用户名: 密码: 验证码:
基于原位修饰杂化硅溶胶织物表面功能改性
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
纺织品印染污染严重、能耗大、工艺繁琐,使得整个纺织行业面临的压力越来越大。印染行业对现代织物加工提出了生态、节能减排、高产品附加值、回收再利用等技术革新要求,要求织物加工节能省水,无废水排放,能通过简短工艺实现织物的功能化、智能化加工,提高产品附加值,并实现废弃纤维或织物的绿色回收和再利用等。
     基于溶胶-凝胶原位修饰技术将色素、硅烷偶联剂、TiO_2等杂化到硅溶胶中,从分子层次上设计并分别构筑色素杂化SiO_2溶胶、X-Si(OC2H5)3/SiO_2杂化溶胶、TiO_2/SiO_2杂化溶胶等体系,通过旋转涂层、静电自组装等方法对织物基材进行表面功能改性,赋予织物优良的颜色、牢度、力学等性能等。同时通过功能硅烷偶联剂等的杂化作用实现改性织物的疏水疏油、润湿可控、抗菌、防紫外等功能,旨在解决织物湿处理过程中工艺繁琐、污染严重、能耗大等问题,为印染加工技术提供新途径。主要结论如下:
     通过将染料和涂料原位杂化到SiO_2溶胶中制备色素杂化硅溶胶,用于织物改性以赋予织物颜色并改善织物的色牢度。通过分析染料和涂料杂化SiO_2溶胶的稳定性、颜色等,研究了染料和涂料杂化SiO_2溶胶在织物上成膜后对织物颜色和牢度性能的改善作用。染料或涂料杂化到SiO_2溶胶后体系最大吸收波长(λmax)没有发生变化。染料和涂料杂化SiO_2溶胶薄膜表面会有较大突起,其粒径与对应的杂化SiO_2溶胶中的粒径尺寸相接近。C.I.直接红23和C.I.涂料红23杂化硅溶胶染色织物K/S值分别较直接染色对照样提高了11.1%和45.4%,而且织物颜色λmax仍然无变化,说明染料或涂料发色基团织物改性过程中没有发生变化。染料杂化SiO_2溶胶染色织物干湿摩擦牢度分别提高1级;C.I.涂料红23杂化SiO_2溶胶染色织物湿摩擦牢度提高了半级,表明色素杂化SiO_2溶胶改性可在完成织物染色的同时并达到固色目的,实现染色固色一步法工艺。
     为赋予织物疏水或疏油性,将十六烷基三甲氧基硅烷(HTEOS)、γ-氯丙基三乙氧基硅烷(CPTS)、十三氟辛基三乙氧基硅烷(FAS)原位杂化到硅溶胶中,并用于处理棉、丝绸、羊毛等纤维织物,同时将C.I.直接红23杂化到硅溶胶中制备CPTS/SiO_2色素杂化溶胶,并通过旋转涂层方式实现棉织物着色,使织物同时具有良好的颜色性能和疏水性。棉织物经HTEOS/SiO_2杂化溶胶改性后接触角达到139.8°,耐静水压从原来的1.8KPa增大到4.1KPa。棉织物经色素杂化硅溶胶改性后,接触角增大到112.4°;当棉织物经CPTS/SiO_2色素杂化溶胶处理后,接触角增大到131.5°;织物耐静水压值为4.5KPa,与未处理棉织物耐静水压值相比增大136.7%。FAS/SiO_2杂化溶胶对织物改性后,棉、丝绸和羊毛织物对辣椒油的接触角分别为98.5°、111.6°和122.2°。染色织物经FAS/SiO_2杂化溶胶处理后,织物K/S值变化率小于8%。与用直接染料液直接染织物色K/S值3.95相比,经CPTS/SiO_2色素杂化溶胶改性织物的K/S值提高到5.15,提高了30.4%。经C.I.直接红23杂化硅溶胶改性织物干湿摩擦牢度分别提高到3级和2-3级,水洗变色和沾色牢度分别提高到3级和3-4级,证明了CPTS/SiO_2色素杂化溶胶一步法处理织物的可行性。
     基于棉织物防紫外/抗菌复合功能以及分散染料转移印花性能,利用正硅酸四乙酯(TEOS)、钛酸四正丁酯(TBT)、多聚季铵盐制备了阳离子TiO_2/SiO_2杂化溶胶并用于织物改性。从TEM可看出阳离子TiO_2/SiO_2杂化溶胶粒子呈椭圆形,杂化溶胶前驱体TEOS和TBT会发生脱水缩合,形成Si-O-Si、Ti-O-Ti和Si-O-Ti等结构。从XPS谱图可知,未经处理棉织物含56.4%的炭和43.6%的氧,织物改性后表面含33.2%炭元素、48.4%氧元素、18.1%硅元素含量、0.3%钛元素。未经溶胶改性棉织物全波段紫外透过率URT高于7.0%,而经杂化溶胶改性棉织物大部分波段URT低于5.0%,水洗30次后URT仍然低于6.0%。棉织物经阳离子TiO_2/SiO_2杂化溶胶改性后对大肠杆菌和金黄色葡萄球菌的抗菌率分别达到90.9%和95.2%,水洗30次后抗菌率仍可达到61.1%和71.5%,说明阳离子TiO_2/SiO_2杂化溶胶优异的防紫外/抗菌复合功能以及耐洗性。未经改性棉织物分散染料转移印花K/S值为2.4,织物经阳离子TiO_2/SiO_2杂化溶胶改性后其转移印花K/S值增大到10.1;未经改性棉织物分散染料转移率仅为21%,而经阳离子TiO_2/SiO_2杂化溶胶改性再热转移印花,分散染料转移率为89%。改性后的棉织物转移印花K/S值曲线较尖锐,织物颜色鲜艳度高,而且其对应的λmax没有变化,织物颜色色相没受影响。从转移的印花图案可看出未改性棉织物转移印花图案清晰度较差,颜色深度低,而经改性后棉织物转移印花图案鲜艳,线条精细,颜色较深。经阳离子TiO_2/SiO_2杂化溶胶改性,织物湿摩擦牢度由4级增大到4-5级,但织物的拉伸性能有所下降。
     为了提高织物抗菌防紫外复合功能改性时的力学性能,设计并制备了染料杂化硅溶胶、酸性TiO_2溶胶和阳离子酸性硅溶胶,通过棉织物上层层自组装制备出多组分多功能有色织物。棉织物经溶胶层层自组装,不同涂层间存在Si-O-Ti的交联反应,织物的K/S值提高15.8%。棉织物经溶胶层层自组装后,织物防紫外/抗菌性能较优异,全波段URT从10.6%下降到1.3%,织物对大肠杆菌和金黄色葡萄球菌抗菌率分别提高到95.3%和96.1%。织物干湿摩擦牢度分别提高了1级,水洗褪色率由31.5%下降到18.2%,而且织物的拉伸断裂强力和断裂伸长率基本无变化。与阳离子TiO_2/SiO_2杂化溶胶改性相比,溶胶层层自组装改性织物机械性能、防紫外/抗菌性等提高更明显。
     基于UV和暗处条件驱动纳米TiO_2中的Ti4+Ti3+相互转换原理,制备了改性TiO_2杂化溶胶,用于织物改性后赋予了改性织物UV光开关可控亲水-疏水功能性和循环可逆性,实现织物光控动态润湿性,并对接触角衰减的原理深入讨论。TiO_2/SiO_2杂化溶胶改性棉织物水接触角为121.3°,织物呈现疏水性。经UV光照射18h后,接触角减小到0°,织物呈现亲水性。UV照射后织物在暗处放置12h,织物接触角增大到93.2°,接触角实现回复,接触角疲劳衰减的现象是由于硅烷偶联剂分子极性影响造成的。织物再经UV光照射和暗处放置可逆循环10次后,织物接触角可在0°和94°之间转换,实现了织物亲水-疏水的可逆转换。织物紫外透射谱图表明,UV光照射和暗处放置前后织物紫外透过率会分别下降和增强,并且由于受硅烷偶联剂水解产物弱极性的影响,使得织物疏水接触角仅在第一次放置黑暗后衰减。
     为提升织物润湿可控性及接触角变化的幅度,用FAS对TiO_2溶胶杂化改性(TiO_2/FAS杂化硅溶胶)。TiO_2/FAS杂化硅溶胶粉末晶体类型为锐钛矿/金红石型混合晶型。棉织物和涤纶织物润湿变化循环时间分别为84h和168h。未经照射的TiO_2/FAS杂化硅溶胶粉末放置水后几乎全部漂浮在水面上,当粉末经UV光照射再放置水面后大部分粉末会沉入水底部。UV光照射后的粉末再放入黑暗环境中恢复一段时间,放入水面后粉末又会漂浮在水面上。改性棉织物和涤纶织物在UV光照射呈亲水状态,而再经黑暗放置后织物恢复疏水性。织物结构及纤维表面形貌分析表明纤维表面形貌对润湿变化周期的影响比织物组织结构更显著。织物透水量和保水量的变化进一步证实了TiO_2/FAS杂化硅溶胶改性织物的UV光照润湿可变性。采用共溶液法将钡、镁、铁、氟、氮等离子杂化TiO_2溶胶中,处理后的棉织物经UV光照射,杂化2.0%氟离子试样正面接触角衰减最快,而60℃有利于在黑暗条件下接触角的恢复。
     利用热解法打开连接二异氰酸根与二胺中间的含脲连接基使氨纶组分降解和分离,并将回收来的废旧氨纶溶解成聚氨酯高分子(PU)溶液,并原位杂化到于硅溶胶体系中,制备PU/SiO_2杂化溶胶。尼龙/氨纶织物经干态常压法处理,在220℃处理2h,经乙醇在70℃下洗涤60min后,氨纶组分几乎被完全分离。将废旧氨纶溶解后杂化到碱性硅溶胶中,制备成PU/SiO_2杂化溶胶处理棉织物,可赋予棉织物良好的抗皱性和织物风格。与未处理棉织物经纬向急弹折皱回复角54.6°和47.1°,缓弹折皱回复角65.5°和60.0°相比,经PU/SiO_2杂化溶胶改性棉织物经纬向急弹折皱回复角分别为69.5°和68.2°,缓弹折皱回复角分别为82.5°和77.0°。经PU/SiO_2杂化溶胶改性后,棉织物的拉伸性能、弯曲性能均有所改善,使得废旧氨纶织物绿色回收并在棉织物抗皱上再利用。
Dyeing and finishing industry is typical on severe pollution, more energy-wasting andcomplicated process, and the textile industry suffers enormous pressure. Therefore, the dyeingindustry is requested to use ecological, energy-saving, emission-reduction, high of additionalvalue and recyclable new technologies. Fabrics should also present non-polluting, functional,intelligent and reusable characteristics after treatment process.
     According to in-situ decorated sol-gel technology, colorant, silane coupling agent,polyurethane were doped into silica sol to prepare functional sols. dye/SiO_2hybrid sol,dye/CPTS/SiO_2hybrid sol and cationic TiO_2/SiO_2hybrid sol were prepared. After the hybridsol was treated on fabric by spin-coating, layer-by-layer electrostatic self-assembly, and otherprocesses, the color property, fastness and mechanical property of fabric were improved.Meanwhile, the fabric treated by the functional silane coupling agent will present goodhydrophobic and oil repellent property, controlled wettability, anti-bacterial property,anti-ultraviolet behavior, and the mechanical property. This method will shorten the treatingprocess, reduce the pollution and energy, and provide a novel dyeing and printing method.According to the sol types and the coating functionalities, the main conclusions on this topicare listed as following:
     The preparations of the silica sol doped with colorants are investigated according toin-situ decorated organic-inorganic hybrid technology. Sol properties, including stability andcolor properties are analyzed, and the color and fastness of the treated fabric by the hybridsilica sol also are discussed. In the silica sol doped with organic dye or pigment, themaximum absorption wavelength is consistent with that of the pigment disperse solution.From atomic force microscope (AFM), there are scraggly micro-surface topographies on thedoped silica film, and the peak sizes in the AFM are inconsistent with the particle sizes of thesilica sols. The color strengths (K/S value) of the coated fabric with doped silica sol are higherthan that of the dye solution or pigment dispersion, and the maximum absorption wavelengthdoes not change. With the dye/SiO_2coating, the dry and wet rubbing fastnesses are increasedby one grade, and the washing change and staining fastnesses are enhanced by half a grade,respectively, while the dry and wet rubbing fastnesses with the pigment/SiO_2coating areincreased by half a grade, and the washing change and staining fastnesses are enhanced morethan half a grade, respectively. These results indicate that the fabric modification withdye/SiO_2presents good color and fastness properties via the wastewater-free and one-stepprocess.
     Modified silica sols are in-situ prepared by doping hexadec-ltrimethoxysilane,(HTEOS) γ-chloropropyltriethoxysilane (CPTS), and tridecafluorooctyltriethoxysilane (FAS) to obtainthe hydrophobic or oil repellent coatings on cotton, silk and wool fabrics. Also, a sol-gelderived hybrid silica sol consisting of C.I. Direct Red23dye and inorganic silica issuccessfully synthesized by adding coupling agent CPTS, and via spin-coating, the fabric canobtain good hydrophobicity and color properties. After coated with HTEOS/SiO_2hybrid sol,the fabric could support a subglobose water droplet, and the contact angle is increased to139.8°. The hydrostatic pressure of fabric coated with hybrid HTEOS/SiO_2hybrid sol is4.1KPa, which is significantly higher than that of the control sample (1.8KPa). The contact angleof the treated fabric with dye hybrid silica sol is increased to112.4°and the contact angle isincreased to131.48°when the fabric was treated with CPTS/dye hybrid silica sol. Thehydrostatic pressure of the cotton fabric coating with CPTS/dye hybrid silica sol is4.5KPaand increased by136.7%compared with that of the untreated fabric. The K/S value (5.15) ofthe dye/CPTS/SiO_2hybrid silica coated cotton fabric is increased by higher30.4%than thatof the control coated sample (3.95). The dry and wet rubbing fastness with dye/CPTS/SiO_2hybrid silica coating are increased to3and2-3grades, respectively, and the washing changesand stain fastnesses are enhanced to3and3-4grades, respectively. These indicate excellentcolor and hydrostatic properties.
     An integrated approach to preparing a novel cationic TiO_2/SiO_2hybrid sol withanti-ultraviolet and anti-bacterial performances is investigated by Tetraethoxysilane (TEOS),Tetrabutyl titanate (TBT) and Polyquaternium. The particle is elliptic from the TEMphotograph, and from FIRT spectrum, the Si-O-Si, Ti-O-Ti and Si-O-Ti bonds are formed inthe cationic TiO_2/SiO_2hybrid coating. From XPS spectra, only the characteristic bands C andO are presented for the original cotton fabric (56.4%C1s and43.6%O1s). After coated withCSTHS, besides33.2%C1s and48.4%O1s,18.1%Si2p and0.3%Ti2p are confirmed in thecoating. During the UVB (280-320nm) and UVC (200-280nm) wave bands, the lowest URTof the original cotton fabric without washing is higher than7.0%, but the URT of the coatedcotton fabric is almost smaller than5.0%and after washing the URT is lower than6.0%. Thebacteriostatic capabilities of the coated cotton fabric to Gram-negative bacteria E. coli andGram-positive bacteria S. aureus are90.9%and95.2%, respectively, while the antibacterialratios are decreased to61.1%and71.5%during washing respectively, which indicate a goodwashing fastness. The K/S value of the original cotton fabric printed with disperse dye is2.4at520nm wavelength. After modification with CSTHS, the K/S value of the cotton fabric isenhanced to10.1at the same wavelength (520nm), and the K/S value is sharply increased by320%. The transfer rate of disperse dye is increased to89%from21%. The peaks of the K/Svalue curve for the coated fabric are high and narrow, which indicates that the color vividness is increased relative to the original cellulose fabric. The λ
     maxof the coated cellulose fabric isunchanged, and it is coincident with the maximum absorption wavelength of the untreatedcellulose fabric, which indicates that the treatment presents little effect on the color hue. Thesharpness and the color strength of the treated cellulose fabric are improved. The wet rubbingfastness is improved from4grade to4-5grade, whereas the tensile property of the treatedfabric was decreased severely.
     In order to obtain excellent mechanical properties of the treated fabrics during functionalmodification, directional coatings with alkaline SiO_2, TiO_2and acidic cationic SiO_2sol aredesigned and prepared on fabric. The K/S value of the coated fabric via layer-by-layerself-assembly is increased15.8%. Compared to the average ultraviolet radiation transmittance(URT) and bacterial reduction (R) of the control sample, the URT of the treated fiberdecreases from10.6%to1.3%and the anti-bacterial activities to the Gram-negative bacteria E.coli and Gram-positive bacteria S. aureus are increased to95.3%and96.1%, respectively. Forthe treated fabric, the dry and wet rubbing fastness is enhanced by1grade, respectively, thewashing fade rate is decreased to18.2%from31.5%. And the mechanical properties of thetreated fabrics via layer-by-layer self-assembly are better than that with TiO_2/SiO_2hybrid sol.
     According to the mechanism of the conversion between Ti4+Ti3+under UV lightand dark, modified TiO_2hybrid sol is prepared and coated on fabric to presenthydrophobic-hydrophilic switchable property via UV response. The contact angle of thecoated fabric is121.3°and hydrophobic, but after radiated in UV for18h, the contact angle is0°and hydrophilic. When the radiated fabric is kept in dark place for12h, the contact angle isincreased to93.2°from0°. The difference of the contact angle between93.2°and121.3°iscaused by the polarity of the silane coupling agent. When the fabric is kept in UV and darkplace for10times, the contact angle is switched between0°and94°, and the fabric showshydrophobic-hydrophilic switchable property. From the ultraviolet spectrum, the ultravioletradiation transmittances of the coated fabrics are decreased slightly via radiation UV for18h,whereas, the ultraviolet radiation transmittances are increased when the radiated fabric is keptin dark place for12h. This change of the ultraviolet radiation transmittances verifies themechanism of switchable wettability.
     Silane coupling agent FAS was in-situ doped in TiO_2sol (TiO_2/FAS hybrid silica sol) toimprove the switchable wettability and the rangeability of contact angle. The anatasecomponent in TiO_2/FAS hybrid silica powder is mixed with rutile component from XRD, andthe crystal component is unchanged in UV light and dark store condition. The switchablecycle of the cotton is84h, while the switchable cycle of the polyester is168h. The TiO_2/FAShybrid silica powder floats on the water surface for its excellent hydrophobicity, and the sample deposits at the bottom of water as the wettability of coated fabric increased via UVirradiation. The irradiated sample floats on water again when it is placed in dark. The coatedcotton and polyester fabric is hydrophilic with UV irradiation, and shifts to be hydrophobic indark. The effect of the fiber morphology on the cycle is more important than that of the fabricconstruction. The water diffusivity and permeable capacity further confirmed the excellentswitchable wettability of coated fabrics by F/TiO_2hybrid sol through UV irradiation orstorage in dark. Some ions, including Ba2+, Mg2+, Fe3+, F-, N3+were doped into the TiO_2hybrid sol via by co-solution method, and the cotton fabric coated with the hybrid sol wasirritated under UV light. The F/TiO_2hybrid sol shortened the damping time of the frontcontact angle and the60°C condition was beneficial to the recover of contact angle in dark.
     To separate spandex from the waste polyamide/spandex fabric and improve themechanical properties of the cotton fabric, ureido between the isocyanate and diamine wasbroken during heating process, leading to the spandex degradation. After washed with ethanol,the spandex component and nylon component are separated. The spandex component isdissolved in N,N-dimethylformamide (DMF), and then in-situ doped in silica sol.Nylon/Spandex fabric is treated with dry and opened heating method (DOHM) at220°C for2h, and then washed with ethanol at60°C for60min. The spandex is almost separated andextracted. After coating, the wrinkle resistance and fabric style of the coated the fabric areimproved. The fast wrinkle recovery angles of the treated fabric in warp and weft directionsare improved by27.3%and44.8%, and the slow wrinkle recovery angles in warp and weftdirections are improved by26.0%and28.3%, respectively. With the silica treatment, thecompressing, shearing, tensile strength, bending and washing properties of the fabric are alsoenhanced significantly. The enhancements of these properties are the coatings of the PU/SiO_2hybrid sol on fiber, which is a good pathway for waster spandex recycle.
引文
[1]李敏.防水透湿层压织物的加工与性能研究[D]:[硕士学位论文].北京:北京服装学院,2012.
    [2]郭淼.新兴纺织面料在产品设计中的应用与研究[D]:[硕士学位论文].上海:东华大学,2011.
    [3]张丽芝,苏玉兰.产业用多功能涂层织物的开发和应用[J].产业用纺织品.1999,17(4):6-10.
    [4] El-Ola SMA. Recent Developments in Finishing of Synthetic Fibers for MedicalApplications[J]. Designed Monomers and Polymers.2008,11(6):483-533.
    [5] Degtyarev SV, Dubankova NP, Mikhailova OV, Pavlov NN. Effect of solvation of metalcations on modification of synthetic fibres with them[J]. Fibre Chemistry.2008,40(2):110-112.
    [6] Morozova MY, Ustinova TP, Churchuk NI. The properties of textile materials made frommodified synthetic fibres[J]. Fibre Chemistry.2003,35(6):438-441.
    [7] Mohanty AK, Misra M, Drzal LT. Surface modifications of natural fibers andperformance of the resulting biocomposites: An overview[J]. Composite Interfaces.2001,8(5):313-343.
    [8] Monier M, El-Sokkary AMA. Modification and characterization of cellulosic cottonfibers for efficient immobilization of urease[J]. International Journal of BiologicalMacromolecules.2012,51(1-2):18-24.
    [9] Raditoiu A, Amariutei V, Raditoiu V, Ghiurea M, Nicolae CA, Wagner LE. Disperse AzoDyes-silica Hybrids for Modifying Cellulose Fabrics by Sol-gel Processes[J]. Revista DeChimie.2012,63(6):612-617.
    [10]B.Mahltig, B ttcher H,钟毅.纳米溶胶涂层对织物的改善[J].国际纺织导报.2002(2):68-71.
    [11]陈苏.等离子技术在纺织工业中的应用[J].纺织导报.1999(05):53-55.
    [12]王世花.基于等离子技术的精纺呢绒壳聚糖抗菌整理[D]:[硕士学位论文].无锡:江南大学,2007.
    [13]曹争艳,房宽峻,郝龙云,蔡玉青.生物酶前处理对棉织物涂料染色效果的影响[J].印染助剂.2009(8):36-38.
    [14]黄剑锋.溶胶-凝胶原理与技术[M].北京:化学工业出版社,2005,6-7.
    [15]Textor T, Bahners T, SchollmeyerYER E. Surface modification of textile fabrics bycoatings based on the sol-gel progress[J]. Melliand Textilber.1999,80:847-848.
    [16]Yin MZ, Yao X, Zhang LY. A novel fabrication of meso-porous silica film by sol-gol ofTEOS[J]. J Zhejiang Univ Sci.2004,5(4):422-427.
    [17]Yin YJ, Wang CX, Wang CY. An evaluation of the dyeing behavior of sol-gel silica dopedwith direct dyes[J]. Journal of Sol-Gel Science and Technology.2008,48(3):308-314.
    [18]黄文琦.基于多元羧酸的棉织物溶胶-凝胶法耐久拒水整理[D]:[博士学位论文].上海:东华大学,2011.
    [19]李凤艳,钟智丽.纤维载体对有机硅溶胶凝胶涂层的影响[J].纺织学报.2009(9):82-86.
    [20]Lovino M, Cardinal MF, Zubiri DB, Bernik DL. Electronic nose screening of ethanolrelease during sol-gel encapsulation. A novel non-invasive method to test silicapolymerisation[J]. Biosens Bioelectron.2005,21(6):857-862.
    [21]Schramm C, Binder WH, Tessadri R. Durable press finishing of cotton fabric with1,2,3,4-butanetetracarboxylic acid and TEOS/GPTMS[J]. Journal of Sol-Gel Science andTechnology.2004,29(3):155-165.
    [22]董晓雯,房佳宁,杜鹃,罗艳.溶胶-凝胶预处理棉织物的栀子黄稀土染色[J].印染.2012(1):5-8.
    [23]Geng QF, Zhao X, Gao XH, Liu G. Sol-Gel Combustion-Derived CoCuMnOxSpinels asPigment for Spectrally Selective Paints[J]. Journal of the American Ceramic Society.2011,94(3):827-832.
    [24]朱超,张远方. Ag功能性混合溶胶薄膜的抗红外隔热性能[J].化工新型材料.2008(7):69-70.
    [25]李懋.硅溶胶法棉织物拒水拒油整理研究[D]:[硕士学位论文].无锡:江南大学,2008.
    [26]Wong FCM, Ahmad M, Heng LY, Peng LB. An optical biosensor for dichlovos usingstacked sol-gel films containing acetylcholinesterase and a lipophilic chromoionophore[J]. Talanta.2006,69(4):888-893.
    [27]Rao AP, Rao AV. Effect of catalysts and co-precursors on the photoluminiscence ofmalachite green dye doped TMOS silica xerogels[J]. Materials Chemistry and Physics.2004,88(1):130-137.
    [28]Li LJ, Pi PH, Wen XF, Cheng J, Yang ZR. Aluminum pigments encapsulated byinorganic-organic hybrid coatings and their stability in alkaline aqueous media[J]. Journalof Coatings Technology and Research.2008,5(1):77-83.
    [29]贾瑞静,王潮霞. TiO2/SiO2复合溶胶对棉织物耐日晒牢度的影响[J].印染.2008(1):6-8.
    [30]王明勇,毛志平,李芮.锐钛矿型纳米TiO2在棉织物上的原位生长及其抗紫外线性能[J].纺织学报.2007(2):71-75.
    [31]Boris M, Torsten T. Nanosols and Textiles[M]. Singapore: World Scientific Publishing Co.Pte. Ltd.,2008.
    [32]蔡淑君.负离子纺织品的测试及溶胶-凝胶法用于负离子功能整理[D]:[硕士学位论文].上海:东华大学,2008.
    [33]徐利蓉. AgCl/TiO2纳米复合溶胶的制备及对棉织物的抗菌整理[D]:[硕士学位论文].上海:东华大学,2006.
    [34]Textor T, Mahltig B. Nanosols for preparation of antistatic coatings simultaneouslyyielding water and oil repellent properties for textile treatment[J]. Materials Technology.2010,25(2):74-80.
    [35]罗敏.溶胶-凝胶技术在纺织上的应用与研究[D]:[博士学位论文].上海:东华大学,2004.
    [36]Yin YJ, Wang CX, Wu M, Tian AL, Fu SH. Hydrophobic properties and color effects ofhybrid silica spin-coatings on cellulose matrix[J]. Journal of Materials Science.2011,46(20):6682-6689.
    [37]占莉,杜鹃,陈水林.溶胶-凝胶技术应用于直接黑增深初探[J].印染助剂.2005(5):28-30.
    [38]王庆淼,赵振河,宋心远.提高涂料染色摩擦牢度的新途径[J].印染.1998(3):8-12,13.
    [39]任保勇,于伯龄,张玉芳,姚云.硅溶胶用于阳离子和碱性染料染丝绸的固色[J].染整技术.2009(7):13-16,15.
    [40]张晓莉,罗敏,陈水林,陈小立.溶胶-凝胶法对织物的功能整理[J].针织工业.2004(2):78-80.
    [41]Mahltig B, Haufe H, Bottcher H. Functionalisation of textiles by inorganic sol-gelcoatings[J]. Journal of Materials Chemistry.2005,15(41):4385-4398.
    [42]罗敏,张晓莉,陈小立,陈水林.溶胶-凝胶技术及其在纺织上的应用前景[J].印染助剂.2004(1):6-8,12.
    [43]吴赞敏,侯学锋,杨丽,李红霞.溶胶-凝胶法提高兰纳洒脱染料的染色牢度[J].毛纺科技.2005(6):12-15.
    [44]Schramm C, Rinderer B. Treatment of cotton fabrics with non-formaldehyde durablepress finishing agents and hydrolyzed silicon alkoxides[J]. Cellulose Chemistry andTechnology.2006(3-4):231-236.
    [45]Mahltig B, Audenaert F, Bottcher H. Hydrophobic silica sol coatings on textiles-theinfluence of solvent and sol concentration[J]. Journal of Sol-Gel Science and Technology.2005,34(2):103-109.
    [46]叶早萍,阎克路.溶胶-凝胶技术在羊毛防毡缩整理中的应用[J].印染.2006(7):11-15.
    [47]Vilcnik A, Jerman I, Vuk AS, Kozelj M, Orel B, Tomsic B, Simonic B, Kovac J.Structural Properties and Antibacterial Effects of Hydrophobic and Oleophobic Sol-GelCoatings for Cotton Fabrics[J]. Langmuir.2009,25(10):5869-5880.
    [48]Bravo J, Zhai L, Wu ZZ, Cohen RE, Rubner MF. Transparent superhydrophobic filmsbased on silica nanoparticles[J]. Langmuir.2007,23(13):7293-7298.
    [49]Yu M, Gu GT, Meng WD, Qing FL. Superhydrophobic cotton fabric coating based on acomplex layer of silica nanoparticles and perfluorooctylated quaternary ammonium silanecoupling agent[J]. Applied Surface Science.2007,253(7):3669-3673.
    [50]Wang LL, Zhang XT, Li B, Sun PP, Yang JK, Xu HY, Liu YC. Superhydrophobic andUltraviolet-Blocking Cotton Textiles[J]. Acs Applied Materials&Interfaces.2011,3(4):1277-1281.
    [51]Pereira C, Alves C, Monteiro A, Magen C, Pereira AM, Ibarra A, Ibarra MR, Tavares PB,Araujo JP, Blanco G, Pintado JM, Carvalho AP, Pires J, Pereira MFR, Freire C. DesigningNovel Hybrid Materials by One-Pot Co-condensation: From Hydrophobic MesoporousSilica Nanoparticles to Superamphiphobic Cotton Textiles[J]. Acs Applied Materials&Interfaces.2011,3(7):2289-2299.
    [52]Lahann J, Mitragotri S, Tran TN, Kaido H, Sundaram J, Choi IS, Hoffer S, Somorjai GA,Langer R. A reversibly switching surface[J]. Science.2003,299(5605):371-374.
    [53]Chen TH, Chuang YJ, Chieng CC, Tseng FG. A wettability switchable surface bymicroscale surface morphology change[J]. Journal of Micromechanics andMicroengineering.2007,17:489.
    [54]Zhang J, Li J, Han Y. Superhydrophobic PTFE surfaces by extension[J]. MacromolecularRapid Communications.2004,25(11):1105-1108.
    [55]Chung JY, Youngblood JP, Stafford CM. Anisotropic wetting on tunable micro-wrinkledsurfaces[J]. Soft Matter.2007,3(9):1163-1169.
    [56]Feng X, Zhai J, Jiang L. The fabrication and switchable superhydrophobicity of TiO2nanorod films[J]. Angew Chem Int Ed Engl.2005,44(32):5115-5118.
    [57]Zhu Y, Li J, He H, Wan M, Jiang L. Reversible Wettability Switching ofPolyaniline-Coated Fabric, Triggered by Ammonia Gas[J]. Macromolecular RapidCommunications.2007,28(23):2230-2236.
    [58]邓桦,张纪梅,李秀明,李鹤,唐万生.纳米二氧化钛多功能织物整理剂的制备与性能[J].纺织学报.2006(3):92-94.
    [59]郭肖青,朱平.硅溶胶的制备及其在纺织上的应用[J].染整技术.2005(8):10-15.
    [60]Hua D, Cheuk K, Zheng WN, Wen C, Xiao CF. Low temperature preparation of nanoTiO2and its application as antibacterial agents[J]. Transactions of Nonferrous MetalsSociety of China.2007,17:S700-S703.
    [61]Morikawa T, Irokawa Y, Ohwaki T. Enhanced photocatalytic activity of TiO2-xNxloadedwith copper ions under visible light irradiation[J]. Applied Catalysis a-General.2006,314(1):123-127.
    [62]Wang XX, Yin YJ, Wang CX. New approach to impart antibacterial effect and improveink jet printing properties with modified SiO2sols containing cationic biocides[J].Colloids and Surfaces A-Physicochemical and Engineering Aspects.2010,361(1-3):51-55.
    [63]Onar N, Aksit AC, Sen Y, Mutlu M. Antimicrobial, UV-Protective and Self-CleaningProperties of Cotton Fabrics Coated by Dip-Coating and Solvothermal CoatingMethods[J]. Fibers and Polymers.2011,12(4):461-470.
    [64]Li F, Li XM, Zhang SS. One-pot preparation of silica-supported hybrid immobilizedmetal affinity adsorbent with macroporous surface based on surface imprinting coatingtechnique combined with polysaccharide incorporated sol-gel process[J]. J Chromatogr A.2006,1129(2):223-230.
    [65]杨晓君,邢彦军,戴瑾瑾.溶胶-凝胶法在棉织物抗菌整理中的应用[J].印染.2006(3):1-3.
    [1]张晓莉,罗敏,陈水林,陈小立.溶胶-凝胶法对织物的功能整理[J].针织工业.2004(2):78-80.
    [2]王潮霞,陈水林.溶胶-凝胶法织物表面改性[J].纺织学报.2005(4):24-26.
    [3] Textor T, Bahners T, SchollmeyerYER E. Surface modification of textile fabrics bycoatings based on the sol-gel progress[J]. Melliand Textilber.1999,80:847-848.
    [4] Mahltig B, Haufe H, Bottcher H. Functionalisation of textiles by inorganic sol-gelcoatings[J]. Journal of Materials Chemistry.2005,15(41):4385-4398.
    [5]张晓莉,罗敏,李峥嵘,陈水林,陈小立.稳定TiO2水溶胶的制备及其在棉织物上的紫外线屏蔽整理[J].现代纺织技术.2003(3):1-4.
    [6]罗敏.溶胶-凝胶技术在纺织上的应用与研究[D]:[博士学位论文].上海:东华大学,2004.
    [7]李洪霞,吴赞敏,侯学锋.溶胶-凝胶法提高兰纳洒脱染色牢度[J].印染.2005(22):5-7.
    [8]李洪霞,吴赞敏.提高活性染料湿摩擦牢度的新探讨[J].针织工业.2005(6):37-39.
    [9]罗敏,张晓莉,陈小立,陈水林.溶胶-凝胶技术及其在纺织上的应用前景[J].印染助剂.2004(1):6-8,12.
    [10]张晓莉,罗敏,陈水林,陈小立.溶胶-凝胶法在织物功能整理中的应用[J].印染助剂.2004(2):51-53.
    [11] Mahltig B, Bottcher H. Modified silica sol coatings for water-repellent textiles[J].Journal of Sol-Gel Science and Technology.2003,27(1):43-52.
    [12]Mahltig B, Knittel D, Schollmeyer E, Bottcher H. Incorporation of triarylmethane dyesinto sol-gel matrices deposited on textiles[J]. Journal of Sol-Gel Science andTechnology.2004,31(1-3):293-297.
    [13]Textor T, Mahltig B. Nanosols for preparation of antistatic coatings simultaneouslyyielding water and oil repellent properties for textile treatment[J]. Materials Technology.2010,25(2):74-80.
    [14]Textor T, Schroter F, Schollmeyer E, editors. Thin Coatings with Photo-CatalyticActivity Based on Inorganic-Organic Hybrid Polymers Modified with AnataseNanoparticles.2007: Wiley Online Library.
    [15]陈晓光.溶胶-凝胶技术在棉织物抗紫外性能中的应用研究[J].化纤与纺织技术.2008(3):4-6,19.
    [16]楚艳艳,崔世忠,汪青.溶胶-凝胶法对纯羊毛织物的抗菌整理工艺[J].毛纺科技.2009(9):14-16.
    [17]汤仪平,金福江.针织物染色上染率动力学模型[J].纺织学报.2008(7):61-63,68.
    [18]薛士杰,赵振河.纳米涂料染色工艺研究[J].印染.2004(12):4-7.
    [19]Alongi J, Ciobanu M, Malucelli G. Sol-gel treatments on cotton fabrics for improvingthermal and flame stability: Effect of the structure of the alkoxysilane precursor[J].Carbohydrate Polymers.2012,87(1):627-635.
    [20]Hou A, Shi Y, Yu Y. Preparation of the cellulose/silica hybrid containing cationic groupby sol-gel crosslinking process and its dyeing properties[J]. Carbohydrate Polymers.2009,77(2):201-205.
    [21]贾瑞静.阳离子溶胶的制备及其应用性能的研究[D]:[硕士学位论文].无锡:江南大学,2008.
    [22]黄静红,王潮霞.荧光黄染色棉织物改性硅溶胶整理[J].印染.2010(3):1-3.
    [23]纪俊玲,蒋菲,张聪,戴旭.涂料染色阳离子黏合剂的研制[J].印染.2009(23):9-12,20.
    [24]Min L, Xiaoli Z, Shuilin C. Enhancing the wash fastness of dyeings by a sol-gel process.Part1; Direct dyes on cotton[J]. Coloration Technology.2006,119(5):297-300.
    [25]Wang C, Fang K, Ji W. Superfine pigment dyeing of silk fabric by exhaust process[J].Fibers and Polymers.2007,8(2):225-229.
    [26]蔡淑君.负离子纺织品的测试及溶胶-凝胶法用于负离子功能整理[D]:[硕士学位论文].上海:东华大学,2008.
    [27]谭剑.溶胶型聚氨酯的合成及在丙纶亲水整理上的应用研究[D]:[硕士学位论文].上海:东华大学,2008.
    [28]刘琴.絮凝体沉降性能的试验研究[D]:[硕士学位论文].武汉:武汉科技大学,2008.
    [29]Chang CJ, Chang SJ, Tsou S, Chen SI, Wu FM, Hsu MW. Effects of polymericdispersants and surfactants on the dispersing stability and high-speed-jetting propertiesof aqueous-pigment-based ink-jet inks[J]. Journal of Polymer Science Part B-PolymerPhysics.2003,41(16):1909-1920.
    [30]Liu WD, Zhu BK, Zhang J, Xu YY. Preparation and dielectric properties ofpolyimide/silica nanocomposite films prepared from sol-gel and blending process[J].Polymers for Advanced Technologies.2007,18(7):522-528.
    [31]Fu S, Xu C, Du C, Tian A, Zhang M. Encapsulation of CI Pigment blue15:3using apolymerizable dispersant via emulsion polymerization[J]. Colloids and Surfacesa-Physicochemical and Engineering Aspects.2011,384(1-3):68-74.
    [32]Fabbri P, Messori M, Montecchi M, Pilati F, Taurino R, Tonelli C, Toselli M. Surfaceproperties of fluorinated hybrid coatings[J]. Journal of Applied Polymer Science.2006,102(2):1483-1488.
    [33]叶早萍,阎克路.溶胶-凝胶技术在羊毛防毡缩整理中的应用[J].印染.2006(7):11-15.
    [34]Neral B, Sostar-Turk S, Voncina B. Properties of UV-cured pigment prints on textilefabric[J]. Dyes and Pigments.2006,68(2-3):143-150.
    [35]Yin YJ, Wang CX. Enhancement of colour fixation behaviour of cotton fabric viasol-gel process[J]. Materials Research Innovations.2009,13(1):41-44.
    [36]Fang KJ, Wang CX, Zhang X, Xu Y. Dyeing of cationised cotton using nanoscalepigment dispersions[J]. Coloration Technology.2005,121(6):325-328.
    [1]庄伟. SiO2水溶胶的制备及其对棉织物无氟拒水整理研究[D]:[硕士学位论文].上海:东华大学,2011.
    [2] Costa SCS, Gester RM, Guimaraes JR, Amazonas JG, Del Nero J, Silva SBC, GalembeckA. The entrapment of organic dyes into sol-gel matrix: Experimental results and modelingfor photonic applications[J]. Optical Materials.2008,30(9):1432-1439.
    [3] Li X, Xiong RC, Wei G. Preparation and photocatalytic activity of nanoglued Sn-dopedTiO2[J]. Journal of Hazardous Materials.2009,164(2-3):587-591.
    [4] B.Mahltig, B ttcher H,钟毅.纳米溶胶涂层对织物的改善[J].国际纺织导报.2002(2):68-71.
    [5]杨丽,安钊慧,田俊莹.纳米SiO2溶胶改性羊毛织物低温染色性能的研究[J].毛纺科技.2012(4):29-30.
    [6]李洪霞,吴赞敏.提高活性染料湿摩擦牢度的新探讨[J].针织工业.2005(6):37-39.
    [7] Itai H, Nishikiori H, Tanaka N, Endo M, Fujii T. Enhanced Photocurrent in Nanocompositeof Dye-doped Titania Gel and Carbon Nanotubes[J]. Chemistry Letters.2008,37(9):940-941.
    [8] Jeng RJ, Hung WY, Chen CP, Hsiue GH. Organic/inorganic NLO materials based onreactive polyimides and a bulky alkoxysilane dye via sol/gel process[J]. Polymers forAdvanced Technologies.2003,14(1):66-75.
    [9] Jesionowski T, Przybylska A, Kurc B, Ciesielczyk F. The preparation of pigmentcomposites by adsorption of CI Mordant Red11and9-aminoacridine on both unmodifiedand aminosilane-grafted silica supports[J]. Dyes and Pigments.2011,88(1):116-124.
    [10] Ke XJ, Yan XZ, Song SY, Li DQ, Yang JJ, Wang MR. Synthesis and characterization of aphotochromic sol-gel material functionalized with azo dye[J]. Optical Materials.2007,29(11):1375-1380.
    [11] Khan MN, Al Dwayyan AS. Influence of solvent on the physical and lasing properties ofdye-doped sol-gel host[J]. Journal of Luminescence.2008,128(11):1767-1770.
    [12] Joshi M, Khanna R, Shekhar R, Jha K. Chitosan Nanocoating on Cotton Textile SubstrateUsing Layer-by-Layer Self-Assembly Technique[J]. Journal of Applied Polymer Science.2011,119(5):2793-2799.
    [13] Huang WJ, Lee WF. Effect of Silane Coupling Agent on Swelling Behaviors andMechanical Properties of Thermosensitive Hybrid Gels[J]. Journal of Applied PolymerScience.2009,111(4):2025-2034.
    [14] Sabzi M, Mirabedini SM, Zohuriaan-Mehr J, Atai M. Surface modification of TiO2nano-particles with silane coupling agent and investigation of its effect on the properties ofpolyurethane composite coating[J]. Progress in Organic Coatings.2009,65(2):222-228.
    [15] Watanabe M, Tamaii T. Acrylic polymer/silica organic-inorganic hybrid emulsions forcoating materials: Role of the silane coupling agent[J]. Journal of Polymer Science Parta-Polymer Chemistry.2006,44(16):4736-4742.
    [16] Deshpande AV, Rane JR, Jathar LV. Comparison of Spectroscopic and Lasing Properties ofDifferent Types of Sol-Gel Glass Matrices Containing Rh-6G[J]. Journal of Fluorescence.2009,19(6):1083-1093.
    [17]邓桦,张纪梅,李秀明,李鹤,唐万生.纳米二氧化钛多功能织物整理剂的制备与性能[J].纺织学报.2006(3):92-94.
    [18] Klomfar J, Souckova M, Patek J. Surface Tension Measurements for Four1-Alkyl-3-methylimidazolium-Based Ionic Liquids with Hexafluorophosphate Anion[J].Journal of Chemical and Engineering Data.2009,54(4):1389-1394.
    [19]高琴文.纺织品无氟溶胶-凝胶法拒水整理[D]:[硕士学位论文].上海:东华大学,2009.
    [20]黄文琦.基于多元羧酸的棉织物溶胶-凝胶法耐久拒水整理[D]:[博士学位论文].上海:东华大学,2011.
    [21]徐丽慧.基于杂化纳米SiO2水溶胶构筑纺织品超疏水表面[D]:[博士学位论文].上海:东华大学,2012.
    [22]杨昊炜.聚硅氧烷超疏水表面制备及其性能研究[D]:[博士学位论文].上海:复旦大学,2011.
    [23]薛朝华,贾顺田,张静.二氧化钛溶胶-凝胶法制备含氟超疏水棉织物[J].印染.2009(23):1-4.
    [24]韩建,陈维国,沈一峰,林鹤鸣,余志成.纳米抗静电整理剂及其作用研究[J].稀有金属材料与工程.2008(S2):609-612.
    [25]汪青.溶胶-凝胶技术在纺织品多功能整理中的应用[D]:[博士学位论文].上海:东华大学,2010.
    [26]李正雄,邢彦军,戴瑾瑾.棉织物溶胶-凝胶法的超疏水整理[J].印染助剂.2008(9):31-33.
    [27]邢彦军,黄文琦,沈丽,李戎,戴瑾瑾.棉织物超疏水整理的研究进展[J].纺织学报.2011(5):141-147.
    [28]李正雄,邢彦军,戴瑾瑾.棉织物溶胶-凝胶法的无氟拒水整理研究[J].印染.2007(10):10-12,19.
    [29] Frugier D, Vaneeckhoutte P, Robert A, Chartier P, Leclaire Y, inventors; Composition for anon-wettable coating[P]. EP Patent,0675087.2000.
    [30] Bravo J, Zhai L, Wu ZZ, Cohen RE, Rubner MF. Transparent superhydrophobic filmsbased on silica nanoparticles[J]. Langmuir.2007,23(13):7293-7298.
    [31] Yu M, Gu G, Meng WD, Qing FL. Superhydrophobic cotton fabric coating based on acomplex layer of silica nanoparticles and perfluorooctylated quaternary ammonium silanecoupling agent[J]. Applied Surface Science.2007,253(7):3669-3673.
    [32] Yin YJ, Wang CX. Enhancement of colour fixation behaviour of cotton fabric via sol-gelprocess[J]. Materials Research Innovations.2009,13(1):41-44.
    [33] Yao J, Yin YJ, Wang CX. Preparation and photocatalytic properties of TiO2film producedvia spin coating[J]. International Journal of Materials Research.2010,101(10):1311-1315.
    [34]刘金云.以柠檬酸为交联剂的溶胶-凝胶法超拒水整理耐久性研究[D]:[硕士学位论文].上海:东华大学,2011.
    [35]于明华.含氟整理剂的合成及其对表面的改性[D]:[博士学位论文].东华大学,2008.
    [36]高宇.疏水疏油含氟硅聚合物的制备及其在棉织物上的应用[D]:[博士学位论文].东华大学,2011.
    [37] Bae GY, Min BG, Jeong YG, Lee SC, Jang JH, Koo GH. Superhydrophobicity of cottonfabrics treated with silica nanoparticles and water-repellent agent[J]. Journal of Colloid andInterface Science.2009,337(1):170-175.
    [38] Bhagat SD, Kim YH, Ahn YS. Room temperature synthesis of water repellent silicacoatings by the dip coat technique[J]. Applied Surface Science.2006,253(4):2217-2221.
    [39] Daoud WA, Xin JH, Tao XM. Synthesis and characterization of hydrophobic silicananocomposites[J]. Applied Surface Science.2006,252(15):5368-5371.
    [40] Dorrer C, Ruhe J. Drops on microstructured surfaces coated with hydrophilic polymers:Wenzel's model and beyond[J]. Langmuir.2008,24(5):1959-1964.
    [41] Hou W, Wang Q. Wetting behavior of a SiO2-polystyrene nanocomposite surface[J]. JColloid Interface Sci.2007,316(1):206-209.
    [42] Rajappan M, Zhu LL, Wang JZ, Gardner G, Bu K, Mai HL, Laupheimer M, Shyur Y, AbuBakar NS, Skinner-Hall SK, Kim C, Haskins JM, Arumainayagam CR. The role oflow-energy electrons in the high-energy radiolysis of condensed CF3I[J]. Journal ofPhysics-Condensed Matter.2010,22(8):084006.
    [43] Abo-Shosha MH, El-Hilw ZH, Amr A, Rabie AM. Stearyl Alcohol/2,4-TolueneDiisocyanate/Perfluorinated Alcohols Adduct as a New Textile Water/Oil Repellent[J].Journal of Industrial Textiles.2009,39(2):149-161.
    [44]占莉,杜鹃,陈水林.溶胶-凝胶技术应用于直接黑增深初探[J].印染助剂.2005(5):28-30.
    [45] Yin YJ, Wang CX, Wang CY. An evaluation of the dyeing behavior of sol-gel silica dopedwith direct dyes[J]. Journal of Sol-Gel Science and Technology.2008,48(3):308-314.
    [46] Vilcnik A, Jerman I, Vuk AS, Kozelj M, Orel B, Tomsic B, Simonic B, Kovac J. StructuralProperties and Antibacterial Effects of Hydrophobic and Oleophobic Sol-Gel Coatings forCotton Fabrics[J]. Langmuir.2009,25(10):5869-5880.
    [47] Huang PY, Chao YC, Liao YT. Enhancement of hydrostatic pressure for water repellenttreated fabrics[J]. Journal of Applied Polymer Science.2006,100(6):4711-4715.
    [1] Ibrahim NA, El-Gamal AR, Gouda M, Mahrous F. A new approach for natural dyeing andfunctional finishing of cotton cellulose[J]. Carbohydrate Polymers.2010,82(4):1205-1211.
    [2]黄静红,王潮霞.荧光黄染色棉织物改性硅溶胶整理[J].印染.2010(3):1-3.
    [3] Yin Y, Alivisatos AP. Colloidal nanocrystal synthesis and the organic-inorganicinterface[J]. Nature Nanotechnology.2005,437(7059):664-670.
    [4] Morris CA, Anderson ML, Stroud RM, Merzbacher CI, Rolison DR. Silica sol as ananoglue: flexible synthesis of composite aerogels[J]. Science.1999,284(5414):622-625.
    [5] Yamabi S, Imai H. Crystal phase control for titanium dioxide films by direct deposition inaqueous solutions[J]. Chemistry of Materials.2002,14(2):609-614.
    [6] Watanabe M, Tamaii T. Acrylic polymer/silica organic-inorganic hybrid emulsions forcoating materials: Role of the silane coupling agent[J]. Journal of Polymer Science Parta-Polymer Chemistry.2006,44(16):4736-4742.
    [7] Morikawa T, Irokawa Y, Ohwaki T. Enhanced photocatalytic activity of TiO2-xNxloadedwith copper ions under visible light irradiation[J]. Applied Catalysis a-General.2006,314(1):123-127.
    [8] Chen CP, Ke MY, Liu CC, Chang YJ, Yang FH, Huang JJ. Observation of394nmelectroluminescence from low-temperature sputtered n-ZnO/SiO2thin films on top of thep-GaN heterostructure[J]. Applied Physics Letters.2007,91(9):91-107.
    [9] Choi DG, Yang SM. Effect of two-step sol-gel reaction on the mesoporous silicastructure[J]. J Colloid Interface Sci.2003,261(1):127-132.
    [10] Cireli A, Onar N, Ebeoglugil MF, Kayatekin I, Kutlu B, Culha O, Celik E. Developmentof flame retardancy properties of new halogen-free phosphorous Doped SiO2Thin filmson fabrics[J]. Journal of Applied Polymer Science.2007,105(6):3747-3756.
    [11] Green WH, Le KP, Grey J, Au TT, Sailor MJ. White Phosphors from a Silicate-Carboxylate Sol-Gel Precursor That Lack Metal Activator Ions[J]. Science.1997,276(5320):1826-1828.
    [12] Davis SA, Burkett SL, Mendelson NH, Mann S. Bacterial Templating of OrderedMacrostructures in Silica and Silica-surfactant Mesophases[J]. Nature.1997,385:420-423.
    [13] Gutierrez MC, Hortiguela MJ, Ferrer ML, del Monte F. Highly fluorescent rhodamine Bnanoparticles entrapped in hybrid glasses[J]. Langmuir.2007,23(4):2175-2179.
    [14] Sanchez-Valencia JR, Blaszczyk-Lezak I, Espinos JP, Hamad S, Gonzalez-Elipe AR,Barranco A. Incorporation and Thermal Evolution of Rhodamine6G Dye MoleculesAdsorbed in Porous Columnar Optical SiO2Thin Films[J]. Langmuir.2009,25(16):9140-9148.
    [15]陈衍夏,雷大鹏,肖红艳,施亦东,李征然.中性TiO2溶胶的制备及其抗紫外应用[J].印染.2010(6):15-18.
    [16]解芳.纳米二氧化钛水溶胶的制备及表征[J].染整技术.2008(5):35-36,31.
    [17] Buck ME, Lynn DM. Functionalization of Fibers Using Azlactone-Containing Polymers:Layer-by-Layer Fabrication of Reactive Thin Films on the Surfaces of Hair andCellulose-Based Materials[J]. ACS Applied Materials&Interfaces.2010,2(5):1421-1429.
    [18]Linsebigler AL, Lu G, Yates Jr JT. Photocatalysis on TiO2surfaces: principles,mechanisms, and selected results[J]. Chemical Reviews.1995,95(3):735-758.
    [19] Tomsic B, Simoncic B, Orel B, Zerjav M, Schroers H, Simoncic A, Samardzija Z.Antimicrobial activity of AgCl embedded in a silica matrix on cotton fabric[J].Carbohydrate Polymers.2009,75(4):618-626.
    [20] Hua D, Cheuk K, Zheng WN, Wen C, Xiao CF. Low temperature preparation of nanoTiO2and its application as antibacterial agents[J]. Transactions of Nonferrous MetalsSociety of China.2007,17:S700-S703.
    [21] Gowri VS, Almeida L, de Amorim MTP, Pacheco NC, Souto AP, Esteves MF, Sanghi SK.Functional finishing of polyamide fabrics using ZnO-PMMA nanocomposites[J]. Journalof Materials Science.2010,45(9):2427-2435.
    [22]蔡淑君.负离子纺织品的测试及溶胶-凝胶法用于负离子功能整理[D]:[硕士学位论文].上海:东华大学,2008.
    [23]徐利蓉. AgCl/TiO2纳米复合溶胶的制备及对棉织物的抗菌整理[D]:[硕士学位论文].上海:东华大学,2006.
    [24] Jiang SX, Qin WF, Guo RH, Zhang L. Surface functionalization of nanostructuredsilver-coated polyester fabric by magnetron sputtering[J]. Surface&Coatings Technology.2010,204(21-22):3662-3667.
    [25] Kulkarni A, Tourrette A, Warmoeskerken M, Jocic D. Microgel-based surface modifyingsystem for stimuli-responsive functional finishing of cotton[J]. Carbohydrate Polymers.2010,82(4):1306-1314.
    [26] Guo XD, Zhang LJ, Chen Y, Qian Y. Core/shell pH-sensitive micelles self-assembledfrom cholesterol conjugated oligopeptides for anticancer drug delivery[J]. AIChE Journal.2010,56(7):1922-1931.
    [27] Hou A, Shi Y, Yu Y. Preparation of the cellulose/silica hybrid containing cationic groupby sol-gel crosslinking process and its dyeing properties[J]. Carbohydrate Polymers.2009,77(2):201-205.
    [28]Decher G. Fuzzy nanoassemblies: Toward layered polymeric multicomposites[J]. Science.1997,277(5330):1232-1237.
    [29] Li F, Chen W, Zhang SS. Development of DNA electrochemical biosensor based oncovalent immobilization of probe DNA by direct coupling of sol-gel and self-assemblytechnologies[J]. Biosensors&Bioelectronics.2008,24(4):781-786.
    [30] Joshi M, Khanna R, Shekhar R, Jha K. Chitosan Nanocoating on Cotton Textile SubstrateUsing Layer-by-Layer Self-Assembly Technique[J]. Journal of Applied Polymer Science.2011,119(5):2793-2799.
    [31] Ali SW, Rajendran S, Joshi M. Effect of Process Parameters on Layer-by-layerSelf-assembly of Polyelectrolytes on Cotton Substrate[J]. Polymers&PolymerComposites.2010,18(5):175-187.
    [32] Dubas ST, Chutchawatkulchai E, Egkasit S, Lamsamai C, Potiyaraj P. Deposition ofpolyelectrolyte multilayers to improve the color fastness of silk[J]. Textile ResearchJournal.2007,77(6):437-441.
    [33] Yin YJ, Wang CX. Enhancement of colour fixation behaviour of cotton fabric via sol-gelprocess[J]. Materials Research Innovations.2009,13(1):41-44.
    [34]黄静红.荧光溶胶复合体系研制及其性能研究[D]:[硕士学位论文].无锡:江南大学,2010.
    [35] Hsiao CN, Huang KS. Synthesis, characterization, and applications ofpolyvinylpyrrolidone/SiO2hybrid materials[J]. Journal of Applied Polymer Science.2005,96(5):1936-1942.
    [36] Wang LP, Zhao LM, Li WZ. Fabrication of polymer-hollow sphere optical-functionalhybrid material via RAFT polymerization[J]. Reactive&Functional Polymers.2010,70(1):35-40.
    [37] Dastjerdi R, Montazer M, Shahsavan S. A new method to stabilize nanoparticles ontextile surfaces[J]. Colloids and Surfaces a-Physicochemical and Engineering Aspects.2009,345(1-3):202-210.
    [38] Adan C, Bahamonde A, Fernandez-Garcia M, Martinez-Arias A. Structure and activity ofnanosized iron-doped anatase TiO2catalysts for phenol photocatalytic degradation[J].Applied Catalysis B-Environmental.2007,72(1-2):11-17.
    [39] Chen XF, Guo CL, Zhao NR. Preparation and characterization of the sol-gelnano-bioactive glasses modified by the coupling agent γ-aminopropyltriethoxysilane[J].Applied Surface Science.2008,255(2):466-468.
    [40] Fu S, Xu C, Du C, Tian A, Zhang M. Encapsulation of CI Pigment blue15:3using apolymerizable dispersant via emulsion polymerization[J]. Colloids and Surfacesa-Physicochemical and Engineering Aspects.2011,384(1-3):68-74.
    [41] Kelley AT, Alessi PJ, Fornalik JE, Minter JR, Bessey PG, Garno JC, Royster TL, Jr.Investigation and Application of Nanoparticle Dispersions of Pigment Yellow185usingOrganic Solvents[J]. Acs Applied Materials&Interfaces.2010,2(1):61-68.
    [42]Huang WQ, Song Y, Xing YJ, Dai JJ. Durable Hydrophobic Cellulose Fabric Preparedwith Polycarboxylic Acid Catalyzed Silica Sol[J]. Industrial&Engineering ChemistryResearch.2010,49(19):9135-9142.
    [43] Xie K, Zhang Y, Yu Y. Preparation and characterization of cellulose hybrids grafted withthe polyhedral oligomeric silsesquioxanes (POSS)[J]. Carbohydrate Polymers.2009,77(4):858-862.
    [44] Alaoui OT, Nguyen QT, Rhlalou T. Preparation and characterization of a new TiO2/SiOcomposite catalyst for photocatalytic degradation of indigo carmin[J]. EnvironmentalChemistry Letters.2009,7(2):175-181.
    [45] Vilcnik A, Jerman I, Vuk AS, Kozelj M, Orel B, Tomsic B, Simonic B, Kovac J.Structural Properties and Antibacterial Effects of Hydrophobic and Oleophobic Sol-GelCoatings for Cotton Fabrics[J]. Langmuir.2009,25(10):5869-5880.
    [46] Vince J, Orel B, Vilcnik A, Fir M, Vuk AS, Jovanovski V, Simoncic B. Structural andwater-repellent properties of a urea/poly(dimethylsiloxane) sol-gel hybrid and its bondingto cotton fabric[J]. Langmuir.2006,22(15):6489-6497.
    [47] Jiang D, Xu Y, Hou B, Wu D, Sun YH. Synthesis of visible light-activated TiO2photocatalyst via surface organic modification[J]. Journal of Solid State Chemistry.2007,180(5):1787-1791.
    [48] Wu ZB, Jiang BQ, Liu Y, Zhao WR, Guan BH. Experimental study on a low-temperatureSCR catalyst based on MnOx/TiO2prepared by sol-gel method[J]. Journal of HazardousMaterials.2007,145(3):488-494.
    [49] Yang HG, Sun CH, Qiao SZ, Zou J, Liu G, Smith SC, Cheng HM, Lu GQ. Anatase TiO2single crystals with a large percentage of reactive facets[J]. Nature.2008,453(7195):638-641.
    [50] Ding LP, Chi EY, Chemburu S, Ji E, Schanze KS, Lopez GP, Whitten DG. Insight into theMechanism of Antimicrobial Poly(phenylene ethynylene) Polyelectrolytes: Interactionswith Phosphatidylglycerol Lipid Membranes[J]. Langmuir.2009,25(24):13742-13751.
    [51] Lin J, Qiu S, Lewis K, Klibanov AM. Mechanism of bactericidal and fungicidal activitiesof textiles covalently modified with alkylated polyethylenimine[J]. Biotechnology andbioengineering.2003,83(2):168-172.
    [52] Kawashita M, Toda S, Kim HM, Kokubo T, Masuda N. Preparation of antibacterialsilver-doped silica glass microspheres[J]. Journal of Biomedical Materials Research PartA.2003,66(2):266-274.
    [53] Huang X, Weiss RG. Silica structures templated on fibers of tetraalkylphosphonium saltgelators in organogels[J]. Langmuir.2006,22(20):8542-8552.
    [54] Andou Y, Jeong JM, Kaneko M, Nishida H, Endo T. Hydrophobic cellulose fiber surfacesmodified with2,2,3,3,3-pentafluoropropylmethacrylate (FMA) by vapor-phase-assistedphotopolymerization[J]. Polymer Journal.2010,42(6):519-524.
    [55] Gauczinski J, Liu Z, Zhang X, Schonhoff M. Surface molecular imprinting inlayer-by-layer films on silica particles[J]. Langmuir.2012,28(9):4267-4273.
    [56] Xie K, Yu Y, Shi Y. Synthesis and characterization of cellulose/silica hybrid materialswith chemical crosslinking[J]. Carbohydrate Polymers.2009,78(4):799-805.
    [57] Zhu Q, Gao Q, Guo Y, Yang CQ, Shen L. Modified Silica Sol Coatings for HighlyHydrophobic Cotton and Polyester Fabrics Using a One-Step Procedure[J]. Industrial&Engineering Chemistry Research.2011,50(10):5881-5888.
    [58] Yin YJ, Wang CX, Wang YJ. Fabrication and characterization of self-assembledmultifunctional coating deposition on a cellulose substrate[J]. Colloids and Surfacesa-Physicochemical and Engineering Aspects.2012,399:92-99.
    [59] Celik N, Icoglu HI, Erdal P. Effect of the particle size of fluorocarbon-based finishingagents on fastness and color properties of100%cotton knitted fabrics[J]. Journal of theTextile Institute.2011,102(6):483-490.
    [60] Yang HY, Zhu SK, Pan N. Studying the mechanisms of titanium dioxide asultraviolet-blocking additive for films and fabrics by an improved scheme[J]. Journal ofApplied Polymer Science.2004,92(5):3201-3210.
    [61] Wang XX, Wang CX. The antibacterial finish of cotton via sols containing quaternaryammonium salts[J]. Journal of Sol-Gel Science and Technology.2009,50(1):15-21.
    [62] Yin YJ, Wang CX. Multifunctional performances of nanocomposite SiO2/TiO2dopedcationic EBODAC film coated on natural cellulose matrix[J]. Journal of Sol-Gel Scienceand Technology.2011,59(1):36-42.
    [1] Tian D, Chen Q, Nie F, Xu J, Song Y, Jiang L. Patterned Wettability Transition byPhotoelectric Cooperative and Anisotropic Wetting for Liquid Reprography[J]. AdvancedMaterials.2009,21(37):3744-3749.
    [2] Yang J, Zhang Z, Men X, Xu X, Zhu X, Zhou X, Xue Q. Rapid and reversible switchingbetween superoleophobicity and superoleophilicity in response to counterion exchange[J].J Colloid Interface Sci.2012,366(1):191-195.
    [3] Zhu Y, Li J, He H, Wan M, Jiang L. Reversible Wettability Switching ofPolyaniline-Coated Fabric, Triggered by Ammonia Gas[J]. Macromolecular RapidCommunications.2007,28(23):2230-2236.
    [4]袁润,李保家,周明,李健,叶霞,蔡兰.微结构表面润湿模式转换的实验研究[J].功能材料.2009(12):1958-1960.
    [5] Liu QJ, Wu XH, Wang BL, Liu QA. Preparation and super-hydrophilic properties ofTiO2/SnO2composite thin films[J]. Materials Research Bulletin.2002,37(14):2255-2262.
    [6]施政余,李梅,赵燕,路庆华.润湿性可控智能表面的研究进展[J].材料研究学报.2008,22(6):561-570.
    [7]高琴文,刘玉勇,朱泉,郭玉良.棉织物无氟超疏水整理[J].纺织学报.2009(5):78-81.
    [8]李小兵,刘莹.材料表面润湿性的控制与制备技术[J].材料工程.2008(4):74-80.
    [9] Castell P, Wouters M, Fischer H. Study of wettability and improvement of adhesion ofUV curable powder coatings on polypropylene substrates[J]. Journal of Applied PolymerScience.2007,106(5):3348-3358.
    [10]姚俊,王潮霞. TiO2薄膜的低温制备及紫外光催化降解亚甲基蓝[J].水处理技术.2010(5):85-88.
    [11]何艳芬,孟家光.纳米自清洁整理技术在针织物上的应用[J].针织工业.2006(11):43-45.
    [12]陆晓峰,刘光全.紫外辐照改性聚砜超滤膜[J].膜科学与技术.1998,18(5):50-54.
    [13]Feng X, Zhai J, Jiang L. The fabrication and switchable superhydrophobicity of TiO2nanorod films[J]. Angew Chem Int Ed Engl.2005,44(32):5115-5118.
    [14]Fan X, Li X, Tian D, Zhai J, Jiang L. Optoelectrowettability conversion onsuperhydrophobic CdS QDs sensitized TiO2nanotubes[J]. J Colloid Interface Sci.2012,366(1):1-7.
    [15]Wang SD, Luo SS. Fabrication of transparent superhydrophobic silica-based film on aglass substrate[J]. Applied Surface Science.2012,258(14):5443-5450.
    [16]Sun Y, Chen X, Wang X. Automatic recognition of the density of woven fabrics[J].Journal of Textile Research.2006,32(2):83-88.
    [17]Yin YJ, Wang CX, Wang CX, Wu M, Tian AL, Fu SH. Hydrophobic properties and coloreffects of hybrid silica spin-coatings on cellulose matrix[J]. Journal of Materials Science.2011,46(20):6682-6689.
    [18]王前进.纤维表面聚硅氧烷膜的组装与功能化[D]:[博士学位论文].西安:陕西科技大学,2010.
    [19]王洪梅,赵中一,陈莉莉.二氧化钛亲水性技术现状[J].环境科学动态.2003(2):36-39.
    [20]江雷,冯琳.仿生智能纳米界面材料[M].北京:化学工业出版社,2007.213.
    [21]卑圣金.改性纳米二氧化钛原位光电催化降解活性染料废水[D]:[硕士学位论文].东华大学,2008.
    [22]陈衍夏,雷大鹏,肖红艳,施亦东,李征然.中性TiO2溶胶的制备及其抗紫外应用[J].印染.2010(06):15-18.
    [23]Sawada E, Kakehi H, Chounan Y, Miura M, Sato Y, Isu N, Sawada H. UV-inducedswitching behavior of novel fluoroalkyl end-capped vinyltrimethoxysilaneoligomer/titanium oxide nanocomposite between superhydrophobicity andsuperhydrophilicity with good oleophobicity[J]. Composites Part B: Engineering.2010,41(6):498-502.
    [24]Guan KS, Lu BJ, Yin YS. Enhanced effect and mechanism of SiO2addition insuper-hydrophilic property of TiO2films[J]. Surface&Coatings Technology.2003,173(2-3):219-223.
    [25]Trey SM, Sidenvall P, Alavi K, Stahlberg D, Johansson M. Dual cure (UV/thermal)primers for composite substrates-Effect of surface treatment and primer composition onadhesion[J]. Progress in Organic Coatings.2009,64(4):489-496.
    [26]Chang CJ, Kuo EH. Roughness-enhanced thermal-responsive surfaces bysurface-initiated polymerization of polymer on ordered ZnO pore-array films[J]. ThinSolid Films.2010,519(5):1755-1760.
    [27]Lim HS, Kwak D, Lee DY, Lee SG, Cho K. UV-Driven Reversible Switching of aRoselike Vanadium Oxide Film between Superhydrophobicity and Superhydrophilicity[J]. J Am Chem Soc.2007,129:4128-4129.
    [28]Cassie A, Baxter S. Wettability of porous surfaces[J]. Transactions of the Faraday Society.1944,40:546-551.
    [1] Hicks EM, Ultee AJ, Drougas J. Spandex Elastic Fibers: Development of a new type ofelastic fiber stimulates further work in the growing field of stretch fabrics[J]. Science.1965,147(3656):373-379.
    [2] Niesten M, Krijgsman J, Harkema S, Gaymans RJ. Melt spinnable spandex fibers fromsegmented copolyetheresteraramids[J]. Journal of Applied Polymer Science.2001,82(9):2194-2203.
    [3] Zhang HX, Xue Y, Wang SY. Effects of twisting parameters on characteristics ofrotor-spun composite yarns with spandex[J]. Fibers and Polymers.2006,7(1):66-69.
    [4] Tezel S, Kavusturan Y. Experimental Investigation of Effects of Spandex Brand andTightness Factor on Dimensional and Physical Properties of Cotton/Spandex SingleJersey Fabrics[J]. Textile Research Journal.2008,78(11):966-976.
    [5] Abidi N, Hequet E, Tarimala S, Dai LL. Cotton fabric surface modification for improvedUV radiation protection using sol-gel process[J]. Journal of Applied Polymer Science.2007,104(1):111-117.
    [6] Beceren Y, Candan C, Cimilli S, Ulger K. Properties of Plain Knits from Siro-SpunViscose/Spandex Yarns[J]. Fibres&Textiles in Eastern Europe.2010,18(1):41-46.
    [7] Casey P, Chen HY, Poon B, Bensason S, Menning B, Liu LZ, Hu YS, Hoenig W, GelferM, Dems B, Rego M. Polyolefin based crosslinked elastic fiber: A technical review ofDOW XLATMelastic fiber technology[J]. Polymer Reviews.2008,48(2):302-316.
    [8]孙锋.氨纶弹力针织面料热湿舒适性的研究[J].针织工业.2002(3):42-44.
    [9]杨栋梁.含氨纶弹力织物的产品开发与染整加工(一)[J].印染.1999,25(1):39-44.
    [10]李海英,李茂松.涤纶/氨纶包覆丝结构与性能的研究[J].浙江工程学院学报.2000,17(1):5-10.
    [11] Kakvan A, Najar SS, Saidi RG, Nami M. Effects of draw ratio and elastic core yarnpositioning on physical properties of elastic wool/polyester core-spun ring yarns[J].Journal of the Textile Institute.2007,98(1):57-63.
    [12]Kim SH, Oh KW, Bahk JH. Electrochemically synthesized polypyrrole and Cu-platednylon/spandex for electrotherapeutic pad electrode[J]. Journal of Applied PolymerScience.2004,91(6):4064-4071.
    [13]Lee CG. Changes of pulling-out length and shrinkage ratio in polyester/spandex powernet warp knitted fabrics[J]. Fibers and Polymers.2006,7(1):51-56.
    [14]Xu WL, Zhou F, Ouyang CX, Cui WG, Yao M, Wang XG. Small diameter polyurethanevascular graft reinforced by elastic weft-knitted tubular fabric of polyester/spandex[J].Fibers and Polymers.2008,9(1):71-75.
    [15]Liu HT, Xu WL, Zou HT, Ke GZ, Li WB, Ouyang CX. Feasibility of wet spinning ofsilk-inspired polyurethane elastic biofiber[J]. Materials Letters.2008,62(12-13):1949-1952.
    [16]王冲,蔡文庆.棉氨纶斜纹织物的耐洗耐磨后焙烘加工[J].印染.2011(11):30-31.
    [17]汪宝华,张星明,张书林.氨纶干法纺丝去除脱泡流程可行性研究[J].合成纤维.2011,40(2):41-43.
    [18]Han KQ, Li WJ, Wu CX, Yu MH. Study on hyperbranched polyesters as rheologicalmodifier for Spandex spinning solution[J]. Polymer International.2006,55(8):898-903.
    [19]Griffith AT, Park Y, Roberts CB. Separation and recovery of nylon from carpet wasteusing a supercritical fluid antisolvent technique[J]. Polymer-Plastics Technology andEngineering.1999,38(3):411-431.
    [20]Lozano-Gonzalez J, Rodriguez-Hernandez T, Los Santos E, Villalpando-Olmos J.Physical-mechanical properties and morphological study on nylon-6recycling byinjection molding[J]. Journal of Applied Polymer Science.2000,76(6):851-858.
    [21]Tokoro T, Hackam R. Loss and recovery of hydrophobicity, surface energies, diffusioncoefficients and activation energy of nylon[J]. IEEE Transactions on Dielectrics andElectrical Insulation.1999,6(5):754-762.
    [22]Kim HJ, Murai N, Fang DD, Triplett BA. Functional analysis of Gossypium hirsutumcellulose synthase catalytic subunit4promoter in transgenic Arabidopsis and cottontissues[J]. Plant Science.2011,180(2):323-332.
    [23]Ibrahim NA, El-Gamal AR, Gouda M, Mahrous F. A new approach for natural dyeing andfunctional finishing of cotton cellulose[J]. Carbohydrate Polymers.2010,82(4):1205-1211.
    [24]王海英,李栋.棉织物的轧蒸潮态抗皱整理[J].纺织学报.2011(5):91-94.
    [25]Yang C, Liang GL, Xu KM, Gao P, Xu B. Bactericidal functionalization of wrinkle-freefabrics via covalently bonding TiO2@Ag nanoconjugates[J]. Journal of Materials Science.2009,44(7):1894-1901.
    [26]马芹,刘学锋.紧密纺织物服用性能测试与分析[J].纺织学报.2011(3):67-69,76.
    [27]郑成辉,陈国强,李辉.棉织物溶胶-凝胶法抗紫外线/防皱整理[J].印染.2010(20):10-13.
    [28]Lam YL, Kan CW, Yuen CWM. Physical and chemical analysis of plasma-treated cottonfabric subjected to wrinkle-resistant finishing[J]. Cellulose.2011,18(2):493-503.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700