用户名: 密码: 验证码:
新型化学修饰电极的构建及在食品分析中的一些应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
运用纳米材料,如石墨烯、纳米金、有机聚合膜及其相关的复合材料作为修饰电极的新材料是当前化学修饰电极发展的新方向,对于提高分析方法的灵敏度和选择性具有重要意义。基于这种考虑,本文构建了几种新型的化学修饰电极,并应用于食品中瘦肉精、人工合成抗氧化剂和香料等的分析,具体的内容与结果如下:
     1.基于纳米金修饰的玻碳电极(AuNPs/GCE)和化学计量学MVCl,研究和发展了一种同时分析三种p2激动剂-莱克多巴胺、沙丁胺醇和克伦特罗复杂体系的新方法。与裸玻碳电极(GCE)相比,AuNPs/GCE电极对这三种p2激动剂有很好的电催化性能,具体表现为三种物质的峰电流大大增加,峰电位负移。莱克多巴胺、沙丁胺醇和克伦特罗的峰电流随浓度变化呈正比关系,线性范围分别为0.005~0.075μg mL-1,0.010~0.150μg mL-1和0.004~0.064μg mE-1,其检测限分别为2.4ng mL-1,5.8ng mE-1和2.6ng mE-1。由于三种药物的结构相似,它们的微分脉冲伏安曲线存在重叠,对它们进行同时定量分析存在一定困难,而采用化学计量学方法MVCl(如PLS1)建立合适的校正模型,进而对重叠波谱进行解析,获得了满意的定量结果,其相对预报偏差和百分回收率分别为7.0%和97.6%。该方法被用于分析猪肉、猪肝和猪饲料样品中三种β2激动剂,并与HPLC标准方法相比较,结果比较满意。
     2.基于纳米金修饰电极(AuNPs/GCE)和一阶导数的校正模型,研究和发展了一种同时分析三种抗氧化剂BHA、BHT和TBHQ的方法。修饰电极通过扫描电子显微镜(SEM)表征,实验结果表明修饰电极对三种抗氧化剂BHA、BHT和TBHQ表现出良好的电化学催化作用,主要表现在峰电流增加、峰电位负移;本研究通过循环伏安法(CV)研究了三种抗氧化剂的电化学反应机理,结果发现BHA和TBHQ的氧化产物是相同的。在最佳实验条件下,BHA和BHT的氧化峰完全分离,但还存在基线干扰,由此本文提出了一种基于一阶导数数据前处理的化学计量学校正模型用于同时分析混合物的BHA、BHT和TBHQ方法,其线性范围分别为0.10~1.50μg mE-1,0.20~2.20μg mL-1和0.20~2.80pgmL-1,检测限分别为0.039μg mL-1,0.080tg mL-1和0.079μg mL-1。该方法被用于分析几个食用油样品中三种抗氧化剂,与标准方法HPLC的结果进行比较,结果满意。
     3.基于电聚合一种荧光试剂7-(2,4-二羟基-5-羧基苯偶氮)-8-羟基喹啉-5-磺酸(DHCBAQS)在石墨烯-nafion修饰的玻碳电极上,构建了一种新型的修饰电极;运用扫描电镜(SEM)对修饰的电极进行了微观形貌的表征,利用循环伏安法(CV)和电化学阻抗谱图(EIS)对电极的修饰过程进行了表征。考察了三种硝基苯胺同分异构体在各种电极上的电化学行为,结果表明Poly-DHCBAQS/graphene-nafion/GCE电极对这三种分析物表现出良好的电催化性能。在修饰电极上,邻、间、对硝基苯胺同分异构体的峰电流与其浓度呈良好的线性关系,其线性范围分别为0.05~0.55μg mL-1,0.05-0.60μg mL-1和0.05-0.60μg mL-1,检测限分别为0.025μg mL-1,0.021μg mE-1和0.019μg mL-1。由于三种药物的结构相似,它们的微分脉冲伏安曲线存在重叠,对它们进行同时定量分析存在一定困难,采用化学计量学方法PLS和PCR所建立的校正模型用于混合物的解析,其相对预报偏差分别为9.04%和9.23%,回收率分别为]01.0%和101.7%。此外,新制备的电极被成功用于水样和废水样品中三种硝基苯胺的同时分析。
     4.基于电聚合一种荧光分子4,5-二羟基-3-[(2-羟基-5-苯磺酸钠)偶氮]-2,7-萘二磺酸钠(酸性铬蓝K(ACBK))于石墨烯-nafion修饰的玻碳电极上制备了Poly-ACBK/graphene-nafion/GCE电极。运用原子力显微镜(AFM)对修饰的电极进行了微观形貌的表征,利用循环伏安法(CV)和电化学阻抗谱图(EIS)对电极的修饰过程进行了表征。在修饰电极上,八种p受体激动剂(克伦特罗、特步他林、莱克多巴胺、沙丁胺醇、多巴胺、多巴酚丁胺、肾上腺素、异丙肾上腺)的线性扫描伏图的峰电流与其浓度呈正比关系,其线性范围和检测限分别为1-36ng mL-1和0.58-1.44ng mL-1。此外,新制备的电极表现出好的稳定性和重现性,成功地用于猪肉样品中克伦特罗的分析,获得了比较满意的结果。
     5.基于电沉积硫酸铜和氯金酸的混合溶液制备了铜掺杂纳米金修饰电极(cu@AuNPs/GCE),研究了丁香酚在该修饰电极上的电化学行为,结果表明该电极对丁香酚有良好的电催化作用,而为了证实邻甲氧基苯酚这类物质电化学反应机理,还考察了邻苯二酚、愈创木酚和香草醛的电化学行为,从而推断出这类物质在Cu@AuNPs/GCE电极上电化学反应机理。在该修饰电极上,丁香酚线性扫描伏安图的峰电流与其浓度呈线性关系,其线性范围为0.05~0.80μg mL-1,检测限为0.042μg mL-1。此外,该修饰电极被用于食品中丁香酚的测定,结果满意。
This paper is to apply nano-materials, such as graphene, gold nanoparticles, organic polymeric membranes and their composite materials to the construction of electrode, which is a new direction for chemically modified electrodes and has an important significance to improve the sensitivity and selectivity of analysis. Based on this, different novel chemically modified electrodes were constructed and applied to some food analysis (β-agonists, synthetic antioxidants and spice). The main contents and conclusions are as follows:
     1. An electrochemical method involving a gold nanoparticle modified glassy carbon electrode (AuNPs/GCE), was researched and developed for the simultaneous analysis of three (32-agonists, ractopamine (RAC), salbutamol (SAL) and clenbuterol (CLB). The three analytes were electrocatalytically oxidized at the AuNP/GCE, which enhanced the oxidation peak current and influenced the shift of the oxidation potentials to lower values in comparison with the analysis involving only the GCE. The peak currents associated with RAC, SAL and CLB measurements were linear as a function of their concentrations (ranges within0.005~0.075μg mL-1,0.010~0.150μg mL-1and0.004~0.064μg mL-1for RAC, SAL and CLB, respectively); the detection limits for RAC, SAL and CLB were2.4,5.8and2.6ng ̄mL-1, respectively. The differential pulse stripping voltammetry (DPSV)voltammograms from the drug mixture produced complex, overlapping profiles, and chemometrics methods were applied for calibration modeling. It was shown that satisfactory quantitative results were obtained with the use of the MVC1package of chemometrics methods e.g the PLS1calibration model produced a relative prediction error (PRET) of7.0%and an average recovery of97.6%. The above AuNP/GCE was successfully employed for the simultaneous analysis of RAC, SAL and CLB in pork meat, liver and pig feed samples.
     2. The electrochemical behaviors of three antioxidants:butylated hydroxyanisole (BHA), butylated hydroxytoluene (BHT) and butylated hydroquinone (TBHQ) at a gold nanoparticles modified glassy carbon electrode (AuNPs/GCE) were investigated. The modified electrode was characterized by scanning electron microscope (SEM). The experimental results indicated that the modified electrode exhibited an excellent electrocatalytic activity towards the redox reactions of BHA, BHT and TBHQ, testified by the increased redox peak currents and shifted potentials, and in addition, the oxidation products of BHA and TBHQ were found to be the same. The experimental conditions were optimized and the oxidation peaks of BHA and BHT were clearly separated. Based on this, an electrochemical method was proposed to simultaneously determine the BHA, BHT and TBHQ in mixtures by first derivative voltammetry, with linear concentration ranges of0.10-1.50μg mLL1,0.20~2.20μg mL-1and0.20~2.80jig mL-1, and detection limits of0.039,0.080and0.079μg mL-1, for BHA, BHT and TBHQ, respectively. The proposed method was successfully used for the analysis of the three analytes in edible oil samples.
     3. A novel modified electrode was constructed by the electro-polymerization of7-[(2,4-dihydroxy-5-carboxybenzene)azo]-8-hydroxyquinoline-5-sulfonic acid (DHCBAQS) at a graphene-nafion modified glassy carbon electrode (GCE). The construction process was performed stepwise and at each step the electrochemical characteristics were investigated particularly with respect to the oxidation of the three noxious analytes,2-nitroaniline (2-NA),3-nitroaniline (3-NA),4-nitroaniline (4-NA); the electrode treated with the fluorescence reagent DHCBAQS perfomed best. At this electrode, the differential pulse voltammetry peak currents of the three isomers-2-NA,3-NA and4-NA increased linearly with their concentrations in the range of0.05~0.55μg mL-1,0.05~0.60μg mL-1and0.05~0.60μg mL-1, respectively, and their corresponding limits of detection (LODs) were0.025,0.021and0.019μg mL-1. Furthermore, satisfactory results were obtained when this electrode was applied for the simultaneous quantitative analysis of the nitroaniline isomer mixtures by Principal component regression (PCR) and Partial least squares (PLS) as calibration methods (relative prediction error (PRET)-9.04%and9.23%) and average recoveries (101.0%and101.7%), respectively. The above novel poly-DHCBAQS/graphene-nafion/GCE was successfully employed for the simultaneous analysis of the three noxious nitroaniline isomers in water and sewage samples.
     4. A new modified electrode was constructed by the electro-polymerization of4,5-dihydroxy-3-[(2-hydroxy-5-sulfophenyl)azo]-2,7-naphthalenedisulfonic acid trisodium salt (acid chrome blue K (ACBK)) at a graphene-nafion modified glassy carbon electrode (GCE). The electrode was investigated by the electrochemical impedance spectroscopy (EIS), cyclic voltammetry (CV) and atomic force microscope (AFM) techniques, and the results were interpreted and compared at each stage of the electrode construction. At this modified electrode, the linear sweep voltammetry peak currents of the eight β-agonists (clenbuterol, terbutaline. ractopamine, salbutamol, dopamine, dobutamine, adrenaline and isoprenaline) increased linearly with their concentrations in the range of1.0-36.0ng mL-1, respectively, and their corresponding limits of detection (LODs) were0.58-1.46ng mL-1. This electrode showed satisfactory reproducibility and stability, and was used successfully for the quantitative analysis of clenbuterol in pork samples.
     5. A new modified electrode was constructed by the electro-deposition of the mixture of CuSO4and HAuCl4at a glassy carbon electrode (GCE). The eugenol was electrocatalytically oxidized at the Cu@AuNP/GCE, which enhanced the oxidation peak current and influenced the shift of the oxidation potentials to lower values in comparison with the analysis involving only the GCE. In order to confirm the electrochemical reaction mechanism for o-methoxy phenol, the electrochemical behavior for catechol, guaiacol and vanillin were studied. Based on this, the electrochemical reaction mechanism for o-methoxy phenols was inferred. At this modified electrode, the linear sweep voltammetry peak current of eugenol increased linearly with its concentration in the range of0.05-0.80μg mL-1, and its corresponding limit of detection (LOD) were0.042μg mL-1. Moreover, The above Cu@AuNP/GCE was successfully employed for the analysis of eugenol in food samples.
引文
[1]Rohr A, Luddecke K, Drusch S R, Food quality and safety e consumer perception and public health concern [J], Food Control,2005,16(8):649~655.
    [2]Chan E Y Y, Griffiths S M, Chan C W, Public-health risks of melamine in milk products [J], Lancet. 2008,372(9648):1444-1445.
    [3]Wang L, Zhang L, Study on pork crisis from the perspective of crisis management [C], The 3rd International conference on multimedia information networking and security, Shanghai,2011.
    [4]Liu R, Hei W. He P, Li Z, Simultaneous determination of fif teen illegal dyes in animal feeds and poultry products by ultra-high performance liquid chromatography tandem mass spectrometry [J]. Journal of Chromatography B- Analytical Technologies in the Biomedical and Life Sciences,2011, 879(24):2416~2422.
    [5]Yen T H, Lin-Tan D T, Lin J L. (2011). Food safety involving ingestion of foods and beverages prepared with phthalate-plasticizer-containing clouding agents [J]. Journal of the Formosan Medical Association.2011,110(11):671-684.
    [6]Bonanni A. del Valle M. Use of nanomaterials for impedimetric DNA sensors:A review [J]. Analytica Chimica Acta.2010,687(1):7~17.
    [7]Mo Z R, Zhang Y F, Zhao F Q. Xiao F, Guo G P, Zeng B Z, Sensitive voltammetric determination of Sudan I in food samples by using gemini surfactant-ionic liquid-multiwalled carbon nanotube composite film modified glassy carbon electrodes [J], Food Chemistry,2010,121(1) 233~237.
    [8]Zhao J, Zhang Y, Wu K B, Chen J W, Zhou Y K, Electrochemical sensor for hazardous food colourant quinoline yellow based on carbon nanotube-modified electrode [J], Food Chemistry,2011, 128(2):569~572.
    [9]Sartori E R, Takeda H H, Fatibello-Filho O, Glassy carbon modified electrode with functionalized carbon nanotubes within a poly(allylamine hydrochloride) film for the voltammetric determination of sulfite in foods [J], Electroanalysis,2011,23(11):2526~2533.
    [10]Morton J, Havens N, Mugweru A, Wanekaya A K, Detection of trace heavy metal ions using carbon nanotube-modified electrode [J], Electroanalysis,2009,21(14):1597~1603.
    [11]Chen J, Jin Y L, Sensitive phenol determination based on co-modifying tyrosinase and palygorskite on glassy carbon electrode [J], Microchimica Acta,2010,169(3-4):249~254.
    [12]Wu Z S, Xue L L, Ren W C, Li F, Wen L, Cheng H M, A LiF nanoparticle-modified graphene electrode for high-power and high-energy lithium ion batteries [J], Advanced Functional Materials, 2012,22(15):3290~3297.
    [13]Wang L, Wang X Y, Shi G S, Peng C, Ding Y H, Thiacalixarene covalently functionalized multiwalled carbon nanotubes as chemically modified electrode material for detection of ultratrace Pb2- ions [J], Analytical Chemistry,2012,84(24):10560~10567.
    [14]Bard A J, Integrated chemical systems [M], Wiley, New York,1994.
    [15]Wang J, Analytical electrochemistry [C],3rd edition, John Wiley and Sons, Inc., New York,2006.
    [16]Zhong C J, Porter M D, Designing interfaces at the molecular-level [J], Analytical Chemistry,1995, 67(23):A709-A715.
    [17]Bain D, Whitesides G M, Modeling organic surfaces with self-assembled monolayers [J], Angewandte Chemie-International Edition in English.1989,28(4):506~512.
    [18]Mandler D, Turyan I, Applications of self-assembled monolayers in electroanalytical chemistry [J], Electroanalysis,1996,8(3):207~213.
    [19]Liu X Q, Li B H, Ma M, Zhan G Q, Liu C X, Li C Y, Amperometric sensing of NADH and ethanol using a hybrid film electrode modified with electrochemically fabricated zirconia nanotubes and poly (acid fuchsin) [J]. Microchimica Acta,2012.176:123~129.
    [20]Fan Y. Liu J H, Yang C P, Yu M, Liu P, Graphene-polyaniline composite film modified electrode for voltammetric determination of 4-aminophenol [J], Sensors and Actuators B,2011,157:669~674.
    [21]Mallesha M, Manjunatha R, Nethravathi C, et al. Functionalized-graphene modified graphite electrode for the selective determination of dopamine in presence of uric acid and ascorbic acid [J], Bioelectrochemistry,2011,81:104~108.
    [22]Yin H S, Zhang Q M, Zhou Y L, Ma Q, Liu T, Zhu L S. Ai S Y, Electrochemical behavior of catechol, resorcinol and hydroquinone at graphene-chitosan composite film modified glassy carbon electrode and their simultaneous determination in water samples [J], Electrochimica Acta,2011,56: 2748~2753.
    [23]Yang P H, Wei W Z, Tao C Y, Determination of trace thiocyanate with nano-silver coated multi-walled carbon nanotubes modified glassy carbon electrode [J], Analytica Chimica Acta,2007, 585:331~336.
    [24]董绍俊,车广礼,谢远武,化学修饰电极[M],科学出版社,北京,1995.
    [25]李启隆,胡劲波,电分析化学(第二版)[M],北京师范大学出版社,北京,2007.
    [26]Bard A J, Faulkner L R, Electrochemical methods fundamentals and application [M], Wiley, New York,2001.
    [27]Anson F.电化学和电分析化学[M],黄蔚曾译,北京大学出版社,北京,1983,95.
    [28]Liu A L, Wang K, Chen W, Gao F, Cai Y S, Lin X H, Chen Y Z, Xia X H, Simultaneous and sensitive voltammetric determination of acetaminophen and its degradation product for pharmaceutical quality control and pharmacokinetic research by using ultrathin poly (calconcarboxylic acid) film modified glassy carbon electrode [J], Electrochimica Acta,2012,63:161~168.
    [29]Chitravathi S, Kumara Swamy B E, Mamatha G P et al. Electrochemical behavior of poly (naphthol green B)-film modified carbon paste electrode and its application for the determination of dopamine and uric acid [J], Journal of Electroanalytical Chemistry,2012:667:66~75.
    [30]Darmanin T, Bellanger H, Guittard F, Lisboa P, Zurn M, Colpo P, Gilliland D, Rossi F, Structured biotinylated poly (3,4-ethylenedioxypyrrole) electrodes for biochemical applications [J], RSC Advances,2012,2:1033~1039.
    [31]Chauhan N, Narang J, Pundir C S, Immobilization of rat brain acetylcholinesterase on ZnS and poly(indole-5-carboxylic acid) modified Au electrode for detection of organophosphorus insecticides [J], Biosensors and Bioelectronics,2011,29:82~88.
    [32]Guo S J, Zhu Q Q, Yang B C, Wang J, Ye B X, Determination of caffeine content in tea based on poly(safranine T) electroactive film modified electrode [J], Food Chemistry,2011,129:1311~1314.
    [33]Wang J W, Wang L P, Di J W, Tu Y F, Electrodeposition of gold nanoparticles on indium/tin oxide electrode for fabrication of a disposable hydrogen peroxide biosensor [J], Talanta,2009,77: 1454~1459.
    [34]Li J, Xie H Q, Chen L F, A sensitive hydrazine electrochemical sensor based on electrodeposition of gold nanoparticles on choline film modified glassy carbon electrode [J], Sensors and Actuators B: Chemical,2011,153:239-245.
    [35]Moreno M, Gonzalez V M, Rincon E, Dominqo A, Dominquez E, Aptasensor based on the selective electrodeposition of protein-linked gold nanoparticles on screen-printed electrodes [J], Analyst,2011, 136:1810~1815.
    [36]Kloke A, Kohler C, Zengerle R, Kerzenmacher S, Porous platinum electrodes fabricated by cyclic electrodeposition of PtCu alloy:application to implantable glucose fuel cells [J], Journal of Physical Chemistry C,2012,116:19689~19698.
    [37]Li Z P, Zhang J L, Zhou Y H,Shuang S M, Dong C, Choi M M F, Electrodeposition of palladium nanoparticles on fullerene modified glassy carbon electrode for methane sensing [J], Electrochimica Acta.2012,76:288-291.
    [38]Lee C G. Wei X D, Kysar J W, Hone J, Measurement of the elastic properties and intrinsic strength of monolayer graphene [J], Science,2008,321(5887):385~388.
    [39]Nair R R, Blake P, Grigorenko A N, Fine structure constant defines visual transparency of graphene [J], Science,2008,320(5881):1308.
    [40]Claire B, Song Z M, Li T B, Li X B, Ogbazghi A Y, Feng R, Dai Z T, Marchenkov A N, Conrad E H, First P N, de Heer W A, Ultrathin epitaxial graphite:2D electron gas properties and a route toward graphene-based nanoelectronics [J], Journal of Physical Chemistry B.2004,108(52):19912~19916.
    [41]Sutter P, Epitaxial graphene:How silicon leaves the scene [J], Nature Materials,2009,8(3):171~172.
    [42]Wang H M, Wu Y H, Ni Z H, Shen Z X, Electronic transport and layer engineering in multilayer graphene structures [J], Applied Physics Letters,2008,92(5):053504.
    [43]Kim M C, Hwang G S, Ruoff R S, Epoxide reduction with hydrazine on graphene:A first principles study [J], Journal of Chemical Physics,2009,131(6):064704.
    [44]Choucair M, Thordarson P, Stride J A, Gram-scale production of graphene based on solvothermal synthesis and sonication [J], Nature Nanotechnology,2008,4(1):30~33.
    [45]Brumfiel G, Nanotubes cut to ribbons new techniques open up carbon tubes to create ribbons. Nature, 2009, doi:10.1038/news.2009.367.
    [46]Hernandez Y, Nicolosi V, Lotya M, et al. High-yield production of graphene by liquid-phase exfoliation of graphite [J], Nature Nanotechnology,2008,3(9):563~568.
    [47]Alzari V, Nuvoli D, Scognamillo S, Piccinini M, Gioffredi E, Malucelli G, Marceddu S, Sechi M, Sanna V, Mariani A, Graphene-containing thermoresponsive nano- composite hydrogels of poly(N-isopropylacrylamide) prepared by frontal polymerization [J], Journal of Materials Chemistry, 2011,21(24):8727~8733.
    [48]Yu C M, Ji W Y, Wang Y D, Bao N, Gu H Y, Graphene oxide-modified electrodes for sensitive determination of diethylstilbestrol [J], Nanotechnology,2013,24(11):115502~115509.
    [49]Sun W, Wang Y H, Zhang Y Y, Ju X M, Li G J, Sun Z F, Poly(methylene blue) functionalized graphene modified carbon ionic liquid electrode for the electrochemical detection of dopamine [J], Analytica Chimica Acta,2012,751:59~65.
    [50]Hernandez R, Riu J, Bobacka J, Valles C, Jimenez P, Benito A M, Maser W K, Rius F X, Reduced graphene oxide films as solid transducers in potentiometric all-solid-state ion-selective electrodes [J], Journal of Physical Chemistry C,2012,116(42):22570~22578.
    [51]Eissa S, Tlili C, L'Hocine L, Zourob M, Electrochemical immunosensor for the milk allergen β-lactoglobulin based on electrografting of organic film on graphene modified screen-printed carbon electrodes [J], Biosensors and Bioelectronics,2012,38(1):308~313.
    [52]Boisselier E, Astruc D, Gold nanoparticles in nanomedicine:preparations, imaging, diagnostics, therapies and toxicity [J], Chemical Society Review,2009,38(6):1759~1782.
    [53]Daniel M C, Astruc D, Gold nanoparticles:assembly, supramolecular chemistry, quantum-size-related properties, and applications toward biology, catalysis, and nanotechnology [J], Chemical Reviews, 2004,104(1):293~346.
    [54]Haick H, Chemical sensors based on molecularly modified metallic nanoparticles [J], Journal of Physics D:Applied Physics,2007,40:7173~7186.
    [55]Zayats M, Baron R, Popov I, Willner I, Biocatalytic growth of Au nanoparticles:From mechanistic aspects to biosensors design [J], Nano Letters,2005,5 (1):21~25.
    [56]Zhao W, Brook M A, Li Y F, Design of gold nanoparticle-Based colorimetric biosensing assays [J], ChemBioChem,2008,9(15):2363~2371.
    [57]Bunz U H F, Rotello V M, Gold Nanoparticle-Fluorophore Complexes: Sensitive and Discerning "Noses" for Biosystems Sensing [J], Angewandte Chemie International Edition,2010,49(19): 3268~3279.
    [58]Sperling R A, Gil R P, Zhang F, Zanella M, Parak W J, Biological applications of gold nanoparticles [J], Chemical Society Reviews,2008,37(9):1896~1908.
    [59]Kimling J, Maier M, Okenve B, Kotaidis V, Ballot H, Plech A, Turkevich method for gold nanoparticle synthesis revisited [J], Journal of Physical Chemistry B,2006,110(32):l5700~15707.
    [60]Itoh H, Tahara A, Naka K, Chujo Y, Photochemical assembly of gold nanoparticles utilizing the photodimerization of thymine [J], Langmuir,2004,20(5):1972~1976.
    [61]Matsumura H, Ortiz R, Ludwig R, Lgarashi K, Samejima M, Corton L, Direct electrochemistry of phanerochaete chrysosporium cellobiose dehydrogenase covalently attached onto gold nanoparticle modified solid gold electrodes [J], Langmuir,2012,28(29):10925~10933.
    [62]Pruneanu S, Pogacean F, Biris A R, Ardelean S, Canpean V, Blanita G, Dervishi E, Biris A S, Novel graphene-gold nanoparticle modified electrodes for the high sensitivity electrochemical spectroscopy detection and analysis of carbamazepine [J], Journal of Physical Chemistry C,2011,115(47): 23387~23394.
    [63]Safavi A, Momeni S, Electrocatalytic oxidation of tryptophan at gold nanoparticle-modified carbon ionic liquid electrode [J], Electroanalysis,2010,22(23):2848~2855.
    [64]Haaland D M, Thomas E V, Partial least-squares methods for spectral analyses.1. Relation to other quantitative calibration methods and the extraction of qualitative information [J], Analytical Chemistry,1988,60:1193~1202.
    [65]Berger A J, Koo T W, Itzkan I, Feld M S, An enhanced algorithm for linear multivariate calibration [J], Analytical Chemistry,1998,70:623~627.
    [66]Collado M S, Mantovani V E, Goicoechea H C, Olivieri A C, Simultaneous spectrophotometric-multivariate calibration determination of several components of ophthalmic solutions:phenylephrine, chloramphenicol, antipyrine, methylparaben and thimerosal [J], Talanta,2000,52:909~920.
    [67]Xu L, Schechter I, A calibration method free of optimal factor number selection for automated multivariate analysis [J], Analytical Chemistry,1997,69:3722~3730.
    [68]Lorber A, Error propagation and figures of merit for quantitation by solving matrix equations [J], Analytical Chemistry,1986,58:1167~1172.
    [69]Lorber A, Faber N M, Kowalski B R, Net analyte signal calculation in multivariate calibration [J], Analytical Chemistry,1997,69:1620~1626.
    [70]Westerhuis J A, De Jong S, Smilde A K, Direct orthogonal signal correction [J], Chemometrics and Intelligent Laboratory Systems,2001,56:13~25.
    [7]] Goicoechea H C, Olivieri A C, MULTIVAR. A program for multivariate calibration incorporating net analytesignal calculations [J], TrAC Trends in Analytical Chemistry,2000,19:599~605.
    [72]Fearn T, On orthogonal signal correction [J], Chemometrics and Intelligent Laboratory Systems,2000. 50:47~52.
    [73]Goicoechea H C, Olivieri A C, A comparison of orthogonal signal correction and net analyte preprocessing methods [J]. Theoretical and Experimental Study,2001,56:73~78.
    [74]Rodriguez D, Boschetti C E, Olivieri A C, Near-infrared spectroscopic determination of antioxidants and organic acids in rubbers assisted by a new multivariate calibration method based on direct orthogonalization [J], Analyst,2002,127:304~309.
    [75]Massart D L, Vandeginste B G M, Buydens L M C, et al. Handbook of Chemometrics and Qualimetrics (Parts A and B) [M], Elsevier. Amsterdam,1997.
    [76]Booksh K S, Kowalski B R, Theory of analytical-chemistry [M],1994,66:A782~A791.
    [77]Boque R, Larrechi M S, Rius F X, Multivariate detection limits with fixed probabilities of error [C], Chemometrics and Intelligent Laboratory Systems,1999,45:397~408.
    [78]Wentzell P D, Montoto L V, Comparison of principal components regression and partial least squares regression through generic simulations of complex mixtures [J], Chemometrics and Intelligent Laboratory Systems,2003,65:257~279.
    [79]Ni Y N, Wang Y, Kokot S, Simultaneous kinetic-spectrophotometric determination of maltol and ethyl maltol in food samples by using chemometrics [J], Food Chemistry,2008,109:431~438.
    [80]Ni Y N, Qiu P, Kokot S, Simultaneous determination of three organophosphorus pesticides by differential pulse stripping voltammetry and chemometrics [J], Analytica Chimica Acta,2004,516: 7~17.
    [81]Ni Y N, Wang Y, Kokot S, Simultaneous kinetic spectrophotometric analysis of five synthetic food colorants with the aid of chemometrics [J], Talanta,2009,78:432~441.
    [82]Sorouraddin M H, Amini K, Naseri A, Rashidi M R, Simultaneous spectrophotometric determination of phenanthridine, phenanthridinone and phenanthridine N-oxide using multivariate calibration methods [J], Central European Journal of Chemistry,2010,8(1):207~213.
    [83]Olivieri A C, Goicoechea H C, Inon F A, MVCl:an integrated MatLab toolbox for first-order multivariate calibration [J], Chemometrics and Intelligent Laboratory Systems,2004,73:189~197.
    [84]de la Pena A M, Espinosa-Mansilla A, Acedo Valenzuela M I, Goicoechea H C, Oliveri A C, Comparative study of net analyte signal-based methods and partial least squares for the simultaneous determination of amoxycillin and clavulanic acid by stopped-flow kinetic analysis [J], Analytica Chimica Acta,2002,463:75~88.
    [85]Goicoechea H C, Olivieri A C, Enhanced synchronous spectrofluorometric determination of tetracycline in blood serum by chemometric analysis. Comparison of partial least-squares and hybrid linear analysis calibrations [J], Analytical Chemistry,1999,71:4361~4368.
    [86]Watkins L E, Jones D J, Mowrey D H, Anderson D B, Veenhuizen E L, The effect of various levels of ractopamine hydrochloride on the performance and carcass characteristics of finishing swine [J], Journal of Animal Science,1990,68:3588~3595.
    [87]Anderson D B, Veenhuizen E L, Wagner J F, The effect of ractopamine hydrochloride on nitrogen retention, growth performance, and carcass compostion of beef cattle [J], Journal of Animal Science, 1989,67(suppl.1):222~225.
    [88]Courtheyn D, Le Bizec B, Brambilla G, De Brabander H F Cobbaert E, De Wiele M V, Vercammen J, De Wasch K, Recent developments in the use and abuse of growth promoters [J], Analytica Chimica Acta,2002,473:71~82.
    [89]Malucelli A, Ellendorff F, Meyer H H D. Tissue distribution and residues of clenbuterol, salbutamol, and terbutaline in tissues of treated broiler chickens [J], Journal of Animal Science,1994,72: 1555~1560.
    [90]Desaphy J F, Pierno S, Luca A, Didonna P, Camerino D C, Different ability of clenbuterol and salbutamol to block sodium channels predicts their therapeutic use in muscle excitability disorders [J], Molecular Pharmacology,2003,63:659~670.
    [91]Reszka K J, McGraw D W, Britigan B E, Peroxidative metabolism of β2-agonists salbutamol and fenoterol and their analogues [J], Chemical Research in Toxicology,2009,22:1137~1150.
    [92]Anderson D B, Moody D E, Hancock D L, Bata adrenergic agonists, In:Encyclopedia of Animal Science, W.G. Pond, A.W. Bell, New York, Marcel Dekker, Inc,2009,104~107.
    [93]Mitchell G A, Dunnavan G, Illegal use of β-adrenergic agonists in the United States [J]. Journal of Animal Science,1998,76:208~211.
    [94]Martinez-Navarro J F, Food poisoning related to consumption of illicit β-agonist in liver [J], lancet, 1990,336:1311.
    [95]Ministry of Agriculture of the People's Republic of China, No.235 Bulletin, Beijing,2003. http://yz.hz-agri.gov.cn/uploadFiles/2005-10/1130221564406.doc.
    [96]Commission of the European Communities. Council Directive 96/22/EC on the prohibition of the use of certain substances having a hormonal and thyreostatic action and β-agonists in animal husbandry. Official Journal of the European Communities, L125(1996).
    [97]Commission Regulation (EU) No 37/2010 of 22 December 2009 on pharmacologically active substances and their classification regarding maximum residue limits in foodstuffs of animal origin, Official Journal of the European Union, L15 (2010) 1.
    [98]Food and Agriculture Organization of United Nations, Residue Evaluation of Certain Veterinary Drugs, Joint FAO/WHO Expert Committee on Food Additives,70th meeting 2008, Food and Agriculture Organization of the United Nations, Rome,2009.
    [99]He L M, Su Y J, Zeng Z L, Liu Y H, Huang X H, Determination of ractopamine and clenbuterol in feeds by gas chromatography-mass spectrometry [J], Animal Feed Science and Technology,2007, 132:316~323.
    [100]Li C, Wu Y L, Yang T, Zhang Y, Huang-Fu W G, Simultaneous determination of clenbuterol, salbutamol and ractopamine in milk by reversed-phase liquid chromatography tandem mass spectrometry with isotope dilution [J], Journal of Chromatography A,2010,1217:7873~7877.
    [101]Shen J Z, Zhang Z, Yao Y, Shi W M, Liu Y B, Zhang S X, Time-resolved fluoroimmunoassay for ractopamine in swine tissue [J]. Analytical and Bioanalytical Chemistry,2007,387:1561~1564.
    [102]Shi Y F, Huang Y, Duan J P, Chen H Q, Chen G N, Field-amplified on-line sample stacking for separation and determination of cimaterol. clenbuterol and salbutamol using capillary electrophoresis [J], Journal of Chromatography A,2006,1125:124~128.
    [103]Mukhopadhyay A K, Antioxidants- natural and synthetic. Amani International Publishers. Kiel 2006.
    [104]Medeiros R A. Rocha-Filho R C. Fatibello-Filho O, Simultaneous voltammetric determination of phenolic antioxidants in food using a boron-doped diamond electrode [J], Food Chemistry,2010, 123(3):886~891.
    [105]Williams G M, Interventive prophylaxis of liver cancer [J], European Journal of Cancer Prevention, 1994,3(2):89~99.
    [106]Food and Drug Administration, Code of Federal Regulations, Title 21:Food and Drugs, Office of the Federal Register, Washington, DC,2001 (Chapter I).
    [107]Council Directive 95/2/EC of 20 February 1995 on Food Additives Other than Colours and Sweeteners, OJ L 61,18.3.1995, Brussels,1995, p.1.
    [108]Rodil R, Quintana J B, Basaglia G, Pietrogrande M C, Cela R, Determination of synthetic phenolic antioxidants and their metabolites in water samples by downscaled solid-phase extraction, silylation and gas Chromatography-mass spectrometry [J], Journal of Chromatography A,2010,1217(41): 6428~6435.
    [109]Chen M, Xia Q H, Liu M S, Yang Y L, Cloud-point extraction and reversed-phase high-performance liquid chromatography for the determination of synthetic phenolic antioxidants in edible oils [J], Journal of Food Science,2010,76(1):98~103.
    [110]Guo L, Xie M Y, Yan A P. Wang Y Q, Wu Y M, Simultaneous determination of five synthetic antioxidants in edible vegetable oil by GC-MS [J], Analytical and Bioanalytical Chemistry,2006.386: 1881-1887.
    [111]Chen M, Xia Q H, Liu M S, Yang Y L, Cloud-Point Extraction and reversed-phase high-performance liquid chromatography for the determination of synthetic phenolic antioxidants in edible oils [J], Journal of Food Science,2011,76(1):98~103.
    [112]Li X Q, Ji C, Sun Y Y, Li Y M, Gang C X, Analysis of synthetic antioxidants and preservatives in edible vegetable oil by HPLC/TOF-MS [J], Food Chemistry,2009,113(2):692~700.
    [1]Gupta V K, Jain R, Radhapyari K, Jadon N, Agarwal S,Voltammetric techniques for the assay of pharmaceuticals-A review [J], Analytical Biochemistry,2011,408(2):179~196.
    [2]El-Shahawi M S, Hamza A, Bashammakh A S, Al-Sibaai A A, Al-Saggaf W T, Analysis of some selected persistent organic chlorinated pesticides in marine water and food stuffs by differential pulse-cathodic stripping voltammetry [J], Electroanalysis,2011,23(5):1175~1185.
    [3]Yao K A, Huang D Q, Xu B L, Wang N, Wang Y J, Bi S P, A sensitive electrochemical approach for monitoringthe effects of nano-Al2O3 on LDH activity by differential pulse voltammetry [J], Analyst, 2010,135(1):116~120.
    [4]Yu L, Andriola A. Quantitative gold nanoparticle analysis methods:A review [J]. Talanta,2010, 82(3):869~875.
    [5]Xie C G, Li H F, Li S Q, Wu J, Zhang Z P, Surface molecular self-assembly for organophosphate pesticide imprinting in electropolymerized poly(p-aminothiophenol) membranes on a gold nanoparticle modified glassy carbon electrode [J], Analytical Chemistry,2010,82(1):241~249.
    [6]Komathi S, Gopalan A I, Lee K P, Nanomolar detection of dopamine at multi-walled carbon nanotube grafted silica network/gold nanoparticle functionalised nanocomposite electrodes [J], Analyst,2010.135(2):397~404.
    [7]Jain P K, El-Sayed M A, Noble metal nanoparticle pairs:effect of medium for enhanced nanosensing [J], Nano Letters,2008,8(12):4347~4352.
    [8]Khatri O P, Murase K, Sugimura H, Structural organization of gold nanoparticles onto the ITO surface and its optical properties as a function of ensemble size [J], Langmuir,2008,24(8): 3787~3793.
    [9]Esumi K, Houdatsu H, Yoshimura T, Antioxidant action by gold-PAMAM dendrimer nanocomposites [J], Langmuir,2004,20(7):2536~2538.
    [10]Desaphy J F, Pierno S, Luca A, Didonna P, Camerino D C, Different ability of clenbuterol and salbutamol to block sodium channels predicts their therapeutic use in muscle excitability disorders [J], Molecular Pharmacology,2003,63(3):659~670.
    [11]Reszka K J, McGraw D W, Britigan B E, Peroxidative metabolism of β2-agonists salbutamol and fenoterol and their analogues [J]. Chemical Research in Toxicology,2009,22(6):1137~1150.
    [12]Moloney A P, Allen P, McHugh T V, Quirke J F, Effects of cimaterol on Finnish-Landracewether lambs.1. Feed conversion efficiency, body composition and selected plasma hormone and metabolite concentrations [J], Livestock Production Science.1995,42(1):23~33.
    [13]Ramos F, Cristino A, Carrola P, Eloy T, Silva J M, Castilho M C, Silveira M I N, Clenbuterol food poisoning diagnosis by gas chromatography-mass spectrometric serum analysis [J], Analytica Chimica Acta,2003,483(1-2):207~213.
    [14]A. Vale, β2-agonists [J], Medicine,2007,35 (11):597.
    [15]中华人民共和国农业部公告,第235号,北京,2002.http://yz.hz-agri.gov.cn/uploadFiles/2005-10/1130221564406.doc.
    [16]Commission Regulation (EU) No 37/2010 of 22 December 2009 on pharmacologically active substances and their classification regarding maximum residue limits in foodstuffs of animal origin, Official Journal of the European Union,2010, L I 5-1.
    [17]Food and Agriculture Organization of United Nations, Residue Evaluation of Certain Veterinary Drugs, Joint FAO/WHO Expert Committee on Food Additives,70th meeting 2008, Food and Agriculture Organization of the United Nations, Rome,2009.
    [18]He L M, Su Y J, Zeng Z L, Liu Y H, Huang X H, Determination of ractopamine and clenbuterol in feeds by gas chromatography-mass spectrometry [J], Animal Feed Science and Technology,2007, 132(3-4):316~323.
    [19]Zhang L Y, Chang B Y, Dong T, He P L, Yang W J. Wang Z Y. Simultaneous determination of salbutamol, ractopamine, and clenbuterol in animal feeds by SPE and LC-MS [J], Journal of Chromatographic Science,2009,47(4):324~328.
    [20]Blanca J, Munoz P, Morgado M. Mendez N, Aranda A. Reuvers T, Hooghuis H. Determination of clenbuterol. ractopamine and zilpaterol in liver and urine by liquid chromatography tandem mass spectrometry [J], Analytica Chimica Acta,2005,529(1-2):199~205.
    [21]Churchwell M I, Holder C L. Little D, Preece S. Smith D J, Doerge D R, Liquid chromatography-electrospray tandem mass spectrometric analysis of incurred ractopamine residues in livestock tissues [J], Rapid Communications in Mass Spectrometry,2002,16(13):1261~1265.
    [22]Nielen M W F, Lasaroms J J P, Essers M L, Osterink J E, Meijer T, Sanders M B, Zuidema T, Stolker A A M, Multiresidue analysis of beta-agonists in bovine and porcine unire, feed and hair using liquid chromatography electrospray ionisation tandem mass spectrometry [J], Analytical and Bioanalytical Chemistry,2008,391(1):199~210.
    [23]Liu B M, Yan H Y, Qiao F X, Geng Y R, Determination of clenbuterol in porcine tissues using solid-phase extraction combined with ultrasound-assisted dispersive liquid-liquid microextraction and HPLC-UV detection [J], Journal of Chromatography B,2011,879(1):90~94.
    [24]Zheng H, Deng L G, Lu X, Zhao S C, Guo C Y, Mao J S, Wang Y T, Yang G S, Aboul-Enein, UPLC-ESI-MS-MS determination of three β2-agonists in pork [J], Chromatographia,2010,72(1-2): 79~84.
    [25]Li C, Wu Y L, Yang T, Zhang Y, Huang-Fu W G, Simultaneous determination of clenbuterol, salbutamol and ractopamine in milk by reversed-phase liquid chromatography tandem mass spectrometry with isotope dilution [J], Journal of Chromatography A,2010,1217(50):7873~7877.
    [26]Chen Q, Fan L Y, Zhang W, Cao C X, Separation and determination of abused drugs clenbuterol and salbutamol from complex extractants in swine feed by capillary zone electrophoresis with simple pretreatment [J], Talanta,2008,76(2):282~287.
    [27]Sirichai S, Khanatharana P, Rapid analysis of clenbuterol, salbutamol, procaterol, and fenoterol in Pharmaceuticals and human urine by capillary electrophoresis [J], Talanta,2008,76(5):1194~1198.
    [28]Shi Y F, Huang Y, Duan J P, Chen H Q, Chen G N, Field-amplified on-line sample stacking for separation and determination of cimaterol, clenbuterol and salbutamol using capillary electrophoresis [J], Journal of Chromatography A,2006,1125(1):124~128.
    [29]Shen L, He P L, An electrochemical immunosensor based on agarose hydrogel films for rapid determination of ractopamine [J], Electrochemistry Communications,2007,9(4):657~662.
    [30]Goyal R N, Ovama M, Singh S P, Fast determination of salbutamol, abused by athletes for doping, in Pharmaceuticals and human biological fluids by square wave voltammetry [J], Journal of Electroanalytical Chemistry,2007,611(1-2):140~148.
    [31]Liu L J, Pan H B, Du M, Xie W Q, Wang J, Glassy carbon electrode modified with Nafion-Au colloids for clenbuterol electroanalysis [J], Electrochimica Acta,2010,55(24):7240~7245.
    [32]Guo R X, Xu Q, Wang D Y, et al. Trace determination of clenbuterol with an MWCNT-Nafion nanocomposite modified electrode [J], Microchimica Acta,2008,161(1-2):265~272.
    [33]Arancibia J A, Delfa G M, Boschetti C E, Escandar G M, Olivieri A C, Application of partial least-squares spectrophotometric-multivariate calibration to the determination of 2-sec-butyl-4,6-dinitrophenol (dinoseb) and 2,6-dinitro-p-cresol in industrial and water samples containing hydrocarbons [J], Analytica Chimica Acta,2005,553(1-2):141~147.
    [34]Arancibia J A, Rullo A, Olivieri A C, Nezio S D, Pistonesi M, Lista A, Fernandez Band B S, Fast spectrophotometric determination of fluoride in ground waters by flow injection using partial least-squares calibration [J], Analytica Chimica Acta,2004,512 (1):157~163.
    [35]Olivieri A C, Goicoechea H C, Inon F A, MVC1:an integrated MatLab toolbox for first-order multivariate calibration [J], Chemometrics and Intelligent Laboratory Systems,2004,73 (2): 189~197.
    [36]Hemmateenejad B, Ghavami R, Miri R, Shamsipur M, Net analyte signal-based simultaneous determination of antazoline and naphazoline using wavelength region selection by experimental design-neural networks [J], Talanta,2006,68 (4):1222~1229.
    [37]Samadi-Maybodi A, Nejad-Darzi S K H, Simultaneous determination of paracetamol, phenylephrine hydrochloride and chlorpheniramine maleate in pharmaceutical preparations using multivariate calibration 1 [J], Spectrochimica Acta Part A,2010,75 (4):1270~1274.
    [38]Grabar K C, Freeman R G, Hommer M B, Natan M J, Preparation and characterization of Au colloid monolayers [J], Analytical Chemistry,1995,67 (4):735~743.
    [39]Brown K R, Walter D G, Natan M J, Seeding of colloidal Au nanoparticle solutions.2. improved control of particle size and shape [J], Chemistry Materials,2000,12 (2):306~313.
    [40]Ni Y N, Xiao W Q, Kokot S, A differential kinetic spectrophotometric method for determination of three sulphanilamide artificial sweeteners with the aid of chemometrics [J], Food Chemistry,2009, 113(4):1339~1345.
    [41]Ni Y N, Li S Z, Kokot S, Simultaneous voltammetric analysis of tetracycline antibiotics in foods [J]. Food Chemistry,2011,124(3):1157~1163.
    [42]Otto M, Wegscheider W, Spectrophotometric multicomponent analysis applied to trace metal determinations [J], Analytical Chemistry,1985,57 (1):63~69.
    [1]Mukhopadhyay A K, Antioxidants-n atural and synthetic [M], Amani International Publishers, Kiel 2006.
    [2]Medeiros R A, Rocha-Filho R C, Fatibello-Filho O, Simultaneous voltammetric determination of phenolic antioxidants in food using a boron-doped diamond electrode [J], Food Chemistry,2010, 123(3):886~891.
    [3]Williams G M, Interventive prophylaxis of liver cancer [J], European journal of cancer prevention, 1994,3(2):89~99.
    [4]Food and Drug Administration, Code of Federal Regulations, Title 21:Food and Drugs, Office of the Federal Register,Washington, DC,2001 (Chapter I).
    [5]Council Directive 95/2/EC of 20 February 1995 on Food Additives Other than Colours and Sweeteners, OJ L 61,18.3.1995, Brussels,1995, p.l.
    [6]Rodil R, Quintana J B, Basaglia G, Pietrogrande M C, Cela R, Determination of synthetic phenolic antioxidants and their metabolites in water samples by downscaled solid-phase extraction, silylation and gas Chromatography-mass spectrometry [J], Journal of Chromatography A,2010,1217(41): 6428-6435.
    [7]Chen M, Xia Q H, Liu M S, Yang Y L, Cloud-point extraction and reversed-phase high-performance liquid chromatography for the determination of synthetic phenolic antioxidants in edible oils [J], Journal of Food Science,2010,76(1):98~103.
    [8]Capitan-Vallvey LF, Valencia M C, Arana Nicolas E, Monoparameter sensors for the determination of the antioxidants butylated hydroxyanisole and n-propyl gallate in foods and cosmetics by flow injection spectrophotometry[J], Analyst,2001,126:897~902.
    [9]Cruces-Blanco C, Segura Carretero A, Merino Boyle E, Fernandez Gutierrez A, The use of dansyl chloride in the spectrofluorimetric determination of the synthetic antioxidant butylated hydroxyanisole in foodstuffs [J], Talanta,1999,50:1099~1108.
    [10]Wang H W, Liu W M, Optimization of a high-performance liquid chromatography system by artificial neural networks for separation and determination of antioxidants [J], Journal of separation science,2004,27:1189~1194.
    [11]Perrin C, Meyer L, Simultaneous determination of ascorbyl palmitate and nine phenolic antioxidants in vegetable oils and wdible fats by HPLC [J], Journal of the American oil chemists’society,2003, 80:115~118.
    [12]Saad B, Sing Y Y, Nawi M A, Hashim N, Ali A S M, Saleh M I, Sulaiman S F, Talib K M, Ahmad K, Determination of synthetic phenolic antioxidants in food items using reversed-phase HPLC [J], Food Chemistry,2007,105:389~394.
    [13]Chen M, Xia Q H, Liu M S, Yang Y L, Cloud-Point Extraction and reversed-phase high-performance liquid chromatography for the determination of synthetic phenolic antioxidants in edible oils [J], Journal of Food Science,2011,76:98~103.
    [14]Li X Q, Ji C, Sun Y Y, Li Y M, Chu X G, Analysis of synthetic antioxidants and preservatives in edible vegetable oil by HPLC/TOF-MS [J], Food Chemistry,2009,113:692~700.
    [15]Guo L, Xie M Y. Yan A P, Wan Y Q, Wu Y M, Simultaneous determination of five synthetic antioxidants in edible vegetable oil by GC-MS [J], Analytical and Bioanalytical Chemistry,2006, 386:1881-1887.
    [16]Ceballos C, Fernandez H, Synthetic antioxidants in edible oils by square-wave voltammetry on ultramicroelecrrodes [J], Journal of the American Oil Chemists'Society.2000,77:731~735.
    [17]Robledo S N, Zon M A, Ceballos C D, Fernandez H, Qualitative and quantitative electroanalysis of synthetic phenolic antioxidant mixtures in edible oils based on their acid-base properties [J], Food Chemistry,2011,127:1361~1369.
    [18]de Araujo T A, Barbosa A M J, Viana L H, Ferreira V S, Electroanalytical determination of TBHQ, a synthetic antioxidant, in soybean biodiesel samples [J], Fuel,2011,90:707~712.
    [19]Chirea M, Garcia-Morales V, Manzanares J A, Pereira C, Gulaboski R, Silva F, Electrochemical characterization of polyelectrolyte/gold nanoparticle multilayers self-assembled on gold electrodes [J], Journal of Physical Chemistry B,2005,109:21808~21817.
    [20]Yang S L, Xu B F, Zhang J Q, Huang X D, Ye J S, Yu C Z, Controllable adsorption of reduced graphene oxide onto self-assembled alkanethiol monolayers on gold electrodes:tunable electrode dimension and potential electrochemical applications [J], Journal of Physical Chemistry C,2010,114: 4389~4393.
    [21]Su L, Gao F. Mao L Q, Electrochemical properties of carbon nanotube (CNT) film electrodes prepared by controllable adsorption of CNTs onto an alkanethiol aonolayer self-assembled on gold electrodes [J], Analytical Chemistry,2006,78:2651~2657.
    [22]Wang Z J, Zhang J, Yin Z Y, Wu S X, Mandler D, Zhang H, Fabrication of nanoelectrode ensembles by electrodepositon of Au nanoparticles on single-layer graphene oxide sheets [J], Nanoscale,2012. 4:2728~2733.
    [23]Xie C G, Li H F, Li S Q, Wu J, Zhang Z P, Surface molecular self-assembly for organophosphate pesticide imprinting in electropolymerized poly(p-aminothiophenol) membranes on a gold nanoparticle modified glassy carbon electrode [J], Analytical Chemistry,2010,82(1):241~249.
    [24]Ouyang R Z, Bragg S A, Chambers J Q, Xue Z L, Flower-like self-assembly of gold nanoparticles for highly sensitive electrochemical detection of chromium (VI) [J], Analytica Chimica Acta,2012, 722:1~7.
    [25]Saha K, Agasti S S, Kim C, Li X N, Rotello V M, Gold nanoparticles in chemical and biological sensing [J], Chemical Reviews,2012,112(5):2739~2779.
    [26]Moreno M, Rincon E, Perez J M, Gonzalez V M, Domingo A, Dominguez E, Selective immobilization of oligonucleotide-modified gold nanoparticles by electrodeposition on screen-printed electrodes [J], Biosensors and Bioelectronics,2009,25:778~783.
    [27]Zhang Y M, Chen H, Gao X, Chen Z C, Lin X F, A novel immunosensor based on an alternate strategy of electrodeposition and self-assembly [J], Biosensors and Bioelectronics.2012,35: 277~283.
    [28]Gholivand M B, Pashabadi A, Azadbakht A, Menati S, A nano-structured Ni(II)-ACDA modified gold nanoparticle self-assembled electrode for electrocatalytic oxidation and determination of tryptophan [J], Electrochimica Acta,2011,56:4022~4030.
    [29]Hu G Z, Chen L, Guo Y, Wang X L, Shao S J, Selective determination of L-dopa in the presence of uric acid and ascorbic acid at a gold nanoparticle self-assembled carbon nanotube-modified pyrolytic graphite electrode [J], Electrochimica Acta,2010,55:4711~4716.
    [30]Chu L, Han L, Zhang X L, Electrochemical simultaneous determination of nitrophenol isomers at nano-gold modified glassy carbon electrode [J], Journal of Applied Electrochemistry,2011,41: 687~694.
    [31]Anson F, Huang W Z, Gao X X, Electrochemistry and Electroanalytical Chemistry [M], Beijing University Press, Beijing,1983 (in Chinese).
    [32]Wang M Y, Zhang D E, Tong Z W, Xu X Y, Yang X J, Voltammetric behavior and the determination of quercetin at a flowerlike Co3O4 nanoparticles modified glassy carbon electrode [J], Journal of Applied Electrochemistry,2011,41:189~196.
    [33]Laviron E, general expression of the linear potential sweep voltammogram in the case of diffusiornless electrochemical systems [J], Journal of Applied Electrochemistry,1979,101:19~28.
    [34]Wu K B, Sun Y Y, Hu S S, Development of an amperometric indole-3-acetic acid sensor based on carbon nanotubes film coated glassy carbon electrode [J], Sensors and Actuators B:Chemical,2003, 96:658~662.
    [35]Yin H S, Zhou Y L, Ma Q, Ai S Y, Chen Q P, Zhu L S, Electrocatalytic oxidation behavior of guanosine at graphene, chitosan and Fe3O4 nanoparticles modified glassy carbon electrode and its determination [J],Talanta,2010,82:1193~1199.
    [36]Ni Y N, Wang L, Kokot S, Voltammetric determination of butylated hydroxyanisole, butylated hydroxytoluene, propyl gallate and tert-butylhydroquinone by use of chemometric approaches [J], Analytica Chimica Acta,2000,412:185~193.
    [37]Lin X Y, Ni Y N, Li S Z, Kokot S, A novel method for simultaneous analysis of three β2-agonists in foods with the use of a gold-nanoparticle modified glassy carbon electrode and chemometrics [J], Analyst,2012,137:2086~2094.
    [38]Lin X Y, Ni Y N, Kokot S, Voltammetric analysis with the use of a novel electro-polymerised graphene-nafion film modified glassy carbon electrode:Simultaneous analysis of noxious nitroaniline isomers [J], Journal of Hazardous Materials,2012,243:232~241.
    []Li H B, Li J. Xu Q, Hu X Y. Poly(3-hexylthiophene)/TiO2 nanoparticle-functionalized electrodes for visible light and low potential photoelectrochemical sensing of organophosphorus pesticide chlopyrifos [J], Analytical Chemistry,2011,83:9681~9686.
    [2]Wang L T, Zhang Y, Du Y L, Lu D B, Zhang Y Z, Wang C M, Simultaneous determination of catechol and hydroquinone based on poly (diallyldimethylammonium chloride) functionalized graphene-modified glassy carbon electrode [J], Journal of Solid State Chemistry,2012,16: 1323-1331.
    [3]Chauhan N, Narang J, Pundir C S, Immobilization of rat brain acetylcholinesterase on ZnS and poly (indole-5-carboxylic acid) modified Au electrode for detection of organophosphorus insecticides [J], Biosensors and Bioelectronics,2011,29:82~88.
    [4]Zhang F Y, Wang Z H, Zhang Y Z, Zheng Z X, Wang C M, Du Y L, Ye W C, Simultaneous electrochemical determination of uric acid, xanthine and hypoxanthine based on poly(l-arginine)/graphene composite film modified electrode [J], Talanta,2012,93:320~325.
    [5]Sen M, Tamer U, Pekmez N O, Carbon nanotubes/alizarin red S-poly (vinylferrocene) modified glassy carbon electrode for selective determination of dopamine in the presence of ascorbic acid [J]. Journal of Solid State Chemistry,2012,16:457~463.
    [6]Yang P H, Wei W Z, Yang L, Simultaneous voltammetric determination of dihydroxybenzene isomersusing a poly(acid chrome blue K)/carbon nanotube composite electrode [J], Microchimica Acta,2007,157:229~235.
    [7]Wang C, Yuan R, Chai Y Q, Zhang Y, Hu F X, Zhang M H, Au-nanoclusters incorporated 3-amino-5-mercapto-1,2,4-triazole film modified electrode for the simultaneous determination of ascorbic acid, dopamine, uric acid and nitrite [J], Biosensors and Bioelectronics,2011,30:315~319.
    [8]Guo S J, Zhu Q Q, Yang B C, Wang J, Ye B X, Determination of caffeine content in tea based on poly (safranine T) electroactive film modified electrode [J], Food Chemistry,2011,129:1311~1314.
    [9]Yang G J, Yan J K, Qi F, Sun C, High sensitivity and reproducibility of a bismuth/poly(bromocresol purple) film modified glassy carbon electrode for determination of trace amount of cadmium by differential pulse anodic stripping voltammetry [J], Electroanalysis,2010,22:2729~2738.
    [10]Liu H, Huang J F, Ji Z Q, Yu Y, Xiong G H, Syntheses and absorptive properties of several new 8-quinolinol-5-sulfonic acid-7-azo reagents [J], Chemistry Reagents (Huaxue Shiji) 1997,19: 105~107 (in Chinese).
    [11]Wu F Y, Huang J F, Ji Z Q, Wen X, Study on fluorescent properties and application of the new reagent 7-[(2,4-dihydroxy-5-carboxybenzene)azo]-8-hydroxyquinoline-5'-sulfonic acid with aluminium [J], Fenxi Shiyanshi,1999:1862~64 (in Chinese).
    [12]Allen M J, Tung V C, Kaner R B, Honeycomb carbon:A review of graphene [J], Chemical Reviews, 2010,110:132~145.
    [13]Chen J L, Yan X P, Meng K, Wang S F, Graphene oxide based photoinduced charge transfer label-free near-infrared fluorescent biosensor for dopamine [J], Analytical Chemistry,2011,83: 8787-8793.
    [14]Robinson J T, Burgess J S, Junkermeier C E. Badescu S C, Reinecke T L. Perkins F K, Zalalutdniov M K, Baldwin J W, Culbertson J C, Sheehan P E, Snow E S, Properties of fluorinated graphene films [J], Nano Letters,2010,10:3001~3005.
    [15]Mallesha M, Manjunatha R, Nethravathi C, Suresh G S, Rajamathi M, Melo J S, Venkatesha T V, Functionalized-graphene modified graphite electrode for the selective determination of dopamine in presence of uric acid and ascorbic acid [J], Bioelectrochemistry,2011,81:104~108.
    [16]Yin H S, Zhang Q M, Zhou Y L, Ma Q, Liu T, Zhu L S, Ai S Y, Electrochemical behavior of catechol, resorcinol and hydroquinone at graphene-chitosan composite film modified glassy carbon electrode and their simultaneous determination in water samples [J], Electrochimica Acta,2011,56: 2748~2753.
    [17]Liu Z M, Wang Z L, Cao Y Y, Jing Y F, Liu Y L, High sensitive simultaneous determination of hydroquinone and catechol based on graphene/BMIMPF6 nanocomposite modified electrode [J], Sensors and Actuators B:Chemical,2011,157:540~546.
    [18]Yazdi A S, Mofazzeli F, Es'haghi Z, Determination of 3-nitroaniline in water samples by directly suspended droplet three-phase liquid-phase microextraction using 18-crown-6 ether and high-performance liquid chromatography [J], Journal of Chromatography A,2009,1216: 5086~5091.
    [19]EPA Method 1625, Fed. Reg. U.S Government Print Office, Washington, DC, September 1994.
    [20]Tong C L, Guo Y, Liu W P, Simultaneous determination of five nitroaniline and dinitroaniline isomers in wastewaters by solid-phase extraction and high-performance liquid chromatography with ultraviolet detection [J], Chemosphere,2010,81:430~435.
    [21]Yazdi A S, Mofazzeli F, Es'haghi Z, A new high-speed hollow fiber based liquid phase microextraction method using volatile organic solvent for determination of aromatic amines in environmental water samples prior to high-performance liquid chromatography [J], Talanta,2009,79: 472-478.
    [22]Niazi A, Ghasemi J, Yazdanipour A, Simultaneous spectrophotometric determination of nitroaniline isomers after cloud point extraction by using least-squares support vector machines [J], Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy,2007,68:523~530.
    [23]Ghasemi J, Niazi A, Spectrophotometric simultaneous determination of nitroaniline isomers by orthogonal signal correction-artial least squares [J], Talanta,2005,65:1168~1173.
    [24]Hasani M, Emami F, Evaluation of feed-forward back propagation and radial basis function neural networks in simultaneous kinetic spectrophotometric determination of nitroaniline isomers [J], Talanta,2008,75:116~126.
    [25]Kataoka H, Derivatization reactions for the determination of amines by gas chromatography and their applications in environmental analysis [J], Journal of Chromatography A,1996,733:19~34.
    [26]Chiang J S, Huang S D, Simultaneous derivatization and extraction of anilines in waste water with dispersive liquid-liquid microextraction followed by gas chromatography-mass spectrometric detection [J], Talanta,2008,75:70~75.
    [27]Guo X F, Lv J, Zhang W D, Wang Q J, He P G, Fang Y Z, Separation and determination of nitroaniline isomers by capillary zone electrophoresis with amperometric detection [J], Talanta,2006, 69:121-125.
    [28]Zhao F Q, Liu L Q. Xiao F, Li J W. Yan R, Fan S S, Zeng B Z.. Sensitive voltammetric response of p-nitroaniline on single-wall carbon nanotube-Ionic liquid gel modified glassy carbon electrodes [J], Electroanalysis.2007.19:1387~1393.
    [29]Maistrenko V N, Sapel'nikova S V. Kudasheva F K. et al. Isomer-selective carbon-paste electrodes for the determination of nitrophenol, nitroaniline, and nitrobenzoic acid by adsorption-stripping voltammetry [J], Journal of Analytical Chemistry,2000,55:586~589.
    [30]Gemperline P J. Long J R, Gregoriou V G, Nonlinear multivariate calibration using principal components regression and artificial neural networks [J]. Analytical Chemistry,1991,63: 2313~2323.
    [31]Haaland D M, Thomas E V, Partial least-squares methods for spectral analyses.1. Relation to other quantitative calibration methods and the extraction of qualitative information [J], Analytical Chemistry,1988,60:1193~1202.
    [32]Thomas E V, Haaland D M, Comparison of multivariate calibration methods for quantitative spectral analysis [J], Analytical Chemistry,1990,62:1091~1099.
    [33]Yin H S, Zhou Y L, Ma Q, Ai S Y, Ju P, Zhu L S, Lu LA, Electrochemical oxidation behavior of guanine and adenine on graphene-Nafion composite film modified glassy carbon electrode and the simultaneous determination [J], Process Biochemistry,2010,45:1707~1712.
    [34]Laviron E, general expression of the linear potential sweep voltammogram in the case of diffusionless electrochemical systems [J], Journal of Applied Electrochemistry,1979,101:19~28.
    [35]Liu M L, Wang L P, Deng J H, Chen Q, Li Y Z, Zhang Y Y, Li H T, Yao S Z, Highly sensitive and selective dopamine biosensor based on a phenylethynyl ferrocene/graphene nanocomposite modified electrode [J], Analyst,2012,137:4577~4583.
    [36]Wang M Y. Zhang D E, Tong Z W, Xu X Y, Yang X J, Voltammetric behavior and the determination of quercetin at a flowerlike Co3O4 nanoparticles modified glassy carbon electrode [J], Journal of Applied Electrochemistry,2011,41:189~196.
    [37]Yin H S, Zhou Y L, Ma Q, Ai S Y, Chen Q P, Zhu L S, Electrocatalytic oxidation behavior of guanosine at graphene, chitosan and Fe3O4 nanoparticles modified glassy carbon electrode and its determination [J], Talanta,2010,82:1193~1199.
    [38]Miller J N, Miller J C, Statistics and Chemometrics for Analytical Chemistry, fourthed., Pearson Education, England,2000.
    [39]Berzas J J, Rodriguez J, Castaneda G, Partial least squares method in the analysis by square wave voltammetry. Simultaneous determination of sulphamethoxypyridazine and trimethoprim [J], Analytica Chimica Acta,1997,349:303~311.
    [40]Lin X Y, Ni Y N, Li S Z, Kokot S, A novel method for simultaneous analysis of three β2-agonists in foods with the use of a gold-nanoparticle modified glassy carbon electrode and chemometrics [J], Analyst,2012,137:2086~2094.
    [1]Bocca B, Fiori M, Cartoni C, Brambilla G, Simultaneous determination of zilpaterol and other beta agonists in calf eye by gas chromatography/tandem mass spectrometry [J], Journal of AOAC international,2003,86:8-14.
    [2]Femando R, Assuncao C, Paulo C, Tania E, Manuel S J, Da Conceicao C M, Da Silveira N, Irene M, Clenbuterol food poisoning diagnosis by gas chromatography-mass scpectrometric serum analysis [J], Analytica Chimica Acta,2003,483(1-2):207~214.
    [3]He L M, Su Y J, Zeng Z L, Liu Y H, Huang X H, Determination of ractopamine and clenbuterol in feeds by gas chromatography-mass spectrometry [J], Animal Feed Science and Technology,2007. 132:316~323.
    [4]Zhang L Y, Chang B Y, Dong T, He P L, Yang W J, Wang Z Y, Simultaneous determination of salbutamol, ractopamine, and clenbuterol in animal feeds by SPE and LC-MS [J], Journal of Chromatographic Science,2009,47:324~328.
    [5]Liu B M, Yan H Y, Qiao F X, Geng Y R, Determination of clenbuterol in porcine tissues using solid-phase extraction combined with ultrasound-assisted dispersive liquid-liquid microextraction and HPLC-UV detection [J], Journal of Chromatography B,2011,879:90~94.
    [6]Li C, Wu Y L, Yang T, Zhang Y, Huang-Fu W G, Simultaneous determination of clenbuterol, salbutamol and ractopamine in milk by reversed-phase liquid chromatography tandem mass spectrometry with isotope dilution [J], Journal of Chromatography A,2010,1217:7873~7877.
    [7]Shao B, Jia X F, Zhang J, Multi-residual analysis of 16 b-agonists in pig liver, kidney and muscle by ultra performance liquid chromatography tandem mass spectrometry [J]. Food Chemistry,2009,114: 1115~1121.
    [8]Dolores M, Hernando M, Gomez J, Aguera A, Fernandez-Alba A R, LC-MS analysis of basic Pharmaceuticals (beta-blockers and anti-ulcer agents) in wastewater and surface water [J]. Trends in Analytical Chemistry,2007,26:581~594.
    [9]Lee H B, Sarafin K, Thomas E P, Determination of β-blockers and β2-agonists in sewage by solid-phase extraction and liquid chromatography-tandem mass spectrometry [J]. Journal of Chromatography A,2007,1148:158~167.
    [10]Shen J Z, Zhang Z, Yao Y, Shi W M, Liu Y B, Zhang S X, Time-resolved fluoroimmunoassay for ractopamine in swine tissue [J]. Analytical and Bioanalytical Chemistry,2007,387:1561~1564.
    [11]Wang J P, Zhang S X, Shen J Z, Technical note:a monoclonal antibody-based immunoassay for determination of ractopamine in swine feeds [J], Journal of animal science,2006,84:1248~1251.
    [12]Shelver W L, Smith D J, Immunosorbent assay for the determination of ractopamine in incurred samples from food animals [J], Journal of Agricultural and Food Chemistry,2002.50:2742~2747.
    [13]Chen Q, Fan L Y, Zhang W, Cao C X, Separation and determination of abused drugs clenbuterol and salbutamol from complex extractants in swine feed by capillary zone electrophoresis with simple pretreatment [J], Talanta,2008,76:282~287.
    [14]Sirichai S, Khanatharana P, Rapid analysis of clenbuterol, salbutamol, procaterol, and fenoterol in Pharmaceuticals and human urine by capillary electrophoresis [J], Talanta,2008,76:1194~1198.
    [15]Shi Y F, Huang Y, Duan J P, Chen H Q, Chen G N, Field-amplified on-line sample stacking for separation and determination of cimaterol, clenbuterol and salbutamol using capillary electrophoresis [J], Journal of Chromatography A,2006,1125:124~128.
    [16]Franz A, Conrad K, Biosensor-based methods in clinical diagnosis [M], Methods in molecular medicine, molecular diagnosis of infectious disease,1998,13:503~517.
    [17]Reh C, Perspectives for biosensor technology in the food industry [J], Lebensmittelchemie,1996,50: 160.
    [18]Chu P T, Lin C S, Chen W J, Chen C F, Wen H W, Detection of gliadin in foods using a quartz crystal microbalance biosensor that incorporates gold nanoparticles [J], Journal of Agricultural and Food Chemistry,2012,26:6483~6492.
    [19]Kindschy L M, Alocilja E C, A review of molecularly imprinted polymers for biosensor development for food and agricultural applications [J], Transactions of the ASAE,2004,47:1375~1382.
    [20]Liu J, Yin L F, Dai Y R, Jiang F, Niu J F, Application of electrochemical enzyme biosensor in environmental pollution monitoring [J], Progress in chemistry,2012,24:131~143.
    [21]Li H B, Li J, Xu Q, Hu X Y, Poly(3-hexylthiophene)/TiO2 nanoparticle-functionalized electrodes for visible light and low potential photoelectrochemical sensing of organophosphorus pesticide chlopyrifos [J], Analytical Chemistry,2011,83:9681~9686.
    [22]Lin X Y, Ni Y N, Kokot S, Voltammetric analysis with the use of a novel electro-polymerised graphene-nafion film modified glassy carbon electrode:simultaneous analysis of noxious nitroaniline isomers [J], Journal of Hazardous Materials,2012,243:232~241.
    [23]Zhang F Y, Wang Z H, Zhang Y Z, Zheng Z X, Wang C M, Du Y L, Ye W C, Simultaneous electrochemical determination of uric acid, xanthine and hypoxanthine based on poly(l-arginine)/graphene composite film modified electrode [J], Talanta,2012,93:320~325.
    [24]Yang P H, Wei W Z, Yang L, Simultaneous voltammetric determination of dihydroxybenzene isomersusing a poly(acid chrome blue K)/carbon nanotube composite electrode [J], Microchimica Acta,2007,157:229~235.
    [25]Guo S J, Zhu Q Q, Yang B C, Wang J, Ye B X, Determination of caffeine content in tea based on poly (safranine T) electroactive film modified electrode [J], Food Chemistry,2011,129:1311~1314.
    [26]Yang G J. Yan J K, Qi F, Sun C, High sensitivity and reproducibility of a bismuth/poly (bromocresol purple) film modified glassy carbon electrode for determination of trace amount of cadmium by differential pulse anodic stripping voltammetry [J], Electroanalysis,2010,22:2729~2738.
    [27]Gao J Z, Tian J N, Zhao Y C, et al. Determination of gallium by spectrofluorimetry using acid chrome bule K [J], Analytical Letters,2001,34:415~423.
    [28]Ma C Q, Li K A, Tong S Y, Enhancement of rayleigh light scattering of acid chrome blue K by proteins and protein assay by the scattering technique [J], Analyst,1997,122:361~364.
    [29]Yang P H, Wei W Z, Liu Y, Simultaneous voltammetric determination of dihydroxybenzene isomers using a poly(acid chrome blue K)/carbon nanotube composite electrode [J], Microchimica Acta,2007, 157:229~235.
    [30]Zhang R, Jin G D, Chen D, Hu X Y, Simultaneous electrochemical determination of dopamine, ascorbic acid and uric acid using poly(acid chrome blue K) modified glassy carbon electrode [J], Sensors and Actuators B,2009,138:174~181.
    [31]Allen M J, Tung V C, Kaner R B, Honeycomb carbon:a review of graphene [J], Chemical Reviews, 2010.110:132~145.
    [32]Chen J L, Yan X P, Meng K, Wang S F, Graphene oxide based photoinduced charge transfer label-free near-infrared fluorescent biosensor for dopamine [J]. Analytical Chemistry,2011,83: 8787~8793.
    [33]Yin H S, Zhou Y L, Ma Q, Ai S Y, Ju P, Zhu L S, Lu L A, Electrochemical oxidation behavior of guanine and adenine on graphene-Nafion composite film modified glassy carbon electrode and the simultaneous determination [J], Process Biochemistry,2010,45:1707~1712.
    [34]Laviron E, general expression of the linear potential sweep voltammogram in the case of diffusionless electrochemical systems [J], Journal of Applied Electrochemistry,1979,101:19~28.
    [35]Liu L J. Pan H B, Du M, Xie W Q, Wang J, Glassy carbon electrode modified with.Nafion-Au colloids for clenbuterol electroanalysis [J], Electrochimica Acta,2010,55:7240~7245.
    [36]Lin X Y, Ni Y N, Li S Z, Kokot S, A novel method for simultaneous analysis of three β2-agonists in foods with the use of a gold-nanoparticle modified glassy carbon electrode and chemometrics [J], Analyst,2012,137:2086~2094.
    [1]N.P. Peteros, M.M. Uy, Antioxidant and cytotoxic activities and phytochemical screening of four Philippine medicinal plants [J], Journal of Medicinal Plants Research,2010,4:407~414.
    [2]Freire CM, Marques MO, Costa M, Effects of seasonal variation on the central nervous system activity of Ocimum gratissimum L. essential oil [J]. Journal of Ethnopharmacology,105(2006): 161-166
    [3]Irie Y, Keung WM, Rhizoma acori graminei and its active principles protect PC-12 cells from the toxic effect of amyloid-β peptide [J]. Brain Research,2003,963:282~289.
    [4]Huang C W, Chow J C, Tsai J J, Wu S N, Character izing the effe cts of eugenol on neuronal ionic currents and hyperexcitability [J], Psychopharmacology,2012,221:575~587.
    [5]Pisano M, Pagnan G, Loi M, Mura M E, Tilocca M G, Palmieri G, Fabbri D, Dettori M A, Delogu G, Ponzoni M, Rozzo C, Antiproliferative and pro-apoptotic activity of eugenol-related biphenyls on malignant melanoma cells [J]. Molecular Cancer,2007,6:8~20.
    [6]Ogata M, Hoshi M, Urano S. Endo T, Antioxidant activity of eugenol and related monomeric and dimeric compounds [J], Chemical and Pharmaceutical Bulletin,2000,48:1467~1469.
    [7]Benencia F, Courreges M C, In vitro and in vivo activity of eugenol on human herpesvirus [J], Phytotherapy Research,2000,14:495~500.
    [8]M. Miyazawa, M. Hisama, Suppression of chemical mutagen-induced SOS response by alkylphenols from clove (Syzygium aromaticum) in the Salmonella typhimurium [J], Journal of agricultural and food chemistry,2001,49:4019~4025.
    [9]S.K. Abraham, Anti-genotoxicity of trans-anethole and eugenol in mice [J], Food and chemical toxicology,2001,39:493~498.
    [10]World Health Organization (WHO). Evaluation of certain food additives and contaminants. Twenty-sixth report of the Joint FAO/WHO Expert Committee on Food Additives, WHO Technical Report Series, No.683; Geneva, Switzerland,1982.
    [11]Kim G C, Choi D S, Lim J S, Jeong H C, Kim I R, Lee M H, Park B S, Caspases-dependent apoptosis in human melanoma cell by eugenol [J], Korean Journal of Anatomy,2006,39:245~253
    [12]Ghosh R, Nadiminty N, Fitzpatrick J E, Alworth W L, Slaga T J, Kumar A P, Eugenol causes melanoma growth suppression through in hibition of E2F1 transcriptional activity [J], Journal of Biological Chemistry,2005,280:5812~5819.
    [13]Ezerskis Z. Stalnionis G, Jusys Z, Electropolymerization of chlorinated phenols on a Pt electrode in alkaline solution. Part II:An electrochemical quartz crystal microbalance study [J], Journal of Applied Electrochemistry,2002,32(1):49~55.
    [14]Ezerskis Z, Stalnionis G, Jusys Z, Electropolymerization of chlorinated phenols on a Pt electrode in alkaline solution. Part IV:A gas chromatography mass spectrometry study [J]. Journal of Applied Electrochemistry,2002,32(5):543~550.
    [15]Gattrell M. Kirk D W, A study of the oxidation of phenol at platinum and preoxidized platinum surfaces [J], Journal of the Electrochemical Society,1993,140(6):1534~1540.
    [16]Mengoli G, Musiani M M, Phenol electropolymerization-a straight route from monomers to polymercoatings [J], Progress in organic coatings,1994,24(1-4):237~251.
    [17]Renner F U, Stierle A, Dosch H, Kolb D M, Lee T L, Initial corrosion observed on the atomic scale [J], Natrue,2006,439(7077):707~710.
    [18]Rodriquez J A, Goodman D W, Metal-metal bonds in bimetallic surfaces-response [J], Science, 1993,260(5113):1527~1528.
    [19]Xiao F, Zhao F Q, Deng L Z, Zeng B Z, High electrocatalytic effect of PtAuPd ternary alloy nanoparticles electrodeposited on mercapto ionic liquid film [J], Electrochemistry Communications, 2010,12(5):620~623.
    [20]Zhao F Q, Xiao F, Zeng B Z, Electrodeposition of PtCo alloy nanoparticles on inclusion complex film of functionalized cyclodextrin-ionic liquid and their application in glucose sensing [J], Electrochemistry Communications,2010,12(1):168~171.
    [21]Xiao F, Zhao F Q, Mei D P, Mo Z R, Zeng B Z, Nonenzymatic glucose sensor based on ultrasonic-electrodeposition of bimetallic PtM (M=Ru, Pd and Au) nanoparticles on carbon nanotubes-ionic liquid composite film [J], Biosensors and Bioelectronics,2009,24(12):3481~3486.
    [22]Tai C Y, Chang J L, Lee J F, Chan T S, Zen J M, Preparation and characterization of an AuCu3 alloy electrode for electrocatalytic applications [J], Electrochimica Acta,2011,56(9):3115~3121.
    [23]Liu D Y, Luo Q M, Zhou F Q, Nonenzymatic glucose sensor based on gold-copper alloy nanoparticles on defect sites of carbon nanotubes by spontaneous reduction [J], Synthetic metals, 2010,160(15-16):1745~1748.
    [24]Tominaga M, Taema Y, Taniguchi I, Electrocatalytic glucose oxidation at bimetallic gold-copper nanoparticle-modified carbon electrodes in alkaline solution [J], Journal of Electroanalytical Chemistry,2008,624(1-2):1~8.
    [25]Wang M Y, Zhang D E, Tong Z W, Xu X Y, Yang X J, Voltammetric behavior and the determination of quercetin at a flowerlike Co3O4 nanoparticles modified glassy carbon electrode [J], Journal of Applied Electrochemistry,2011,41:189~196.
    [26]Yin H S, Zhou Y L, Ma Q, Ai S Y, Chen Q P, Zhu L S, Electrocatalytic oxidation behavior of guanosine at graphene, chitosan and Fe3O4 nanoparticles modified glassy carbon electrode and its determination [J], Talanta,2010,82:1193~1199

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700