用户名: 密码: 验证码:
澜沧老厂铅矿凝灰岩膨胀垮塌机制及防塌钻井液研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
澜沧老厂铅矿凝灰岩快速膨胀垮塌的特性给生产带来了困难,基于这样的工程背景,本文在对矿区凝灰岩产出及主要工程地质问题归纳总结的基础上,选择含矿层中代表性凝灰岩样品,主要从凝灰岩的微观结构、化学反应、化学原理、物质因素、防塌钻井液研制及防塌原理等方面,较系统地讨论了凝灰岩膨胀垮塌的机制,并研制出有效防塌钻井液。
     (1)在分析确定凝灰岩的粒度、孔隙、裂缝等特征的基础上,应用扫描电镜观察分析凝灰岩的微观结构,通过对比干凝灰岩、缓慢吸水凝灰岩及快速浸水凝灰岩的结构差异,研究了凝灰岩膨胀过程中的微观结构变化、遇水前后的裂缝孔隙变化、水在凝灰岩内的流动及毛管压力模型等问题,并通过建立模型和公式讨论了微观力学问题。研究表明:凝灰岩的粒度分布不均匀,总体较细,但含有对钻井卡钻有极大影响的致密坚硬的大岩块;凝灰岩的孔隙和裂缝十分发育,自由膨胀时因微裂缝微孔隙增加而渗透率增加,受压封闭空间中膨胀使裂缝孔隙均匀化变小而渗透率降低。膨胀时水的流动过程为:在毛管压力作用下,水沿裂缝和孔隙在凝灰岩内快速扩散,进入凝灰岩层片状结构时产生大量新的微孔隙和微裂缝,为水的进一步渗入提供了新的通道;因亲水层片结构的片间距离微小,故层片间毛管压力较大,层片状结构的广‘泛存在导致广泛而强烈的毛细吸水现象,吸水后片发生卷曲,水层的楔入及片卷曲导致片间距增大,片间结合力减小,并产生大量孔隙和裂缝。老厂凝灰岩中广泛存在的水层楔入及亲水片状结构吸水卷曲,是凝灰岩遇水快速膨胀垮塌的主要原因之-
     (2)应用X荧光、XRD及电子探针等多种手段和多种实验对比资料,分别从膨胀和垮塌两个方面研究了老厂凝灰岩膨胀垮塌机制的物质因素。在研究膨胀时,先由X荧光、XRD初步确定膨胀矿物。进而,在扫描电镜下观察主要膨胀部位的典型结构,并进行电子探针分析,确认主要的膨胀矿物。在研究垮塌时,设计增量时间下的系列溶出实验及防塌实验,对溶出离子用ICP-AES检测离子浓度,先初步查定可能对分解垮塌起主要作用的溶出离子,再用相关离子的饱和溶液进行防塌验证,确认对分解垮塌起作用的溶出离子。膨胀物质因素研究结果表明:澜沧老厂凝灰岩快速膨胀的原因为凝灰岩中含有大量以高岭石为主的粘土矿物,层片状结构高岭石快速吸水导致快速膨胀和垮塌;亲水极性矿物也是吸水膨胀不可忽视的因素;老厂凝灰岩吸水时,凝灰岩中的盐在吸入的水中快速溶解是凝灰岩膨胀和强度降低的重要原因;地下湿润凝灰岩中存在一定的化学水合结晶,可导致一定的凝灰岩膨胀,但水合结晶膨胀不普遍不迅速,不是凝灰岩快速膨胀垮塌的主要原因。澜沧老厂凝灰岩中的可溶物溶解对凝灰岩浸水分解垮塌起十分重要的作用,Na+及K+的溶出是凝灰岩在水中分解垮塌的重要物质因素。
     (3)通过凝灰岩在酸、碱、盐溶液和有机试剂中的反应情况及稳定性状态的研究,考察了凝灰岩的化学反应特征和原理,从化学反应和溶解的角度研究了凝灰岩的膨胀垮塌机制。由探索性实验和盐类定向实验,发现凝灰岩在饱和NaCl和饱和KBr溶液中能保持较好的稳定性。以此为基础,选择饱和NaCl钻井液体系进行钻井液配方适应性研究和优化研究,获得了有效的水基防塌钻井液配方,该配方将凝灰岩的稳定性由水中2分钟完全分解提高到配方中15天以上仍保持稳定。化学研究中还进行饱和NaCl对凝灰岩中可溶物溶出的阻碍作用的实验和分析,并对阴离子的防塌作用进行了讨论。研究结果表明:凝灰岩中离子的溶出与凝灰岩的分解垮塌密切相关,饱和NaCl溶液能阻碍凝灰岩中的离子溶出,进而有效防止凝灰岩垮塌。由钻井液配方成分适应性及配方优化研究还可知:NaCl溶液中添加NaOH和可溶淀粉成分对凝灰岩防塌有重要的增进防塌作用,使用就地取材的凝灰岩滤液做钻井液基液,可进一步提升防塌性能,钻井液中不宜使用防止盐结晶的添加剂;阴离子的作用不容忽视,防止老厂凝灰岩分解垮塌的阴离子应以卤族阴离子中的Cl-和Br-为佳。
     (4)钻井液防塌原理研究既是膨胀垮塌机制研究的一个途径,又是膨胀垮塌机制的应用验证。按钻井液防塌配方成分进行溶质增量序列的溶出离子检测对比,是凝灰岩分解垮塌物质因素研究的补充。钻井液相关的化学溶液中凝灰岩稳定性状态与溶出离子检测的结合,是定性化学现象的定量研究。从钻井液各防塌成分的阻水、阻溶两方面作用讨论了所研制的复合饱和盐水钻井液的防塌原理:可溶淀粉沿凝灰岩裂缝及表面絮凝,具有强烈的堵塞作用,并可提供NaCl结晶的基础;饱和NaCl具有结晶堵塞和阻碍凝灰岩中可溶物溶出的作用;NaOH具有一定的助絮凝、增进NaCl结晶速度和阻碍凝灰岩中可溶物溶出的作用,并可形成Fe(OH)2等胶体;凝灰岩滤液可增加钻井液中凝灰岩可溶出成分的离子浓度,以降低井壁凝灰岩物质溶出速度,并为NaCl结晶提供结晶核。由淀粉絮凝物、NaCl结晶、胶体及膨润土形成的覆盖井壁的湿润混合膜,极大地阻碍了水进入凝灰岩层,钻井液的隔水能力是防塌的重要原因。高浓度凝灰岩滤液+饱和盐水+NaOH对凝灰岩中的可溶物溶出有初步的阻碍作用,絮凝结晶及膜覆盖后溶出被进一步阻止,钻井液具有较强的阻溶能力亦是防塌的重要原因。
     (5)深入综合地研究了凝灰岩的化学反应原理,重点讨论了凝灰岩在水、饱和NaCl溶液及碱性饱和NaCl溶液中稳定性不同的原因。首先以实验确定了三种液体进入凝灰岩的多少和状态,进而由粘度、界面粘度、基于吸附作用的双电层效应及端面双电层效应讨论了饱和NaCl溶液—凝灰岩的液—岩作用原理。单一理论均无法较好地解释凝灰岩的多种化学现象,通过多种理论的综合应用,克服了这种不足,为钻井液防塌应用提供了进一步的理论依据。研究表明:界面粘度对碱性饱和NaCl溶液进入凝灰岩微层片起一定阻碍作用。端面双电层吸附总体上对溶液进入凝灰岩起阻碍作用,但离子吸附可使饱和溶液变得不饱和而产生自由水,溶液中的自由水增加会减弱阻碍作用。由于凝灰岩中粘土矿物端面上较强的离子吸附效应,使得吸附力大于毛管压力而致饱和NaCl溶液难以进入微层片,但弱吸附离子Na+的吸附倘不足以使饱和NaCl溶液中产生大量自由水。对强吸附离子如Fe3+,强吸附使得饱和溶液变不饱和,自由水较多,远端自由水因束缚力小而无法克服毛管压力,进而进入凝灰岩微片;水进入凝灰岩层片后,层片间距离增大,端面双电层效应减弱,导致含离子溶液进入微片,故强吸附离子饱和溶液中凝灰岩迅速分解。NaOH是一种增加凝灰岩—水界面粘度的活性剂;且NaOH与高岭石的H+以氢键结合,使凝灰岩表面的负电荷增多,进而使得凝灰岩的端面吸附作用更强,NaOH还有增大Na+浓度和产生胶体增加粘度的作用。满足“端部双电层引力+界面粘度阻力+电解质离子束缚力>毛管压力”时,液体不能进入凝灰岩微层片,反之能进入。由综合分析结果,进一步解释了配方钻井液的防塌原理,并对防塌钻井液配方进行进一步优化,添加KCl和NaBr,以进一步减少钻井液中的自由水、加强端部双电层电荷对液体的束缚,使凝灰岩更稳定。
The tuff of Lancang Laochang Lead Mine is a kind of high expansion and fast collapse tuff, it brought difficulty to production. On this engineering background, and based on the tuff occurrence and the summary of the main engineering geological problems, use the representativable tuff samples of the ore-bearing bed, expansion and collapse mechanism of the tuff are systematicly discussed mainly from these ways:The tuff's microstructure and it's changes, the chemical reactions and it's principle, the material factors, anti-sloughing drilling fluid and it's mechanism, etc. And impactful anti-sloughing drilling fluid is gained.
     (1)Based the analysis of granularity, pore, fracture, etc. mainly used the scanning electron microscope to observe. By contrast the structure changes of dry tuff, slow water absorbed tuff and quick absorbed water tuff samples, the changes of tuff's microscopic structure were studied, the changes of pore and fracture when meeting water were discussed, and, such problems as how the water flow in the tuff and the capillary force model are researched too. Also, the micro mechanical problems discussed by establishing the model and formula. Microstructural studies show that:Tuff granularity is not uniform, relatively in small particles, but dense hard big blocks are contained, it has great effect to drill stick. Tuff have lots of pores and cracks. When free expand, the tiny pore and fracture increased, and the permeability increased too. Under pressure and in the closed space, expansion made the pore and fracture smaller and more uniform, permeability be reduced. In the expansion process,water flow in tuff is as follows:Under the capillary force, water along the cracks and pores quickly spread into the tuff, when it come into the lamellar structure, a lot of new micro pores and cracks come into being, it provide new channels for further water infiltration. For the distance between pieces is tiny, so the capillary force of the sheet structure is very strong, it led to widespread and strong water absorption. After water absorption, the inserted water layer and the curling sheet made the distance increased and generated lots of pores and cracks. So, it is considered that the widespread water layer insert and hydrophilic sheet structure curling after absorbed water is one of the main reasons of Lancang tuff's expansion and collapse.
     (2)Use the variety of experimental contrast datum of a variety of means such as X fluorescence, X diffraction and electron probe, the material factors of Lancang tuff's expansion&collapse mechanism are studied from the expansion aspect and from collapse aspect separately. When study the expansion, firstly, use X fluorescence and XRD test the water-sensitive mineral components, Then, in order to confirm the expansion material, electron probe is used to detect the typical structure of expansion part which obtained from scanning electron microscope observation. In the study of collapse, a series of dissolution and anti collapse experiments were designed under incremental time, ICP-AES was used to detect the dissolved ions concentration. First step, get the possible dissolved material which may lead the tuff to collapse, then the saturation solution of those possible ions were used in anti-collapse experiment to affirm, and the functional material were obtained. Material factors research results show that:The minerals cause of Lancang Laochang tuff's rapid expansion is the tuff have lots of clay minerals, mainly constituted by kaolinite, quickly water absorption of lamellar or sheet structure kaolinite leads to quickly expansion and quickly collapse, and the hydrophilic polar mineral is swelling factor which can not be ignored. When water absorbed into tuff, it is an important reason that the fast salt dissolution make tuff expansion and reduce tuff strength. Chemical hydrate crystalline exists in always wet underground and can cause certain tuff expansion, but it forms slowly, and expansion caused by hydrate crystallinity is not universal, so it is not the main reason of fast tuff expansion. The dissolving of soluble material in tuff plays a very important role to Lancang Laochang tuff's collapse, the dissolution of Na+and K+are the important material factors of tuff decomposition and collapse.
     (3)Through the chemical reaction characteristics and principles of tuff reacting to acid, alkali, salt solution and organic reagent, tuff expansion collapse mechanism were discussed from chemical reaction and dissolution side. Respectively, groping chemical experiment and salt direction experimental study were carried out. It has been known that the tuff is relatively stable in saturated NaCl solution or in saturated KBr saturated solution. Bases on these experimental results, NaCl saturated drilling fluid system is selected for drilling fluid formulation adaptable research and optimize research,and the effective anti-sloughing drilling fluid formulation components have been obtained. Using the formulation, stability of tuff is improved from2minutes in water to above15days. In chemical study, the inhibition of saturated brine to the dissolution of tuff has been experimentalized and analyzed too, and the anti-collapse function of anion has been discussed also. Research results show that:There's closely relativity between the tuff collapse and the ion dissolution, the saturated NaCl solution can block the ion dissolution of tuff, then can prevent the tuff collapse. From the drilling fluid component adaptable study, it is know that the NaOH and the soluble amylum based saturated NaCl solution have significant inhibitory effect to the tuff collapse. And from the study on the optimization of the drilling fluid component, it is know that using the local tuff filtrate as the base liquid of drilling fluid can improve the anti-collapse properties of the drilling fluid, so bentonite is needed, additives which ant salt crystallization should not be used. The role of anion can not be ignored, to prevent Lancang tuff's collapse, the anion should use the halogen anion Cl-or Br-.
     (4)The researches of anti-sloughing mechanisms of the drilling fluid, are the collapse mechanisms studied by anti-sloughing mechanisms, are necessary and effective. The detection of dissolved ions according to the increased solute sequence of drilling fluid formula, is the supplement of the material factor of tuff's collapse mechanism. Tuff's stability state and dissolved ion detection of the drilling fluid related chemical solution, is the quantitative research of the qualitative chemical phenomena.The anti-sloughing mechanism of the drilling fluid to Lancang Laochang Lead Mine is studied from two aspects of each component:the water resistance effect and the dissolution resistance effect of drilling fluid. Researches show that:Soluble starch flocculate along the tuff crack and surface, has strong blocking effect, and can provide crystal base to NaCl; saturated NaCl solution has effects of crystallization blockage and hinder tuff soluble dissolution; NaOH has certain help for flocculation, can enhance NaCl crystallization rate and prevent soluble dissolution,and colloid such as Fe(OH)2can form with NaOH too; tuff filtrate can increase the ions concentration of the drilling fluid, those just as same as the soluble ions of tuff, then it can reduce dissolution rate of tuff sidewall's material, and the tuff filtrate can provide nucleus to NaCl crystallization. The sidewall covered by moist mixed film formed by starch flocculation, NaCl crystal colloid, and bentonite,the mixed film block up water immersion into tuff greatly, the water isolation ability is the important anti-collapse reason of the drilling fluid. High concentrations tuff filtrate+saturated brine solution+NaOH has preliminary block effect to the dissolution of soluble in tuff, flocculation, crystallization and film covering lead the dissolution been further prevented, the drilling fluid has strong dissolution inhibitor ability is also the important reason of anti collapse.
     (5) The chemical reaction principle of tuff was comprehensively studied, and stressed the causes of tuffs different stability in the water, saturated NaCl solution and alkaline saturated NaCl solution. Firstly, by experiment, the quantity of three kinds of liquid absorbed into tuff and the state of tuff were identified. Then, the viscosity, interfacial viscosity, electric double layer effect and end surface electric double layer based on adsorption effect were researched, it is the study of the interaction principle of saturated NaCl solution-tuff liquid. Through the integrated application of various theories, the shortcomings of single theory cannot explain a variety of chemical phenomena of tuff was overcame, it provides further theoretical basis for drilling fluid anti-sloughing application. Researches show that:The interfacial viscosity played a role of inhibiting alkaline NaCl solution to go into the tuff's micro layer. Adsorptions of end surface electric double layer have the overall effects on blocking solution into tuff, but ion adsorptions can make the saturated solution to be unsaturated, and then free water come into being, the increased free water can weak the blocking effect. Due to the strongly ion adsorption effect of the end surface of the clay in tuff, the adsorption capacity is greater than the capillary pressure, so,the saturated NaCl solution is difficult to enter the micro layer, but the adsorption of weakly sorption ion Na+is not sufficient to produce lots of free water. For strong sorption ions such as Fe3+, by strong adsorption, the saturated solution is made unsaturated, so free water emerged, for binding force is small, distal free water and can not overcome the capillary pressure and then entered the tuffs micro pieces; the enter of water into the tuffs micro pieces increased the distance between the pieces, so the double layer effect were weakened, which made the ions contained solution get into the micro pieces, it is why tuff rapid collapse in the saturated solution of strong sorption ions. NaOH is a kind of surfactant to increase the tuff-water interfacial tension. Also, NaOH and kaolinite's H+are bond by hydrogen, it made interfacial viscosity increased on the tuff surface, and then made tuff end surface adsorption stronger. NaOH also increased Na+concentration, and it's colloidal formation effect made viscosity increased. When satisfied "End surface electrical double layer force+Interfacial viscosity resistance+Electrolyte ion binding force> Capillary pressure", the liquid can not enter into the tuff; on the contrary, can enter tuff. By comprehensive analysis results, it further explains the anti-collapse principle of formula drilling fluid, and the anti-sloughing drilling fluid formulation been further optimized. The addition of KCl and NaBr, can further reduce free water in drilling fluid, strengthen the binding of the end electric double layer charge to the liquid, it can make the tuff more stable.
引文
[1]李忠,杨维训.浙江苍岭隧道左线凝灰岩突水现象工程地质特征研究[J].铁道工程学报,2007(7):16-19.
    [2]廖书志.秦屿隧道涌泥段的处理[J].石家庄铁道学院学报,2007,20(2):127-129.
    [3]杨英.大丽铁路碎裂玄武岩夹凝灰岩型隧道特征及施工对策[J].铁道工程学报,2007(12):64-68.
    [4]段乔文,李燚,唐跃明等.云南文山普者黑机场膨胀土处治方案及效果浅析[J].岩土工程界,2007,10(3):68-72.
    [5]李忠.金安桥水电站枢纽区左岸边坡稳定性工程地质分析[J].云南水电技术,2008(2):1-6.
    [6]潘春芳,王建平.金沙江某坝址凝灰岩夹层风化的水-岩作用[J].水科学与工程技术,2008(6):62-64.
    [7]保华富,李仕胜,廖建军等.建筑物场地稳定性监测实施及成果分析[J].水利与建筑工程学报,2007,5(4):44-50.
    [8]杨志法,张路青,陶克捷等.关于衢州古城墙通仙门凝灰岩砌块相对风化速度的研究[J].工程地质学报,2008,16(5):625-629.
    [9]马振洲,刘守伟.中部城市引松供水工程总干线引水隧洞主要工程地质问题分析[J].吉林水利,2008(B09):16-20.
    [10]赵小辉.浙江省新昌卧佛殿工程硐室开挖施工技术简述[J].西部探矿工程,2008,20(7):162-164,171.
    [11]戴庭曦,叶文春,蔡理明等.中风化凝灰岩为持力层的钻孔灌注桩勘探和施工中的经验与教训[J].浙江建筑,2006,23(5):20-21.
    [12]郭金喜,高一龙.喀拉通克铜镍矿新竖井支护设计施工及质量监控技术[J].新疆有色金属,2002,25(1):14-18.
    [13]黄毓明.福建南安市地质灾害特征及防治对策[J].中国地质灾害与防治学报,2004,15(2):122-124,121.
    [14]陈和平,胡恒鹏.突发性山地水土灾害与地形地貌的相关性研究[J].浙江大学学报:农业与生命科学版,2003,29(1):83-86.
    [15]李培林,陈先贵,安淑芳,刘明胜.芳深9-2井钻井液技术[J].钻井液与完井液,2008,25(4):74-76.
    [16]冯京海,徐同台,王富华等.南堡油田馆陶组玄武岩井壁失稳机理和技术对策研讨[J].钻井液与完井液,2008,25(5):1-4.
    [17]孔凡军周英操张书瑞.松辽盆地北部深层天然气勘探钻井技术[J].油气地球物理,2005,3(1):58-58.
    [18]许中杰,程日辉,刘万洙等.九台营城组凝灰岩蚀变机理及对储集性能影响[J].大庆石油地质与开发,2008,27(6):31-34.
    [19]王玉普刘合卓胜广谢朝阳张浩.海拉尔油田沉凝灰岩储层岩石稳定乳化压裂液的研制及应用[J].石油学报,2005,26(5):67-70.
    [20]杨友运张蓬勃.鄂尔多斯盆地延长组火山碎屑沉积物特征及其石油地质意义[J].低渗透油气田,2006,11(3):30-33,80.
    [21]高瑞琴,杨继波,丛培栋等.二连油田沉凝灰岩储层特征分析[J].测井技术,2006,30(4):330-333.
    [22]王鹏,潘建国,魏东涛等.新型烃源岩一--凝灰岩[J].西安石油大学学报(自然科学版),2011,26(4):19-22.
    [23]刘巽锋,陶平.贵州火山凝灰岩型金矿地质特征及找矿意义[J].中国地质,2001.1(28):30-35.
    [24]王津津,胡煜昭,韩润生.贵州晴隆锑矿田微量元素地球化学特征及其对成矿流体的指示意义[J].矿物学报,2011(31):268-274.
    [25]薛振华,蒋振频,董永杰.相山铀矿田邹家山工区含铀凝灰岩的矿化特征[J].铀矿地质,2004,20(2):85-89.
    [26]朱合华,闫治国,邓涛等.3种岩石高温后力学性质的试验研究[J].岩石力学与工程学报,2006,25(10):1945-1950.
    [27]高秀君,羽柴公博,大久保诚介等.适用于小型岩石试件的三轴压缩试验技术与设备的开发及其应用[J].岩石力学与工程学报,2006,25(10):1960-1968.
    [28]彭石林叶朝辉刘买利.多孔介质渗透率的NMR测定[J].波谱学杂志,2006,23(2):271-282.
    [29]李贤林.全风化凝灰岩(土)渗透稳定研究[J].浙江水利水电专科学校学报,2001(z1):32-35.
    [30]J.A. Wolff, J.V. Wright. Rheomorphism of welded tuffs[J]. Journal of Volcanology and Geothermal Research,1981,10:13-34.
    [31]Joseph S.Y. Wang, T.N. Narasimhan. Fluid flow in partially saturated, welded-nonwelded tuff units[J]. Geoderma,1990,46:155-168.
    [32]R.J. Martin III, R.H. Price, P.J. Boyd, J.S. Noel. The influence of strain rate and sample inhomogeneity on the moduli and strength of welded tuff[J]. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, 1993,30:1507-1510.
    [33]Michael M. Reddy,Hans C. Claassen. Specific surface area of a crushed welded tuff before and after aqueous dissolution[J]. Applied Geochemistry,1994,9:223-233.
    [34]J.T.Fredrich, J.W.Martin, R.B.Clayton. Induced pore pressure response during undrained deformation of tuff and sandstone[J]. Mechanics of Materials, 1995,20:95-104.
    [35]R.Yoshinaka, M.Osada, T.V.Tran. Deformation behaviour of soft rocks during consolidated-undrained cyclic triaxial testing[J]. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts,1996,33:557-572.
    [36]R.J.Martin, J.S.Noel, P. J. Boyd, R.H. Price. Creep and static fatigue of welded tuff from Yucca Mountain, Nevada[J]. International Journal of Rock Mechanics and Mining Sciences,1997,34:190.e1-190.e 17.
    [37]Mary Beth Gray, John A.Stamatakos, David A. Ferrill, Mark A. Evans. Fault-zone deformation in welded tuffs at Yucca Mountain, Nevada, USA[J]. Journal of Structural Geology,2005,27:1873-1891.
    [38]Rohit Salve, Joseph S. Y. Wang, Christine Doughty. Liquid-release tests in unsaturated fractured welded tuffs:I. Field investigations[J]. Journal of Hydrology, 2002,256:60-79.
    [39]Tamer Topal, Burak Sozmen. Deterioration mechanisms of tuffs in Midas monument[J]. Engineering Geology,2003,68:201-223.
    [40]T.C.Chen, M. R. Yeung, N. Mori. Effect of water saturation on deterioration of welded tuff due to freeze-thaw action[J]. Cold Regions Science and Technology, 2004,38:127-136.
    [41]L. Ma, J.J.K. Daemen. An experimental study on creep of welded tuff[J]. International Journal of Rock Mechanics and Mining Sciences,2006,43:282-291.
    [42]田昌进.澜沧铅矿凝灰岩巷道变形失稳规律及支护方案改进研究[D](硕士).昆明理工大学,2009,1.
    [43]鲍家亮.云南澜沧老厂铅锌矿巷道围岩稳定性分析[D](硕士).昆明理工大学,2009.3.
    [44]葛华.澜沧老厂铅矿软岩巷道变形机理分析[D](硕士).昆明理工大学,2009.1 0.
    [45]何尽川.澜沧铅锌矿凝灰岩软岩巷道破坏机理分析及支护参数优化研究[D](硕士).昆明理工大学,2010.3.
    [46]田保同.膨胀性凝灰岩崩解特性实验研究[D](硕士).长沙理工大学,2012.3.
    [47]马洪杰.澜沧铅矿凝灰岩膨胀性与崩解特性研究[D](硕士).长沙理工大学,2012.5.
    [48]李文平,张志勇,孙如华等.深部粘土高压K0蠕变试验及其微观结构各向异性特点[J].岩土工程学报,2006,28(10):1185-1190.
    [49]牛文杰,叶为民,陈宝等.考虑微观结构的非饱和渗透系数计算公式[J].探矿工程-岩土钻掘工程,2009,36(6):34-39.
    [50]陈海洋,虞钢箭,张桂坪.三峡库区巴东型滑坡典型滑带微观结构与物理力学特征研究[J].资源环境与工程,2007,21(2):147-151.
    [51]张宏,柳艳华,杜东菊.基于孔隙特征的天津滨海软粘土微观结构研究[J].同济大学学报(自然科学版),2010,38(10):1444-1449.
    [52]鞠斌山,马明学,邱晓燕.弹性多孔介质粘土膨胀和微粒运移的数学模拟方法[J].水动力学研究与进展A辑,2003,18(1):1-8.
    [53]叶为民,黄雨,崔玉军等.自由膨胀条件下高压密膨胀粘土微观结构随吸力变化特征[J].岩石力学与工程学报,2005,24(24):4570-4575.
    [54]何俊.膨润土水化膨胀行为简化计算[J].河海大学学报(自然科学版),2006,34(3):299-301.
    [55]那平,张帆,李艳妮.水化Na-蒙脱石和Na/Mg-蒙脱石的分子动力学模拟[J].物理化学学报,2006,22(9):1137-1142.
    [56]孙红娟,彭同江,陈彦翠.层间阳离子对蒙脱石结构与水化膨胀性能的影响[J].非金属矿,2011,34(1):11-13.
    [57]孙明波,侯万国,孙德军等.钾离子稳定井壁作用机理研究[J].钻井液与完井液,2005,22(5):7-9.
    [58]刘向君,袁书龙,刘洪等.溶液矿化度及加量对钠-蒙脱石晶间距的影响研究[J]. 岩土力学,2011,32(1):137-140.
    [59]张伟,张寿庭,王彦春等.高岭石电子结构计算及键络分析[J].材料导报,2009,23(2) :70-72.
    [60]曹德光,苏达根,杨占印等.偏高岭石的微观结构与键合反应能力[J].矿物学报,2004,24(4):366-372.
    [61]晏全香.不同地区高岭土煅烧前后结构性能研究[J].非金属矿,2010,33(3):9-11,15.
    [62]赵晨,马智,齐小周等.酸和碱处理对内蒙古煤系高岭土结构和裂化性能的影响[J].工业催化,2007,15(1)
    [63]李峰,鲁文举,杨映忠等.危机矿山成矿规律与找矿研究—以云南澜沧老厂矿床为例[M].昆明:云南科技出版社,2010.
    [64]罗思亮,李峰,坚润常.云南澜沧老厂矿区火山岩岩石化学特征及构造背景[J].现代矿业,2010.3(3):35-39.
    [65]云南地质矿产局.云南省区域地质志[M].北京:地质出版社,1990.
    [66]冯庆来,刘本培.滇西南昌宁-孟连构造带火山岩地层学研究[J].现代地质,1993.04,402-409.
    [67]吴延之,王增润,段嘉瑞等.滇西澜沧火山岩带铜多金属成矿地质条件及找矿预测研究报告[R].中南工业大学科研报告,1990.
    [68]叶庆同,胡云中,杨清等.三江地区区域地球化学背景和金银铅锌成矿作用[M].北京:地质出版社,1992.
    [69]周凤禄.澜沧老厂铅锌银矿床成矿条件浅识.云南矿产地质[J].1991,5(2)16-28.
    [70]何更生.油层物理[M].石油工业出版社,1994.11,192-209.
    [71]Schiotz J, Di T olla F D, Jaco bsen K W. Softening of nano crystalline metals at ver y small g rain sizes [J].Nature,1998,39:561-563.
    [72]Van Swygenhoven H, Spaczer M, Caro A. Microscopic description of plasticity in computer generated metallic nanophase samples:a comparison between Cu and Ni [J]. Acta Materialia,1999,47:3117-3126.
    [73]Yamakov V, Wolf D, Phillpo t S R, Gleiter H. Grain-boundary diffusion creep in nanocry stalline palladium by molecular dynamics simulation[J]. Acta Materialia, 2002,50:61-73.
    [74]兰姣霞,洪友士..纳米晶材料变形行为的微观力学分析[J].固体力学学 报,2010,1(31):1-7.
    [75]蒋明镜,孙渝刚,李立青.复杂应力下两种胶结颗粒微观力学模型的试验研究[J].岩土工程学报,2011,3(33):354-360.
    [76]黄伟,赵宝荣,史洪刚等.钨合金微观力学性能研究[J].兵器材料科学与工程,2006,2(9):51-56.
    [77]周栋梁,程教文,陈翠翠.应用纳米压痕技术测定C-S-H凝胶微观力学性能[J].混凝土,2011,9(263):47-49.
    [78]尹光志,张千贵,魏作安.尾矿细微观力学与形变观测试验装置的研制与应用[J].岩石力学与工程学报,2011,5(30):926-936.
    [79]杨帅杰,沈忠悦,叶瑛.高岭石晶粒表面的电荷分布及其工业意义[J].非金属矿,2001,3(24):5-7.
    [80]邱欣卫,刘池洋,毛光周等.鄂尔多斯盆地延长组火山灰沉积物岩石地球化学特征[J].地球科学-中国地质大学学,2011,36(1):139-150.
    [81]胡志中,杨波,杜谷等.铝土矿地质研究中分析技术应用进展世界科技研究与发展,2011,33(6):963-965.
    [82]Beihoffer, Thomas W. and Dorrough, David S. and Deem. Cationic polymer drilling fluid can sometimes replace oil-based mud[J].Oil and Gas Journal.1992:47-52.
    [83]蓝强,邱正松,王毅.硅酸盐钻井液防塌机理研究[J].石油学报,2007,28(5) :133-138
    [84]秦永和.硅酸盐钻井液防塌机理研究与应用[J].中国石油大学学报(自然科学版),2007,31(3):67-71.
    [85]徐加放,邱正松,吕开河等.硅酸盐钻井液防塌机理与应用技术[J].石油勘探与开发,2007,34(5):622-627.
    [86]邱正松,黄维安,徐加放等.改性多元醇防塌剂的研制及其作用机理研究[J].中国石油大学学报(自然科学版),2006,30(6):51-58.
    [87]魏新勇,肖超,韩立胜.硅酸盐钻井液综合机理研究[J].石油钻探技术,2002,30(2) :51-53.
    [88]张红红,徐会文,冯哲.聚合物钻井液防塌机理的试验研究[J].探矿工程-岩土钻掘工程,2007,34(1):44-61.
    [89]郑力会,鄢捷年,陈勉等.钻井液用仿磺化沥青防塌剂的性能与作用机理[J].油田化学,2005,22(2):97-100.
    [90]刘科.超低渗透钻井液实验研究[D](硕士).中国石油大学(华东),2006.
    [91]蒲晓林,雷刚,罗兴树等.钻井液隔离膜理论与成膜钻井液研究[J].钻井液与完井液,2005,22(6):1-4.
    [92]薛玉志.超低渗透钻井液作用机理及其应用研究[D](博士).中国石油大学,2008.
    [93]张海朗,张锁江,陈庚华等.电解质NaCl和KCl及其混和含水溶液在298.15K下的粘度[J].化工学报,1996,2(47):211-216.
    [94]黄汉仁,杨坤鹏,罗平亚.泥浆工艺原理[M].石油工业出版社,1981.
    [95]叶仲斌,张绍彬,李允等.HPAM与油之间的界面剪切粘度实验研究[J].西南石油学院学报,2000,3(22):53-56.
    [96]胡尚林,张禹贞.界面剪切粘度的测定方法[J].龙岩师专学报2002,6(20):55-56.
    [97]Lakatos-Szabo J, Lakatos I. Effect of sodium hydroxide on interfacial rheological properties of oil-water systems. Colloids and Surfaces [J]. A:Physicochemical and Engineering Aspects,1999,1:507-513.
    [98]刘卫东,童正新,李明远等.化学驱油体系的油/水界面粘度[J].油田化学,2000,4(17):337-339.
    [99]李明远,彭勃,李鸿雁等.原油减压渣油馏分的油-水界面性质—Ⅳ.大庆减压渣油馏分的油-水界面粘度[J].石油学报(石油加工),2004,2(20):57-62.
    [100]谢鹏.土壤化学进展趋势与我国土壤化学展望[J].土壤,1991,4(23):188-192.
    [101]何宏平,郭九皋,谢先德等.蒙脱石等粘土矿物对重金属离子吸附选择性的实验研究[J].矿物学报,1999,2(19):231—235.
    [102]PAPP S,SZUCS A,DEKANY I.Preparation of PdO nanoparticles stabilized by ploymers and layered silicate[J].Appl Clay Sci,2001,19:155-172.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700