用户名: 密码: 验证码:
稀土改性壳聚糖树脂的制备、表征及对氟离子的吸附特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
我国是世界上地方性氟中毒较严重的国家之一。本研究以自然界第二大可再生资源壳聚糖为基体,利用稀土对其改性,制备得到一系列新型除氟剂,并对其制备条件、理化特征、吸附氟离子特性及吸附机理等进行了探讨。主要结果如下:
     ⑴在La~(3+)改性片状壳聚糖(CL)的基础上,首次利用成本较低的高La~(3+)稀土改性片状壳聚糖,得到新型除氟剂CR,并研究了CL和CR对F-的吸附特性。结果表明:随着吸附时间的延长吸附容量增大,当反应时间为2h时,CL和CR达到吸附平衡状态;随pH逐渐增加,吸附容量呈下降趋势;当CL和CR的用量从0.5g/L增加到5.0g/L时,吸附百分比分别从19.28%和19.63%增加到93.51%和94.7%;当反应介质中F-初始浓度从1.25mg/L增加至20.0mg/L时,CL和CR的吸附容量呈快速增加趋势;饮用水中常见阴离子影响能力大小顺序为:CO_3~(2-) HCO_3-SO_4~(2-) Cl-NO_3~-;FTIR和XRD表征CL和CR,发现La~(3+)和高La~(3+)稀土与壳聚糖分子链中的氨基和羟基发生了配位反应,致使产物结晶度下降;CL和CR对F-的吸附等温线均符合Langmuir和Freundlich模型,为优惠吸附;拟二级动力学模型均能较好地描述实验结果,且CR拟二级动力学吸附速率常数较CL的大,表明CR在实际应用中更具有优势。
     ⑵针对片状壳聚糖使用性能不稳定、不易与介质分离等缺陷,采用反相悬浮法合成了La~(3+)和高La~(3+)稀土改性壳聚糖树脂(CLB和CLRB),并探讨了制备条件的影响,包括La~(3+)和高La~(3+)稀土用量、反应pH值以及戊二醛用量等;FTIR分析表明,CLB和CLRB结构中形成了N-La~(3+)和N-高La~(3+)稀土配位键,壳聚糖分子链中的氨基或乙酰氨基与戊二醛发生了分子内或分子间希夫碱反应; DSC分析表明,CLB和CLRB的热稳定性高于结构中不含稀土离子的壳聚糖树脂(CB);Langmuir和Freundlich等温线拟合效果较好,Qmax分别为3.70mg/g、5.88mg/g,均为优惠吸附;拟二级动力学模型拟合结果说明CLB和CLRB吸附F-过程由化学吸附控制;CLRB重复利用10次仍然具有较好的吸附性能。
     ⑶为进一步提高壳聚糖树脂对F-的吸附容量,实验制备得到铈和高铈稀土改性壳聚糖树脂CCB和CCRB,评价了两种树脂对F-的吸附性能。结果表明:吸附容量受反应介质pH值、树脂用量、常见阴离子、F-初始浓度及反应温度的影响;Langmuir和Freundlich吸附等温线模型可较好地描述CCB和CCRB的吸附过程,饱和吸附容量Qmax分别为6.01mg/g、3.34mg/g,且随温度升高Qmax下降;控速步骤研究表明整个吸附过程由颗粒内扩散和液膜扩散联合控制。
     ⑷为更易于树脂与反应介质分离、提高其使用效率和对F-的吸附容量,利用La~(3+)和高La~(3+)稀土改性磁性壳聚糖树脂得到MCLB和MCLRB,比饱和磁化强度分别为5.17emu/g和9.90emu/g;吸附实验表明,MCLB和MCLRB对F-具有较高的吸附容量;吸附等温线Langmuir和Freundlich模型均能较好地拟合实验结果,Qmax分别为20.53mg/g、22.35mg/g;均符合拟二级吸附动力学模型,吸附过程由化学吸附控制;MCLB和MCLRB结构中的Fe-O配位键可促进F-向树脂表面和内部移动,并与OH-发生离子交换作用,进一步提高F-吸附容量。
     ⑸以上几种除氟剂用于处理模拟高氟饮用水时,均取得了良好的除氟效果,实验表明,用量优化后可使出水F-浓度均符合《生活饮用水卫生标准》;而且与传统除氟剂相比,本文所合成的几种稀土改性壳聚糖除氟剂,具有吸附容量高、吸附速率快、成本低廉、可多次重复利用且使用性能稳定等优点,有望进一步推广使用。
     ⑹针对南极磷虾酶解液中F-浓度过高的问题,利用吸附容量高、成本低廉、吸附速率快的MCLRB,进行了脱氟工艺的初步研究,并取得了较好的效果。研究表明,MCLRB的用量为0.3g/25mL时,脱氟率达到67.27%,酶解液pH为2.0时,脱氟率为74.59%;MCLRB处理对酶解液的营养价值的影响研究显示,对蛋白质有一定的负面影响,损失率为16.67%;对其它营养成分的影响较小,总体来看,MCLRB可进一步应用于脱除南极磷虾酶解液中F-,为生产低F-浓度的磷虾酶解液产品做出一定的贡献。
     目前常用的治理F-浓度过高的方法存在诸多缺陷,采用稀土改性壳聚糖除氟剂治理含氟饮用水和含氟食品,不但能减轻氟化物对人体和环境的危害作用,还能充分利用虾、蟹加工废弃物制备的壳聚糖。因此,本研究工作的开展,具有一定的经济效益、社会效益和食品安全效益。
The treatment methods for fluoride adsorption have been given more attentionrecently. In this study, a series of available fluoride adsorbents were prepared by rareearth-modified chitosan. The preparation, physicochemical characteristics, adsorptionproperties and mechanism of fluoride adsorbents were investigated and the drawingconclusions as follows:
     1A novel costeffective fluoride adsorbent, CR, was prepared for the first timeby rare earth-modified flake chitosan. The loading dosage of La~(3+)and rare earth ontochitosan was discussed according to fluoride adsorption capacity. The results showthat the adsorption capacity was better when the ratio between La~(3+)and chitosan was0.3:1.0. In addition, the adsorption capacity was increasing with contact timeincreased, but decreased evidently with pH improved. The adsorption rate wasincreased from19.28%,19.63%to93.51%and94.7%, respectively, when the dosageof adsorbents increased, the adsorption capacity was improved greatly with thefluoride initial concentration increased for adsorbents. The fluoride adsorptioncapacity was decreased with co-ions were existed in the same system, and the effectability obeyed the order of CO_3~(2-) HCO_3-SO_4~(2-) Cl-NO_3~-. The analysis of FTIR andXRD on CL, CR interpreted that rare earth metal ions were chelateed on chitosanmolecular chain with the functional groups. Thus, the crystalline was decreasedobviously compared to CS. The experiment results could be fitted well by adsorptionisotherm Langmuir, Freundlich, and pseudo second kinetic equation.
     2Since flake chitosan is not stable under acidic condition, novel fluorideadsorbents CLB and CLRB were prepared by La~(3+)and high content of La~(3+)rareearth-modified chitosan by inverse suspension method. The parameters of preparationprocess were studied including the dosage of rare earth, pH, and the dosage ofglutaraldehyde on the basis of fluoride adsorption capacity. The adsorbents werecharacterized by FTIR and DSC, there were two kinds of coordinate bonds as N-La~(3+)and N-La~(3+)rare earth which had high content of La~(3+)existed in the structure ofadsorbents, respectively. Furthermore, schiff base reaction was carried out between the functional groups of-NH2,-OH and glutaraldehyde, so the thermostability of CLBand CLRB were higher than CB. The experiment data were fitted well by Langmuirand Freundlich isothermal model, the maximum adsorbent capacity was3.70mg/g,5.88mg/g, respectively. The whole adsorption process was controlled by chemicaladsorption according to the pseudo second kinetic equation. Finally, CLRB could bereused for10times with little loss.
     3In order to improve fluoride adsorption capacity, fluoride adsorbents of CCBand CCRB were prepared by cerium and high content of cerium rare earth modifiedchitosan resin. The adsorption properties for fluoride adsorption were discussed bytwo kinds of adsorbents. It was clearly to see that the adsorption capacity wasinfluenced greatly by the parameters of pH, dosage, co-ions and initial concentration,etc.. The experiment data were fitted well by istherm equation of Langmuir andFreundlich, and the maximum adsorption capacity was6.01mg/g,3.34mg/g,respectively. The fluoride adsorption capacity was decreased obviously when thereactive temperature was improved. Sorption kinetics was mainly controlled by twosteps of particle internal diffusion and liquid film diffusion.
     4Novel magnetic adsorbents were prepared using rare earth-modified chitosanwith Fe3O4nanoparticle, named MCLB and MCLRB, and the specific saturationmagnetization was5.17emu/g,9.90emu/g, respectively. Sorption experiments wereperformed by varying contact time, pH, presence of co-anions, etc.. The fluorideuptake onto two fluoride adsorption adsorbents obeyed both Freundlich and Langmuirisotherms, and the maximum adsorption capacity was20.53mg/g and22.35mg/g.Sorption kinetics was mainly controlled by pseudo-second-order. Fluoride could bemoved easily to the surface of adsorbents by the coordinate bond of Fe-O, and anionexchange is carried out between adsorbents and fluoride, and the fluoride adsorptioncapacity was improved eventually.
     5Various of fluoride adsorbents were applied in simulated drinking water withhigh content of fluoridel concentration, and achieved better effectiveness. However,the influence of adsorbents dosage on fluoride adsorption capacity was obvious Thefluoride in drinking water can be absorbed effectively and its concentration controlledwell after treatment by conducting adsorbents dosage. Comparison of the traditionalfluoride adsorbents, all of rare earth-modified chitosan adsorbents synthesized in thispaper, have higher fluoride adsorption capacity, faster adsorption rate, more costeffective, better reusable and much more stable, we hope these adsorbents can be used widely in future application.
     6The concentration of fluoride is higher in the enzymolysis liquid of Antarctickrill. Consequently, it is necessary to remove fluoride from enzymolysis liquid. In thisstudy, MCLRB was choosed as a fluoride adsorbent for its high adsorption capacity,costeffective, and better adsorption rate for removal fluoride. The defluoridationprocess was researched preliminarily, and the better results were obtained, eventually.The results show that the adsorption rate was getting to67.27%when the dosag ofMCLRB was0.3g/25mL, and getting to74.59%under the pH2.0of enzymolysisliquid. After MCLRB treatment, the variation of nutritional ingredients inenzymolysis liquid were investigated to some extent. There was a negative effect onthe content of protein after treatment compare to other nutritional ingredients. In oneword, MCLRB could be used as an effective fluoride adsorbent for removal excessfluoride from enzymolysis liquid to develop some meaningful food products byAntarctic krill with low level of fluoride concentration.
     All present methods for fluoride removal from drinking water have many owndisadvantages. Fluoride can be removed from drinking water by rare earth-modifiedchitosan, the fluoride is decreased obviously, and utilized the chitosan obtained fromseafood processing wastes. Consequently, those fluoride adsorbents synthesized inthis paper to remove fluoride, could be beneficial to economic, society, and foodsafety.
引文
[1]王九思,陈学民,肖举强,等,水处理化学[M].2002:北京:化学工业出版社,2002:250.
    [2]高姗,纳米羟基磷灰石处理含氟废水的研究[D].2009,南京农业大学,2009..
    [3] Edmunds M, Smedley P. Fluoride in natural waters[J]. Essentials of medical geology,2005:301-329.
    [4] Smith M C, Lantz E, Smith H V. The cause of mottled enamel[J]. Nutrition Reviews,1976,34(2):47-49.
    [5] Dean H T. Endemic fluorosis and its relation to dental caries[J]. Public Health Rep,1938,53(33):1443-52.
    [6] Lin Z-h, Ou S-j, Duan C-y, et al. Naked-eye detection of fluoride ion in water: a remarkablyselective easy-to-prepare test paper[J]. Chemical communications,2006(6):624-626.
    [7] Hem J D, Study and interpretation of the chemical characteristics of natural water. Vol.2254.1985: Dept. of the Interior, US Geological Survey.
    [8] Machalinski B, Baskiewicz-Masiuk M, Sadowska B, et al. The influence of sodium fluorideand sodium hexafluorosilicate on human leukemic cell lines[J]. Fluoride,2003,36(4):231-240.
    [9] Urbansky E T, Schock M R. Can fluoridation affect lead (II) in potable water?Hexafluorosilicate and fluoride equilibria in aqueous solution[J]. International journal ofenvironmental studies,2000,57(5):597-637.
    [10] Doull J, Boekelheide K, Farishian B, et al., Fluoride in drinking water: a scientific review ofEPA's standards, Committee on Fluoride in Drinking Water, Board on Environmental Studiesand Toxicology, Division on Earth and Life Sciences, National Research Council of theNational Academies.2006, National Academies Press, Washington, DC.
    [11] Whitford G. Intake and metabolism of fluoride[J]. Advances in dental research,1994,8(1):5-14.
    [12]Cerklewski F L. Fluoride bioavailability-nutritional and clinical aspects[J]. Nutrition research,1997,17(5):907-929.
    [13] Whitford G M. Fluoride metabolism and excretion in children[J]. Journal of public healthdentistry,1999,59(4):224-228.
    [14] Maguire A, Zohouri F, Mathers J, et al. Bioavailability of fluoride in drinking water: a humanexperimental study[J]. Journal of dental research,2005,84(11):989-993.
    [15] Ericsson Y. Influence of sodium chloride and certain other food components on fluorideabsorption in the rat[J]. The Journal of Nutrition,1968,96(1):60-68.
    [16] Awadia A K, Bjorvatn K, Birkeland J M, et al. Weaning food and Magadi associated withdental fluorosis in Northern Tanzania[J]. Acta Odontologica,2000,58(1):1-7.
    [17] Aoba T. The effect of fluoride on apatite structure and growth[J]. Critical Reviews in OralBiology&Medicine,1997,8(2):136-153.
    [18] Keller E A, King H M, Carpenter B, et al., Introduction to environmental geology.2005:Pearson Prentice Hall.
    [19] Rich C, Ensinck J. Effect of sodium fluoride on calcium metabolism of human beings[J].1961.
    [20] Shulman J D, Wells L M. Acute Fluoride Toxicity from Ingesting Home-use Dental Productsin Children, Birth to6Years of Age[J]. Journal of public health dentistry,1997,57(3):150-158.
    [21] Choubisa S, Sompura K. Dental fluorosis in tribal villages of Dungarpur district(Rajasthan)[J]. Pollution Research,1996,15:45-47.
    [22]富昭.氟化物与骨密度的相关性研究[J].国外医学(医学地理分册),1999,1:7-9.
    [23] Dasarathy S, Das T K, Gupta I P, et al. Gastroduodenal manifestations in patients withskeletal fluorosis[J]. Journal of gastroenterology,1996,31(3):333-337.
    [24] Gupta S, Seth A, Gupta A, et al. Transplacental passage of fluorides[J]. The Journal ofpediatrics,1993,123(1):139-141.
    [25] Juuti M, Heinonen O P. Incidence of urolithiasis and composition of household water insouthern Finland[J]. Scandinavian journal of urology and nephrology,1980,14(2):181-187.
    [26] Singh P, Barjatiya M, Dhing S, et al. Evidence suggesting that high intake of fluorideprovokes nephrolithiasis in tribal populations[J]. Urological research,2001,29(4):238-244.
    [27] Wang S-X, Wang Z-H, Cheng X-T, et al. Arsenic and fluoride exposure in drinking water:children's IQ and growth in Shanyin county, Shanxi province, China[J]. Environmentalhealth perspectives,2007,115(4):643.
    [28] Spittle B, Fergusson D, Bouwer C. Intelligence and fluoride exposure in New Zealandchildren[J]. Fluoride,1998,31: S13-S13.
    [29] Spittle B. Psychopharmacology of fluoride: a review[J]. International clinicalpsychopharmacology,1994,9(2):79-82.
    [30] Sidhu K S, Kimmer R O. Fluoride overfeed at a well site near an elementary school inMichigan[J]. Journal of environmental health,2002,65(3):16.
    [31] Harrison P T. Fluoride in water: a UK perspective[J]. Journal of fluorine chemistry,2005,126(11):1448-1456.
    [32] Yang C-Y, Cheng M-F, Tsai S-S, et al. Fluoride in drinking water and cancer mortality inTaiwan[J]. Environmental research,2000,82(3):189-193.
    [33] Gelberg K H, Fitzgerald E, Hwang S, et al. Fluoride exposure and childhood osteosarcoma: acase-control study[J]. American Journal of Public Health,1995,85(12):1678-1683.
    [34] Grandjean P, H rder M, Thomassen Y. Fluoride, aluminum, and phosphate kinetics incryolite workers[J]. Journal of Occupational and Environmental Medicine,1990,32(1):58-63.
    [35] Tressaud A, Fluorine and the Environment: Agrochemicals, Archaeology, Green Chemistry&Water: Agrochemicals, Archaeology, Green Chemistry&Water. Vol.2.2006: ElsevierScience.
    [36] Bonvicini G, Fregni A, Palmonari C. Fluorine compounds in gaseous emissions fromindustrial sources: the case of ceramic industries[J]. Advances in Fluorine Science,2006,1:225-249.
    [37] Sidebottom H, Franklin J. The atmospheric fate and impact of hydrochlorofluorocarbons andchlorinated solvents[J]. Pure and applied chemistry,1996,68(9):1757-1769.
    [38] Feng Y, Ogura N, Feng Z, et al. The concentrations and sources of fluoride in atmosphericdepositions in Beijing, China[J]. Water, Air, and Soil Pollution,2003,145(1-4):95-107.
    [39] Faure G, Principles and applications of geochemistry: a comprehensive textbook for geologystudents.1998: Prentice Hall New Jersey.
    [40] Anazawa K. Fluorine and coexisting volatiles in the geosphere: the role in Japanese volcanicrocks[J]. Advances in Fluorine Science,2006,1:187-224.
    [41] Cronin S, Manoharan V, Hedley M, et al. Fluoride: A review of its fate, bioavailability, andrisks of fluorosis in grazed-pasture systems in New Zealand[J]. New Zealand Journal ofAgricultural Research,2000,43(3):295-321.
    [42] Ellis A J, Mahon W, Chemistry and geothermal systems. Vol.392.1977: Academic PressNew York.
    [43] Heikens A, Sumarti S, Van Bergen M, et al. The impact of the hyperacid Ijen Crater Lake:risks of excess fluoride to human health[J]. Science of the total environment,2005,346(1):56-69.
    [44] Thornton I, Webb J S, Trace elements in soils and plants, in Food Chains and HumanNutrition.1980, Springer.273-315.
    [45] Pickering W. The mobility of soluble fluoride in soils[J]. Environmental Pollution Series B,Chemical and Physical,1985,9(4):281-308.
    [46] Apambire W, Boyle D, Michel F. Geochemistry, genesis, and health implications offluoriferous groundwaters in the upper regions of Ghana[J]. Environmental Geology,1997,33(1):13-24.
    [47] Chae G-T, Yun S-T, Mayer B, et al. Fluorine geochemistry in bedrock groundwater of SouthKorea[J]. Science of the total environment,2007,385(1):272-283.
    [48] Ozsvath D L. Fluoride concentrations in a crystalline bedrock aquifer Marathon County,Wisconsin[J]. Environmental Geology,2006,50(1):132-138.
    [49] Waldbott G L. Fluoride in food[J]. The American Journal of Clinical Nutrition,1963,12(6):455-462.
    [50]潘建明,张海生,刘小涯.南大洋磷虾富氟机制[J].海洋学报,2000,22(2):58-64.
    [51]李红艳,南极磷虾酶解液脱氟技术的研究[D].2011,中国海洋大学.
    [52] Soevik T, Braekkan O. Fluoride in Antarctic krill (Euphausia superba) and Atlantic krill(Meganyctiphanes norvegica)[J]. Journal of the Fisheries Board of Canada,1979,36(11):1414-1416.
    [53] Organization W H, Guidelines for drinking-water quality.1997: World Health Organization.
    [54]吴程程,田浩廷,赵雅萍.载Fe(Ⅲ)树脂除氟性能的研究[J].华东师范大学学报(自然科学版),2011:37-45.
    [55] Bishop P L, Sansoucy G. Fluoride removal from drinking water by fluidized activatedalumina adsorption[J]. Journal (American Water Works Association),1978:554-559.
    [56] Potgieter J. An experimental assessment of the efficiency of different defluoridationmethods[J]. Chem SA,1990,16(2):317-327.
    [57] Ndiaye P, Moulin P, Dominguez L, et al. Removal of fluoride from electronic industrialeffluentby RO membrane separation[J]. Desalination,2005,173(1):25-32.
    [58]米玉宝,纳滤法处理含氟废水的试验研究[D].2012,北京化工大学.
    [59] Ghorai S, Pant K. Equilibrium, kinetics and breakthrough studies for adsorption of fluorideon activated alumina[J]. Separation and purification technology,2005,42(3):265-271.
    [60] Wasay S A, Tokunaga S, Park S-w. Removal of Hazardous Anions from Aqueous Solutionsby La (lll)-and Y (lll)-lmpregnated Alumina[J]. Separation science and technology,1996,31(10):1501-1514.
    [61] Tripathy S S, Bersillon J L, Gopal K. Removal of fluoride from drinking water by adsorptiononto alum-impregnated activated alumina[J]. Separation and purification technology,2006,50(3):310-317.
    [62] Islam M, Patel R. Evaluation of removal efficiency of fluoride from aqueous solution usingquick lime[J]. Journal of hazardous materials,2007,143(1):303-310.
    [63] Biswas K, Saha S K, Ghosh U C. Adsorption of fluoride from aqueous solution by a syntheticiron (III)-aluminum (III) mixed oxide[J]. Industrial&engineering chemistry research,2007,46(16):5346-5356.
    [64] Biswas K, Gupta K, Ghosh U C. Adsorption of fluoride by hydrous iron (III)-tin (IV) bimetalmixed oxide from the aqueous solutions[J]. Chemical Engineering Journal,2009,149(1):196-206.
    [65] Liu H, Deng S, Li Z, et al. Preparation of Al-Ce hybrid adsorbent and its application fordefluoridation of drinking water[J]. Journal of hazardous materials,2010,179(1):424-430.
    [66]赵雅萍,祁旭,徐斌.载La(Ⅲ)-和Fe(Ⅲ)-氨基膦酸型螯合树脂对氟吸附性能的比较[J].上海环境科学,2004,23(3):96-99.
    [67]吴程程,田浩廷,赵雅萍.载Fe(Ⅲ)树脂除氟性能的研究[J].华东师范大学学报(自然科学版),2012,6:36-46.
    [68] Tou J C, Jaczynski J, Chen Y. Krill for human consumption: nutritional value and potentialhealth benefits[J]. Nutrition Reviews,2007,65(2):63-77.
    [69]郭南麟,陈雪忠.发展我国南极磷虾渔业的探讨[J].海洋渔业,1996,18(2):58-66.
    [70]孙松.南极磷虾[J].世界科技研究与发展,2002,24(4):57-60.
    [71] Yoshitomi B, Sakaguchi M, Utilization of antarctic krill for food and feed, in Developmentsin Food Science.2004, Elsevier.45-54.
    [72]孙雷,周德庆,盛晓风.南极磷虾粉的营养成分分析及评价[J].中国海洋药物杂志,2008,29(2):43-47.
    [73] Adelung D, Buchholz F, Culik B, et al. Fluoride in tissues of krill Euphausia superba Danaand Meganyctiphanes norvegica M. Sars in relation to the moult cycle[J]. Polar Biology,1987,7(1):43-50.
    [74] Boone R, Manthey M. The anatomical distribution of fluoride within various body segmentsand organs of Antarctic krill (Euphausia superba Dana)[J]. Arch. Fisch. Wiss,1983,34:81-85.
    [75] Sands M, Nicol S, McMinn A. Fluoride in Antarctic marine crustaceans[J]. Marine Biology,1998,132(4):591-598.
    [76] Christians O, Leinemann M. Fluorine in krill (Euphausia superba dana)[J]. Informationen furdie Fischwirtschaft,1980,27(6):254-260.
    [77] Camargo J A. Fluoride toxicity to aquatic organisms: a review[J]. Chemosphere,2003,50(3):251-264.
    [78]朱兰兰,赵彦玲,赵晓君,等.南极磷虾中氟含量的调查分析[J].食品工业科技,2012,33(024):55-57.
    [79]张海生,泮建明,程先豪,等.南大洋氟的生物地球化学研究.氟在南极磷虾甲壳中的动态变异及其富集原因[J].南极研究(中文版),1992,4(1).
    [80]黄洪亮陈徐.南极磷虾资源利用现状与中国的开发策略分析[J].中国水产科学,2009,16(3):451-458.
    [81]陈雪忠,徐兆礼,黄洪亮.南极磷虾资源利用现状与中国的开发策略分析[J].中国水产科学,2009,16(3):451-458.
    [82] Xie C L, Kim H S, Shim K B, et al. Organic acid extraction of fluoride from Antarctic krillEuphausia superba[J]. Fisheries and Aquatic Sciences,2012,15(3):203-207.
    [83] Jung H R, Kim M-A, Seo Y-S, et al. Decreasing effect of fluoride content in Antarctic krill(Euphausia superba) by chemical treatments[J]. International Journal of Food Science&Technology,2013.
    [84]吕传萍,李学英,杨宪时,等.生石灰降低南极磷虾酶解液中氟含量的研究[J].食品工业科技,2012,33(12):106-111.
    [85]李红艳,孙甜甜,薛长湖,等.载铁离子树脂脱除南极磷虾酶解液中氟的研究[J].2010年中国水产学会学术年会论文摘要集,2011.
    [86] Ravi Kumar M N. A review of chitin and chitosan applications[J]. Reactive and functionalpolymers,2000,46(1):1-27.
    [87] Ogawa K, Yui T, Okuyama K. Three D structures of chitosan[J]. International journal ofbiological macromolecules,2004,34(1):1-8.
    [88] Crini G, Badot P-M. Application of chitosan, a natural aminopolysaccharide, for dye removalfrom aqueous solutions by adsorption processes using batch studies: A review of recentliterature[J]. Progress in polymer science,2008,33(4):399-447.
    [89] Wan Ngah W, Teong L, Hanafiah M. Adsorption of dyes and heavy metal ions by chitosancomposites: A review[J]. Carbohydrate Polymers,2011,83(4):1446-1456.
    [90]王舜,胡茂林.软硬酸碱理论及其在无机化学教学中的应用[J].湖州师专学报(自然科学),1999,1:63-65.
    [91] Swain S, Dey R, Islam M, et al. Removal of fluoride from aqueous solution usingaluminum-impregnated chitosan biopolymer[J]. Separation science and technology,2009,44(9):2096-2116.
    [92] Viswanathan N, Meenakshi S. Selective sorption of fluoride using Fe (III) loadedcarboxylated chitosan beads[J]. Journal of fluorine chemistry,2008,129(6):503-509.
    [93] Thakre D, Jagtap S, Sakhare N, et al. Chitosan based mesoporous Ti-Al binary metal oxidesupported beads for defluoridation of water[J]. Chemical Engineering Journal,2010,158(2):315-324.
    [94] Ma W, Ya F Q, Han M, et al. Characteristics of equilibrium, kinetics studies for adsorption offluoride on magnetic-chitosan particle[J]. Journal of hazardous materials,2007,143(1):296-302.
    [95] Viswanathan N, Meenakshi S. Synthesis of Zr (IV) entrapped chitosan polymeric matrix forselective fluoride sorption[J]. Colloids and Surfaces B: Biointerfaces,2009,72(1):88-93.
    [96] Sundaram C S, Viswanathan N, Meenakshi S. Defluoridation chemistry of synthetichydroxyapatite at nano scale: equilibrium and kinetic studies[J]. Journal of hazardousmaterials,2008,155(1):206-215.
    [97] Sairam Sundaram C, Viswanathan N, Meenakshi S. Uptake of fluoride bynano-hydroxyapatite/chitosan, a bioinorganic composite[J]. Bioresource technology,2008,99(17):8226-8230.
    [98] Viswanathan N, Meenakshi S. Selective fluoride adsorption by a hydrotalcite/chitosancomposite[J]. Applied Clay Science,2010,48(4):607-611.
    [99] Miretzky P, Cirelli A F. Fluoride removal from water by chitosan derivatives and composites:A review[J]. Journal of fluorine chemistry,2011,132(4):231-240.
    [100]陈丽娟.稀土元素的化学性质与稀土应用[J].科技咨询,2006,32:30.
    [101]Tang J, Johannesson K H. Speciation of rare earth elements in natural terrestrial waters:assessing the role of dissolved organic matter from the modeling approach[J]. Geochimica etCosmochimica Acta,2003,67(13):2321-2339.
    [102]Raichur A, Jyoti Basu M. Adsorption of fluoride onto mixed rare earth oxides[J]. Separationand purification technology,2001,24(1):121-127.
    [103]Tokunaga S, Haron M, Wasay S, et al. Removal of fluoride ions from aqueous solutions bymultivalent metal compounds[J]. International journal of environmental studies,1995,48(1):17-28.
    [104]焦中志,陈忠林,杨敏,等.无机铈基吸附剂的合成及对氟的吸附研究[J].南京理工大学学报,2004,5(28):542-546.
    [105]Wu X, Zhang Y, Dou X, et al. Fluoride removal performance of a novel Fe-Al-Ce trimetaloxide adsorbent[J]. Chemosphere,2007,69(11):1758-1764.
    [106]霍亚坤,黄霞,丁文明,等.铁-镧复合氧化物颗粒吸附剂除氟性能研究[J].现代化工,2010(2):57-59.
    [107]刘瑞霞,汤鸿霄.负载镧纤维吸附剂对氟离子的吸附性能[J].环境科学,2000,21(4):34-37.
    [108]徐应明,戴晓华,金家志.活性氧化铈/介孔分子筛除氟剂对环境水体的脱氟行为研究[J].农业环境保护,2001,20(1):48-50.
    [109]赵雅萍,祁旭,徐斌.载La(Ⅲ)和载Fe(Ⅲ)氨基膦酸酸型鳌合树脂对氟吸附性能的比较[J].上海环境科学,2004,23(3):96.
    [110]邓慧,廖学品,石碧.胶原纤维负载铈(CeCF)吸附水体中氟的研究[J].皮革科学与工程,2006,16(6):9-14.
    [111]唐思远,载镧活性炭和载镧纤维材料的除氟性能研究[D].2012,郑州大学.
    [112]李继平,邢巍巍,杨德君,等.壳聚糖对镧系金属离子吸附性的研究[J].辽宁师范大学学报,2001,1(24):015.
    [113]Kamble S P, Jagtap S, Labhsetwar N K, et al. Defluoridation of drinking water using chitin,chitosan and lanthanum-modified chitosan[J]. Chemical Engineering Journal,2007,129(1):173-180.
    [114]Viswanathan N, Meenakshi S. Enhanced fluoride sorption using La (III) incorporatedcarboxylated chitosan beads[J]. Journal of colloid and interface science,2008,322(2):375-383.
    [115]Yao R, Meng F, Zhang L, et al. Defluoridation of water using neodymium-modifiedchitosan[J]. Journal of hazardous materials,2009,165(1):454-460.
    [116]Thakre D, Jagtap S, Bansiwal A, et al. Synthesis of La-incorporated chitosan beads forfluoride removal from water[J]. Journal of fluorine chemistry,2010,131(3):373-377.
    [117]苏海佳,贺小进,谭天伟.球形壳聚糖树脂对含重金属离子废水的吸附性能研究[J].北京化工大学学报,2003,30(2):19-22.
    [118]袁彦超,陈炳稔,王瑞香,等.新型交联壳聚糖树脂的制备及其对苯甲酸的吸附行为研究[J].化学学报,2004,62(1):842-846.
    [119]Elwakeel K Z. Environmental application of chitosan resins for the treatment of water andwastewater: a review[J]. Journal of Dispersion Science and Technology,2010,31(3):273-288.
    [120]袁彦超,陈炳稔,王瑞香.甲醛、环氧氯丙烷交联壳聚糖树脂的制备及性能[J].高分子材料科学与工程,2004,20(1):53-57.
    [121]汪东风,于丽娜,苏琳,一种多功能稀土多糖微粒及其制备工艺[P].2005.
    [122]于丽娜.壳聚糖树脂的制备、表征及应用研究[D].中国海洋大学,2008.
    [123]Yu L, Wang D, Li H, et al. Preparation and characterization of magnetic resin made fromchitosan and cerium[J]. Journal of Ocean University of China,2010,9(2):185-192.
    [124]Liu B, Wang D, Gao X, et al. Removal of arsenic from Laminaria japonica Aresch juiceusing As (III)-imprinted chitosan resin[J]. European Food Research and Technology,2011,232(5):911-917.
    [125]Liu B, Wang D, Li H, et al. As (III) removal from aqueous solution using-Fe2O3impregnated chitosan beads with As (III) as imprinted ions[J]. Desalination,2011,272(1):286-292.
    [126]张宾,张莉,于丽娜,等.固定化胰蛋白酶壳聚糖树脂的制备及其对大豆胰蛋白酶抑制剂的吸附性[J].食品工业科技,2007,28(7):65-68.
    [127]饯国强,周菊岩,马建标,等.壳聚糖微球固定化L-天门冬酰胺酶研究[J].高等学校化学学报,1996,17:1147-1150.
    [128]曾嘉,郑连英.壳聚糖微球固定化葡萄糖氧化酶的研究[J].食品工业科技,2002,23(1):29-31.
    [129]李红,王炜军.壳聚糖微球的制备及其固定化木瓜蛋白酶的研究[J].华南农业大学学报,2000,21(2):49-53.
    [130]王斌,谢苗,曾竞华,等.磁性壳聚糖微球固定化褐藻酸酶的研究[J].中国水产科学,2004(3):253-259.
    [131]任广智,李振华.磁性壳聚糖微球用于酶的固定化研究:Ⅲ磁性壳聚糖微球的活化及其对脲酶的固化研究[J].离子交换与吸附,2001,17(3):224-227.
    [132]Liang P, Wang D F, Wang X Y, et al. Chitosan Metal Complex: An ArtificialMetalloprotease Hydrolyzing Trypsin Inhibitor from Soybean[J]. Advanced MaterialsResearch,2012,430:414-418.
    [133]李海燕,基于水处理的壳聚糖树脂的制备、表征及功能性研究[D].2011,中国海洋大学.
    [134]罗媛.氟元素与人体健康[J].广东微量元素科学,2002,9(11):21-23.
    [135]Mohapatra M, Anand S, Mishra B, et al. Review of fluoride removal from drinking water[J].Journal of environmental management,2009,91(1):67-77.
    [136]Chauhan V S, Dwivedi P K, Iyengar L. Investigations on activated alumina based domesticdefluoridation units[J]. Journal of hazardous materials,2007,139(1):103-107.
    [137]Lv L, He J, Wei M, et al. Factors influencing the removal of fluoride from aqueous solutionby calcined Mg-Al-CO3layered double hydroxides[J]. Journal of hazardous materials,2006,133(1):119-128.
    [138]Wambu E W, Onindo C O, Ambusso W, et al. Removal of Fluoride from Aqueous Solutionsby Adsorption Using a Siliceous Mineral of a Kenyan Origin[J]. CLEAN-Soil, Air, Water,2013,41(4):340-348.
    [139]Viswanathan N, Sundaram C S, Meenakshi S. Removal of fluoride from aqueous solutionusing protonated chitosan beads[J]. Journal of hazardous materials,2009,161(1):423-430.
    [140]彭安,朱建国,稀土元素的环境化学及生态效应.2003:北京.中国环境科学出版社.
    [141]Viswanathan N, Meenakshi S. Enriched fluoride sorption using alumina/chitosancomposite[J]. Journal of hazardous materials,2010,178(1):226-232.
    [142]Chen N, Zhang Z, Feng C, et al. Fluoride removal from water by granular ceramicadsorption[J]. Journal of colloid and interface science,2010,348(2):579-584.
    [143]常海涛.壳聚糖/聚乙烯醇复合药物缓释微球制备工艺的研究[J].精细与专用化学品,2008,16(14):21-23.
    [144]Bansiwal A, Thakre D, Labhshetwar N, et al. Fluoride removal using lanthanumincorporated chitosan beads[J]. Colloids and Surfaces B: Biointerfaces,2009,74(1):216-224.
    [145]袁彦超,朱再盛,章明秋.交联壳聚糖树脂吸附Co2+的机理研究[J].离子交换与吸附,2005,21(5):452-460.
    [146]Hernández R B, Franco A P, Yola O R, et al. Coordination study of chitosan and Fe3+[J].Journal of Molecular Structure,2008,877(1):89-99.
    [147]Kawamura Y, Mitsuhashi M, Tanibe H, et al. Adsorption of metal ions on polyaminatedhighly porous chitosan chelating resin[J]. Industrial&engineering chemistry research,1993,32(2):386-391.
    [148] Tianwei T, Xiaojing H, Weixia D. Adsorption behaviour of metal ions on imprinted chitosanresin[J]. Journal of Chemical Technology and Biotechnology,2001,76(2):191-195.
    [149]Albarelli J Q, Luna M T, Vieira R S, et al. Evaluation of Glass Beads Coated with Chitosanfor the Adsorption of Copper (II) Ions from Aqueous Solution[J]. Adsorption Science&Technology,2012,30(3):227-240.
    [150]吴程程,负载铁(III)化合物的杂合吸附剂处理高氟饮用水的研究[D].2011,华东师范大学.
    [151]Yan Z, Haijia S, Tianwei T. Adsorption behaviors of the aminated chitosan adsorbent[J].Korean Journal of Chemical Engineering,2007,24(6):1047-1052.
    [152] Zeng D, Wu J, Kennedy J F. Application of a chitosan flocculant to water treatment[J].Carbohydrate Polymers,2008,71(1):135-139.
    [153] Helander I, Nurmiaho-Lassila E L, Ahvenainen R, et al. Chitosan disrupts the barrierproperties of the outer membrane of Gram-negative bacteria[J]. International journal of foodmicrobiology,2001,71(2):235-244.
    [154] Zeng X, Ruckenstein E. Cross-linked macroporous chitosan anion-exchange membranes forprotein separations[J]. Journal of Membrane Science,1998,148(2):195-205.
    [155] Rhazi M, Desbrieres J, Tolaimate A, et al. Influence of the nature of the metal ions on thecomplexation with chitosan.: Application to the treatment of liquid waste[J]. EuropeanPolymer Journal,2002,38(8):1523-1530.
    [156]苏琳,汪东风,于丽娜,等.壳聚糖/Ce4+复合物微球在苹果汁澄清中的应用[J].食品与发酵工业,2006,32(1):141-143.
    [157]李海燕,汪东风,于丽娜,等.壳聚糖铈配合物树脂对橙汁苦味物质的脱除及其对品质的影响[J].稀土,2008,29(4):21-25.
    [158]李海燕,汪东风, Siaka D,等.球状壳聚糖树脂对茶多酚的吸附热力学和动力学研究[J].茶叶科学,2009,29(4):313-318.
    [159]王丽媛,张莉,汪东风.磁性壳聚糖-稀土-粘土复合树脂对赤潮异湾藻的抑制作用[J].海洋环境科学,2012,31(6):808-812.
    [160]刘炳杰,壳聚糖金属印迹树脂的制备、表征及吸附特性的研究[D].2012,中国海洋大学.
    [161]冯长根,白林山,任启生.胺基化合物修饰戊二醛交联壳聚糖树脂的合成及其红外光谱研究[J].光谱学与光谱分析,2004(11):1315-1318.
    [162]孟范平,李永富,赵顺顺.基于饮用水除氟的改性壳聚糖制备技术研究进展[J].现代化工,2010,30(4):16-19.
    [163]Ngah W, Ab Ghani S, Kamari A. Adsorption behaviour of Fe (II) and Fe (III) ions inaqueous solution on chitosan and cross-linked chitosan beads[J]. Bioresource technology,2005,96(4):443-450.
    [164]宋立民,壳聚糖对稀土离子的吸附性能及其催化作用的研究[D].2002,辽宁师范大学.
    [165]丁明,施建军.壳聚糖微球的制备研究[J].化学世界,1998,39(12):636-640.
    [166]陈雪梅,肖文胜,刘煦晴.交联壳聚糖吸附剂的制备及处理含铬废水的研究[J].环境科学与技术,2006,29(4):74-75.
    [167]周琼,活化半焦处理港口含油废水的研究[D].2009,中国海洋大学.
    [168]Ramesh A, Hasegawa H, Sugimoto W, et al. Adsorption of gold (III), platinum (IV) andpalladium (II) onto glycine modified crosslinked chitosan resin[J]. Bioresource technology,2008,99(9):3801-3809.
    [169]Chiou M, Li H. Adsorption behavior of reactive dye in aqueous solution on chemicalcross-linked chitosan beads[J]. Chemosphere,2003,50(8):1095-1105.
    [170]Basso M, Cerrella E, Cukierman A. Activated carbons developed from a rapidly renewablebiosource for removal of cadmium (II) and nickel (II) ions from dilute aqueous solutions[J].Industrial&engineering chemistry research,2002,41(2):180-189.
    [171]Maliyekkal S M, Sharma A K, Philip L. Manganese-oxide-coated alumina: a promisingsorbent for defluoridation of water[J]. Water Research,2006,40(19):3497-3506.
    [172]Cheung W, Szeto Y, McKay G. Intraparticle diffusion processes during acid dye adsorptiononto chitosan[J]. Bioresource technology,2007,98(15):2897-2904.
    [173]Popuri S R, Vijaya Y, Boddu V M, et al. Adsorptive removal of copper and nickel ions fromwater using chitosan coated PVC beads[J]. Bioresource technology,2009,100(1):194-199.
    [174]Wang F, Wang L-J, Li J-S, et al. Adsorption behavior and mechanism of cadmium onstrong-acid cation exchange resin[J]. Transactions of Nonferrous Metals Society of China,2009,19(3):740-744.
    [175]孟范平,李永富,周游,等. EGDE交联的载镧壳聚糖微球对氟离子的静态和动态吸附[J].化工学报,2011,62(11):3192-3200.
    [176]周利民,磁性壳聚糖改性以及对金属离子的吸附特性研究[D].2007,天津大学.
    [177]姚瑞华,基于镧系金属改性壳聚糖的脱氟新技术研究[D].2009,中国海洋大学.
    [178]崔丽卿,徐玮,汪东风.稀土对大菱鲆生长和非特异性免疫力的影响[J].中国海洋大学学报(自然科学版),2011(2):97-100.
    [179]王科军,温和瑞,刘芳,等.低聚壳聚糖稀土铈(Ⅲ)配合物的合成与光谱表征[J].光谱学与光谱分析,2006(7):1277-1280.
    [180]Wanjun T, Cunxin W, Donghua C. Kinetic studies on the pyrolysis of chitin and chitosan[J].Polymer Degradation and Stability,2005,87(3):389-394.
    [181]王桂萍,王桂燕,李锋,等.氧化锆负载树脂氟离子吸附剂的性能研究[J].水处理技术,2008,34(11):32-34.
    [182]魏红,李克斌,史京转.壳聚糖改性去除饮用水中氟离子的研究[J].西北农林科技大学学报(自然科学版),2010,38(11):209-213.
    [183]Karthikeyan M, Satheeshkumar K, Elango K. Removal of fluoride ions from aqueoussolution by conducting polypyrrole[J]. Journal of hazardous materials,2009,167(1):300-305.
    [184] zcan A, SAFA ZCAN A, Tunali S, et al. Determination of the equilibrium, kinetic andthermodynamic parameters of adsorption of copper (II) ions onto seeds of Capsicumannuum[J]. Journal of hazardous materials,2005,124(1-3):200-208.
    [185]Ho Y, McKay G. Sorption of dye from aqueous solution by peat[J]. Chemical EngineeringJournal,1998,70(2):115-124.
    [186]李玲玲,硅胶负载氧化锆吸附剂的制备及吸附除氟研究[D].2006,郑州大学.
    [187]Ho Y-S, McKay G. Pseudo-second order model for sorption processes[J]. ProcessBiochemistry,1999,34(5):451-465.
    [188]Singh B K, Rawat N S. Comparative sorption equilibrium studies of toxic phenols on flyashand impregnated flyash[J]. Journal of Chemical Technology and Biotechnology,1994,61(4):307-317.
    [189]李永富,基于新型交联剂的改性壳聚糖制备及除氟性能研究[D].2011,中国海洋大学.
    [190]Kannan N, Sundaram M M. Kinetics and mechanism of removal of methylene blue byadsorption on various carbons-a comparative study[J]. Dyes and pigments,2001,51(1):25-40.
    [191]Wu F-C, Tseng R-L, Juang R-S. Comparative adsorption of metal and dye on flake-andbead-types of chitosans prepared from fishery wastes[J]. Journal of hazardous materials,2000,73(1):63-75.
    [192]刘步云,姚忠,周治,等.螯合树脂对铜离子的吸附动力学和热力学[J].过程工程学报,2009,9(5):865-869.
    [193]Bhattacharyya K G, Sharma A. Azadirachta indica leaf powder as an effective biosorbent fordyes: a case study with aqueous Congo Red solutions[J]. Journal of environmentalmanagement,2004,71(3):217-229.
    [194]Afkhami A, Moosavi R. Adsorptive removal of Congo red, a carcinogenic textile dye, fromaqueous solutions by maghemite nanoparticles[J]. Journal of hazardous materials,2010,174(1):398-403.
    [195]苏海佳,贺小进,谭天伟.球形壳聚糖树脂对含重金属离子废水的吸附性能研究[J].北京化工大学学报(自然科学版),2003(2):19-22.
    [196]Oliveira L C, Rios R V, Fabris J D, et al. Clay-iron oxide magnetic composites for theadsorption of contaminants in water[J]. Applied Clay Science,2003,22(4):169-177.
    [197]Oliveira L C, Petkowicz D I, Smaniotto A, et al. Magnetic zeolites: a new adsorbent forremoval of metallic contaminants from water[J]. Water Research,2004,38(17):3699-3704.
    [198]Cui H, Qian Y, An H, et al. Electrochemical removal of fluoride from water by PAOAmodified carbon felt electrodes in a continuous flow reactor[J]. Water Research,2012,186(1):150-159.
    [199]Tanyola D, zdural A R. A new low cost magnetic material: magnetic polyvinylbutyralmicrobeads[J]. Reactive and functional polymers,2000,43(3):279-286.
    [200]周利民,刘峙嵘,黄群武. Fe3O4/聚甲基丙烯酸羟乙酯改性磁性微球对Al3+的吸附[J].现代化工,2006,26(S2):147-149.
    [201]Chang Y-C, Chang S-W, Chen D-H. Magnetic chitosan nanoparticles: Studies on chitosanbinding and adsorption of Co (II) ions[J]. Reactive and functional polymers,2006,66(3):335-341.
    [202]Cui H, Qian Y, An H, et al. Electrochemical removal of fluoride from water by PAOAmodified carbon felt electrodes in a continuous flow reactor[J]. Water Research,2012,186(1):150-159.
    [203]Sairam Sundaram C, Viswanathan N, Meenakshi S. Defluoridation of water usingmagnesia/chitosan composite[J]. Journal of hazardous materials,2009,163(2):618-624.
    [204]Chang Q, Zhu L, Luo Z, et al. Sono-assisted preparation of magnetic magnesium-aluminumlayered double hydroxides and their application for removing fluoride[J]. UltrasonicsSonochemistry,2011,18(2):553-561.
    [205]Ziolo R F, Giannelis E P, Weinstein B A, et al. Matrix-mediated synthesis of nanocrystallineγ--Fe2O3: a new optically transparent magnetic material[J]. Science,1992,257(5067):219-223.
    [206]Zhao X, Wang J, Wu F, et al. Removal of fluoride from aqueous media by Fe3O4@Al(OH)3magnetic nanoparticles[J]. Journal of hazardous materials,2010,173(1):102-109.
    [207]王丽媛,磁性壳聚糖复合微球对赤潮异湾藻(Heterosigma akashiwo)抑制作用的研究[D].2012,中国海洋大学.
    [208]Maheshwari R. Fluoride in drinking water and its removal[J]. Journal of hazardous materials,2006,137(1):456-463.
    [209]Zhou Y, Yu C, Shan Y. Adsorption of fluoride from aqueous solution on La3+-impregnatedcross-linked gelatin[J]. Separation and purification technology,2004,36(2):89-94.
    [210]Vold I, Varum K M, Guibal E, et al. Binding of ions to chitosan-selectivity studies[J].Carbohydrate Polymers,2003,54(4):471-477.
    [211]Fan X, Parker D, Smith M. Adsorption kinetics of fluoride on low cost materials[J]. WaterResearch,2003,37(20):4929-4937.
    [212]Teng S X, Wang S G, Gong W X, et al. Removal of fluoride by hydrous manganeseoxide-coated alumina: Performance and mechanism[J]. Journal of hazardous materials,2009,168(2):1004-1011.
    [213]白焱,刘巍.水域氟污染与人体健康[J].东北水利水电,2006(11):52-54.
    [214]曾有文,由阳,宋兰合.氟化物在我国饮用水水源和饮用水中的分布调查及健康影响[J].供水技术,2012,35(6):1-4.
    [215]孙殿军,沈雁峰,赵新华,等.中国大陆地方性氟中毒病情动态与现状分析[J].中国地方病学杂志,2001,6:31-35.
    [216]王一凡, Ca-Al-La复合除氟材料的制备及其除氟性能研究[D].2012,武汉理工大学.
    [217]韩卓育,改性粘土除氟剂的制备及除氟效果的研究[D].2009,吉林大学.
    [218]Rorrer G L, Hsien T Y, Way J D. Synthesis of porous-magnetic chitosan beads for removalof cadmium ions from wastewater[J]. Industrial&engineering chemistry research,1993,32(9):2170-2178.
    [219]Viswanathan N, Sairam Sundaram C, Meenakshi S. Development of multifunctional chitosanbeads for fluoride removal[J]. Journal of hazardous materials,2009,167(1):325-331.
    [220]邓敬颂,王佛娇,戴修纯,等.原子吸收分光光度法测定水的总硬度[J].化学分析计量,2007,59(6):40-42.
    [221]李实.离子色谱法同时测定水中五种阴离子[J].分析仪器,2003(4):39-41.
    [222]李国云,尹利昂,陈士国,等.海参多糖硫酸根含量的离子色谱法测定及其差异分析[J].食品工业科技,2011,32(243):403-406.
    [223]梁超轲.中国改水降氟措施效果评价和标准研究[J].卫生研究,1998(1):17-29.
    [224]李中峰,吴惠丰,张晓宇,等.轻稀土镧、铈急性生物效应的血清~1HNMR谱代谢组学研究[J].高等学校化学学报,2006(3):438-442.
    [225]Sun J, Zhao H, Wang Y. Study on the contents of trace rare earth elements and theirdistribution in wheat and rice samples by RNAA[J]. Journal of radioanalytical and nuclearchemistry,1994,179(2):377-383.
    [226]朱为方,徐素琴,邵萍萍,等.赣南稀土区生物效应研究-稀土日允许摄入量[J].中国环境科学,1997(1):65-68.
    [227]何公理,吉荣娣.饮用水除氟方法的研究进展[J].中国地方病学杂志,1995,14(4):236-237.
    [228]黄洪亮,陈雪忠,冯春雷.南极磷虾资源开发现状分析[J].渔业现代化,2007,34(1):48-51.
    [229]吴伟平,谢营樑.南极磷虾及磷虾渔业[J].现代渔业信息,2010,25(1):10-13.
    [230]Chen Y, Tou J, Jaczynski J. Amino acid and mineral composition of protein and othercomponents and their recovery yields from whole Antarctic krill (Euphausia superba) usingisoelectric solubilization/precipitation[J]. Journal of food science,2009,74(2): H31-H39.
    [231]刘丽,刘承初,赵勇,等.南极磷虾的营养保健功效以及食用安全性评价[J].食品科学,2010,31(17):443-447.
    [232]Turkiewicz M, Galas E, Zielińska M. Purification and partial characterization of anendo-(1→3)-β-D-glucanase fromEuphausia superba Dana (Antarctic Krill)[J]. Polar Biology,1985,4(4):203-211.
    [233]Turkiewicz M, Kalinowska H, Zielińska M, et al. Purification and characterization of twoendo-1,4-β-xylanases from Antarctic krill,Euphausia superba Dana[J]. ComparativeBiochemistry and Physiology Part B: Biochemistry and Molecular Biology,2000,127(3):325-335.
    [234]Thomas H C. Heterogeneous ion exchange in a flowing system[J]. Journal of the AmericanChemical Society,1944,66(10):1664-1666.
    [235]丁湄,梁鹏,王星宇,等.改性壳聚糖Cu (Ⅱ)配合物树脂对肌红蛋白的水解作用研究[J].中国食品学报,2012,12(10):76-81.
    [236]崔明珍,纪云晶,董辛尧,等.稀土硝酸盐的慢性毒性及致癌性试验[J].中国稀土学报,1987,5(2):67-71.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700