用户名: 密码: 验证码:
水文频率新型计算理论与应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
水文频率分析是水文学研究的重要内容,旨在研究和分析水文随机现象,揭示其中蕴含的统计规律,并对未来可能的情势做出预估,满足水利工程规划、设计、管理以及水资源利用等工作的需要。
     本文针对现行水文频率分析存在的若干问题,综述了近年来国内外学者围绕这些问题的研究进展,总结了目前研究中存在的一些不足之处。选用陕西省典型区域水文气象资料,从单变量水文频率分析和多变量水文频率分析两方面入手,研究和提出了一些新的理论方法,并用于实例分析,主要开展了以下方面的研究。
     1.研究尾部指数估计理论在水文事件分析中的应用。对研究区月降水序列是否服从重尾分布进行了判别,并采用不同的尾部指数估计量对序列的极值指数和尾部指数进行了估计。
     2.研究非一致分布年径流序列的计算理论方法与应用。将研究区的非一致性年径流序列以变异点为节点划分为若干子序列,分别推导了序列理论频率、经验频率、矩和分位数的计算公式,选用P-III分布对研究区年径流序列的子序列进行拟合合成,评价结果的优劣。
     3.研究部分概率权重矩法(PPWM)和高阶概率权重矩法(HPWM)的计算理论与应用。采用GEV分布的PPWM法,通过给定不同的删失水平,分别估计年径流序列和年最大洪峰流量序列的分布参数,对序列较大值的拟合效果进行评价,并采用MonteCarlo模拟对PPWM法的统计性能进行了分析。推导了P-III分布的HPWM公式,分别采用GEV分布的HPWM法和P-III分布的HPWM法估计年径流序列和年最大洪峰流量序列的分布参数,对序列较大值的拟合效果进行评价,并采用Monte Carlo模拟对HPWM法的统计性能进行了分析。
     4.研究贝叶斯理论在P-III分布参数估计中的应用。推导了基于贝叶斯方法的P-III分布参数估计公式,采用三种马尔科夫链蒙特卡洛(MCMC)抽样方法获得研究区年最大洪峰流量序列的参数样本,并评价了不同抽样方法的优劣。
     5.研究分层阿基米德copulas函数在干旱事件多变量联合分布构建中的应用。针对对称阿基米德copulas函数变量可互换、不考虑变量间相关性差异的缺点,根据干旱历时、干旱烈度和烈度峰值三个干旱特征变量间相关性的大小,选择Clayton copulas函数和Frank copulas函数进行组合,分层构建出三变量阿基米德copulas函数,推导了其概率密度及条件概率表达式,给出了三维copulas函数的拟合优度检验方法,进而用于研究区干旱分析。
     通过上述研究,本文取得以下主要结论。
     1.月降水序列的样本分布属于重尾分布,可以应用尾部指数估计理论对其分布尾部特性进行度量;常用的Hill估计量、Pickands估计量和矩估计量均能方便地估计极值指数和尾部指数,用Sum-plot作图法选取阈值k可以获得较好的效果。
     2.提出了非一致分布年径流序列计算方法。该法具有物理意义明确、数学基础严格的特点,实例拟合计算结果较为理想,且该方法无需进行资料的“还原”、“还现”计算,应用方便。
     3. PPWM法和HPWM法均能有效改善研究区洪水序列较大流量的拟合效果,并显著降低设计值的计算误差。其中,GEV分布的PPWM法和P-III分布的HPWM法计算出的设计值误差相对较小,GEV分布的HPWM法计算出的设计值误差相对略大,但其计算十分简便,亦有可取之处。
     4.对于研究区年径流序列,PPWM法和HPWM法均无法改善序列较大值的拟合效果,而采用P-III分布普通PWM法进行参数估计,对序列的拟合效果较好。
     5.基于贝叶斯方法估计P-III分布参数时,不同的抽样算法对MCMC方法的性能有一定的影响,其中AM算法具有收敛速度快、计算效率高、参数估计效果好等优点,优于MH法和DR法。
     6.三维Clayton/Frank组合分层copulas函数能够描述研究区干旱历时、干旱烈度和烈度峰值的三变量联合概率分布。与对称的三维阿基米德copulas函数相比,Clayton/Frank组合分层copulas函数更为合理地反映了干旱变量间不同的相依结构,且结构组合灵活,能够较为全面地描述干旱变量的联合分布特性。
Hydrologic frequency analysis is an important content in hydrology research. Aims atstudy and analysis the hydrological random phenomena, reveal the statistic laws that beingcontained in hydrological phenomena, in order to forecast the possible hydrological regime inthe future, and satisfy the requirements of hydraulic engineering planning, designing,management and water resources utilization.
     Aiming at several problems existing in current hydrologic frequency analysis research,this dissertation reviewed the present researches around these issues both at home and abroad,summarized some disadvantages existing in the present study. The hydrometeorological dataof typical region in Shaanxi province were used for case studies. Univariate and multivariatehydrologic frequency analysis were studied respectively, several new theoretical method wereemployed and proposed, and were used for case studies.
     The main contents of this dissertation are as follows.
     1. Research on the application of tail-index estimation theory in hydrological events.Whether the monthly precipitation series obey the heavy-tailed distribution was judged. Threekinds of estimators were selected to estimate the extreme index and tail index of the data.
     2. Research on the principle of nonidentically distributed hydrologic data and itsapplication in annual runoff series. By dividing the nonidentically distributed annual runoffseries into several sub-series according to the change points, the formulas of the theoreticalprobability, the empirical probability, the moments and the quantile were deduced. P-IIIdistribution was chosen for application and assessment.
     3. Research on the method of partial probability weighted moments, the method ofhigher-order probability weighted moments and their application in annual runoff series andannual maximum flows. Giving different censoring levels, the parameters of GEV distributionwere estimated using partial probability weighted moments. The effects of fitting the largervalue of data were evaluated. Monte Carlo simulation was carried to analyze the statisticalproperties of partial probability weighted moments. The expressions of higher-orderprobability weighted moments for P-III distribution were derived. The parameters of GEVdistribution and P-III distribution were estimated separately. The effects of fitting the largervalue of data were evaluated. Monte Carlo simulation was carried to analyze the statistical properties of higher-order probability weighted moments.
     4. Research on the application of Bayesian theory in parameter estimation for P-IIIdistribution. The estimators of parameters for P-III distribution based on Bayesian theorywere presented. Three kinds of MCMC sampling methods were used to obtain the parametersamples of annual maximum flows, and their properties were evaluated in application.
     5. Research on the application of hierarchical Archimedean copulas in multivariatedraught analysis. Commonly-used Archimedean copulas are distribution functions of severalexchangeable uniform random variates, and take no account of dependence differencebetween variates. For this reason, these copulas suffer from a very limited dependencestructure. Contrapose this disadvantages of ordinary multivariate Archimedean copulas, weconstructed trivariate hierarchical Archimedean copulas (HAC) that combines Claytoncopulas with Frank copulas to model multivariate joint distributions according to thedependence of draught duration, draught severity and severity peak. The expressions ofdensity, cumulative distribution functions and conditional copulas of the trivariate HAC werederived. A goodness-of-fit test for trivariate copulas was conducted. This kind of trivariateHAC was used for draught analysis.
     The main conclusions are shown as follows.
     1. The distribution of monthly precipitation series belongs to heavy-tailed distribution,and the tail-index estimation theory is suitable to measure its tail behavior. All of thecommonly-used Hill estimator, Pickands estimator and moment estimator can estimate theextreme index and the tail index conveniently. Sum-plot was used for selecting the best k, andwas justified its good effect and high accuracy.
     2. The formulas of nonidentically distributed hydrologic data have definite physicalsignificance and strict mathematical foundation. Case studies show that this method can befitted by arbitrary common distributions and is convenient to use.
     3. Both method of partial probability weighted moments and method of higher-orderprobability weighted moments can improve the fitting effect of larger value of flood dataeffectively, and can significantly reduce the error of design values. The errors of design valuesthat calculated using PPWM for GEV distribution and higher-order PWMs for P-IIIdistribution are relatively smaller. The errors of design values that calculated usinghigher-order PWMs for GEV distribution are relatively larger. However, the calculation ofhigher-order PWMs for GEV distribution is extremely simple.
     4. Regarding annual runoff series, neither method of partial probability weightedmoments nor method of higher-order probability weighted moments can improve the fittingeffect of larger value of runoff data. Method of PWMs for P-III distribution can fit the annual runoff data quite well.
     5. In estimating the parameters of P-III distribution based on Bayesian method, differentsampling method has some influence on the performance of the MCMC method. Fast inconvergence rate, high in computational efficiency and good effects in parameter estimation,AM algorithm was much better than MH and DR algorithm.
     6. Trivariate hierarchical Archimedean copulas that combine Clayton copulas with Frankcopulas can describe the joint distribution of drought duration, drought severity and severitypeak. Comparing with the symmetrical trivariate Archimedean copulas, trivariate HACreflected the different dependence structures among draught variates more reasonably, andhad more flexible structure. This kind of copulas describes the joint distributioncharacteristics of drought variates comprehensively.
引文
鲍振鑫.2010.水文频率分析适线法参数估计研究.[硕士学位论文].南京:南京水利科学研究院
    勃洛希诺夫E Γ.2005.河川径流量的概率分布.武汉:长江出版社:135~164
    陈元芳,赵利红,许睢,马斌勋,王文鹏.2007.适线法估计P-III分布设计年径流量的统计试验研究.河海大学学报(自然科学版),35(2):176~180
    成静清.2010.非一致性年径流序列频率分析计算.[硕士学位论文].杨凌:西北农林科技大学
    丛树铮,陈元芳.1989.适线法中拟合优度与设计值精度关系的分析.河海大学学报,17(4):97~102
    戴昌军,梁忠民.2006.多维联合分布计算方法及其在水文中的应用.水利学报,37(2):160~165
    邓育仁,丁晶,韦雪艳.1995.水文计算中的模糊优化适线法.水电站设计,11(4):43~47
    丁裕国.2007.气候概率分布理论的新内涵及其展望.沙漠与绿洲气象,1(2):1~5
    杜子平,闫鹏,张勇.2009.基于“藤”结构的高维动态Copula的构建.数学的实践与认识,39(10):96~102
    费永法,平克建.2001.设计洪水频率曲线数学适线法的比较分析.水文,21(6):26~28
    费永法.1989.一种计算洪水条件概率的方法.水文,(1):18~23
    费永法.1995.多元随机变量的条件概率计算方法及其在水文中的应用.水利学报,(8):60~66
    冯平,毛慧慧,王勇.2009.多变量情况下的水文频率分析方法及其应用.水利学报,40(1):33~37
    郭生练,闫宝伟,肖义,方彬,张娜.2008. Copula函数在多变量水文分析计算中的应用及研究进展.水文,28(3):1~7
    赫英迪.2007.重尾分布的尾部指数估计及沪深股市实证分析.[硕士学位论文].太原:山西大学
    侯芸芸,宋松柏,赵丽娜,王剑峰.2010.基于Copula函数的3变量洪水频率研究.西北农林科技大学学报(自然科学版),38(2):219~228
    黄伟军,丁晶,赵永龙.1996. P-III型分布参数估计的地区贝叶斯方法.成都科技大学学报,(5):6~36
    黄振平,萨迪伊,王春霞,马军建.2002.关于适线法中经验频率计算公式的对比研究.水利水电科技进展,22(5):5~7
    黄振平.2003.水文统计学.南京:河海大学出版社:1~2
    金光炎.1964.水文统计原理与方法.北京:中国工业出版社
    金光炎.1999.水文频率分析述评.水科学进展,10(3):319~327
    金光炎.2005.矩、概率权重矩与线性矩的关系分析.水文,25(5):1~6
    雷红富,谢平,陈广才,李晶.2007.水文序列变异点检验方法的性能比较分析.水电能源科学,25(4):36~40
    李松仕.1989.概率权矩法推求P-III型分布参数新公式.水利学报,(5):39~42
    李松仕.1996.论不连序系列样本概率权重矩不偏计算公式.水文,(3):7~12
    梁忠民,丛树铮.1994.水文频率分析中的一种贝叶斯方法.河海大学学报,22(1):7~12
    梁忠民,戴昌军.2004.水文频率分析中的多项式正态变换方法研究.河海大学学报(自然科学版),32(4):363~366
    梁忠民,戴昌军.2005.水文分析计算中两种正态变换方法的比较研究.水电能源科学,23(2):1~3
    梁忠民,戴荣,雷杨,余钟波.2009.基于贝叶斯理论的水文频率分析方法研究.水力发电学报,28(4):22~26
    梁忠民,戴荣,李斌权.2010.基于贝叶斯理论的水文不确定性分析研究进展.水科学进展,21(2):274~281
    梁忠民,郭彦,胡义明,汤春义.2012.基于copula函数的三峡水库预泄对鄱阳湖防洪影响分析.水科学进展,23(4):457~464
    梁忠民,胡义明,王军.2011.非一致性水文频率分析的研究进展.水科学进展,22(6):864~871
    梁忠民,李磊,王军,戴荣.2010.考虑参数和线型不确定性的水文设计值估计的贝叶斯方法.天津大学学报,43(5):379~384
    刘光文.1989.水文分析与计算.北京:水利电力出版社:1~3
    刘维奇,赫英迪,陈琳.2011.重尾分布的尾部指数估计及沪深股市实证分析.数学的实践与认识,41(6):1~13
    刘维奇,赫英迪,邢红卫.2010.选择重尾阈值K的Bootstrap方法.山西大学学报(自然科学版),33(4):508~512
    刘维奇,邢红卫.2010.重尾指数估计中阈值K的简便优化估计.系统工程理论与实践,30(8):1465~1470
    刘维奇,邢红卫.2012.重尾分布尾指数估计研究进展.山西大学学报(自然科学版),35(2):163~173
    陆桂华,闫桂霞,吴志勇,康燕霞.2010.基于copula函数的区域干旱分析方法.水科学进展,21(2):188~193
    陆乐,吴吉春,陈景雅.2008.基于贝叶斯方法的水文地质参数识别.水文地质工程地质,(5):58~63
    马明卫,宋松柏.2010.椭圆型Copulas函数在西安站干旱特征分析中的应用.水文,30(4):36~42
    马明卫.2011. Meta-elliptical copulas函数在干旱分析中的应用研究.[硕士学位论文].杨凌:西北农林科技大学
    茆诗松.1999.贝叶斯统计.北京:中国统计出版社:1~4,7~8,15,24,40
    欧阳资生.2008.厚尾分布的极值分位数估计与极值风险测度研究.数理统计与管理,27(1):70~75
    潘家柱,丁美春.2000. GP分布模型与股票收益率分析.北京大学学报(自然科学版),36(3):296~307
    邱林,陈守煜,潘东.1998. P-III型分布参数估计的模糊加权优化适线法.水利学报,(1):33~38
    邱小霞,刘次华,吴娟,彭浩威.2009. Copula函数中参数的矩估计方法.应用数学,22(2):448~451
    冉啟香,张翔.2010.多变量水文联合分布方法及Copula函数的应用研究.水电能源科学,28(9):8~11
    任树梅,李靖.2005.工程水文与水利计算.北京:中国农业出版社:57
    史道济,张春英.2006.尾部指标估计中的阈值选择.天津理工大学学报,22(6):78~81
    水利部长江水利委员会.1993.水利水电工程设计洪水计算规范SL44-93.北京:中国水利水电出版社
    宋德敦,丁晶.1988.概率权重矩法及其在P-III分布中的应用.水利学报,(3):1~11
    宋松柏,蔡焕杰粟晓玲.2005.专门水文学概论.杨凌:西北农林科技大学出版社:142,147~148
    宋松柏,蔡焕杰,金菊良,康艳.2012. Copulas函数理论及其在水文中的应用.北京:科学出版社
    宋松柏,聂荣.2011.基于非对称阿基米德Copula的多变量水文干旱联合概率研究.水力发电学报,30(4):20~29
    宋松柏.2008. P-III分布参数的概率权重矩法S函数计算.水文,28(5):1~5
    孙贵山.2011.年径流变异序列水文频率分析计算.广东水利水电,(2):32~35
    孙鹏,张强,陈晓宏.2011.基于Copula函数的鄱阳湖流域极值流量遭遇频率及灾害风险.湖泊科学,23(2):183~190
    王建平,程声通,贾海峰.2006.基于MCMC法的水质模型参数不确定性研究.环境科学,27(1):24~30
    王璐,王沁,陈勇明.2008.金融市场相关性的Chi-plot测度.数学的实践与认识,38(4):27~32
    王文圣,丁晶.2003.基于核估计的多变量非参数随机模型初步研究.水利学报,(2):9~14
    王晓华.2006.水文学.武汉:华中科技大学出版社:37~38
    王孝礼,胡宝清,夏军.2002.水文时序趋势与变异点的R/S分析法.武汉大学学报(工学版),35(2):10~12
    吴伯贤.1990.贝叶斯方法在洪水频率分析中的应用.成都科技大学学报,(1):69~82
    谢华,罗强,黄介生.2012.基于三维copula函数的多水文区丰枯遭遇分析.水科学进展,23(2):186~193
    谢平,陈广才,韩淑敏,武方圆.2006.从潮白河年径流频率分布变化看北京市水资源安全问题.长江流域资源与环境,15(6):713~717
    谢平,陈广才,雷红富,韩淑敏,夏军,朱勇.2009a.变化环境下地表水资源评价方法.北京:科学出版社:137~140
    谢平,陈广才,雷红富.2009b.变化环境下基于趋势分析的水资源评价方法.水力发电学报,28(2):14~19
    谢平,陈广才,李德,朱勇.2005a.水文变异综合诊断方法及其应用研究.水电能源科学,23(2):11~14
    谢平,陈广才,夏军.2005b.变化环境下非一致性年径流序列的水文频率计算原理.武汉大学学报(工学版),38(6):6~15
    谢平,郑泽权.2000.水文频率计算有约束加权适线法.武汉水利电力大学学报,33(1):49~52
    邢红卫.2010.重尾现象、重尾分布与重尾指数估计.[硕士学位论文].太原:山西大学
    熊立华,郭生练,肖义,袁汉芳.2005. Copula联结函数在多变量水文频率分析中的应用.武汉大学学报(工学版),38(6):16~19
    熊立华,周芬,肖义,郭生练.2005.水文时间序列变异点分析的贝叶斯方法.水电能源科学,23(2):11~14
    许月萍,李佳,曹飞凤,冉启华.2008. Copula在水文极限事件分析中的应用.浙江大学学报(工学版),42(7):1119~1122
    许月萍,张庆庆,楼章华,刘德地.2010.基于Copula方法的干旱历时和烈度的联合概率分析.天津大学学报,43(10):928~932
    闫宝伟,郭生练,陈璐,李天元.2012. Copula函数在水文计算中的适用性分析.数学的实践与认识,42(3):85~93
    闫宝伟,郭生练,郭靖,张娜.2009.多变量水文分析计算方法的比较.武汉大学学报(工学版),42(1):10~15
    闫宝伟,郭生练,肖义,方彬.2007.基于两变量联合分布的干旱特征分析.干旱区研究,24(4):537~542
    叶守泽.1992.水文水利计算.北京:水利电力出版社:1
    于波.2009. Copula函数模型的选择.统计与决策,(14):153~154
    曾智,宋松柏,金菊良.2012. Pair-copula函数在多变量干旱特性联合概率中的应用.水文,32(2):60~64
    詹道江,叶守泽.2000.工程水文学.第三版.北京:中国水利水电出版社:180,212,213,234
    张强,李剑锋,陈晓宏,白云岗.2011.基于Copulas函数的新疆极端降水概率时空变化特征.地理学报,66(1):3~12
    张翔,冉啟香,夏军,宋星原.2011.基于Copula函数的水量水质联合分布函数.水利学报,42(4):483~489
    张雨,宋松柏.2010. Copulas函数在多变量干旱联合分布中的应用.灌溉排水学报,29(3):64~68
    赵璧奎,王丽萍,李继清,张验科,喻杉.2012.不连续系列的P-III型曲线计算机适线法探讨.水电能源科学,30(3):64~67
    赵丹,耿国靖,王涛.2008.高频金融时序的密度函数肥尾度量.数学理论与应用,28(1):117~120
    钟波,张鹏.2009. Copula选择方法.重庆工学院学报(自然科学),23(5):155~160
    周川,陈元芳,魏琳,程龙,黄琴,曹雪芹.2011.适线法在洪水超定量系列频率分析中的应用研究.水电能源科学,29(3):48~50
    周玉良,袁潇晨,金菊良,郦建强,宋松柏.2011.基于Copula的区域水文干旱频率分析.地理科学,31(11):1383~1388
    周园园,师长兴,范小黎,杜俊.2011.国内水文序列变异点分析方法及在各流域应用研究进展.地理科学进展,30(11):1361~1369
    邹波.2003.强降水发生的概率估计与比较.气候与环境研究,8(3):331~337
    Aas K, Czado C, Frigessi A, Bakken H.2009. Pair-copula constructions of multiple dependence. Insurance:Mathematics and Economics,(44):182~198
    Alila Y, Mtiraoui A.2002. Implications of heterogeneous flood-frequency distributions on traditionalstream-discharge prediction techniques. Hydrological Processes,16(5):1065~1084
    Bárdossy A, Li J.2008. Geostatistical interpolation using copulas. Water Resources Research,44(7):W07412
    Bárdossy A.2006. Copula-based geostatistical models for groundwater quality parameters. WaterResources Research,42(11): W11416
    Beirlant J, Bouquiaux C, Werker B J M.2006. Semiparametric lower bounds for tail index estimation.Journal of Statistical Planning and Inference,136(3):705~729
    Bhattarai K P.2004. Partial L-moments for the analysis of censored flood samples. Hydrological Sciences,49(5):855~868
    Box G E P, Cox D R.1964. An analysis of transformations. Journal of the Royal Statistical Society. SeriesB (Methodological),26(2):211~252
    Charles N K, Stedinger J R.1996. Estimation of moments and quantiles using censored data. WaterResources Research,32(4):1005~1012
    Cope E W.2011. Penalized likelihood estimators for truncated data. Journal of Statistical Planning andInference,(141):345~358
    Cunnane C.1988. Methods and merits of regional flood frequency analysis. Journal of Hydrology,(100):269~290
    Daniel R H, O’Connel.2005. Nonparametric Bayesian flood frequency estimation. Journal of Hydrology,(313):79~96
    Danielsson J, De Haan L, Peng L, De Vries C G.2001. Using a bootstrap method choose the samplefraction in tail index estimation. Journal of Multivariate Analysis,76(2):226~248
    Deheuvels P, De Haan L, Peng L, Pereira T T.1997. Comparison of Extreme Value Index estimators.NEPTUNE T400: EUR-09
    Dekkers A L M, De Haan L.1989. On the estimation of the extreme-value index and large quantileestimation. Annals of Statistics,17(4):1795~1832
    Dekkers A L M, Einmahl J H J, De Haan L.1989. A moment estimator for the index of an extreme-valuedistribution. Annals of Statistics,17(4):1833~1855
    Ding J, Song D D, Yang R F, Hou Y.1989a. Expressions relating probability weighted moments toparameters of several distributions inexpressible in inverse form. Journal of Hydrology,(110):259~270
    Ding J, Song D D, Yang R F.1989b. Further research on application of probability weighted moments inestimating parameters of the Pearson Type Three distribution. Journal of Hydrology,(110):239~257
    Ding J, Yang R F.1988. The determination of probability weighted moments with the incorporation ofextraordinary values into samples data and their application to estimating parameters for the PearsonType Three distribution. Journal of Hydrology,(101):63~81
    Dobri J, Schmid F.2007. A goodness of fit test for copulas based on Rosenblatt’s transformation.Computational Statistics&Data Analysis,(51):4633~4642
    Drees H, De Haan L, Resnick S.2000. How to make a Hill plot. Annals of Statistics,28(1):254~274
    Drees H.1995. Refined Pickands estimators of the extreme value index. Annals of Statistics,23(6):2059~2080
    Dupuis D J.2007. Using copulas in hydrology: benefits, cautions, and issues. Journal of HydrologicEngineering,12(4):381~393
    Embreehts P, Kluppelberg C, Mikoseh C.1997. Modeling extremal events for insurance and finance. Berlin:Springer
    Engeland K, Gottschalk L.2002. Bayesian estimation of parameters in a regional hydrological model.Hydrology and Earth System Sciences,6(5):883~898
    Favre A C, Adlouni S E, Perreault L, Thiémonge N, Bobeé B.2004. Multivariate hydrological frequencyanalysis using copulas. Water Resources Research,40(1): W01101
    Fiorentino M, Arora K, Singh V P.1987. The two-component extreme-value distribution for floodfrequency analysis. Stochastic Hydrology and Hydraulics,1(3):199~208
    Fisher N I, Switzer P.1985. Chi-plots for assessing dependence. Biometrika,72(2):253~265
    Fisher N I, Switzer P.2001. Graphical assessment of dependence: Is a picture worth100tests? TheAmerican Statistician,55(3):233~239
    Gebremichael M, Krajewski W F.2007. Application of copulas to modeling temporal sampling errors insatellite-derived rainfall estimates. Journal of Hydrologic Engineering,12(4):404~408
    Genest C, Boies J C.2003. Detecting dependence with Kendall plots. The American Statistician,57(4):275~284
    Genest C, Favre A C, Béliveau J, Jacques C.2007. Metaelliptical copulas and their use in frequencyanalysis of multivariate hydrological data. Water Resources Research,43(9): W09401
    Genest C, Favre A C.2007. Everything you always wanted to know about copula modeling but were afraidto ask. Journal of Hydrologic Engineering,12(4):347~368
    Genest C, Rémillard B, Beaudoin D.2009. Goodness-of-fit tests for copulas: a review and a power study.Insurance: Mathematics and Economics,44(2):199~213
    Gilks W R, Richardson S, Spiegelhalter D J.1996. Introducing Markov chain Monte Carlo. In: Gilks W R,Richardson S, Spiegelhalter D J.(Eds.), Markov Chain Monte Carlo in Practice. Chapman&Hall,Boca Raton: FL:1~16
    Goel N K, Seth S M, Chandra S.1998. Multivariate modeling of flood flows. Journal of HydraulicEngineering,124(2):146~155
    Greenwood J A, Landwehr J M, Matalas N C, Wallis J R.1979. Probability weighted moments: Definitionand relation to parameters of several distributions expressible in inverse form. Water ResourcesResearch,15(5):1049~1054
    Haario H, Sakasman E, Tamminem J.2001. An adaptive Metropolis algorithm. Bernoulli,7(2):223~242
    Hall P.1990. Using the Bootstrap to estimate Mean Square Error and select smoothing parameters innonparametric problems. Journal of Multivariate Analysis,32(2):177~203
    Hastings W K.1970. Monte Carlo sampling methods using Markov chains and their applications.Biometrika,(57):97~109
    Hill B.1975. A simple general approach to inference about the tail of a distribution. Annals of Statistics,3(5):1163~1174
    Hofert M.2008. Sampling Archimedean copulas. Computational Statistics and Data Analysis,(52):5163~5174
    Hosking J R M, Wallis J R, Wood E F.1985. Estimation of the generalized extreme value distribution bythe method of probability weighted moments. Technometrics,27(3):251~261
    Hosking J R M.1995. The use of L-moments in the analysis of censored data. In: Balakrishnan N. RecentAdvances in Life-Testing and Reliability. Boca Raton, Fla: CRC Press:545~564
    Jakubowski W.1992. The application of probability weighted moments in estimating the parameters of aPearson Type Three distribution-comment. Journal of Hydrology,(136):395~399
    Joe H.1997. Multivariate models and dependence concepts. London: Chapman&Hall
    Kao S C, Govindaraju R S.2008. Trivariate statistical analysis of extreme rainfall events via the Plackettfamily of copulas. Water Resources Research,44(2): W02415
    Kim T W, Valdés J B, Yoo C.2003. Nonparametric approach for estimating return periods of droughts inarid regions. Journal of Hydrologic Engineering,8(5):237~246
    Kratz M, Resnick S I.1996. The qq-estimator and heavy tails. Stochastic Models,12(4):699~724
    Kuczera G.1999. Comprehensive at-site flood frequency analysis using Monte Carlo Bayesian inference.Water Resources Research,35(5):1551~1557
    Landwehr J M, Matalas N C, Wallis J R.1979. Probability weighted moments compared with sometraditional techniques in estimating Gumbel parameters and quantiles. Water Resources Research,15(5):1055~1064
    Loaiciga H A, Michaelsen J, Hudak P F.1992. Truncated distributions in hydrologic analysis. WaterResources Bulletin,28(5):853~863
    Lye L M.1990. Bayes estimate of the probability of exceedance of annual floods. Stochastic Hydrology andHydraulics,4:55~64
    Madsen H, Rosbjerg D, Harremo s P.1995. Application of the Bayesian approach in regional analysis ofextreme rainfalls. Stochastic Hydrology and Hydraulics,(9):77~88
    Mandelbrot B.1963. The variation of certain speculative prices. The Journal of Business,36(4):394~419
    McNeil A J, Ne lehová J.2009. Multivariate Archimedean copulas, d-monotone functions and l1-normsymmetric distributions. The Annals of Statistics,37(5B):3059~3097
    McNeil A J.2008. Sampling nested Archimedean copulas. Journal of Statistical Computation andSimulation,78(6):567~581
    Moisello U.2007. On the use of partial probability weighted moments in the analysis of hydrologicalextremes. Hydrological Processes,21(10):1265~1279
    Nelsen B.1998. An introduction to Copulas. New York: Springer:116
    Okhrin O, Okhrin Y, Schmid W.2007. Determining the structure and estimation of hierarchicalArchimedean copulae. Radon Workshop on Financial and Actuarial Mathematics for YoungResearchers, Linz, Austria
    Pickands J.1975. Statistical inference using extreme order statistics. Annals of Statistics,3(1):119~131
    Poulin A, Huard D, Favre A C, Pugin S.2007. Importance of tail dependence in bivariate frequencyanalysis. Journal of Hydrologic Engineering,12(4):394~403
    Rao A R, Hamed K H.2000. Flood Frequency Analysis. Florida: CRC Press,5,159
    Reis Jr D S, Stedinger J R.2005. Bayesian MCMC flood frequency analysis with historical information.Journal of Hydrology,(313):97~116
    Resnick S.1997. Heavy tail modeling and teletraffic data. Annals of Statistics,25(5):1805~1849
    Resnick S, Stǎricǎ C.1997. Smoothing the Hill estimator. Advances in Applied Probability,29(1):271~293
    Ribatet M, Sauquet E, Grésillon J M, Ouarda T B M J.2007. A regional Bayesian POT model for floodfrequency analysis. Stoch Environ Res Ris Assess,(21):327~339
    Rosenblatt M.1952. Remarks on a multivariate transformation. The Annals of Mathematical Statistics,23(3):470~472
    Russell S O.1982. Flood probability estimation. Journal of the Hydraulics Division,108(1):63~73
    Salvadori G, De Michele C.2004. Frequency analysis via copulas: theoretical aspects and applications tohydrological events. Water Resources Research,40(12): W12511
    Salvadori G, De Michele C.2007. On the use of copulas in hydrology: theory and practice. Journal ofHydrologic Engineering,12(4):369~380
    Savu C, Trede M.2006. Hierarchical Archimedean copulas. In: International Conference on HighFrequency Finance. May, Konstanz, Germany
    Savu C, Trede M.2010. Hierarchies of Archimedean copulas. Quantitative Finance,10(3):295~304
    Serinaldi F, Grimaldi S.2007. Fully nested3-copula: procedure and application on hydrological data.Journal of Hydrologic Engineering,12(4):420~430
    Shiau J T, Feng S, Nadarajah S.2007. Assessment of hydrological droughts for the Yellow River, China,using copulas. Hydrological Processes,21(16):2157~2163
    Shiau J T, Shen H W.2001. Recurrence analysis of hydrologic droughts of differing severity. Journal ofWater Resources Planning and Management,127(1),30~40
    Shiau J T.2003. Return period of bivariate distributed extreme hydrological events. StochasticEnvironmental Research and Risk Assessment,(17):42~57
    Shiau J T.2006. Fitting drought duration and severity with two-dimensional copulas. Water ResourcesManagement,(20):795~815
    Shiau J T. Wang H Y, Tsai C T.2006. Bivariate frequency analysis of floods using copulas. Journal of theAmerican Water Resources Association,(42):1549~1564
    Singh V P, Wang S X, Zhang L.2005. Frequency analysis of nonidentically distributed hydrologic flooddata. Journal of Hydrology,307(1-4):175~195
    Song D D, Ding J.1988. The application of probability weighted moments in estimating the parameters ofthe Pearson Type Three distribution. Journal of Hydrology,(101):47~61
    Song S B, Singh V P.2009. Meta-elliptical copulas for drought frequency analysis of periodic hydrologicdata. Stochastic Environmental Research and Risk Assessment,24(3):425~444
    Song S B, Singh V P.2010a. Frequency Analysis of droughts using the Plackett copula and parameterestimation by genetic algorithm. Stochastic Environmental Research and Risk Assessment,24(5):783~805
    Song S B, Singh V P.2010b. Meta-elliptical copulas for drought frequency analysis of periodic hydrologicdata. Stochastic Environmental Research and Risk Assessment,24(3):425~444
    Sousa B.2002. A contribution to the estimation of the tail index of heavy-tailed distribution.[PhD thesis].Michigan: The University of Michigan
    Stewardson M J, McMahon T A.2002. A stochastic model of hydraulic variations within stream channels.Water Resources Research,38(1):8(1~14)
    Strupczewski W G, Singh V P, Feluch W.2001a. Non-stationary approach to at-site flood frequencymodelling I. Maximum likelihood estimation. Journal of Hydrology,248(1-4):123~142
    Strupczewski W G, Singh V P, Feluch W.2001b. Non-stationary approach to at-site flood frequencymodelling II. Weighted least squares estimation. Journal of Hydrology,248(1-4):143~151
    Strupczewski W G, Singh V P, Feluch W.2001c. Non-stationary approach to at-site flood frequencymodelling III. Flood analysis of Polish rivers. Journal of Hydrology,248(1-4):152~167
    Trang D D, Sandor M, Vidacs A.1999. Investigation of fractal properties in data traffic. Journal onCommunications, XLIX:12-18.
    Tung Y K.2000. Polynomial Normal Transforms in uncertainty analysis. In: Melchers, Stewart.Applications of statistics and probability. Vols1and2: Civil engineering reliability and risk analysis.Rotterdam: Balkema:167~173
    Wang Q J.1990. Estimation of the GEV distribution from censored samples by method of partialprobability weighted moments. Journal of Hydrology,(120):103~114
    Wang Q J.1996. Using partial probability weighted moments to fit the extreme value distributions tocensored samples. Water Resources Research,32(6):1767~1771
    Wang Q J.1997. Using higher probability weighted moments for flood frequency analysis. Journal ofHydrology,194(1):95~106
    Whelan N.2004. Sampling from Archimedean copulas. Quantitative Finance,4(3):339~352
    Yue S, Ouarda T B M J, Bobée B, Legendre P, Bruneau P.1999. The Gumbel mixed model for floodfrequency analysis. Journal of Hydrology,(226):88~100
    Yue S.2001a. A bivariate gamma distribution for use in multivariate flood frequency analysis.Hydrological Processes,(15):1033~1045
    Yue S.2001b. The Gumbel logistic model for representing a multivariate storm event. Advances in WaterResources,(24):179~185
    Yue S.2002. The bivariate lognormal distribution for describing joint statistical properties of a multivariatestorm event. Environmetrics,(13):811~819
    Zafirakou-Koulouris A, Vogel R M, Craig S M, Habermeier J.1998. L moment diagrams for censoredobservations. Water Resources Research,34(5):1241~1249
    Zakaria Z A, Shabri A, Ahmad U N.2011. Estimation of Generalized Pareto distribution from censoredflood samples using partial L-moments. Journal of Mathematics Research,3(1):112~120
    Zhang L, Singh V P.2006. Bivariate flood frequency analysis using the copula method. Journal ofHydrologic Engineering,11(2):150~164
    Zhang L, Singh V P.2007a. Bivariate rainfall frequency distributions using Archimedean copulas. Journalof Hydrology,(332):93~109
    Zhang L, Singh V P.2007b. Gumbel-Hougaard copula for trivariate rainfall frequency analysis. Journal ofHydrologic Engineering,12(4):409~419
    Zhang L, Singh V P.2007c. Trivariate flood frequency analysis using the Gumbel-Hougaard copula.Journal of Hydrologic Engineering,12(4):431~439

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700