用户名: 密码: 验证码:
复合多相Pt基REOx载体膜电极的结构与析氢性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
Pt基REOx载体膜电极是一类应用广泛的非均相析氢催化剂。目前,其在新能源、环境保护等高技术领域的应用开发,存在需要解决的关键科学技术问题有:核壳结构载体膜电极短流程制备新方法;载体膜电极材料与膜系类型、性价比以及使用能耗的综合调控;稀土(RE)助剂氧化程度以及电子转移途径对载体膜电极主相的助催化机制;载体膜电极制备因素对其结构及性能的综合调控等。
     针对这些关键问题,选择Pt为载体膜电极主相,Cu为合金元素,稀土镧(La)、铈(Ce)的氧化物为助剂,石墨纤维布(GFC)、Si(111)单晶片、镍网为载体,稀H2S04溶液为析氢性能测试的化合物,采用含作者授权发明专利的离子束溅射沉积(IBSD)设备及后处理技术,制备长效高性价比低能耗的复合多相Pt基REOx载体膜电极。具体开展了四方面的研究工作:
     (1)掺Cu与后处理对PtCu载体膜电极的影响研究;
     (2)膜层体系对Pt基载体膜电极的影响研究;
     (3) Pt-CeOx单层膜表面的Ce与Pt之间相互作用机制的研究:
     (4) Pt-CeOx载体膜电极的IBSD制备工艺的影响研究。
     通过上述工作,获得研究结论研究结论:
     在PtCu载体膜电极含Cu量以及后处理工艺的影响研究方面,提出的"IBSD+真空热处理+酸蚀处理”短流程方法制备类核壳结构Pt基载体膜电极,该方法可调控载体膜电极表层的组分,避免中间产物的污染并降低能耗,易于在廉价制氢行业获得实际应用。研究结果包括:①IBSD制备的载体膜电极元素含量分布连续均匀,Cu含量增加促进表面晶粒细化,膜层组织均匀,增强Pt(111)择优生长。②载体膜电极经真空热处理(400℃、保温60min、真空度~10-5Pa)后,PtCu合金化程度最大(58.7%的Cu参与合金化),PtCu合金中Cu含量上升到54at.%,膜层晶粒仅发生微量长大。③载体膜电极经真空热处理与酸蚀处理(30min、50℃、0.50mol L-1的H2SO4溶液)后,均一组成的PtCu合金晶粒表层的Cu析出,晶粒表层富集Pt,且表层的Pt-Pt晶面间距下降6.33%,PtCu合金的平均晶粒粒径为6.67nm(降低了16%),平均比表面积增大250.2%。④经真空热处理的载体膜电极析氢活性增强11.6%,酸蚀处理可进一步提升13.4%,且析氢峰电位降低3%,综合析氢性能优异。
     在膜层体系对Pt基载体膜电极的影响研究方面,在综合分析层状结构的膜层体系与真空热处理工艺的基础上,制备出具有实际使用价值的高性价比低能耗的复合Pt基载体膜电极。研究结果包括:①PtCuLa2O3系单层载体膜电极膜层晶粒细小均匀,增加La含量将增大Pt5La的平均原子体积收缩程度,增强载体膜电极的热稳定性及富氧能力。②PtCu/La2O3系双层载体膜电极中Pt(111)择优生长,La2O3/PtCu系双层载体膜电极中Pt晶粒明显细化。③PtCu/La2O3/PtCu系多层载体膜电极表面晶粒呈细小球状晶团且分布更均匀,经真空热处理后的含Pt量低于0.1mg·cm-2,电化学活性比表面积达到94.172m2·g-1,远高于单层及双层载体膜电极,在50℃析氢反应时,交换电流密度>200mA·cm-2,分解电压<0.63V,因此,复合层状结构的膜层体系以及真空热处理工艺是影响载体膜电极析氢性能和性价比的主要因素。
     针对应用广泛且具有代表性的稀土Ce,本文通过测定表面原子结合能态的变化,直接表征界面上的电子转移途径,提出Pt-CeOx单层膜表面的Ce与Pt之间存在的相互作用机制为:Pt向Ce离子转移电子的过程中存在单电子转移与多电子激发;高价Ce离子通过Ce3+/Ce4+离子偶的氧化-还原循环形成流动的O空位,O空位向吸附的02分子提供电子使其还原为活性O2-及O-离子,促进了Pt之间的电子传递。
     本研究还获得了IBSD制备工艺影响Pt-CeOx载体膜电极物相结构及析氢性能的研究结果:①载体膜电极存在CeO、Ce6O11和CeO2以及Pt2Ce和Pt5Ce物相,Pt(111)衍射峰位发生负移。②靶位移动距离以20mm为宜,过大或过小则明显减小载体膜电极的平均比表面积。③室温下制膜有利于Pt(111)择优生长,增强载体膜电极析氢活性且降低析氢能耗。④通入辅助沉积离子源的高纯02流量应以8sccm为宜;过高则强烈抑制P“111)择优生长,降低交换电流密度;过低则阻碍CeOx及Pt-Ce合金的生成,直接影响高价Ce离子的浓度。⑤综合调整溅射离子源的屏压与束流,才能有效控制载体膜电极中CeOx的组成及含量,3.0kV的屏压与60~70mA的束流可使Pt(111)获得最强的择优生长。⑥实际溅射沉积时间宜选择为300s,易制备高性价比的Pt基REOx载体膜电极。
Pt-REOx carrier membrane electrode is a applied widely heterogeneous hydrogen evolution catalyst. At present, the key problems of science and technology-Pt-REOx carrier membrane electrode used in high technology fields of new energy, environmental protection and etc.-work out:researching in the new method about short process manufacture of Core-Shell structure membrane electrode; researching in comprehensive control about membrane electrode material, membrane system type, cost performance and energy consumption; researching in Auxiliary catalytic mechanism about oxidation degree and electron transfer way in Rare-Earth (abbr. RE) additives; researching in the structure and performance of membrane electrode through comprehensive control manufacture factors.
     Consideration of these problems, in this paper, Pt was used as main phase of membrane electrode, Cu was used as alloying element, the oxides of La and Ce were used as cocatalyst, the graphite fiber cloth (abbr. GFC), Si(111) slice and Ni mesh were used as carrier, and dilute H2SO4solution was used as compound in hydrogen evolution performance testing. The Compound multiphase Pt-REOx carrier membrane electrodes (abbr. Pt-REOx MEs)-provided with long-acting, high cost performance, and low-energy were all manufactured by Ion Beam Sputter Deposition (abbr. IBSD) equipment-including with authorized invention patents of author-and Post-processing techniques. The specific research works have:
     (1) Study on different adulterated amount of Cu and Post-processing techniques influence on PtCu carrier MEs.
     (2) Study on different membrane system type of La influence on PtCu-La2O3carrier MEs.
     (3) Study on interaction mechanism between Ce and Pt on surface of Pt-CeOx carrier MEs.
     (4) Study on manufactured technology influence on Pt-CeOx carrier MEs.
     After complete these research work, we have acquired some significative experimental results and research conclusions.
     1. These research results in studying on different adulterated amount of Cu and Post-processing techniques influence on PtCu carrier MEs showed that:
     (1) The element content distribute equably in PtCu carrier MEs manufactured by IBSD. Along with increasing content of Cu doping, the crystal particle size in PtCu carrier MEs surface was decrease, and membrane organization became densification, and the preferred orientation degree of Pt(111) would be intensified.
     (2) Through vacuum heat-treatment-at400℃,60min and~10-5Pa, the maximum alloying degree of Pt and Cu was happened in PtCu carrier MEs-about58.7at.%Cu in PtCu carrier MEs was alloyed, and Cu content in PtCu alloy was rised to54at.%, and the crystal particle size in PtCu carrier MEs only had tiny enlargement.
     (3) After vacuum heat-treatment and acid etching processes-at0.50mol L-1H2SO4solution,30min and50℃, about73.7%Cu in surface of PtCu carrier MEs was separated out, and the dealloying degree in surface than it in inside of PtCu carrier MEs, so, the shell with high concentration Pt was produced and it wrapped outside PtCu alloy particle surface, that was similar core-shell type PtCu@Pt catalyst. The data of Pt-Pt interplanar spacing from HRTEM in fringe area had6.33%decrease than it in core area, and the average crystal particle size had been decreased about16%-from7.93nm fell to6.67nm, and the average specific surface area had been increased about250.2%.
     (4) The testing data in hydrogen evolution performance of PtCu carrier MEs also indicated that its io had been enhanced respectively11.6%and13.4%after vacuum heat-treatment and acid etching processes, and Ed had been decreased about3%. Therefore, higher alloying degree of PtCu and similar core-shell structure were primary cause result in promoting compositive hydrogen evolution performance of PtCu carrier MEs.
     (5) It had been accepted by SIPO that the patent for invention-IBSD+Vacuum heat-treatment+Acid etching treatment-relate to short process manufacture similar core-shell structure MEs, and it could control superficial component of PtCu carrier MEs, and it could avoid pollution of intermediate product and reduce energy consumption, and it would be apt to obtain actual application in cheap manufacture hydrogen industry.
     2. These research results in studying on different membrane system type of La influence on Pt-REOx carrier MEs showed that:
     (1) It was showed that PtCuLa2O3series monolayer carrier MEs (abbr. PL MEs) had fine homogeneous crystalline grain. Along with the increased doping amount of La, it would be enhanced in PL MEs that the average atomic volume shrinkage degree of Pt5La, thermostability and Oxygen enrichment ability.
     (2) It would be intensified that the preferred orientation degree of Pt(111) in PtCu/La2O3series bilayer carrier MEs (abbr. P/L MEs), and would be decreased obviously that the average PtCu crystal particle size in La2O3/PtCu series bilayer carrier MEs (abbr. L/P MEs).
     (3) Its research results indicated that PtCu crystal particle in surface of PtCu/La2O3/PtCu series trilayer carrier MEs (abbr. P/L/P MEs) existed more homogeneous and fine globularity. In addition, after vacuum heat-treatment process-at400℃,60min and~10-5Pa, the testing data in hydrogen evolution performance of P/L/P MEs-at0.50mol L-1H2SO4solution and50℃-indicated that i0>200mA·cm-2,Ed<0.63V, Pt content<0.1mg·cm-2and EAS≥94.172m2·g-1, and its hydrogen evolution performance and performance price ratio were superior to P/L and L/P MEs.
     (4) Therefore, based on analysis by synthesis of different membrane system type and vacuum heat-treatment technology, it could be manufactured that composite PtCu-La2O3carrier MEs had higher cost performance, lower energy consumption and actual application value.
     3. Through assaying change in binding energy state of surface atom, the e transfer way on interface could be reflected directly. In this paper, it also had been investigated that the interaction mechanism between Ce and Pt on surface of Pt-CeOx carrier MEs. It could be considered that Ce cation obtained e from Pt, the transfer way of e concurrently have single electron transfer and polyelectrons excitation process. Its innate character was high valence state Ce cation engendered O vacancy get through Oxidation-Reduction cycle of ion-pair-Ce3+/Ce4+, and occurred following e transfer processes: O2+e→O2-→O+O-and O2+2e→2O-
     4. It was also showed that the research results in studying on manufactured technology influence on Pt-CeOX carrier MEs. There research results indicated that:
     (1) CeO, Ce6O11, CeO2, Pt2Ce and Pt5Ce had been produced in Pt-CeOx carrier MEs-Ce doped-and Pt(111) peak position in XRD existed negative shift phenomenon.
     (2) The optimal target position mobile distance (ST) value was20mm, and it would be decreased obviously that the average specific area of Pt-CeOx carrier MEs under overlarge or undersized ST value.
     (3) After Pt-CeOx carrier MEs were manufactured in room temperature, they had preferential growth of Pt(111), optimal hydrogen evolution activity and lower energy consumption.
     (4) The optimal flow of high purity O2that had been accessed Auxiliary Deposit Ion Source was8sccm. The preferential growth of Pt(111) would restrain mightily by excessive flow of O2, as well as, the lower flow of O2would impede producing CeOx and Pt-Ce alloy, and then dropped directly concentration of Ce4+.
     (5) It was indicated that composition and content of CeOx in Pt-CeOx carrier MEs could be controlled effectively through adjusted synthetically energy and current of ion beam. Under3.0kV and60-70mA, the strongest preferential growth of Pt(111) would happen in Pt-CeOx carrier MEs.
     (6) In the optimal time of actual sputtering deposition-300s, it could be manufactured easily that Pt-CeOx carrier MEs with higher performance price ratio.
引文
[1]朱达.能源-环境的经济分析与政策研究[M].中国环境科学出版社,2000.
    [2]王安建.能源与国家经济发展[M].地质出版社,2008.
    [3]J. A. Garrison. China and the Energy Equation in Asia:The Determinants of Policy Choice[M]. Lynne Rienner Publishers, Inc.,2009.
    [4]D. Rosenfeld. Suppression of Rain and Snow by Urban and Industrial Air Pollution[J]. Science,2000,287(5459):1793-1796.
    [5]B. Kruyt, D. P. V. Vuuren, H. J. M. D. Vries, etal. Indicators for energy security [J]. Energy Policy,2009,37(6):2166-2181.
    [6]S. H. Jensen, P. H. Larsen, M. Mogensen. Hydrogen and synthetic fuel production from renewableenergysources[J]. International Journal of Hydrogen Energy,2007,32(15): 3253-3257.
    [7]S. A. Grigoriev, V. I. Porembsky. V. N. Fateev. Pure hydrogen production by PEM electrolysis for hydrogenenergy[J]. International Journal of Hydrogen Energy,2006. 31(2):171-175.
    [8]T. Happe, A. Hernschemeier, M. Winkler. Hydrogenase in green:do they save the algae's life and solve our energy problems[J]? Trends in Plant Science,2002.7(6): 246-250.
    [9]D. B. Levin, L. Pitt, M. Love. Biohydrogen production:prospects and limitations to practical application[J]. International Journal of Hydrogen Energy.2004,29(2): 173-185.
    [10]A. Heinzel, B. Vogel, P. Hiibner. Reforming of naturalgas—hydrogen generation for small scale stationary fuel cell systems[J]. Journal of Power Sources,2002,105(2): 202-207.
    [11]Y. Shirasaki, T. Tsuneki, Y. Ota, etal. Development of membrane reformer system for highly efficient hydrogenproduction from naturalgas[J]. International Journal of Hydrogen Energy,2009,34(10):4482-4487.
    [12]R. H. Yin, X. B. Ji, L. Zhang, etal. Multilayer Nano Ti/TiO2-Pt Electrode for Coal-Hydrogen Production[J]. J. Electrochem. Soc.,2007,154(12):D637-D641.
    [13]C. Y. Lin, S. Y. Wu, P. J. Lin, etal. A pilot-scale high-rate biohydrogen production system with mixed microflora[J]. International Journal of Hydrogen Energy.2011, 36(14):8758-8764.
    [14]S. W. V. Ginkel, B. Logan. Increased biologicalhydrogenproduction with reduced organic loading[J]. Water Research,2005,39(16):3819-3826.
    [15]D. Das, T. N. Veziroglu. Advances in biologicalhydrogenproduction processes[J]. International Journal of Hydrogen Energy,2008,33(21):6046-6057.
    [16]J. S. Jang, H. G. Kim, P. H. Borse, etal. Simultaneous hydrogen production and decomposition of H2S dissolved in alkaline water over CdS-TiO2 composite photocatalysts under visible light irradiation[J]. International Journal of Hydrogen Energy,2007,32(18):4786-4791.
    [17]Y. X. Lu, L. Schaefer. A solid oxide fuel cell system fed with hydrogen sulfide and natural gas[J]. Journal of Power Sources,2004,135(1-2):184-191.
    [18]衣宝廉.燃料电池-原理,技术,应用[M].北京:化学工业出版社,2003.
    [19]K. V. Kordesh, J. C. T. Olierira. Fuel cells[J]. Ulmanns encyclopedia of industrial chemistry, fifth edition, VCH, Weinheim, Germany,1996, A12:55-62.
    [20]方伽俐.氢燃料电池汽车简介[J].交通与运输,2007(2):64-65.
    [21]S. A. Lee, K. W. Park. J. H, Choi, etal. Nanoparticle synthesis and eleetrocatalytie activity of Pt alloys for direct methanol fuel cells[J]. Eleetroehem Soe,2002,149(10): 1299-1304.
    [22]B. Moreno, J. R. Jurado, E. Chinarro. Pt-Ru-Co catalysts for PEMFC synthesized by combustion[J]. Catalysis Communications,2009(11):123-126.
    [23]周卫江,李文震,周振华,等.直接甲醇燃料电池阳极催化剂PtRu/C的制备和表征[J].高等学校化学学报,2003,24(5):858-862.
    [24]王淑玲.铂族金属资源的现状及对策研究[J].中国地质,2001,28(8):23-27.
    [25]周全法,尚通明.贵金属二次资源的回收利用现状和无害化处置设想[J].稀有金属材料与工程,2005,34(1):7-11.
    [26]H. H. Zhang, M. C. Gong, J. X. Guo, etal. Preparation of an Advanced Automotive Exhaust Catalyst[J].Chinese Journal of Catalysis.2004,25(2):85-86.
    [27]郑子樵,李红英.稀土功能材料[M].北京:化学工业出版社,2003.
    [28]黎鼎鑫,张永俐.贵金属材料学[M].湖南:中南工业大学出版社,1991.
    [29]李东亮.银、金、铂的性质及其应用[M].北京:高等教育出版社,1998.
    [30]樊行雪,方国女.大学化学原理及应用下册[M].北京:化学工业出版社,2004.
    [31]谭庆麟,阙振寰.铂族金属[M].北京:冶金工业出版社,1990.
    [32]陈景,张永俐,李关芳.贵金属:周期表中一族璀璨的元素[M].北京:清华大学出版社,2002.
    [33]H. A. Gasteiger, N. Markovic, P. N. Ross J., etal. Electrooxidation of small organic molecules on well-characterized Pt-Ru alloy s[J]. Electrochimica Acta,1994, 39(11-12):1825-1832.
    [34]A. K. Shukla, A. S. Aricn, K. M. Elkhatib, etal. An X-ray photoelectron spectroscopic study on the effect of Ru and Sn additions to platinized carbons[J]. Appl Surf Sci, 1999,137(1-4):20-29.
    [35]S. Mukerjee, J. Mcbreen. Proc 2nd International Symp. On New Materials for Fuel Cells and Mordern Battery Systems [R]. Montreal, Canada:O. Savadoga, P. R. Roberga,1977,548-559.
    [36]T. Iwasita, F. C. Nart, W. Vielstich. FTIR study of the catalytic activity of a 85:15 Pt-Ru alloy for methanol oxidation[J]. Bet Bunsenges Phys Chem,1990(94): 1030-1034.
    [37]T. Iwasita, H. Hoster, A. N. A. John. Methanol oxidation on Pt-Ru electrodes. Influence of surface structure and Pt-Ru atom distribution[J]. Langmuir,2000(16): 522-529.
    [38]T. Frelink, W. Visscher, A. P. Cox, etal. Ellipsometry and DEMS study of the electrooxidation of methanol at Pt and Ru- and Sn- promoted Pt[J]. Electrochimica Acta,1995,40(10):1537-1543.
    [39]T. Frelink, W. Visscher, J. A. R. Van Veen. Measurements of the Ru surface content of electrocodeposited Pt-Ru electrodes with the electrochemical quartz crystal microbalance:Implications for methanol and CO electrooxidation[J]. Langmuir, 1996(12):3702-3708.
    [40]T. Frelink, W. Visscher, J. A. R. Van Veen. On the role of Ru and Sn as promotors of methanol electro-oxidation over Pt[J]. Surf Sci,1995(335):353-360.
    [41]H. A. Gasteiger, N. Markovic, P. N. Ross J., etal. Temperature-dependent Methanol Electro-oxidation on Well-Characterized Pt-Ru Alloys[J]. J Electrochem Soc,1994, 141(7):1783-1795.
    [42]H. A. Gasteiger, N. Markovic, P. N. Ross J.. H2 and CO Electrooxidation on Well-Characterized Pt, Ru, and Pt-Ru[J]. J Phys Chem,1995,99(20):8290-8301.
    [43]X. M. Pen, M. S. Wilson, S. Gotiesfeld. High performance direct methanol polymer electrolyte fuel cells [J]. J Electrochem Soc.,1996,143(1):L12-L16.
    [44]K. W. Park, J. H. Choi, B. K. Kwon, etal. Chemical and electronic effects of Ni in Pt/Ni and Pt/Ru/Ni alloy nanoparticles in Methanol Electrooxidation[J]. Phys. Chem., 2002(106):1869-1877.
    [45]M. M. P. Jansen, J. Moolhuysen. Platinum-tin catalysts for methanol fuel cells prepared by a novel immersion technique. By electrocodeposition and by alloying[J]. Electrochim Acta,1976(21):861-868.
    [46]A. M. Watan, Y. Furuuchi, S. Motoo. Electrovatalysis by ad-atoms:part ⅩⅢ preparation of ad-electrodes with tin ad-atoms for methanol, formaldehyde and formic acid fuel cells[J]. J Electroanal Chem.,1985(191):367-375.
    [47]R. M. A. Abdel, M. W. Khaiil, H. B. Hassan. Platinum-tin alloy electrodes for direct methanol fuel cells[J]. J Appl electrochem,2000(30):1151-1155.
    [48]H. Nakaiima, H. Kita. Role of surface molybdenum species in methanol oxidation on the platinum electrode [J]. Electrochim Acta,1990(35):849-853.
    [49]A. B. Anderson, E. Grantscharoval, S. Seong. Systematic theoretical study of alloys of platinum for enhanced methanol fuel cell performance[J]. J Electrochem Soc., 1996(143):2075-2082.
    [50]P. K. Shen, A. C. C. Tseung. Anodic oxidation of methanol on Pt/WO3 in acidic media[J]. J Electrochem Soc.,1994(141):3082-3089.
    [51]C. T. Hable, M. S. Wrighton. Electrocatalytic oxidation of methanol by assemblies of platinum-tin catalyst particles in a conducting polyaniline matrix[J]. Langmuir, 1991(7):1305-1309.
    [52]B. Beden, F. Kardigan, C. Lamy, etal. Electrocatalytic oxidation of methanol on platinum-based binary electrodes[J]. J Electroanal Chem.,1981,127(1-3):75-85.
    [53]C. Roth, M. Goetz, H. Fuess. Synthesis and characterization of carbon-supported Pt-Ru-WOx catalysts by spectroscopic and diffraction methods[J]. J Appl. Electrochem,2001.31:793-798.
    [54]M. Goetz, H. Wendt. Composite electrocatalysts for anodic methanol and methanol-reformate oxidation[J]. J Appl Electrochem,2001.31(7):811-817.
    [55]A. Lima, C. Coutanceau, J. M. Leger, etal. Investigation of ternary catalysts for methanol electrooxidation[J]. J Apply Electrochem,2001,31(4):379-386.
    [56]K. L. Key, R. Liu, C. Pu, etal. Methanol oxidation on single phase Pt-Ru-Os ternary alloys[J]. J Electrochem Soc,1997,144(5):1543-1548.
    [57]L. Liu, R. Viswanathan, R. Liu, etal. Methanol oxidation on nation spin-coated polycrystalline platinum and platinum alloys[J]. Electrochem Solid State Lett.1998, 1(3):123-125.
    [58]E. Reddington, A. Sapienza, B. Gurau, etal. Combinatorial electrochemistry:a highly parallel, optical screening method for discovery of better electrocatalysts[J]. Science. 1998.280(5370):1735-1737.
    [59]B. Gurau, A. R. Viswan. R. Liu. etal. Structural and electrochemical characterization of binary, ternary, and quaternary platinum alloy catalysts for methanol electro-oxidation[J]. J. PhysChem B,1998,102(49):9997-10003.
    [60]陈昀.储氢合金代铂作为PEMFC和AFC阳极催化材料的电化学过程与电催化特性研究[D].浙江大学,2002.
    [61]J. Appleby, F. R. Foulkes. Fuel Cell Handbook[M]. Malabar:Krieger Publishing Company, Florida,1993. Chapterl2.
    [62]G. J. Grashoff, C. E. Pilkington, C. W. Corti. The Purification of Hydrogen:A review of the technology emphasizing the current status of Palladium membrane diffusion[J]. Platinum Metals Rev.,1983,27(4):157-169.
    [63]衣宝廉,邵志刚.质子交换膜型燃料电池-21世纪新材料丛书-新能源材料[M].天津:天津大学出版社,2000.174-181.
    [64]P. O. Danis, C. Wesdemiotis, F. W. McLafferty. Neutralization-reionization mass spectrometry (NRMS)[J]. J. Am. Chem. Soc.,1983,105(25):7454-7456.
    [65]陈声培,孙世刚,黄泰山.玻碳表面铂黑电极的结构与电催化活性[J].科学通报,1994,39(22):2046-2049.
    [66]曾戎,岳中仁,曾汉民.活性炭纤维对贵金属的吸附[J].材料研究学报,1998,12(2):203-206.
    [67]齐意,木士春.提高质子交换膜燃料电池催化剂寿命方法[J].电池工业,2010(4):247-250.
    [68]G J. K. Acres, J. C. Frost, G. A. Hards, etal. Electrocatalysts for fuel cells[J]. Catalysis Today,1997,38(4):393-400.
    [69]S. Gottesfeld, J. Pafford. A new approach to the problem of carbon monoxide poisoning in fuel cells operating at low temperatures[J]. J. Electrochem. Soc.,1988, 135(10):2651-2652.
    [70]F. A. Uribe, S. Gottesfeld, T. A. Zawodzinski. Effect of ammonia as potential fuel impurity on proton exchange membrane fuel cell performance[J]. Journal of the Electrochemical Society,2002,149(3):A293-A296.
    [71]M. S. Wilson, J. A. Valerio, S Gottesfeld. Low platinum loading electrodes for polymer electrolyte fuel cells fabricated using thermoplastic ionomers[J]. Electrochimica Acta, 1995,40(3):355-363.
    [72]V. Mehta, J. S. Cooper. Review and analysis of PEM fuelcell design and manufacturing[J]. Journal of Power Sources,2003,114(1):32-53.
    [73]E. I. Santiago, M. J. Giz, E. A. Ticianelli. Studies of carbon monoxide oxidation on carbon-supported platinum-osmium electrocatalysts[J]. Journal of Solid State Electrochemistry,2003,7(9):607-613.
    [74]T. R. Ralph, M. P. Hogarth. Catalysis for low temperature fuel cells, part Ⅱ:the anode challenges[J]. P. M. R.,2002,46(3):117-135.
    [75]V. R. Stamenkovic, B. S. Mun, M. Arenz, etal. Trends in electrocatalysis on extended and nanoscale Pt-bimetallic alloy surfaces[J]. Nature Materials,2007(6):241-247.
    [76]R. J. Bellows, E. P. Marucchi-Soos, D. T. Buckley. Analysis of Reaction Kinetics for Carbon Monoxide and Carbon Dioxide on Polycrystalline Platinum Relative to Fuel Cell Operation[J]. Ind. Eng. Chem. Res.,1996,35(4):1235-1242.
    [77]A. J. Appleby, F. R. Foulkes. Fuel Cell Handbook[M]. Malabar:Krieger Publishing Company, Florida,1993. Chapter11.
    [78]D. P. Wilkinson, D. Thompsett. New Materials for Fuel Cell and Modern Battery Systems[C]. Proc. of the Second Int. Symp.,1997:266-271.
    [79]O. Savadogo, P. R. Roberge, L. Edition. Ecole Polytechnique Montreal[M]. Canada: Montreal, Canada,1997:266-268.
    [80]B. Sarah, H. Adam, H. Gregor, etal. The proton exchange membrane fuel cell performance of a carbon supported PtMo catalyst operating on reformate[J]. Electrochemical and solid-state letters,2002,5(2):A31-A34.
    [81]S. J. Lee, S. Mukerjee, E. A. Ticianelli, etal. Electrocatalysis of CO tolerance in hydrogen oxidation reaction in PEM fuel cells[J]. Electrochimica Acta,1999,44(19): 3283-3293.
    [82]T. E. Springer, T. Rockward, T. A. Zawodzinski, etal. Model for polymer electrolyte fuel cell operation on reformate feed-Effects of CO, H2 dilution, and high fuel utilization[J]. J. Electrochemical Society,2001,148(1):A11-A23.
    [83]D. P. Wilkinson, H. H. Voss, K. B. Prater, etal. Electrode comprising first and second catalytic component. European Patent EP0736921.
    [84]T. A. Semelsberger, R. L. Borup. Thermodynamic equilibrium calculations of hydrogen production from the combined processes of dimethyl ether steam reforming and partial oxidation[J]. J. Power Sources,2006,155(2):340-352.
    [85]彭安.稀土元素的环境化学及生态效应[M].北京:中国环境科学出版社,2003.
    [86]窦学宏.稀土元素镧及其应用[J].稀土信息.2005(251):33-34.
    [87]苏锵.稀土元素:您身边的大家族[M].北京:清华大学出版社,2000.
    [88]Y. Wang, J. Zhu, R. Ma. Macrodynamic study and catalytic reduction of NO by ammonia under mild conditions over Pt-La-Ce-O/Al2O3 catalysts[J]. Energy Conversion and Management.2007(48):1936-1942.
    [89]M. J. Escudero, X. R. Novoa, T. Rodrigo, etal. Influence of lanthanum oxide as quality promoter on cathodes for MCFC[J]. Journal of Power Sources.2002,106(1-2): 196-205.
    [90]王幸宜,卢冠中.二氧化铈对钯汽车催化剂的氧化氮还原性能的影响[J].中国稀土学报,1995,13(2):128-131.
    [91]黎先财,罗来涛.铂铈催化剂的活性中心和反应性能[J].中国稀土学报,1990,8(2):127-130.
    [92]蒋晓原,周仁贤.Sm2O3对CuO-γy-Al2O3催化性能的影响[J].中国稀土学报,1998,16(1):31-36.
    [93]廖巧丽,田军侠.镧、铈氧化物对镍催化剂活性的促进作用[J].中国稀土学报,1995,13(1):35-38.
    [94]张学文,俞寿明,檀健,等.La-Cu-Fe-O/γ-Al2O3催化剂的抗烧结研究[J].应用化学,1992,9(4):107-110.
    [95]沈小女,蔡国辉,肖益鸿,等.Ce02修饰的Pt/SiC催化剂催化CO氧化反应的性能[J].石油化工,2008,37(3):300-304.
    [96]邹兴,卢惠名,方克明.变价稀土氧化物对催化剂性能的影响[J].稀土,2000,21(2):16-18.
    [97]翁端,李振宏,吴晓东,等.稀土在汽车尾气净化器中的作用[J].稀土,2001,22(5):55-58.
    [98]吴海灵.铜催化的环加成反应和铁催化的羰基化反应的理论研究[D].重庆:西南大学,2010.
    [99]P. Strasser, S. Koh, T. Anniyev, etal. Lattice-strain control of the activity in dealloyed core-shell fuel cell catalysts[J]. Nature Chemistry.2010(2):454-460.
    [100]R. Z. Yang, J. Leisch, P. Strasser, etal. Structure of Dealloyed PtCu3 Thin Films and Catalytic Activity for Oxygen Reduction[J]. Chem. Mater.2010,22(16):4712-4720.
    [101]J. L. Zhang, M. B. Vukmirovic, K. Sasaki. Mixed-Metal Pt Monolayer Electrocatalysts for Enhanced Oxygen Reduction Kinetics[J]. Am. Chem. Soc.,2005, 127(36):12480-12481.
    [102]N. Kristian, X. Wang. Pt shell-Au core/C electro catalyst with a controlled shell thickness and improved Pt utilization for fuel cell reactions[J]. Electro. chem. Commun.,2008,10(1):12-15.
    [103]J. Zhang, F. T. Warner, Z. Liu, etal.用于产生覆盖在非贵金属核上的贵金属壳的方法及由其制备的催化剂[P].发明专利,ZL200910207284.0.
    [104]朱红,李兴旺,王芳辉,等.一种燃料电池用碳载核壳型铜—铂催化剂及其制备方法[P].发明专利,公开:CN201010609205.1.
    [105]王福兵.PEM燃料电池Pt/C电催化剂制备和性能研究[D].天津:天津大学,2003.
    [106]H. F. Xu, L. Lu, S. M. Zhu. Graphite Nanofibers as Catalyst Support for Proton Exchange Membrane Fuel Cells[J]. Chinese Journal of Catalysis.2008,29(6): 543-546.
    [107]E. Auer, A. Freund, J. Pietsch, etal. Carbons as supports for industrial precious metal catalysts[J]. Applied Catalysis A:General,1998,173(2):259-271.
    [108]A. G. Ruiz, P. Badenes, I. R. Ramos. Study of some factors affecting the Ru and Pt dispersions over high surface area graphite-supported catalysts[J]. Applied Catalysis A:General,1998,173(2):313-321.
    [109]周方超,李平,周兴贵.胶体负载法制备Au/C催化剂用于乳酸合成的研究[J].广东化工.2008,35(6):10-13.
    [110]杜春雨,史鹏飞,尹鸽平.前驱体对Pt/C催化剂性能的影响[J].哈尔滨工业大学学报.2006,38(11):1955-1962.
    [111]C. T. Hsieh, W. M. Hung, W. Yu. Chen, etal. Microwave-assisted polyol synthesis of Pt-Zn electrocatalysts on carbon nanotube electrodes for methanol oxidation [J]. International Journal of Hydrogen Energy,2011,36(4):2765-2772.
    [112]D. R. M. Godoi, J. Perez, H. M. Villullas. Influence of Particle Size on the Properties of Pt-Ru/C Catalysts Prepared by a Microemulsion Method[J]. J. Electrochem. Soc. 2007,154(5):B474-B479.
    [113]李钱陶.贵金属纳米粒子/无机复合材料的制备及性能[J].硅酸盐通报.2004(1):54-61.
    [114]程年才,木士春,潘牧,等.胶体法制备PEMFC催化剂的评述[J].电池.2007,37(3):241-243.
    [115]T. Kim, M. Takahashi, M. Nagai, etal. Preparation and characterization of carbon supported Pt and PtRu alloy catalysts reduced by alcohol for polymer electrolyte fuel cell[J]. Electrochimica Acta.,2004,50(2-3):817-821.
    [116]G. G. Bondarenko, V. V. Andreev, V. M. Maslovsky. Plasma and injection modification of the gate dielectric in MOS structures[J]. Thin Solid Films,2003, 427(1-2):377-380.
    [117]M. Inoue, S. Akamaru, A. Taguchi, etal. Physical and electrochemical properties of Pt-Ru/C samples prepared on various carbon supports by using the barrel sputtering system[J]. Vacuum.2009,83(3):658-663.
    [118]C. Bezerra, L. Zhang, H. Liu, etal. A review of heat-treatment effects on activity and stability of PEM fuel cell catalysts for oxygen reduction reaction[J]. Journal of Power Sources,2007,173(2):891-908.
    [119]A. Bolttcher, H. Niehus. CO oxidation reaction over oxygen-rich Ru(001) surfaces[J]. Phys. Chem. B,1997,101(51):11185-11191.
    [120]甄开吉,王国甲,李荣生.催化作用基础[M].北京:科学出版社,2006.
    [121]H. X. Li, H. S. Luo, L. Zhuang, etal. Liquid phase hydrogenation of furfural to furfuryl alcohol over the Fe promoted Ni-B amorphous alloy catalysts[J]. J. Molecular Catalysis A:Chemical,2003,203(1-2):267-275
    [122]J. K. N(?)rskov, J. Rossmeisl, A. Logadottir, etal. Origin of the over potential for oxygen reduction at a fuel-cell cathode[J]. J. Phys. Chem. B,2004,108(46): 17886-17892.
    [123]B. H. Chen, J. M. White.Properties of Platinum Supported on Oxides of Titanium[J]. J. Phys. Chem.,1982,86(18):3534-3541.
    [124]B. H. Chen, J. M. White. Properties of Platinum Supported on Oxides of Titanium[J]. J. Phys. Chem.,1982,86(18):3534-3541.
    [125]T. X. T. Sayle, S. C. Parker, C. R. A. Catlow. The role of oxygen vacancies on ceria surfaces in the oxidation of carbon monoxide[J]. J. Surf. Sci.,1994,316(3):329-336.
    [126]K. D. Schierbaum. Ordered ultra-thin cerium oxide overlayers on Pt(111) single crystal surfaces studied by LEED and XPS[J]. J. Surf. Sci.,1998,399(1):29-38.
    [127]H. Idriss. Ethanol reactions over the surfaces of noble metal/cerium oxide catalysts[J]. Platinum Metals Rev.,2004,48(3):105-115.
    [128]刘振祥,谢倪.用X射线光电子谱研究Pt和Ce02问的相互作用[J].真空科学与技术,2001,21(6):448-451.
    [129]B. A. Riguetto, S. Damyanova, G Gouliev, etal. Surface Behavior of Alumina-Supported Pt Catalysts Modified with Cerium as Revealed by X-ray Diffraction, X-ray Photoelectron Spectroscopy, and Fourier Transform Infrared Spectroscopy of CO Adsorption[J]. J. Phys. Chem. B,2004,108(17):5349-5358.
    [130]田民波.薄膜技术与薄膜材料[M].北京:清华大学出版社,2006.
    [131]唐伟忠.薄膜材料制备原理、技术及应用[M].北京:冶金工业出版社,2005.
    [132]N. A. Sanchez, U. C. Rincon, G. Zambrano, etal. Characterization of diamond-like carbon (DLC) thin films prepared by r.f. magnetron sputtering [J]. Thin solid films, 2000,373(1-2):274-250.
    [133]R. S. Pessoa, G. Murakami, M. Massi, etal. Off-axis growth of AlN thin films by hollow cathode magnetron sputtering under various nitrogen concentrations [J]. Diamond and Related Materials,2007,16(4-7):1433-1436.
    [134]柳翠.离子束溅射法制备C-N薄膜的研究[D].河北:燕山大学,2002:25-75.
    [135]崔岩,牟宗信,邹学平,等.离子束溅射沉积Ti-Ni薄膜及其电化学性能的研究[J].核聚变与等离体物理,2002,22(2):122-124.
    [136]张东平,齐红基,邵建达,等.离子束溅射法薄膜生长中结瘤微缺陷的生长机理[J],物理学报,2005,54(3):1385-1389.
    [137]贾嘉,陈新禹.离子束溅射工艺中的基片温度及其控制方法[J].光学仪器,2004,26(2):187-190.
    [138]邓书康,陈刚,高立刚,等.离子束溅射制备SiGe多层膜的结晶研究[J].人工晶体学报,2005,34(2):288-291.
    [139]卜轶坤,朝克夫,叶子青,等.时间监控双离子束溅射沉积制备荧光滤光片[J].激光与红外,2005,35(12):968-971.
    [140]甘肇强,罗经国,诸葛兰剑,等.双离子束溅射法制备铁氮薄膜[J].功能材料,2001,32(5):464-466.
    [141]申林,熊胜明,刘洪祥,等.双离子束溅射技术制备带通滤光片[J].光学仪器,2004,26(2):87-91.
    [142]高庆中.温度计量[M].北京:中国计量出版社,2004:100-124.
    [143]A. Wisitsoraat, A. Tuantranont, C. Thanachayanont, etal. Electron beam evaporated carbon nanotube dispersed SnO2 thin film gas sensor[J]. Journal of Electroceramics, 2006,17(1):45-49.
    [144]S. A. Sakwe, R. Muller, P. J. Wellmann. Optimization of KOH etching parameters for quantitative defect recognition in n- and p-type doped SiC[J]. Journal of Crystal Growth,2006,289(2):520-526.
    [145]张以忱.电子枪与离子束技术[M],北京:冶金工业出版社,2004:68-74。
    [146]杨滨.高真空离子束溅镀靶材利用率增强装.置[P].中国发明专利,ZL200810058402.1,2010-12-22.
    [147]杨滨.真空多功能连续镀膜装置[P].中国发明专利,ZL200810233591.1,2010-12-08.
    [148]王爱玲,祝锡晶,吴秀玲.功率超声振动加工技术[M].北京:国防工业出版社,2007.
    [149]王家宝.超声波清洗工艺的原理及应用[J].柴油机设计与制造,2006,14(4):36-38.
    [150]N. Razek, A. Schindler, B. Rauschenbach. Ultra-high vacuum direct bonding of a p-n junction GaAs wafer using low-energy hydrogen ion beam surface cleaning[J]. Vacuum.2007,81(8):974-978.
    [151]S. Mohajerzadeh, C. R. Selvakumar, D. E. Brodie, etal. Study of in-situ surface cleaning for Si and SiGe epitaxy on Si with a novel ion beam vapor assisted deposition technique[J]. Progress in Surface Science.1995,50(1-4):347-356.
    [152]G Z. Zhang, H. W. Du, L. Q. Liu. Plasma cleaning technology[J]. Electromechanical Components.2001,21(4):31-34.
    [153]祁景玉.X射线结构分析[M].上海:同济大学出版社,2003.
    [154]杨南如.无机非金属材料测试方法[M].武汉:武汉理工大学出版社,2004.
    [155]张淳.低温燃料电池电催化剂的制备及其应用研究[D].长沙:中南大学,2007.
    [156]C. Roth, N. Martz, H. Fuess. Characterization of different Pt-Ru catalysts by X-ray diffraction and transmission electron micro scopy[J]. Phys. Chem. Chem. Phys., 2001(3):315-319.
    [157]M. Feng, W. Wang, H. Ke, etal. Highly (111)-oriented and pyrochlore-free PMN-PT thin films derived from a modified sol-gel process[J]. Journal of Alloys and Compounds,2010,495(1):154-157.
    [158]T. N. Angelidis, S. A. Sklavounos. A SEM-EDS study of new and used automotive catalysts[J]. Applied Catalysis A:General,1995,133(1):121-132.
    [159]L. J. Zhang, X. Z. Guo, H. Yang, etal. Distribution of Nano-TiN Particles in SiC Ceramic Analysed by SEM/EDS[J]. J. Materials Science and Engineering.2009. 27(6):834-836.
    [160]赵亮.SiO2/4H-SiC(0001)界面缺陷的XPS研究[D].大连:大连理工大学,2007.
    [161]M. Chen, X. Wang, Y. H. Yu, etal. X-ray photoelectron spectroscopy and auger electron spectroscopy studies of Al-doped ZnO films[J]. Appl. Surf. Sci.,2000, 158(1-2):134-140.
    [162]杨滨,李肠,昝林寒,等.YS/T644-2007,铂钉合金薄膜测试方法X射线光电子能谱法测定合金态铂及合金态钌含量[S].北京:中国标准出版社,2007.
    [163]刘宗敏.现代分析仪器分析方法通则及计量鉴定规则[M].北京:科学技术文献出版社,1997.
    [164]熊丹.基于AFM与干涉光谱的薄膜厚度测量系统[D].杭州:浙江大学,2007.
    [165]陆家和,陈长彦.现代分析技术[M].北京:清华大学出版社,1995.
    [166]梁伟.电感耦合等离子体发射光谱法(ICP-AES)的分析和干扰机理研究[D].广州:中山大学,2007.
    [167]S. Rattan. Electrochemical analysis methods[M]. The first edition. Beijing:Peking University press,1995:65.
    [168]刘奎佳,陈建设,魏绪钧.钕电解相关物质理论分解电压的计算[J].稀土,2001,22(2):30-33.
    [169]H. F. Xu, L. Lu, S. M. Zhu. Graphite Nanofibers as Catalyst Support for Proton Exchange Membrane Fuel Cells[J]. Chinese Journal of Catalysis.2008,29(6): 543-546.
    [170]A. M. Chaparro, A. J. Mart, M. A. Folgado, etal. Comparative analysis of the electroactive area of Pt/C PEMFC electrodes in liquid and solid polymer contact by underpotential hydrogen adsorption/desorption[J]. International Journal of Hydrogen Energy.2009,34(11):4838-4846.
    [171]H. A. Shayeb, F. M. A. Wahab, S. A. Zein. Effect of gallium ions on the electrochemical behaviour of Al, Al-Sn, Al-Zn and Al-Zn-Sn alloys in chloride solutions [J]. Corrosion Science,2001,43(4):643-654.
    [172]E. Antolini. F. Cardellini. Formation of carbon supported PtRu alloys:an XRD analysis[J]. Journal of Alloys and Compounds,2001,315(2):118-122.
    [173]K. L. Lev, R. X. Liu, C. Pu, etal. Methanol oxidation on single phase Pt-Ru-Os ternary alloys[J]. Electrochem. Soc.,1997,144(5):1543-1548.
    [174]K. Sato, M. Fujiyoshi, M. Ishimaru, etal. Efects of Additive Element and Particle Size on the Atomic Ordering Temperature of Ll0-FePt Nanoparticles[J]. Scripta Materialia,2003(48):921-27.
    [175]王芳,许小红,武海顺,等.Cu含量对FePt薄膜退火温度的影响[J].稀有金属材料与工程,2005,34(10):1578.
    [176]A. K. Shukla, A. Arico, K. M. El-Kathib, etal. An x-ray photoelectron spectroscopic study on the effect of Ru and Sn additions to platinised carbon[J]. Surface Sci.,1999, 137(4):20-29.
    [177]A. Lewera, L. Timperman, A. Roguska, etal. Metal Support Interactions between Nanosized Pt and Metal Oxides (WO3 and TiO2) Studied Using X-ray Photoelectron Spectroscopy[J]. Journal of Phys. Chem. C,2011,115(41):20153-20159.
    [178]R. Z. Yang, J. Leisch, P. Strasser, etal. Structure of Dealloyed PtCu3 Thin Films and Catalytic Activity for Oxygen Reduction[J]. Chem. Mater.,2010,22:4712-4720.
    [179]P. R. Guduru, E. Chason, L. B. Freund. Mechanics of compressive stress evolution during thin film growth[J]. J. Mechanics and Physics of Solids,2003(51): 2127-2148.
    [180]H. A. Gasteiger, S. S. Kocha, B. Sompalli, etal. Activity benchmarks and requirements for Pt, Pt-alloy, and non-Pt oxygen reduction catalysts for PEMFCs[J]. Appl Catal B Environ,2005(56):9-35.
    [181]T. He, E. Kreidler, L. Xiong, etal. Alloy electrocatalysts[J]. J Electrochem Soc, 2006(153):A1637-1643.
    [182]杨滨,莘明哲,黄能,等.间接电解制氢用碳载核壳型铂铜-铂催化剂及其制备方法[P].发明专利,公开:CN201110419708.7.
    [183]P. A. Attwood, B. D. Mcniwl, R. T. Short. Temperature programmed reduction and cyclic voltammetry of Pt/carbon-fiber paper catalysts for methanol eletrooxidation[J]. Journal of Catalysis,1987,67:287-293.
    [184]祁景玉.X射线结构分析[M].上海:同济大学出版社,2003.
    [185]X. Z. Wang, R. Fu, J. S. Zheng, etal. Platinum Nanoparticles Supported on Carbon Nanofibers as Anode Electrocatalysts for Proton Exchange Membrane Fuel Cells[J]. Acta Phys. Chim. Sin.,2011,27(8):1875-1880.
    [186]S. Sriramulu, L. T. D. Jarv, E. M. Stuve. Reaction mechanism and dynamics of methanol electrooxidation on platinum(111)[J]. J. Electroanal Chem.1999,467(1-2): 132-142.
    [187]K. L. Wang, Q. B. Zhang, M. L. Sun, etal. Microstructure and Corrosion Resistance of Laser Clad Coatings With Rare Earth Elements [J]. Corrosion Science,2001.43 (2):255-267.
    [188]Z. Y. Zhang, X. C. Lu, B. L. Han. Rare Earth Effect on Microstructure Mechanical and Tribological Properties of CoCrW Coatings[J]. Materials Science and Engineering,2007. A444:92-98.
    [189]宁远涛.贵金属与稀土金属的相互作用:(Ⅳ) Pt-RE系[J].贵金属,2000,21(4):43-48.
    [190]J. A. Alonso. S. Simozar. Prediction of solid solubility in alloys[J]. Phys. Rev. B,22, 1980.22(12):5583-5589.
    [191]何纯孝,周月华.王文娜.贵金属合金相图:第一补编[M].北京:冶金工业出版社,1993.
    [192]C. Bock, C. Paquet, M. Couillard, etal. Size-Selected Synthesis of PtRu Nano-Catalysts:Reaction and Size Control Mechanism[J]. J. Am. Chem. Soc.,2004, 126(25):8028-8037.
    [193]种法力,陈勇,吴玉程,等.La203弥散增强钨合金面对等离子体材料及其高热负荷性能[J].材料科学与工程学报,2009,27(3):415-417.
    [194]L. X. Shao, J. Zhang. A simple preparation technique of ZnO thin film with high crystallinity and UV luminescence intensity[J]. Physics and Chemistry of Solids, 2008,69(2-3):531-534.
    [195]H. T. Kim, K. Y. Song, V. R. Tatyana, etal. Electrochemical analysis of polymer electrolyte membrane fuel cell operated with dry-air feed[J]. Journal of Power Sources,2009,193(2):515-522.
    [196]甄开吉,王国甲,李荣生.催化作用基础[M].北京:科学出版社,2006.
    [197]H. X. Li. H. S. Luo, L. Zhuang, etal. Lquid phase hydrogenation of furfural to furfuryl alcohol over the Fe promoted Ni-B amorphous alloy catalysts[J]. Journal of Molecular Catalysis A:Chemical,2003,203(1-2):267-275.
    [198]S. R. Brankovic, J. X. Wang, Y. Zhu, et al. Electrosorption and catalytic properties of bare and Pt modified single crystal and nanostructured Ru surface[J]. Journal of Electroanalytical Chemistry,2002(524-525):231-241.
    [199]D. Zhang, T. Yan, C. Pan, etal. Carbon nanotube-assisted synthesis and high catalytic activity of CeO2 hollow nanobeads[J]. J. Solid State Chem.,2007(180):654-660.
    [200]M. Kang, Y. S. Bae, C. H. Lee. Effect of heat treatment of activated carbon supports on the loading and activity of Pt catalyst[J]. Carbon,2005,43(7):1512-1516.
    [201]A. K. Shukla, M. Neergat, P. Bera, etal. An XPS study on binary and ternary alloys of transition metals with platinized carbon and its bearing upon oxygen electroreduction in direct methanol fuel cells[J]. Journal of Electroanalytical Chemistry,2001,504(1):111-119.
    [202]A. S. Arico, A. K. Shukla, H. Kim, et al. An XPS study on oxidation states of Pt and its alloys with Co and Cr and its relevance to electroreduction of oxygen[J]. Applied Surface Science,2001,172(1):33-40.
    [203]M. S. Saha, Y. Zhang, M. Cai, etal. Carbon-coated tungsten oxide nanowires supported Pt nanoparticles for oxygen reduction[J]. International journal of hydrogen energy,2011(37):4633-4638.
    [204]C. C. Tang, Y. Bando, B. D. Liu, etal. Cerium Oxide Nanotubes Prepared from Cerium Hydroxide Nanotubes[J]. Adv. Mater.,2005,17(24):3005-3009.
    [205]Z. X. Liu, K. Xie, N. J. Wu, etal. Double peak structure of O1s in XPS of Bi-Sr-Ca-O high-TC superconductors [J]. Chin. Phys. Lett.,1989,6(6):261-264.
    [206]C. Hardacre, G. M. Roe, R. M. Lambert. Structure, composition and thermal properties of cerium oxide films on platinum{111}[J]. Surface Science,1995, 326(1-2):1-10.
    [207]X. L. Zhu, M. Shen, L. L. Lobban, etal. Structural effects of Na promotion for high water gas shift activity on Pt-Na/TiO2[J]. Journal of Catalysis,2011,278(1): 123-132.
    [208]M. Peuckert, H. P. Bonzel. Characterization of oxidized platinum surfaces by X-ray photoelectron spectroscopy[J]. Surface Science,1984,145(1):239-259.
    [209]A. S. Elizabeth, R. M. Ormerod, R. M. Lambert. Oxidation of neodymium overlayers and Nd/Cu alloy films on Cu(111):observation of chemisorbed oxygen on top of NdOx/Cu(111) Original Research Article[J]. Surface Science,1992,275(3): 157-169.
    [210]J. Fan, X. D. Wu, R. Ran. etal. Influence of the oxidative/reductive treatments on the activity of Pt/Ce0.67Zr0.33O2 catalyst[J]. Applied Surface Science,2005.245(1-4): 162-171.
    [211]R. M. Navarro, M. C. A. Galvan, M. C. S. Sanchez, etal. Production of hydrogen by oxidative reforming of ethanol over Pt catalysts supported on Al2O3 modified with Ce and La[J]. Applied Catalysis B:Environmental,2005,55(4):229-241.
    [212]L. F. Liotta, A. Longo, A. Macaluso, etal. Influence of the SMSI effect on the catalytic activity of a Pt(1%)/Ceo.6Zro.402 catalyst:SAXS. XRD, XPS and TPR investigations[J]. Applied Catalysis B:Environmental,2004,48(2):133-149.
    [213]S. Damyanova, J. M. C Bueno. Effect of CeO2 loading on the surface and catalytic behaviors of CeO2-Al2O3-supported Pt catalysts[J]. Applied Catalysis A:General. 2003,253(1):135-150.
    [214]J. P. Holgado, G. Munuera. XPS/TPR study of the reducibility of M/CeO2 catalysts (M=Pt, Rh):Does junction effect theory apply?[J] Studies in Surface Science and Catalysis,1995,96:109-122.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700