageing [J]. J.Chromatogr. A,2004,1057(1-2):211-217.
    [4] Gu M? Yang F,Su ZG. Identification of major active constituents in the fingerprint of Salviamiltiorrhiza Bunge developed by high-speed counter-current chromatography [J]. J. Chromatogr. A,2004,1041(1-2):239-243.
    [5] Francisc VD,Constantin B,Mihaela U,et al. Phytosterols as markers in identification of theadulterated pumpkin seed oil with sunflower oil [J]. Bulletin UASVM Agric?,2009,66(2):301-307.
    [6] Cristina M? Maira LMA, Carmen GR. Traceability markers to the botanical origin in olive oils [J]. J.Agric. Food Chem.,2010,58(1):28-38.
    [7] Moon S Y,Eunice CY, Li C. Changes in aroma characteristics of simulated beef flavour by soy proteinisolate assessed by descriptive sensory analysis and gas chromatography [J]. Food Res. Int.,2007,40(10):1239-1248.
    [8] Berna AZ,Buy sens S,Natale CD,et al. Relating sensory analysis with electronic nose and headspacefingerprint MS for tomato aroma profiling [J]. Postharvest Biol. Technol?,2005,36(2):143-155.
    [9] Dumarey M? Smets I,Vander HY. Prediction and interpretation of the antioxidant capacity of green teafrom dissimilar chromatographic fingerprints [J]. J. Chromatogr. B,2010,878(28):2733-2740.
    [10] Patcharee P,Theeraphan M. Fingerprint of volatile flavour constituents and antioxidant activities ofteas from Thailand [J]. Food Chem?,2011,125(2):797-802.
    [11]王平,朱晓兰,苏庆德.色谱指纹图谱分析在香精香料质量控制中的应用[J].化工新型材料,2010,38(4):114-116.
    [12] Brett JS,Prasanna V,Alberto N,et al. Identification of thermolabile pectin methylesterases fromsweet orange fruit by peptide Mass fingerprinting [J]. J. Agric. Food Chem.,2010,58(23):12462-12468.
    [13] Tomas C, Katerina R,Monika T,et al. Recognition of beer brand based on multivariate analysis ofvolatile fingerprint [J]. J. Chromatogr. A,2010,1217(25):4195-4203.
    [14] Chen Y.,Zhu SB,Xie SP,et al. Quality control and original discrimination of Ganoderma lucidumbased on high-performance liquid chromatographic fingerprints and combined chemometricsmethods [J].Anal. Chim. Acta.,2008,623(2):146-156.
    [15] Bertrand B,Boulanger R,Dussert S,et al. Climatic factors directly impact the volatile organiccompound fingerprint in green Arabic a coffee bean as well as coffee beverage quality [J]. Food Chem.,2012,135(4):2575-2583.
    [16] Jiao JH, Ding NY, Shi TQ,et al. Study of Chromatographic Fingerprint of the Flavor in Beer byHS-SPME-GC [J]. Anal. Lett.,2011,44(4):648-655.
    [17] Sutherland MM, Ames JM. The effect of castration on the headspace aroma components of cookedlamb [J]. J Sci Food Agric,1995,69(4):403-413.
    [18] Gerald F,Odile L, Roger C,et al. Determination of key odorant compounds in freshly distilled cognacusing GC-〇,GC-MS,and sensory evaluation[J]. J.Agric.Food Chem?,2004,52(18):5670-5676.
    [19] Emmanuel OA, Alistair P,Mark F,Angela R. Matrix effects on lfavour volatiles release in darkchocolates varying in particle size distribution and fat content using GC-mass spectrometry andGC-olfactometry [J]. Food Chem.,2009,113(1):208-215.
    [20] Berna AZ,Buys ens S,Natale CD, et al. Relating sensory analysis with electronic nose and headspacefingerprint MS for tomato aroma proofing [J]. Postharvest Biol. Technol?,2005,36(2):143-155.
    [21] Supriyadi, Shimizu K,Suzuki M,et al. Maturity discrimination of snake fruit (Salacca edulis Reinw.)cv. Pondoh based on volatiles analysis using an electronic nose device equipped with a sensor arrayand ifngerprint mass spectrometry [J]. Flavour Frag. J.?2004,19(1):44-50.
    [22]孙灵霞,赵改名,李苗云等.化学计量学在风味物质研究中的应用[J].食品科学,2012,34(5):313-317.
    [23]孙钟雷.电子鼻技术在猪肉新鲜度识别中的应用[J].肉类研究,2008(2):50-53.
    [24]田怀香,肖作兵,徐霞等.电子鼻技术结合多元统计方法在鸡肉香精开发中的应用[J].中国调味品,2011,36(6):61-65.
    [25] Yang ZY? Dong F, Shimizu K,et al. Identification of coumarin-enriched Japanese green teas and theirparticular flavor using electronic nose [J]. J. Food Eng.,2009,92(3):312-316.
    [26]刘娜,戴永鑫.咸昧香精的气相指纹图谱及质量评价研究[J].北京工商大学学报(自然科学版),2011,29(4):28-32.
    [27]李蓉,曹慧君,李晓宁.烟用香精香料的气相色谱特征指纹图谱分类研究[J].化工时刊,2007,21(8):45-48
    [28]Ruth SMV, Van SM, Dings L, et al. Comparison of volatile flavour profiles of Kidney beans and soybeans by GC-MS and PTR-MS [J]. Food Sci. Technol. Res.,2005,11(1):63-70.
    [29]Wang JJ, Qiu QY, Liu W. Quality assessment of tobacco flavor by classification of principal component analysis-mahalanobis distance combined with FTIR-ATR fingerprint [J]. Spectrosc. Sspect. Anal,2007,27(5):895-898.
    [30]Huang LF, Wu MJ, Zhong KJ. Fingerprint developing of coffee flavor by gas chromatography-mass spectrometry and combined chemometrics methods [J]. Anal. Chim. Acta,2007,588(2):216-223.
    [31]Ghasemi-Vamamkhasti M, Monhtasebi SS, Siadat M, et al. Aging fingerprint characterization of beer using electronic nose [J]. Sensors Actuat. B-Chem.,2011,159(1):51-59.
    [32]Shahidi F著.李洁,朱国斌译.肉制品与水产品的风味[M]北京:中国轻工业出版社,200190
    [33]宋焕禄.食用香味料的生化生物制备[M]北京:中国物资出版社出版,2002,6
    [34]Yang H, Liu YH, Ma LZ, et al. Hydrolyzing condition and immunocompetence of sheep bone protein enzymaticlysates [J]. Agric. Sci. China,2009,8(11):1332-1338.
    [35]Yang H, Liu YH, Ma LZ, et al. Study of enzymatic hydrolysis conditions and immunocompetence of the acquisition of sheep bone protein. Scientia Agric. Sinica,2008,41(10):3214-3221.
    [36]Linder M, Fanni J, Parmentier M. Functional properties of veal bone hydrolysates [J]. J. Food Sci.,1996,61(4):712-716.
    [37]詹萍,张晓鸣,田洪磊.羊骨蛋白酶解物热反应制备羊肉香精的研究[J].食品工业科技,2013,34(1):286-289
    [38]赵玉红.骨的综合利用[J]肉类工业,2001(3):23-24
    [39]冯艳丽.骨资源在儿童食品中的开发前景[J]肉类研究,2005(2):26-28
    [40]曾晓房.鸡骨架酶解及其产物制备鸡肉香精研究[D]:[博士学位论文]广州:华南理工大学轻工与食品学院,2007
    [41]王明萱,黄桂英,王川畜(禽)骨在食品中的开发利用[J]中国食物与营养,1998(2):22-28
    [42]尹礼国,于颖,徐洲.鸡骨的综合加工利用[J].肉类工业,2008(2):8-10
    [43]张志宇,张佳敏,王卫等.胰酶酶解猪骨素的工艺条件[J].食品研究与开发,2010,31(4):130-133
    [44]陈洁.油脂化学[M]北京:化学工业出版社,200217-18
    [45]Skanderby M. Protein hydrolysates:their functionality and applications [J]. Food Sci Technol. Int.,1994(10):141.
    [46]Wasswa J, Tang J, Gu XH, et al. Influence of the extent of enzymatic hydrolysis on the functional properties of protein hydrolysate from grass crap (Ctenopharyngodon idella) skin [J]. Food Chem.,2007,104(4):1698-1704.
    [47]Bhaskar N, Benila T, Radha C, et al. Optimization of enzymatic hydrolysis of visceral waste proteins of Catla (Catla catla) for preparing protein hydrolysate using a commercial protease [J]. Bioresource Technol.,2008,99(2):335-343.
    [48]Linder M, Fanni J, Parmentier M, et al. Protein recovery from veal bones by enzymatic hydrolysis [J]. J. Food Sci.,1995,60(5):949-952.
    [49]孙凤祥,王守训,任维栋等.亲和色谱法从猪骨胶原蛋白酶解物中分离纯化血管紧张素转换酶抑制剂[J]中国生化药物杂志,2004,25(6):347-349
    [50]贾冬英,赵宏铭,姚开.鲢鱼头及骨中蛋白质的酶解条件优化[J].食品科技,2007(4):243-246
    [51]Zhan P, Tian HL, Zhang XM, et al. Contribution to aroma characteristics of mutton process flavor from the enzymatic hydrolysate of sheep bone protein assessed by descriptive sensory analysis and gas chromatography olfactometry [J]. J. Chromatogr. B,2013,921-922(3):1-8.
    [52]肖作兵,牛云蔚,张健等.酶解对肉味香精前体物的品质影响[J].食品工业科技,2006,27(10):153-155
    [53]Crouse JD, Ferrell CL. The relationship of fatty acid composition and carcass characteristics to meat flavor in lamb [J]. J. Food Qual.,1982,5(3):203-214.
    [54]Song SQ, Zhang XM, Hayat K, et al. Formation of the beef flavour precursors and their correlation with chemical parameters during the controlled thermal oxidation of tallow [J]. Food Chem.,2011,124(11):203-209.
    [55]肖作兵,杨斌,王婷婷.脂肪控制氧化制备鸡肉香精前体物的工艺研究[J].食品工业,2008(1):41-43
    [56]Wasserman AE, Gray N. Meat flavour. I. Fractionation of water-soluble flavour precursors to beef [J]. J. Food Sci.,1965,30(5):801-807.
    [57]Madruga MS, Elmore JS, Oruna-Concha MJ, et al. Determination of some water-soluble aroma precursors in goat meat and their enrolment on flavour profile of goat meat [J]. Food Chem.,2010,123(2):513-520.
    [58]Cerny C, Davidek T. Formation of aroma compounds from ribose and cysteine during the Maillard reaction [J]. J. Agric. Food Chem.,2003,51(9):2714-2721.
    [59]Mottram DS, Nobrega LCC. Formation of sulfur aroma compounds in reaction mixtures containing cysteine and three different forms of ribose [J]. J. Agric. Food Chem.,2002,50(14):4080-4086.
    [60]Hofmann T, Schieberle P. Evaluation of the key odorants in a thermally treated solution of ribose and cysteine by aroma extract dilution techniques [J]. J. Agric. Food Chem.,1995,43(8):2187-2194.
    [61]Hornstein I, Crowe PF. Meat flavor chemistry, flavor studies on beef and pork [J]. J. Agric. Food Chem.,1960,8(6):494-498.
    [62]Shahidi F.肉制品与水产品的风味[M]:第二版.李洁,朱国斌译.北京:中国轻工业出版社,20015-6
    [63]Byeong-Dae C, Chi-Tang H. Contribution of2,4-decadienal and fish oil to volatile formation in the Maillard reaction of taurine with xylose [J]. Food Sci. Biotechnol,2000,9(3):133-138.
    [64]Mottram DS. Flavour formation in meat and meat products:A review [J]. Food Chem.,1998,62(4):415-424.
    [65]Cerny C. Origin of carbons in sulfur-containing aroma compounds from the Maillard reaction of xylose, cysteine and thiamine [J]. LWT-Food Sci. Technol.,2007,40(8):1309-1315.
    [66]Quweland GAMVD, Peer H. Components contributing to beef flavor. Volatile compounds produced by the reaction of4-hydroxy-5-methyl-3(2H)-furanone and its thio analog with hydrogen sulfide [J]. J. Agric. Food Chem,1975,23(3):501-505.
    [67]Shahidi F.肉制品与水产品的风味[M]:第二版.李洁,朱国斌译.北京:中国轻工业出版社,200110
    [68]宋焕禄.食用香味料的生化生物制备[M]北京:中国物资出版社出版,200226
    [69]郭冰.肉类风味形成及羊肉香精的风味研究[J].北京工商大学学报(自然科学版),2011,29(2):70-73
    [70]Mottram DS, Edwards RA. The role of triglycerides and phospholipids in the aroma of cooked beef [J]. J. Sci. Agric.,1983,34(5):517-522.
    [71]欧全文,王卫,张崟等.肉类风味的研究进展[J].食品科技,2012,37(12):107-1]1
    [72]Beck J, Ledl F, Sengl M, et al. Formation of acids, lactones and esters through the Maillard reaction[J]. Z. Lebensm. Unters. Forsch. A.,1990,190(3):212-216.
    [73]刘邻渭.食品化学[M]北京:中国农业出版社,200033-34
    [74]Namiki M, Hayashi T. A new mechanism of the Maillard reaction involving sugar fragmentation and free radical formation [J]. The Maillard reaction in foods and nutrition.1983,215:21-46.
    [75]Vanboekel M. Formation of flavour compounds in the Maillard reaction[J]. Biotechnol. Adv.,2006,24(2):230-233.
    [76]Amrani-Hemaimi M, Cerny C, Fay LB. Mechanisms of formation of alkylpyrazines in the Maillard reaction[J]. J. Agric. Food Chem.,1995,43(11):2818-2822.
    [77]Madruga MS, Monttram DS. The effect of pH on the formation of Maillard-derived aroma volatiles using a cooked meat system [J]. J. Sci. Food Agric.,1995,68(3):305-310.
    [78]Shibamoto T, Russell GF. Study of meat volatiles associated with aroma generated in a D-glucose-hydrogen suffide-ammonia model system [J]. J. Agric. Food Chem.,1976,24(4):843-836.
    [79]http://investing.businessweek.com/research/stocks/private/snapshot.asp?privcapId=353564[J].
    [80]Baek HH, Kim CJ, Ahn BH, et al. Aroma extract dilution analysis of a beeflike process flavour from extruded enzyme-hydrolyzed soybean protein [J]. J. Agric. Food Chem.,2001,49(2):790-793.
    [81]Umano K, Shibamoto T. Analysis of headspace volatiles from overheated beef fat [J]. J. Agric. Food Chem.,1987,35(1):14-18.
    [82]Mottram DS. Flavour formation in meat and meat products:a review [J]. Food Chem.,1998,62(4):415-424.
    [83]Zamor R, Francisco JH. Coordinate contribution of lipid oxidation and Maillard reaction to the nonenzymatic food browning [J]. Crit. Rev. Food Sci. Nutr.,2005,45(1):49-59.
    [84]Pearson AM, Wenham LM, Carse WA, et al. Observations on the contribution of fat and lean to the aroma of cooked beef and lamb [J]. J. Anim. Sci.,1973,36(3):511-515.
    [85]Elmore JS, Mottram DS, Enser M, et al. Novel thiazoles and3-thiazolines in cooked beef aroma [J]. J. Agric. Food Chem.,1997,45(9):3603-3607.
    [86]Song SQ, Zhang XM, Xiao ZB, et al. Contribution of oxidized tallow to aroma characteristics of beeflike process flavour assessed by gas chromatography-mass spectrometry and partial least squares regression [J]. J. Chromatogr. A,2012,1254(9):115-124.
    [87]Xu YX, Chen QC, Lei SJ, et al. Effects of lard on the formation of volatiles from the Maillard reaction of cysteine with xylose [J]. J. Sci. Food Agric,2011,91(12):2241-2246.
    [88]Farmer LJ, Mottram DS. In:H. Maarse, DG van der Heij(Eds.), Trends in Flavour Research, Elsevier, Amsterdam,1994.313.
    [89]Whitfield FB. Volatiles from interactions of Maillard reactions and lipids [J]. Crit. Rev. Food Sci. Nutr.,1992,31(1-2):1-58.
    [90]Hartman GJ, Jin QZ, Collins GJ, et al. Nitrogencontaining heterocylic compounds identified in the volatile flavour constituents of roast beef [J]. J. Agric. Food Chem.,1983,31(5):1030-1033.
    [91]Tang J, Jin QZ, Shen GH, et al. Isolation and identification of volatile compounds from fried chicken [J]. J. Agric. Food Chem.,1983,31(6):1287-1292.
    [92]Elmore JS, Mottram DS. Investigation of the reaction between ammonium sulfide, aldehydes, and a-hydroxyketones or α-dicarbonyls to form some lipid-Maillard interaction products found in cooked beef [J]. J. Agric. Food Chem.,1997,45(9):3595-3602.
    [93]刘汉文,陈洪兴,封功能等.低值鱼酶解液生产肉类调味基料工艺的研究[J].食品科技,2007(8):176-180
    [94]Morton ID. A method of preparing meat-like substance [P]. GB Patent:836694,1960.
    [95]Aishima T, Nobuhara A. Beef flavor substance, process for producing same and beef-flavoring agent [P]. USP4094997,1978.
    [96]刘通讯,吴肖,林勉.花生粕蛋白酶解液Maillard反应合成肉类香味料的研究[J].食品科学,2001,22(4):25-27
    [97]孙保国肉味香精的制造理念与核心技术[J].中国食品学报,2007,7(5):1-5
    [98]Song SQ, Zhang XM, Hayat K, et al. Contribution of beef base to aroma characteristics of beeflike process flavor assessed by descriptive sensory analysis and gas chromatography olfactometry and partial least squares regression [J]. J. Chromatogr. A,2010,1217(49):7788-7799.
    [99]宋焕禄,杨成对.鸡肉酶解物-HVP-半胱氨酸Maillard反应体系产生肉香味化合物的研究[J].精细化工,2001,18(1]):659-661,681
    [100]王灵昭,杜云建,张从文.草鱼皮酶促水解及其水解液Maillard反应合成肉类香味料的研究[J].食品科技,2007(4):247-251
    [101]Shi XX, Zhang XM, Song SQ, et al. Identification of characteristic flavour precursors from enzymatic hydrolysis-mild thermal oxidation tallow by descriptive sensory analysis and gas chromatography-olfactometry and partial least squares regression [J]. J. Chromatogr. B,2013,913-914:69-76.
    [102]谢建春,孙宝国,马洪亮等.氧化猪脂-热反应制备猪肉香精研究[J].中国调味品,2005,322(12):49-53
    [103]龚钢明,肖作兵,荣绍丰等.氧化牛油Maillard反应制备牛肉香精研究[J].中国调味品,2008,352(6):79-83
    [1]宋熳禄.食用香味料的生化生物制备[M]北京:中国物资出版社出版,20026
    [2]Oprean R, Tamas M, Sandulescu R, et al. Essential oils analysis I:Evaluation of essential oils composition using both GC and MS fingerprints [J]. J. Pharmaceut. Biomed.,1998,18(4-5):651-657.
    [3]杜强,贾丽艳SPSS统计分析从入门到精通[M]北京:人民邮电出版社,200953
    [4]Tistaert C, Dejaegher B, Hey den YV. Chromatographic separation techniques and data handing methods for herbal fingerprints:A review [J]. Anal. Chim. Acta,2011,690(2):148-161.
    [5]Johnson RA, Wichern DW著,陆璇,叶俊译.实用多元统计分析[M]清华大学出版社,2011531-541
    [6]Banskalieva V, Sahlu T, Goetsch A. Fatty acid composition of goat muscles and fat depots:a review [J]. Small Ruminant Res.,2000,37(3):255-268.
    [7]Meng J, Leung KS, Jiang ZH, et al. Establishment of HPLC-DAD-MS fingerprint of fresh houttuynia cordata [J]. Chem. Pharm. Bull.,2005,53(12):1604-1609.
    [8]Liang Y, Xie P, Chan K. Quality control of herbal medicines [J]. J. Chromatogr. B,2004,812(1-2):53-70.
    [9]谢培山色谱指纹图谱分析是中草药质量控制的可行策略[J].中药新药与临床药理,2001,12(3): 141-145
    [10]Cao Y, Wang L, Yu X,et al. Development of the chromatographic fingerprint of herbal preparations Shuang-Huang-Lian oral liquid [J]. J. Pharmaceut. Biomed.,2006,41(3):845-856.
    [11]Sutherland MM, Ames JM. The effect of castration on the headspace aroma compon ents of cooked lamb [J]. J. Sci. Food Agric.,1995,69(4):403-413.
    [12]Ruan G, Li G. The study on the chromatographic fingerprint of Fructus xanthii by microwave assisted extraction coupled with GC-MS [J]. J Chromatogr. B,2007,850(1-2):241-248
    [13]Oprean R, Tamas M, Sandulescu R, et al. Essential oils analysis. I. Evaluation of essential oils composition using both GC and MS fingerprints [J]. J. Pharmaceut. Biomed.,1998,18(4-5):651-657.
    [14]Macleod G, Seyyedain Ardebili M. Natural and simulated meat flavours (with particular reference to beed)[J]. CRC Crit. Rev. Food Sci. Nutr.,1981,14(4):309-437.
    [15]Spanier AM, Edwards JV. Chromatographic isolation of presumptive peptide flavor principles from red meat [J]. J. Liq. Chromatogr.,1987,10(12):2745-2758.d
    [16]Jacobson M, Koehler HH. Meat flavor, components of the Flavor of Lamb [J]. J. Agric. Food Chem.,1963,11(4):336-339.
    [17]Brennand CP. Factors affecting contributions of volatile branched-chain fatty acids to the special related flavors of lamb and mutton. PhD thesis, University of Wisconsin, Madison, WI,USA.
    [18]Caporaso F, Sink JD, Dimick PS, et al. Volatile Flavor Constituents of Ovine Adipose Tissue [J]. J. Agric. Food Chem.,1977,25(6):1930-1934.
    [19]王钧,赵曰利.色谱指纹图谱在香精香料质量控制中的应用[J].分析测试技术与仪器,2005,11(3):192-195
    [20]Zhu XL, Gao Y, Chen ZY,et al. Development of a chromatographic fingerprint of tobacco flavor by use of GC and GC-MS [J]. Chromatographia,2009,69(7-8):735-742.
    [21]Chou G, Xu SJ, Liu D, et al. Quantitative and fingerprint analyses of Chinese sweet tea plant (Rubus suavissimus S. Lee)[J]. J. Agric. Food Chem.,2009,57(3):1076-1083.
    [22]钟科军,魏万之,郭方遒等GC-MS及主成分分析法用于咖啡香精的指纹图谱分析和微差样品的识别[J]分析实验室,2006,25(8):119-122
    [23]Fan XH, Cheng YY, Ye ZL, et al. Multiple chromatographic fingerprinting and its application to the quality control of herbal medicines [J]. Anal. Chim. Acta,2006,555(2):217-224.
    [24]王钦德,杨坚.高级食品试验设计与统计分析[M].北京:中国农业出版社,2009227-228
    [25]Hornstein I, Crowe PF. Food flavor and odors, Meat flavor:lamb [J]. J. Agric. Food Chem.,1963,11(2):147-149.
    [26]Wasserman AE, Talley F. Organoleptic identification of roasted beef, veal, lamb and pork as affected by fat [J]. J.Food Sci,1968,33(2):219-223.
    [27]Pizarro C, Rodriguez-Tecedor S, Perez-del-Notario N, et al. Classification of Spanish extra virgin olive oils by data fusion of visible spectroscopic fingerprints and chemical descriptors [J]. Food Chem.,2013,138(2-3):915-922.
    [28]Chevallier S, Bertrand D, Koler A, et al. Application of PLS-DA in multivarite image analysis [J]. J. Chemometr,2006,20(5):221-229.
    [29]董学锋,戴连奎,黄承伟.结合PLS-DA与SVM的近红外光谱软测量方法[J].浙江大学学报(工学版),2012,46(5):824-829
    [30]Barker M., Rayens W. Partial least squares for discrimination [J]. J. Chemometr.,2003,17(3):166-173.
    [31]Ciosek P, Brzozka Z, Wroblewski W, et al. Direct and two-stage data analysis procedures based on PCA, PLS-DA and ANN for ISE-based electronic tongue-Effect of supervised feature extraction[J]. Talanta,2005,67(3):590-596.
    [32]Sylwia MS, Henryk HJ, Renata ZW. The use of electronic and human nose for monitoring rapeseed oil autoxidation [J]. Eur. J. Lipid Sci. Tech.,2008,110(1):61-72.
    [33]苏学素,张晓焱,焦必宁等.基于近红外光谱的脐橙产地溯源研究[J].农业工程学报,2012,28(15):240-245
    [34]Worley B, Halouska S, Powers R. Utilities for quantifying separation in PCA/PLS-DA scores plots [J]. Anal. Biochem.,2013,433(2):12-104.
    [35]杨忠,任海青,江泽慧PLS-DA法判别分析木材生物腐朽的研究[J].光谱学与光谱分析,2008,28(4):793-796
    [36]Ruth SMV, Villegas B, Akkermans W, et al. Prediction of the identity of fats and oils by their fatty acid, triacylglycerol and volatile compositions using PLS-DA [J]. Food Chem,2010,118(4):948-955.
    [37]郝勇,孙旭东,高荣杰等.基于可见近红外光谱与SIMCA和PLS-DA的脐橙品种识别[J].农业工程学报,2010,26(12):373-377
    [1]刘汉文,陈洪兴,封功能等.低值鱼酶解液生产肉类调味基料工艺的研究[J].食品科技,2007(8):176-180.
    [2]夏玲君,宋焕禄.Maillard反应制备牛肉香精及其香味成分分析[J].食品与发酵工业,2006,32(8):82-85.
    [3] Jarunrattanasri A, Theerakulkait C, Cadwallader KR. Aroma components of acid-hydrolyzedvegetable protein made by partial hydrolysis of rice bran protein [J]. J Agric. Food Chem.,2007,55(8):3044-3050.
    [4] Wu YF, Baek HH, Gerard PD, et al. Development of a meat-like process flavoring fromsoybean-based enzyme-hydrolyzed vegetable protein (E-HVP)[J]. J. Food Sci.,2000,65(7):1220-1227.
    [5] Lieske B, Konrad G. Protein hydrolysis-the key to meat flavoring systems [J]. Food Rev. Int.,1994,10(3):287-312.
    [6] Kunst T. Protein modification to optimize functionality protein hydrolysates [M]. In: Whitaker J,Voragen A, Wong D, editors. Handbook of food enzymology. New York: Marcel Dekker,2003.221-236.
    [7] Pommer K. New proteolytic enzymes for the production of savory ingredients [J]. Cereal Food. World,1995,40(10):745-748.
    [8] Linder M, Fanni J, Parmentier M. Functional properties of veal bone hydrolysates [J]. J. Food Sci.,1996,61(4):712-716.
    [9] Yang H,Liu YH,Ma LZ,et al. Hydrolyzing condition and immunocompetence of sheep bone proteinenzymaticlysates [J]. Agr. Sci. in China,2009,8(11):1332-1338.
    [10] Aspmo SI, Horn SJ,Eijsink VGH. Enzymatic hydrolysis of Atlantic cod (Gadus morhua L.) viscera[J]. Process Biochem?,2005,40(5):1957-1966.
    [11] Moon SY’ Eunice CY, Li C. Changes in aroma characteristics of simulated beef flavour by soy proteinisolate assessed by descriptive sensory analysis and gas chromatography [J]. Food Res. Int.,2007,40(10):1239-1248.
    [12] E'remeev NL, Nikolaev IV,Keruchenko ID, et al. Enzymatic hydrolysis of keratin containing stockfor obtaining protein hydrolysates [J]. App. Biochem. Micro.,2009,45(6):648-655.
    [13] AOAC. Official me thods of analysis (16th ed)[S]. Washington DC: Association of OfFical AnalyticalChemists,2002.
    [14]詹萍,张晓鸣,田洪磊.二次旋转正交组合设计优化羊骨蛋白酶解工艺[J].食品工业科技,2012,33(19):182-186.
    [15]曾卓,王金水,付雅丽.鸡肉蛋白的酶解特性及酶解产物的抗氧化性研究[J].食品工业科技,2008,29(6):126-128
    [16]贾冬英,赵宏铭,姚幵等.鲢鱼头及骨中蛋白质的酶解条件优化[J].食品科技,2007(4): 243-246.
    [17] Nilsang S,Lertsiri S,Suphantharika M, et al. Optimization of enzymatic hydrolysis of fish solubleconcentrate by commercial proteases [J]. J. Food Eng.,2005,70(4):571-578.
    [18] Ovissipour M? Abedian A,Motamedzadegan A,et al. The effect of enzymatic hydrolysis time andtemperature on the properties of protein hydroly sates from persian sturgeon (Acipenser persicus)viscera [J]. FoodChem.,2009,115(1):238-242.
    [19]王钦德,杨坚.高级食品实验设计与统计分析[M].北京:中国农业大学出版社,2009. 149-163.
    [20]曲晓婷,张名位,温其标等.二次通用旋转组合设计法优化米糠蛋白提取工艺[J].食品研究与幵发2007,28(1):102-106.
    [21] Mottram DS. Flavour formation in meat and meat products: a review [J]. Food Chem?,1998,62(4):415-424.
    [22] Macy RL, Naumann HD,Bailey ME. Water-soluble flavor and odor precursors of meat.5. Influenceof heating on acid-extractable non-nucleotide chemical constituents of beef,lamb and pork [J]. J.Food Sci.,1970,35(1):83-91.
    [23] Madruga MS, Elmore JS,Oruna-Concha MJ? et al. Determination of some water-soluble aromaprecursors in goat meat and their enrolment on flavour profile of goat meat [J]. Food Chem.,2010,123(2):513-520.
    [24]詹萍,张晓鸣,田洪磊.羊骨蛋白酶解物热反应制备羊肉香精的研究[J].食品工业科技,2013,34(1):286-289.
    [25] Song SQ,Zhang XM, Hayat K,et al. Contribution of beef base to aroma characteristics of beelfikeprocess flavor assessed by descriptive sensory analysis and gas chromatography olfactometry andpartial least squares regression [J]. J. Chromatogr. A,2010,1217(49):7788-7799.
    [26] Umano K,Hagi Y,Nakahara K,et al. Volatile chemicals formed in the headspace of a heatedD-glucose/L-cysteine Maillard model system[J]. J. Agric. Food Chem?,1995,43(8):2212-2218.
    [27] Chen Y’ Ho CT. Effects of carnosine on volatile generation from Maillard reaction of ribose andcysteine [J]. J. Agric. Food Chem.,2002,50(8):2372-2376.
    [28] Adams A,Kimpe ND. Formation of pyrazines and2-acety1-1-pyrroline by bacillus cereus [J]. FoodChem.,2007,101(3):1230-1238.
    [29] Low MY, Koutsidis G’ Parker JK, et al. Effect of citric acid and glycine addition on acrylamide andflavor in a potato model system [J]. J. Agric. Food Chem.,2006,54(16):5976-5983.
    [30] Hofmann T,Munch P, Schieberle P. Quantitative model studies on the formation of aroma-activealdehydes and acids by strecker-type reactions [J]. J. Agric. Food Chem.,2000,48(2):434-440.
    [31] O'Mahony M. Sensory evaluation of food statistical methods and procedures [M]. New York: MarcelDekker,1986.247-257.
    [32] Simpson BK,Nayeri G’ Yaylayan V,et al. Enzymatic hydrolysis of shrimp meat [J]. Food Chem.,1998,61(1-2):131-138.
    [33] Sutherland MM, Ames JM. The effect of castration on the headspace aroma components of cookedlamb [J]. J Sci Food Agric,1995,69(4):403-413.
    [34] Umano K,Hagi Y,Nakahara K,et al. Volatile chemicals formed in the headspace of a heatedD-glucose/L-cysteine Maillard model system [J]. J. Agric. Food Chem.,1995,43(8):2212-2218.
    [35] Rota V’ Schieberle P. Food Lipids [M]. Washington DC: ACS Symposium Series; American ChemicalSociety,2005.73-82.
    [36] Virginia C,Resconi M,Campo M? et al. Relationship between odour-active compounds and flavourperception in meat from lambs fed different diets [J]. Meat Sci.,2010,85(4):700-706.
    [37] Suzuki J, Bailey ME. Direct sampling capillary GLC analysis of flavor volatiles from ovine fat [J]. J.Agr. Food Chem.,1985,33(3):343-347.
    [38] Caporaso F,Sink JD, Dimick PS, et al. Volatile flavor constituents of ovine adipose tissue [J]. J. Agric.Food Chem.,1977,25(6):1230-1233.
    [39] Lorenz G’ Stern DJ, Flath RA, et al. Identification of sheep liver volatiles [J]. J. Agric. Food Chem.,1983,31(5):1052-1057.
    [40] Jacobson M, Koehler HH. Meat Flavor, Components of the Flavor of Lamb [J]. J. Agric. Food Chem.,1963,11(4):336-339.
    [41] Wong E,Johnson CB,Nixon LN,et al. Volatile medium chain fatty acids and mutton flavor [J]. J.Agric. Food Chem.,1975,23(3)495-498.
    [42] Brennand CP. Factors affecting contributions of volatile branched-chain fatty acids to the speciesrelated flavors of lamb and mutton [D]:[PhD thesis]. USA: University of Wisconsin,1989.
    [1] Umano K, Shibamoto T. Analysis of headspace volatiles from overheated beef fat [J]. J. Agric. Food Chem,1987,35(1):14-18.
    [2]Farmer LJ, Mottram DS. Interaction of lipid in the Maillard reaction between cysteine and ribose: The effect of a triglyceride and three phospholipids on the volatile products [J]. J. Sci. Food Agric.,1990,53(4):505-525
    [3]Donald S. Mottram. Flavour formation in meat and meat products:a review [J]. Food Chem.,1998,62(4):415-424.
    [4]Pearson A M, Wenham L M, Carse W A, et al. Observations on the contributions of fat and lean to the aroma of cooked beef and lamb [J]. JAnim Sci,1973,36(3):511-515.
    [5]欧阳杰,韦立强,武彦珍等.新型脂肪香精的应用技术研究[J].中国调味品,2008,4(3):80-82
    [6]Song SQ, Zhang XM, Xiao ZB, et al. Contribution of oxidized tallow to aroma characteristics of beeflike process flavour assessed by gas chromatography-mass spectrometry and partial least squares regression [J]. J. Chromatogr. A,2012,1254(9):115-124.
    [7]薛雅琳.GB/T5538-2005动植物油脂过氧化值测定[S]北京:中国标准出版社,2005
    [8]栾霞.GB/T24304-2009动物油脂茴香胺值的测定[S]北京:中国标准出版社,2009
    [9]薛雅琳.GB/T5530-2005动植物油脂酸值和酸度的测定[S]北京:中国标准出版社,2005
    [10]Rochat S, Chaintreau A. Carbonyl odourants contributing to the in-oven roast beef top note [J]. J. Agric. Food Chem.,2005,53(24):9578-9585.
    [11]Mottram DS, Edwards RA, Macfie HJH. A comparison of the flavour volatile from cooked beef and pork meat systems [J]. J. Sci. Food Agric.,1982,33(9):934-944.
    [12]Crouse JD, Ferrell CL. The relationship of fatty acid composition and carcass characteristics to meat flavor in lamb [J]. J. Food Quality,1982,5(3):203-214.
    [13]Frankel EN. Lipid oxidation:Mechanisms, products and biological significance [J]. J. Am. Oil Chem. Soc.,1984,61(12):1908-1917.
    [14]Sutherland MM, Ames JM. The effect of castration on the headspace aroma components of cooked lamb [J]. J. Sci. Food Agric.,1995,69(4):403-413.
    [15]Caporaso F, Sonk JD,Domick PS, et al. Volatile flavor constituents of ovine adipose tissue [J]. J. Agric. Food Chem.,1977,25(6):1230-1233.
    [16]Rota V, Schieberle P. Food Lipids [M]. Washington DC:ACS Symposium Series; American Chemical Society,2005.73-82.
    [17]Hofmann T, Munch P, Schieberle P. Quantitative model studies on the formation of aroma-active aldehydes and acids by strecker-type reactions [J]. J. Agric. Food Chem.,2000,48(2):434-440.
    [18]Selke E, Rohwedder WK, Dutton HJ. Volatile components from tristearin heated in air [J]. J. Am. Oil Chem. Soc,1975,52(7):232-235.
    [19]张水华.食品分析[M]北京:中国轻工业出版社,2005105-109
    [20]Frankel EN. Review. Recent advances in lipid oxidation [J]. J. Sci. Food Agric.,1991,54(4):495-511.
    [21]Song SQ, Zhang XM, Hayat K, et al. Formation of the beef flavour precursors and their correlation with chemical parameters during the controlled thermal oxidation of tallow [J]. Food Chem.,2011,124(11):203-209.
    [22] Moon SY,Li-Chan ECY. Changes in aroma characteristics of simulated beef lfavour by soy proteinisolate assessed by descriptive sensory analysis and gas chromatography [J]. Food ResearchInternational,2007,40(10):1239-1248
    [23] Hornstein I,Crowe PF. Food Flavors and Odors, meat flavor:lamb [J]. J. Agric. Food Chem?,1963,11(2):147-149
    [24]贾洪峰,卢一,何江红等.电子鼻在牦牛肉和牛肉猪肉识别中的应用[J].农业工程学报,2011,27(5):358-363.
    [25] Zhan P,Tian HL,Zhang XM,et al. Contribution to aroma characteristics of mutton process flavorfrom the enzymatic hydrolysate of sheep bone protein assessed by descriptive sensory analysis andgas chromatography olfactometry [J]. J. Chromatogr. B,2013,921-922(7):1-8.
    [26] Song SQ,Zhang XM? Hayat K,et al. Contribution of beef base to aroma characteristics of beeflikeprocess lfavor assessed by descriptive sensory analysis and gas chromatography olfactometry andPartial least squares regression [J]. Journal of Chromatography A?2010,1217(49),7788-7799.
    [27] Umano K,Hagi Y,Nakahara K,et al. Volatile chemicals formed in the headspace of a heatedD-glucose/L-cysteine Maillard model system [J]. J. Agric. Food Chem.,1995,43(8):2212-2218.
    [28] Mottram DS. Flavour formation in meat and meat products: a review [J]. Food Chem.,1998,62(4):415-424.
    [29] Tikk K,Haugen J? Andersen HJ, et al. Monitoring of warmed-over flavour in pork using the electronicnose-correlation to sensory attributes and secondary lipid oxidation products [J]. Meat Sci.,2008,80(4):1254-1263.
    [30] Calkins CR,Hodgen JM. A fresh look at meat flavor [J]. Meat Sci.,2007,77(1):63-80.
    [31] Gasser U, Grosch W. Identification of volatile flavour compounds with high aroma values fromcooked beef [J]. Z. Lebensm Unters. Forsch,1988,186(5):489-493.
    [32]朱焕禄.食用香味料的生化生物制备[M].北京:中国物资出版社,2002.21-22
    [33] Xu YX,Chen QC, Lei SJ,et al. Effects of lard on the formation of volatiles from the Maillardreaction of cysteine with xylose [J]. J. Sci. Food Agric?,2011,91(12):2241-2246.
    [34] Farmer LJ,Mottram DS,Whitfield FB. Volatile compounds produced in Maillard reactions involvingcysteine,ribose and phospholipid [J]. J. Sci. Food Agric.,1989,49(3):347-368.
    [35] ShahidiF.肉制品与水产品的风味[M]:第二版.李洁,朱国斌译.北京:中国轻工业出版社,2001.9.
    [36] Whitfield FB. Volatiles from interactions of Maillard reactions and lipids [J]. Crit. Rev. Food Sci.Nutr.?1992,31(1-2):1-58.
    [37] Madruga MS, Mottram DS. The effect of pH on the formation of Maillard derived aroma volatilesusing a cooked meat system [J]. J. Sci. Food Agric?,1995,68(3):305-310.
    [38] Shahidi F.肉制品与水产品的风味[M]:第二版.李洁,朱国斌译.北京:中国轻工业出版社,2001.16-17.
    [39] Farmer LJ, Mottram. Effect of cysteine and ribose on the volatile thermal degradation products of atriglyceride and three phospholipids [J]. J. Sci. Food Agric?,1992,60(4):489-497.
    [1]Banskalieva V, Sahlu T, Goetsch AL. Fatty acid composition of goat muscles and fat depots:a review [J]. Small Ruminant Res.,2000,37(3):255-268.
    [2]郭冰.肉类风味形成及羊肉香精的风味研究[J].北京工商大学学报(自然科学版),2011,29(2):70-74
    [3]Macleod G, Seyyedain-Ardebili M, Chang SS. Natural and simulated meat flacours (with particular reference to beef). CRC Crit. Rev. Food Sco. Nutr.,1981,14(4):309-437.
    [4]Mottram DS. Meat. In volatile compounds in foods and beverages [M]. New York:Marcel Dekker,1991.107-177.
    [5]Madruga MS, Monttram DS. The effect of pH on the formation of Maillard-derived aroma volatiles using a cooked meat system [J]. J. Sci. Food Agric,1995,68(3):305-310.
    [6]Shibamoto T, Russell GF. Study of meat volatiles associated with aroma generated in a D-glucose-hydrogen suffide-ammonia model system [J]. J. Agric. Food Chem.,1976,24(4):843-836.
    [7]方开泰.均匀设计与均匀设计表[M].北京:科学出版社,1994:13-18
    [8]曾昭钧.均匀设计及其应用[M].北京:中国医药科技出版社,2005.23-34
    [9]Moon SY, Li-Chan ECY. Changes in aroma characteristics of simulated beef flavour by soy protein isolate assessed by descriptive sensory analysis and gas chromatography [J]. Food Research International,2007,40(10):1239-1248.
    [10]Bolton TA, Reineccius GA, Liardon R, et al. Thermally generated flavors:Role of Cysteine in the formation of2-methyl-3-furanthiol in a thiamine-cysteine model system [M]. New York:American Chemical Society,1994.270-278.
    [11]Kerscher R, Grosch W. Quantification of2-methyl-3-furanthiol,2-furfurythiol,3-mercapto-2-pentaneone, and2-mercapto-3-pentanone in heated meat [J]. J. Agric. Food Chem.,1998,46(5):1954-1958.
    [12]Cerny C, Davidek T. Formation of aroma compounds from ribose and cysteine during the Maillard reaction [J]. J. Agric. Food Chem.,2003,51(9):2714-2721.
    [13]Zhang YG, Ho CT. Comparison of the volatile compounds formed from the thermal reaction of glucose with cysteine and glutathione [J]. J. Agric. Food Chem.,1991,39(4):760-763.
    [14]Jr WLD. Protein fructosylation:fructose and the Maillard reaction [J]. Am. J. Clin. Nutr,1993,58(5):7795-7875.
    [15]Boekel MAJSV. Formation of flavour compounds in the Maillard reaction [J]. Biotechnology Advances,2006,24(2):230-233.
    [16]Jing H, Kitts DD. Chemical and biochemical properties of casein-sugar Maillard reaction products [J]. Food Chem. Toxicol.,2002,40(7):1007-1015.
    [17]田爱民,李东华,周小敏等.响应面法优化鱿鱼内脏酶解液与还原糖美拉德反应工艺[J].安徽农业科学,2012,40(35):17294-17297,17326
    [18]Meynier A, Mottram DS. The effect of pH on the formation of volatile compounds in meat-related model systems [J]. Food Chem.,1995,52(4):361-366.
    [19]Benzing-Purdie LM, Ripmeester JA, Ratcliffe CI. Effects of temperature on Maillard reaction products [J]. J. Agric. Food Chem,1985,33(1):31-33.
    [20]Brathen E, Knutsen SH. Effect of temperature and time on the formation of acrylamide in starch-based and cereal model systems, flat breads and bread[J]. Food Chem..2005,92(4):693-700.
    [21]刘邻渭.食品化学[M]北京:中国农业出版社,200035
    [22]Stadler RH, Blank I, Varga N, et al. Acrylamide from Maillard reaction products [J]. Nature,2002,419(10):449-450.
    [23]Wijewickreme AN, Kitts DD, Durance TD. Reaction conditions influence the elementary composition and metal chelating affinity of nondialyzable model Maillard reaction products [J]. J. Agric. Food Chem.,1997,45(12):4577-4583.
    [24]华永兵,宋焕禄,陈坤等.均匀设计和回归分析在肉香味物质制备中的应用[J].无锡轻工大学学报,2003,22(6):20-24
    [25]王钦德,杨坚.食品试验设计与统计分析[M]北京:中国农业大学出版社,2010.348-352
    [26]Ha JK, Lindsay RC. Volatile alkylphenols and thiophenol in species-related characterizing flavors of red meats [J]. J. Food Sci.,1991,56:1197-1202.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700