用户名: 密码: 验证码:
场地液化特征研究及液化影响因素评价
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
震害调查是获取工程震害资料和经验最重要的手段,也是工程抗震理论和分析方法发展的基础。工程地震学的发展离不开历次地震考察,特别是破坏性地震震害启示。我国抗震设计技术演化历程中,河源(1962)、邢台(1966)、通海(1970)、海城(1975)、唐山(1976)和汶川(2008)等大地震深入的震害调查和现场勘测,对我国工程抗震技术的发展及抗震规范的形成起到了极大的推动作用。
     地震液化及震害在以往历次大地震破坏中占有相当的比重,是岩土地震工程学者及工程师密切关注的课题。目前液化研究已经取得了很大进展,但从现有的成果看,离客观需求还有很大距离,特别是以实际液化调查数据分析场地液化特征以及从实际资料出发研究影响液化的因素等方面,近些年成果尚少,一定程度阻滞了岩土地震工程和土动力学的发展,主要表现在:(1)缺乏地震现场液化宏观评价的调查方法和描述标准,使得研究人员对地震中液化程度以及所造成的震害情况不能得到全面的认识;(2)国内外历次大地震中液化资料及数据缺乏系统的整理,液化数据库建设亟待解决;(3)近期国际上大地震液化实测数据分析整理不够,对实测资料中所反映液化场地特征认识不足,对国内外液化数据的差别和联系还缺乏了解,使得我国液化判别方法现状和发展方向认识不清;(4)近期大地震获取了很多宝贵的液化场地实测新数据,可以用来分析影响液化的场地特征量与液化的相关性,得到实际动荷情况、真实埋藏条件以及现场实测土力学指标与液化相关程度的真实认识,用于检验现有的液化判别方法,但以往这方面的研究成果尚少。
     本论文的完成的主要工作及成果如下:
     1.收集整理了国内外48次大地震的液化资料,建立了场地液化资料数据库,分析了包括土层埋藏条件(埋深、水位)、土性(密实度、粒径)和基本力学指标(标贯击数)等场地特征,剖析了大陆与其他地区场地特征的差别和联系,对土层液化得到了较为全面和客观的认识,修正了传统认识上的一些错误和偏差。
     2.鉴于震害调查工作的需求和现有规范的缺欠,通过对汶川地震实际液化考察过程中遇到问题及思考,提出了宏观液化指数和宏观液化等级的概念及划分标准,并对比国内外震害资料论证了所提出标准的可行性,为震后液化调查和震害评估提供一套便于参考的指标,也为液化研究积累可靠全面的基础资料提供了必要的手段。
     3.系统地整理了我国汶川Ms8.0级大地震液化震害调查资料,根据获取的汶川地震液化调查资料及现场勘探数据,采用提出的宏观液化指数和等级的划分标准,深入地剖析了汶川地震液化震害,给出了汶川地震及成都、德阳和绵阳三个主要液化区的宏观液化等级分布及震害案例分析,同时利用震害调查资料,分析了液化与非液化场地震害、宏观液化指数与地震动等之间的关系,为全面、深入了解和掌握汶川地震液化特点提供了依据。
     4.收集了51个国内外地震的5103例数据,利用皮氏积距相关系数法分析了PGA、水位、埋深、标贯以及波速等几个影响液化的特征参数与液化的相关性,对比分析了在不同埋深、水位和烈度范围内各参数相关性及各参数间相互关系,得到了实际动荷情况、真实埋藏条件以及现场实测土力学指标与液化关联性的真实结果,给出了大陆、台湾、欧美和日本地震中影响液化的特征参数与液化相关性的对比结果,为深化土层与地震动特征量与液化关系的认识、检验现有液化判别方法提供了支持。
     5.利用建立的液化数据库,采用液化数据实际相关性与公式推演数据相关性对比方法,对我国规范中SPT、CPT和Vs液化判别公式进行了检验,给出了三个液化判别方法的可靠性评价,指出我国规范CPT液化判别公式中砂层埋深符号定性的错误以及我国规范Vs液化判别公式中砂层埋深对液化判别贡献过小的问题。
     6.收集整理了2011年2月22日新西兰Christchurch地震中液化数据,分析了液化场地的特征,并利用相关性理论研究了砂层埋深和水位、标准贯入击数和地震强度等特征参数与液化的相关性,得到新西兰地震液化较为全面和客观的认识,同时分析了新西兰地震与国内外其它地震场地特征与液化相关性的差异和联系。
Post-earthquake investigation is the important way to gain seismic lessens and experience, meanwhile it is the base for aseismic theories and analytical methodologies. That is, engineering seismology cannot advance without earthquake investigations, typically vital destructive shocks. In the process of aseismic techniques evolvement in China, the deep post-earthquake investigations and in-situ field surveys and testing of previous earthquakes, e.g., Heyuan (1962), Xingtai (1966), Tonghai (1970), Haicheng (1975), Tangshan (1976) and Wenchuan (2008), have been greatly promoting engineering aseismic techniques and aseismic code formation in China.
     Earthquake liquefaction and relevant damage contributed considerable loss in seismic damage, and are kept close concern by geotechnical researchers and engineers. In the viewpoint of current achievements on liquefaction research, a big gap between the need for liquefaction mitigation and research exits typically in the fields of liquefied site characteristics and liquefaction-influencing factors based on real liquefaction field surveying materials and data, even though much progress has been realized. In recent years, the paucity of liquefaction research based on real liquefaction investigation data has restrained the advancement of geotechnical earthquake engineering and soil dynamics, which can be mainly summarized in the following. Macro liquefaction evaluation methods and investigation description standards in post-earthquake field survey cannot be found in literatures so that the overview of liquefaction scale and relevant loss in great earthquakes is hard to grasp. A systematic database of liquefaction documents and data is urgently needed for worldwide liquefaction documents and data archive. The field testing data analysis for site liquefaction in recent worldwide earthquakes has not been fully organized that the site characteristics revealed by real liquefaction data cannot be completely acquainted. The difference and coherence between Chinese liquefaction data and those of worldwide have not been identified, resulting in inappropriate understanding of the current status and future direction of liquefaction evaluation methods.
     Fairly abundant valuable liquefaction in-situ testing data from recent great earthquakes globally have been collected, which can be used to analyze the correlation of site characteristics and liquefaction. As a result, a novel acquaintance on the correlations of liquefaction responding to site property indexes, real dynamic loading intensity, soil conditions can be obtained so as to testify the current liquefaction evaluation methods.
     The main work and conclusions in this thesis can be drawn as fellow.
     1. Liquefaction data from48earthquakes globally have been collected to establish site liquefaction database. Soil layer conditions (i.e., sand buried depth, water tables), soil properties (i.e., relative density, particle diameter) and testing index (i.e., SPT) are analyzed so that the difference and common points in the site characteristics in China and other countries are comparatively portrayed. A complete and objective acquaintance of soil liquefaction is renewed to update the erratum and divergence in traditional liquefaction understanding.
     2. In terms of the need for post-earthquake investigation and current code updating, the concepts and corresponding classification of the macro-liquefaction index and macro-liquefaction grades are proposed in the thesis based on the thoughts and ideas conceived during liquefaction investigation in Wenchuan earthquake. The feasibility of the macro-liquefaction indexes and macro-liquefaction grades are testified by comparing the liquefaction data both in China and other countries. The macro-liquefaction indexes and grades can be adopted as the references for liquefaction investigation and evaluation, which provides necessary means for reliable liquefaction fundamental document collection and compilation.
     3. The liquefaction investigation materials and in-situ testing data in Wenchuan Ms8.0earthquake are systematically organized. Using the proposed macro-liquefaction indexes and grades, the liquefaction data and materials are analyzed to deep understand the liquefaction loss in the event. The macro-liquefaction indexes and macro-liquefaction grades in Chengdu, Deyang and Mianyang regions are depicted, while the seismic damage in liquefied and non-liquefied sites and the link of macro-liquefaction indexes with ground shaking are analyzed so that the liquefaction characteristics can be profoundly understood.
     4. In total,5103liquefaction data from51earthquakes worldwide are collected to explore the correlations of liquefaction with respect to PGA, ground water table, liquefied sand depth and site shear wave velocity by means of the Pearson product-moment correlation coefficient (PPCC) method. The correlations of liquefaction with the characteristic parameters under varying liquefied sand depth, ground water table and seismic intensity are comparatively analyzed. The correlations of liquefaction with respect to actual seismic loading and real sand buried conditions and in-situ site testing data are obtained and presented accordingly, including China mainland, Taiwan, Europe-USA and Japan. These can facilitate the understanding the relationships between liquefaction and soil layer parameters and ground shaking characteristics, and support to test the current liquefaction evaluation methods.
     5. The testifying of liquefaction discrimination formulae using SPT, CPT and Vs was performed by means of the liquefaction data-based correlation with respect to the site characteristics parameters using the collected liquefaction database. The reliability of the liquefaction discrimination formulae is evaluated that the erratum on the influence of soil layer buried depth on the CPT-based liquefaction discrimination formula is pinpointed. In the Vs-based liquefaction discrimination formula, the fact that the sand buried depth contributes too small in liquefaction evaluation is also revealed.
     6. Adopting the theories proposed in the thesis, the liquefaction data in Feb.22,2011, Christchurch New Zealand earthquake are selected to analyze the correlations of liquefaction with site characteristic indexes, i.e., sand buried depth, SPT counts, seismic shaking intensity. A complete and objective acquaintance of liquefaction in Christchurch earthquake is obtained while the liquefaction characters and relevant correlations are compared with those from other regions and countries.
引文
[1]陈国兴.岩土地震工程学[M].北京:科学出版社,2007.
    [2]陈龙伟.土体弱化与地震动关联性理论及相互作用规律研究[D].哈尔滨:中国地震局工程力学研究所博士论文,2011.
    [3]曹振中.基于可靠性理论的砂土液化判别方法研究[D].哈尔滨:中国地震局工程力学研究所硕士论文,2006.
    [4]曹振中.汶川地震液化特征及砂砾土液化预测方法研究[D].哈尔滨:中国地震局工程力学研究所博士论文,2010.
    [5]曹振中,袁晓铭,陈龙伟等.汶川大地震液化宏观现象概述[J].岩土工程学报,2010,32(4):645-650..
    [6]曹振中,侯龙清,袁晓铭,等.汶川8.0级地震液化震害及特征[J].岩土力学,2010,31(11):3549-3555.
    [7]曹振中,徐学燕,T Leslie Youd,等.汶川8.0级地震板桥学校液化震害剖析[J].岩土工程学报,201 1,33(Supp.1):324-329.
    [8]常亚屏.高土石坝抗震关键技术研究[J].水力发电,1998,(3):36-40.
    [9]陈达生,时振粱,徐宗和,等.中国地震烈度表(GB/T17742.1999)[S].北京:中国标准出版社,2004.
    [10]陈国兴,李方明.基于径向基函数神经网络模型的砂土液化概率判别方法[J].岩土工程学报,2006,28(3):301.305.
    [11]陈国兴,胡庆兴,刘雪珠.关于砂土液化判别的若干意见[C].南京:第六届土动力学研讨会,2002,pp.119-133.
    [12]陈国兴,张克绪,谢君斐.以剪切波速为指标的液化判别方法及其适用性[J].哈尔滨建筑大学学报,1996,29(1):97-103
    [13]陈国兴.液化判别的可靠性及液化危险性分析[D].国家地震局工程力学研究所,硕士学位研究生学位论文,1988.
    [14]陈青生,高广运,Green R A,等.砂土震陷分析中多维地震荷载等效循环周数计算[J].世界地震工程,2010,26(Suppl.):6-12.
    [15]陈育民,沙小兵,林奔,等.饱和砂土液化前高孔压状态的流动特性试验研究[J].世界地震工程,2010,26(Suppl):267-272.
    [16]陈育民,刘汉龙,周云东.液化及液化后砂土的流动特性分析[J].岩土工程学报,2006,28(9):1139-1143.
    [17]陈致铭.动力三轴试验应用于评估土壤液化潜能之适用性研究[D].台湾:国立成功大学硕士学位论文,2007.
    [18]邓康龄.四川盆地形成演化与油气勘探领域[J].天然气工业,1992,12(5):7-12.
    [19]地面运动组.海城地震震害分布与场地条件的关系[R].中国科学院工程力学研究所地震工程研究报告,1975.9.
    [20]董林.新疆巴楚-伽师地震液化初步研究[D].哈尔滨:中国地震局工程力学研究所硕士论文,2010.
    [21]杜修力,路德春.土动力学与岩土地震工程研究进展[J].岩土力学,2011,32(sup.2):10-20.
    [22]范恩硕.以九二一集集地震案例探讨细料对液化潜能评估之影响[D].台湾:国立成功大学博士学位论文,2004.
    [23]付海清,陈龙伟,李雨润,等.人工激振下现场液化试验初步研究[J].世界地震工程,2010,26(Suppl):235-240.
    [24]《工程地质手册》编辑委员会.工程地质手册(第三版)[M].北京:中国建筑工业出版社,1992.
    [25]郭孟明,德阳幅H.48-91/20万区域地质调查报告[R].四川省地矿局航空区域地质调查队研究报告,1980.
    [26]昊爱样,孙业志,黎剑华.饱和散体振动液化的波动机理研究[J].岩石力学与工程学报,2002,V21(4):558-562.
    [27]何银武.论成都盆地的成生时代及其早期沉积物的一般特征[J].地质论评,1992,38(2):149-156.
    [28]洪小星,陈国兴,孙田,等.砂砾石动力特性的室内试验研究进展[J].世界地震工程,2011,27(1):47-53.
    [29]侯龙清,徐红梅,曹振中,等.汶川地震液化土层类型验证及土性分析[J].岩土力学,2011,32(4):1119-1124.
    [30]胡博,邓帅奇,高密度电法在复杂场地地基勘察中的应用[J].2008,32(3):218-220.
    [31]黄博,陈云敏,殷建华,吴世明.基于动三轴试验的现场液化判别剪切波速法[J].水利学报,2002,(10):21-26.
    [32]荚颖,唐小微,栾茂田.砂土液化变形的有限元-无网格耦合方法[J].岩土力学,2010,31(8):2643-2647.
    [33]李方明,陈国兴.基于BP神经网络的饱和砂土液化判别方法[J].自然灾害学报,2005,14(2):108-114.
    [34]李海兵,王宗秀,付小方.2008年5月12日汶川地震(Ms8.0)地表破裂带的分布特征[J].中国地质,2008,35(5):803-813.
    [35]李兰,王兰民,石玉成.粘粒含量对甘肃黄土抗液化性能的影响[J].世界地震工程,2007,23(4):1 02-106.
    [36]李远图.灌县幅H-48-81/20万区域地质调查报告[R].四川省地质局第2区测队研究报告,1975.
    [37]李思齐.中外地震烈度标准对比研究[D].哈尔滨:中国地震局工程力学研究所硕士论文,2010.
    [38]李兆焱.基于巴楚地震调查的液化判别方法研究[D].哈尔滨:中国地震局工程力学研究所博士论文,2012.
    [39]李兆焱,袁晓铭,曹振中,等.基于新疆巴楚地震调查的砂土液化判别新公式[J].岩土工程学报,2012,34(3):483.489.
    [40]李志强,袁一凡,李晓丽,等.对汶川地震宏观震中和极震区的认识[J].地震地质,2008,30(3):768-777.
    [41]梁久亮.工程场地高密度电法探测典型剖面的分析与探讨[J].西北地震学报,2008,30(2):1 89-192.
    [42]林世斌.建筑物抗震性能研究[D].哈尔滨:中国地震局工程力学研究所硕士论文,2010.
    [43]刘恢先主编.唐山大地震震害[M].北京:地震出版社,1989.
    [44]刘惠珊,周根寿,李学宁,等.液化层的减震机理及对地面地震反应的影响[J],冶金工业部建筑研究总院院刊,1994,(2):19-22.
    [45]刘惠珊.1995年阪神大地震的液化特点[J].工程抗震,2001,1:22.26.
    [46]刘惠珊.砾石的液化判别探讨[C].北京:第五届全国地震工程学术会议论文.1998,pp.183-188.
    [47]刘惠珊,乔太平,王承春,等.场地的液化危害性分析[J].地震工程与工程振动,1 984,4(4):69-78.
    [48]刘汉龙,周云东,高玉峰.砂土地震液化后大变形特性试验研究[J].岩土工程学报,2002,24(3):142-146.
    [49]刘汉龙.土动力学与土工抗震研究进展综述[J].土木工程学报,2012,45(4):148.164.
    [50]刘令瑶,李桂芬,丙东屏.密云水库白河主坝保护层地震破坏及砂料振动液化特性[C].水利水电科学研究院论文集第8集(岩土工程)[C],北京:水利出版社,1982,pp.46-54.
    [51]刘兴诗.四川盆地的第四系[M].成都:四川科学技术出版社,1983.
    [52]刘颖,谢君斐等.砂土震动液化[M].地震出版社,1984.
    [53]刘颖.海城地震砂土液化的若干问题[R].中国科学院工程力学研究所地震工程研究报告,1975.
    [54]刘勇健.饱和砂土地震液化判别的可拓聚类预测方法[J].岩土力学,2009,30(7):1939-1943.
    [55]刘云从.成都市及邻近地区水循环系统特征及水资源开放管理对策研究[R].四川省地矿局成都水文工程地质队研究报告,1989.
    [56]马仲.钢管混凝土系杆拱桥的有限元抗震分析[D].合肥:合肥工业学大学硕士论文,2009.
    [57]鲁晓兵,谈庆明等.饱和砂土液化研究新进展[J].力学进展,2004,34(1):87-96.
    [58]邱毅.唐山地震液化场地再调查及数据分析[D].哈尔滨:中国地震局工程力学研究所硕士论文,2008.
    [59]沈珠江.关于土力学发展前景的设想[J].岩土工程学报,1994,16(1):110.111.
    [60]沈珠江,徐志英.1976年7月28日唐山地震时密云水库白河主坝有效应力动力分析[J].水利水运科学研究.198 1,(3):46-63
    [61]石兆吉,陈国兴.自由场地深层液化可能性研究[J].水利学报,1990,(12):55-61.
    [62]石兆吉,郁寿松,丰万玲.土壤液化式的剪切波速判别方法[J].岩土工程学报,1993,15(1):74-80.
    [63]石兆吉,郁寿松.液化对房屋震害影响的宏观分析[J].工程抗震,1993,(1):25-28.
    [64]石兆吉.剪切波速液化势判别的机理和应用[R],哈尔滨:国家地震局工程力学研究所研究报告,1991.
    [65]石兆吉.液化地区房屋震害预测[J].自然灾害学报,1992,1(2):80-93.
    [66]石兆吉.判别水平土层液化势的剪切波速法[J].水文地质和工程地质,1986,(4):9-11.
    [67]四川地质局区测2队,绵阳幅H-48-3 1/20万区域地质测量报告[R].四川地质局区测2队研究报告,1970.
    [68]四川省质量技术监督局,四川省建设厅.成都地区建筑地基基础设计规范[S].DB51/T5026-2001.
    [69]苏栋,李相崧.地震历史对砂土抗液化性能影响的试验研究[J].岩土力学,2006,27(10):1815-1818.
    [70]孙锐.液化土层地震动和场地液化识别方法研究[D].哈尔滨:中国地震局工程 力学研究所博士论文,2006.
    [71]孙业志.振动场中散体的动力效应与分型特征研究[D].长沙:中南大学博士论文,2002.
    [72]唐福辉.现有液化识别方法对比研究[D].哈尔滨:中国地震局工程力学研究所硕士论文,2011.
    [73]唐山强震区地震工程地质研究-第二部分场地液化[R].中国建筑科学研究院勘察技术研究所.1980.10.
    [74]汪闻韶,常亚屏,左秀泓.饱和砂砾料在振动和往返加荷下的液化特性[C].水利水电科学研究院论文集第23集(结构材料、岩土工程、抗震与爆破),水利出版社,1986,pp.195-203.
    [75]汪闻韶,土体液化与极限平衡和破坏的区别和关系[J].岩土工程学报,2005,27(1):1-10
    [76]汪闻韶,土的动力强度和液化特性[M].北京:中国电力出版社,1997.
    [77]汪闻韶.土工地震减灾工程中的一个重要参量—剪切波速[J].水利学报,1994,(3):80-84.
    [78]汪闻韶.土体液化与极限平衡和破坏的区别和关系[J].岩土工程学报,2005,27,No.1:1-10.
    [79]汪明武,罗国煜.可靠性分析在砂土液化势评价中的应用[J].岩土工程学报,2000,22(5):29-31.
    [80]王刚.砂土液化后大变形的物理机制与本构模型研究[D].北京:清华大学博士论文,2005.
    [81]王刚,张建民.砂土液化后大变形的弹塑性循环本构模型[J].岩土工程学报,2007,29(1):51-59.
    [82]王伟.地震动的山体地震效应[D].哈尔滨:中国地震局工程力学研究所博士论文,2011.
    [83]王维铭,孙锐,曹振中等.国内外地震液化场地特征对比研究[J].岩土力学,2010,31(12):3913-3927.
    [84]王维铭,袁晓铭,陈龙伟等.汶川地震绵阳地区液化特征[J].土木建筑与环境工程,2010,32(增2):161-170.
    [85]王维铭,袁晓铭,孟上九等.汶川Ms8.0级大地震中成都地区液化特征研究[J].地震工程与工程振动,2011,31(4):138.144.
    [86]王维铭,袁晓铭,陈龙伟等.汶川大地震中德阳地区液化特点分析[J].地震工程与工程振动,2011,31(2):145-154.
    [87]王维铭.汶川地震液化宏观现象及场地特征对比分析[D].哈尔滨:中国地震局工程力学研究所硕士论文,2010.
    [88]王昆耀,常亚屏,陈宁.饱和砂砾料液化特性的试验研究[J].水利学报2000,(2):37-41.
    [89]王士鹏.高密度电法在水文地质和工程地质中的应用[J].水文地质工程地质,2000,(1):52-56.
    [90]王艳丽,王勇.饱和砂土液化后强度与变形特性的试验研究[J].水利学报,2009,40(6):667-672.
    [91]王晓华.辽西风机砂土振动液化的试验研究[D].阜新:辽宁工程技术大学硕士论文,2009.
    [92]向衍,马福恒,刘成栋.土石坝工程安全预警系统关键技术[J].河海大学学报(自然科学版),2008,36(5):635-639.
    [93]谢君斐,江近仁.与编制样板规范有关的基础研究[R].中国地震局工程力学研究所研究报告.2000.5
    [94]谢君斐.关于修改抗震规范砂土液化判别式的几点意见[J].地震工程与工程振动,1984,4(2):95-125.
    [95]肖琳.砂土液化对公路路基的影响及其防治措施[J].辽宁交通科技,2003,2:16.18.
    [96]徐斌,孔宪京,邹德高,等.饱和砂砾料液化后应力与变形特性试验研究[J].岩土工程学报,2007,Vo1.29(1):103-106.
    [97]徐斌.饱和砂砾料液化及液化后特性试验研究[D].大连:大连理工大学博士学位论文,2007.
    [98]续新民,杨马陵,黄长林.珠江三角洲城市群地震灾害和防御[J].灾害学,2006,21(4):36-41.
    [99]杨成林.瑞雷波勘探[M].北京:地质出版社,1993.
    [100]杨志文.全机率土壤液化评估法之研究[D].台湾:国立中央大学博士学位论文,2003.
    [101]尹之潜,鄢家全,徐锡伟,等.地震现场工作第3部分:调查规范(GB/T18208.3.2000)[S].北京:中国标准出版社,2004.
    [102]于海英,王栋,杨永强,等.汶川8.0级地震强震动加速度记录的初步分析[J].地震工程与工程振动.2009,29(1):1-13.
    [103]袁晓铭,曹振中,孙锐,等.汶川8.0级地震液化特征初步研究[J].岩石力学与工程学报,2009,28(6):1288-1296.
    [104]袁晓铭,曹振中.汶川大地震液化的特点及带来的新问题[J].世界地震工程,2011,27(1):1-8.
    [105]袁晓铭,孙锐.我国规范液化分析方法的发展设想[J].岩土力学,2011,32(suppl.):351.358.
    [106]袁晓铭,孙锐,曹振中,等.液化调查资料内部验收报告[R1.汶川地震工程震害科学考察场地条件专题液化组,2009.1.
    [107]袁一凡,田启文.工程地震学[M].北京:地震出版社,2012.
    [108]袁一凡.四川汶川8.0级地震损失评估[J].地震工程与工程振动,2008,28(5):10.19.
    [109]袁一凡.汶川地震烈度核定考察报告[R].中国地震局工程力学研究所,2008.10.
    [110]张克绪,谢君斐.土动力学[M].北京:地震出版社,1980.
    [111]张伦玉.四川省工程地质图说明书:1/100万[R].四川省地矿局南江水文工程地质队研究报告,1984.
    [112]中国地震局工程力学研究所海城地震砂土液化考察[R].中国科学院工程力学研究所研究报告,1975.9.
    [113]中国地震局汶川8.0级地震现场应急工作队.2008年5月12日四川汶川8.0级地震灾害损失评估报告[R].中国地震局,2008.6.
    [114]中国科学院工程力学研究所,河北省地震局抗震组.唐山地震震害调查初步总结[M].北京:地震出版社,1978.
    [115]中国科学院工程力学研究所.海城地震震害[M].北京:地震出版社,1979.
    [116]中华人民共和国地质图集地层简表[M].中国地质科学研究院主编.
    [117]中华人民共和国国家标准编写组.岩土工程勘察规范[S].GB50021-94.北京:中国建筑工业出版社,1995.
    [118]中华人民共和国行业标准.建筑抗震设计规范(GBJ50011-2001)[S].北京:中国建筑工业出版社,2001.
    [119]周国强.绵竹县H-48-17-C 1/5万区域地质图说明书[R].四川地矿局化探队研究报告,1995.
    [120]张建毅.地震作用下地下结构横向应变传递研究[D].哈尔滨:中国地震局工程力学研究所硕士论文,2007.
    [121]张建民,王刚.评价饱和砂土液化过程中小应变到大应变的本构模型[J].岩土工程学报,2004,26(4):546-552.
    [122]张建民,王刚.砂土液化后大变形的机理[J].岩土工程学报,2006,28(7):835.840.
    [123]张建民,王富强.考虑围压和密度的饱和砂土液化后单调加载本构方程[J].清华大学学报(自然科学版),2008,48(12):2044.2047.
    [124]Amini F., Qi G.Z. Liquefaction testing of stratified silty sands[J]. Journal of Geotechnical and Geoenvironmental Engineering,2000,126(3):208-217.
    [125]Andrus R.D. and Stokoe K.H. Liquefaction resistance of soils from shear-wave velocity[J]. Journal of Geotechnical and Geoenviromental Engineering, ASCE, 2000,126(11):1015-1025.
    [126]Ashford S.A. Rollins K.M. Blast-induced liquefaction for full-scale foundation testing[J]. Journal of Geotechnical and Geoenvironmental Engineering. American Society of Civil Engineers,2004,130(8):798-806.
    [127]Brady Ray Cox. Development of a direct test method for dynamically assessing the liquefaction resistance of soils in situ[D]. Ph.D. dissertation, Austin:The University of Texas at Austin,2006.
    [128]Bradley B. Ground motion and seismicity aspects of the 4 September 2010 Darfield and 22 February 2011 Christchurch earthquakes[R]. Technical Report Prepared for the Canterbury Earthquakes Royal Commission, Christchurch, New Zealand,2012.
    [129]Bradley B. Strong motion characteristics observed in the 4 September 2010 Darfield, New Zealand earthquake [J]. Soil Dynamics and Earthquake Engineering, 2012,42:32-46.
    [130]Brown L.J., Weeber J.H. Geology of Christchurch Urban Area[M]. Institute of Geological and Nuclear Science. Lower Hutt, New Zealand:GNS Science,1992.
    [131]Byrne P.M., Park S.S., Beaty M. et al. Numerical modeling of dynamic centrifuge tests[C]. Proceeding of the 13th World Conference on Earthquake Engineering. Vancouver, B.C.2004, Paper No.3387.
    [132]Cao Zhenzhong, Hou Longqing, Xu Hongmei, et al. The Distribution and characteristics of gravelly soils liquefaction in the Wenchuan Ms8.0 Earthquake[J]. Journal of Earthquake Engineering and Engineering Vibration, 2010,9(2):167-175.
    [133]Cao Zhenzhong, Hou Longqing, Yuan Xiaoming, et al. The characteristics of liquefaction-induced damage in Wenchuan Ms8.0 Earthquake[J]. Joournal of Harbin Institute of Technology,2009,16(S1):37-43.
    [134]Chalandarzadeh A., Ahmadi A. Effect of silt percents on liquefaction potential and anisotropic behavior of saturated sand-silt mixtures[A]. Proceedings of the 17th International Conference on Soil Mechanics and Geotechnical Engineering, Egypt: 2009:11-14
    [135]Chen Longwei, Yuan Xiaoming, Cao Zhenzhong, et al. Liquefaction macrophenomena in the great Wenchuan earthquake[J]. Earthquake Engineering and Engineering Vibration,2009,8(2):219-229.
    [136]Chen Y.M., Liu H.L. Coupled hydraulic-mechanical analysis of large deformation of post-liquefied sand[A]. International Conference on Coupled T-H-M-C Processes in Geosystems, Nanjing:2006:700-705.
    [137]Ku Chih-Sheng, Lee Der-Her, Wu Jian-Hong. Evaluation of soil liquefaction in the Chi-Chi Taiwan earthquake using CPT[J], Soil Dynamics and Earthquake Engineering,24 (2004):659-673
    [138]Cubrinovski M., Bradley B., Wotherspoon L., et al. Geotechnical aspects of the 22 February 2011 Christchurch earthquake[J]. Bulletin of the New Zealand Society for Earthquake Engineering,2011,44(4):205-226.
    [139]Cubrinovski M., Green R.A., Wotherspoon L., et al. Geotechnical reconnaissance of the 2011 Christchurch, New Zealand earthquake[R]. Report of the National Science Foundation-Sponsored Geotechnical Extreme Events Reconnaissance Team, Version 1:November 8,2011.
    [140]Cubrinovski M., Ishihar K.. Liquefaction-induced ground deformation and damage to piles in the 1995 Kobe earthquake[C]. Paper presented at the International Conference Skopje Earthquake 40 years of European Engineering,2003, Skopje, Macedonia.
    [141]Dellow G, Yetton M, Massey C, et al. Landslides caused by the 2011 February 2011 Christchurch earthquake and management of landslide risk in the immediate aftermath[J]. Bulletin of the New Zealand Society for Earthquake Engineering, 2011,44(4):227-238.
    [142]Elgamal A., Yang Z., Parra E. Computational modeling of cyclic mobility and post-liquefaction site response[J]. Soil Dynamics and Earthquake Engineering, 2002,22:259-271.
    [143]Finn W.D.L., Bransby P.L., Pickering D.J. Effect of strain history on liquefaction of sand[J]. Journal of Soil Mechanics and Foundation Division, ASCE,1970, 96(SM6):1917-1934.
    [144]Hatanaka M., Suzuki Y., Kawasaki T. et al. Cyclic undrained shear properties of high quality undisturbed Tokyo gravel[J]. Soils and Foundations,1988, 28(4):57-68.
    [145]Holzer T.L., Youd T.L. Hanks T.C. Dynamics of liquefaction during the Superstition Hills Earthquake (M=6.5) of November 24,1987[J]. Science,1989, 244:56-59.
    [146]Holzer T.L., Bennett M.J., Ponti D.J., Tinsley J.C.I. Liquefaction and soil failure during 1994 Northridge earthquake[J]. Journal of Geotechnical Engineering,1999, 125(6):438-452.
    [147]Hwang Jin-Hung, Yang Chin-Wen. Verification of critical cyclic strength curve by Taiwan Chi-Chi earthquake data[J]. Soil Dynamics and Earthquake Engineering, 2001,21:237-257.
    [148]Idriss I.M., Boulanger R.W. Semi-empirical procedures for evaluating liquefaction potential during earthquakes[J]. Soil Dynamics and Earthquake Engineering,2006, 26:115-130.
    [149]Idriss I.M. The role of modeling in geotechnical earthquake engineering[C]. Proceedings of NSF International Workshop on Earthquake Simulation in Geotechnical Engineering. Case Western Reserve University, Cleveland, OH, 2001.
    [150]Ishihara K., Shimizu K., Yamada Y. Pore water pressure measured in sand deposits during an earthquake[J]. Soils and Foundations,1981,2(4):85-100.
    [151]Hwang Jin-Hung, Yang Chin-Wen. Verification of Critical Cyclic Strength Cure By Taiwan Chi-Chi Earthquake Data[J]. Soil Dynamics and Earthquake Engineering,2001,21:237-257.
    [152]Juang C.H., Yuan H., Lee, D.H., Lin, P.S. Simplified cone penetration test-based method for evaluating liquefaction resistance of soils[J]. Journal of Geotechnical and Geoenvironmental Engineering,2003,129(1):66-80.
    [153]Kasim A.G., Chu M.Y. Jensen C.N. Field correlation of cone and standard penetration tests[J]. Journal of Geotechnical Engineering,1986,112(3):368-372.
    [154]Kurup P.U., Voyiadjis G.Z., Tumay M.T. Calibration chamber studies of piezocone test in cohesive soils[J]. Journal of Geotechnical Engineering,1994,120(1): 81-107.
    [155]Lin Ping-Sien, Chang Chi-Wen, Chang Wen-Jong. Characterization of liquefaction resistance in gravelly soil:large hammer penetration test and shear wave velocity approach[J]. Soil Dynamics and Earthquake Engineering 24 (2004):675-687.
    [156]Liu A.H., Stewart J.P., Abrahamson N.A., et al.Equivalent number of uniform stress cycles for soil liquefaction analysis[J]. Journal of Geotechnical and Geoenvironmental Engineering, ASCE,2001,127(12):1017-1026.
    [157]Livio Sirovich. Repetitive liquefaction at a gravelly site and liquefaction in overconsolidated sands[J]. Soils and Foundations,1996,36(4):23-34.
    [158]Masood T., Mitchell J.K. Estimation of in situ lateral stresses in soils by cone-penetration test[J]. Journal of Geotechnical Engineering,1993, 119(10):1624-1639.
    [159]Miyajima M., Kitaura M., Koike T., et al. Experimental study on characteristics of liquefied ground flow[A]. The First International Conference on Earthquake Geotechnical Engineering, Balkema,1995:969-974.
    [160]Motamed R., Towhata I. Shaking table model tests on pile groups behind quay walls subjected to lateral spreeding[J]. Journal of Geotechnical and Geoenvironment Engineering,2010,136:477-489.
    [161]Moss R.E.S., Collins B.D. Whang D.H. Retesting of liquefaction/nonliquefaction case histories in the Imperial Valley[J]. Earthquake Spectra,2005,21, No.1.
    [162]Munenori Hatanaka, Akihiko Uchida, Hiroshi Oh-oka. Correlation between the liquefaction strengths of saturated sands obtained by in-situ freezing method and rotary-type triple tube method[J]. Soils and Foundations,1995,35(2):67-75.
    [163]Munenori Hatanaka, Akihiko Uchida, Junryo Ohara. Liquefaction characteristics of a gravelly fill liquefied during the 1995 Hyogo-Ken Nanbu Earthquake[J]. Soils and Foundations,1997,37(3):107-115.
    [164]Nagase H., Ishihara K. Liquefaction-induced compaction and settlement of sand during earthquake[J]. Soils and Foundations,1988,28(1):65-76.
    [165]NCEER. Proceedings of the NCEER Workshop on evaluation of liquefaction resistance of soils[R]. Technical Report No. NCEER-87-0022,1997.
    [166]Nishimura S., Towhata I., Honda T. Laboratory shear tests on viscous nature of liquefied sand[J]. Soils and Foundations,2002,42(4):89-98.
    [167]Onoue A., Mori N., Takano J. In-situ experiment and analysis on well resistance of gravel drains[J]. Soils and Foundations,1987,27(2):42-60.
    [168]Paolucci R, Chen L.W., Guidotti R., Smerzini C. Evaluation of seismic ground motion variability at soft sites by 3D-ID propagation models, including Christchurch and selected sites in the Po plain [R]. Report of Research and Development Programme on Seismic Ground Motion, Deliverable SIGMA-2012-D3-54, Politecnico di Milano, Milan, Italy,2012.
    [169]Rathje E.M., Chang W.J., Stokoe K.H.II. Development of an in situ dynamic liquefaction test[J]. ASTM Geotechnical Testing Journal,2005,28(1):50-60.
    [170]Robertson P.K., Campanella R.G., Wightman A. SPT-CPT correlations[J]. Journal of Geotechnical Engineering,1983,109(11):1449-1459.
    [171]Rolando P. Orense. Assessment of liquefaction potential based on peak ground motion parameters[J]. Soil Dynamics and Earthquake Engineering,2005, 25:225-240.
    [172]Robinson K., Bradley B., Cubrinovski M. Analysis of liquefaction-induced lateral spreading data from the 2010 Darfield and 2011 Christchurch earthquakes[C]. NZSEE Conference,2012, Christchurch, New Zealand.
    [173]Sasaki Y.(Towhata I., Tokida K.I., et al. Mechanism of permanent displacement of ground caused by seismic liquefaction[J]. Soils and Foundations,1992,32(3):79-96.
    [174]Seed H.B. Soil liquefaction and cyclic mobility evaluation for level ground during earthquake[J]. ASCE, Journal of the Geotechnical Engineering Division,1979, 105(GT2):201-255.
    [175]Seed H.B., Tokimatsu K., Harder L.F. et al. The influence of SPT procedures in soil liquefaction resistance evaluation[J]. Journal of Geotechnical Engineering, ASCE,1985,111(12):1425-1445.
    [176]Seed H.B., Wong R.T., Idriss I.M. et al. Module and damping factors for dynamic analyses of cohesionless soils[J], Journal of Geotechnical Engineering, ASCE, 1986,112(11):1016-1032.
    [177]Seed R.B, Cetin K..O. et al. Recent advances in soil liquefaction engineering, a unified and consistent frame work [R]. EERC. USA:Earthquake Engineering Research Center,2003.
    [178]Shamoto Y., Zhang J.M., Goto S. Mechanism of large post-liquefaction deformation in saturated sands[J]. Soils and Foundations,1997,37(2):71-80.
    [179]Skempton A.K. Standard penetration test procedures and the effects in sands of overburden pressure, relative density, particle size, aging and overconsolidation[J]. Geotechnique,1986,36(3):425-447.
    [180]Stark T.D. Olson S.M. Liquefaction resistance using CPT and field case histories[J]. Journal of Geotechnical Engineering,1995,121(12):856-869.
    [181]Sun R., Tang F.H., Chen L.W. Blind detection of liquefaction by existing methods for New Zealand ML6.3 earthquake on Feb.22,2011[J]. Earthquake Engineering and Engineering Vibration,2011,10(4):465-474.
    [182]Suzuki Yoshio, Toto Shigeru, Hatanaka Munenori, et al. Correlation between strengths and penetration resistances for gravelly soils[J]. Soils and Foundations, 1993,33(1):92-101.
    [183]Suzuki Y., Hatanaka M., Ishihara K. et al. Engineering properties of undisturbed gravel sample[C]. Proceedings of 10th World Conference on Earthquake Engineering,1992,3, pp.1281-1286.
    [184]Tonkin & Taylor Ltd. Christchurch central city geological interpretative report (Version 1.1)[R]. Report for Christchurch City Council, Christchurch, New Zealand,2012.
    [185]Towhata I., Vargas-Monge W., Orense R.P., et al. Shaking table tests on subgrade reaction of pipe embeded in sandy liquefied subsoil[J]. Soil Dynamics and Earthquake Engineering,1999,18:347-361.
    [186]Wang Weiming, Chen Longwei, Yuan Xiaoming. Liquefaction macro-characteristics in Chengdu region in WenchuanMs8.0 earthquake[J], Advanced Materials Research,2012,446:1893-1896.
    [187]Wang Weiming, Chen Zhuoshi, Yuan Xiaoming, et al, Comparative analysis on liquefaction macro-characteristics of the three major regions in Wenchuan earthquake[J], Applied Mechanics and Materials 2012,238:856-859.
    [188]Wang Weiming, Wang Yunlong, Sun Rui. Liquefaction survey and case analysis in Wenchuan earthquake[J], Applied Mechanics and Materials,2013,256-259: 2011-2014.
    [189]Wang Weiming, Cao Zhenzhong, Chen Longwei, et al. Liquefaction features in Mianyang region in Wenchuan earthquake [J]. Applied Mechanics and Materials, 2011,90-93:365-371.
    [190]Whitman R.V. Evaluating calculated risk in geotechnical engineering[J]. Journal of Geotechnical Engineering,1984,110(2):145-188.
    [191]Yeian M.K., Ghahraman V.G., Harutiunyan R.N. Liquefaction and embankment failure case histories,1988 Armenia Earthquake[J]. Journal of Geotechnical Engineering,1994,120(3):581-596.
    [192]Yuan D., Sato T. A practical method for large strain liquefaction analysis of saturated soils[J]. Soil Dynamics and Earthquake Engineering,2004,24:251-260.
    [193]Yuan Xiaoming, Cao Zhenzhong. A fundamental procesure and calculation formula for evaluating gravel liquefaction[J]. Earthquake Egnineering and Engineering Vibration,2011,10(3):339-347.
    [194]Youd T.L., Idriss I.M. Liquefaction Resistance of Soils:Summary Report from the 1996 NCEER and 1998 NCEER/NSF Workshops on Evaluation of Liquefaction Resistance of Soils[J]. Journal of Geotechnical and Geoenvironment Engineering, 2001,127(4):297-313.
    [195]Youd T. L., Bennett M.J. Liquefaction sites, Imperial Valley, California[J]. Journal of Geotechnical Engineering,1983,109(3):440-457.
    [196]Youd T.L., Idriss I.M. Proceedings of the NCEER Workshop on evaluation of liquefaction resistance of soils[R]. NCEER Technical Report,1997, NCEER-97-0022, Buffalo, NY.
    [197]Youd T.L., Steidel J.H., Nigbor R.L. Lessons learned and need for instrumented liquefaction sites[J]. Soil Dynamics and Earthquake Engineering,2004,24(9): 639-646.
    [198]Yu H.S. Mitchell J.K. Analysis of cone resistance:review of methods[J]. Journal of Geotechnical and Geoenvironmental Engineering,1998,124(2):140-149.
    [199]Zeghal M., Elgamal A.W. Analysis of site liquefaction using earthquake records[J]. Journal of the Geotechnical Engineering Division, ASCE,1994,120(6):996-1017.
    [200]Zhang Z., Tumay M.T. Statistical to fuzzy approach toward CPT soil classification[J]. Journal of Geotechnical and Geoenvironmental Engineering, 1999,125(3):179-186.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700