用户名: 密码: 验证码:
金川镍矿Ⅱ号矿体深部地应力场及工程稳定性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
金川镍矿区由于受到过多次地质历史时期构造运动影响,矿区范围内断裂、节理、裂隙十分发育,加之目前金川镍矿区仍处于构造活动期,给地面和地下工程的稳定带来极为不利的影响。矿区内的Ⅱ号矿体进入深部开采后,随着多中段同时开采以及扩能改造工程的逐步实施,采动影响越来越剧烈,巷道围岩碎胀蠕变明显,岩体整体性、稳定性极差,地表裂缝扩展,地面沉降加剧,应力值增大,深部巷道和采场稳定性控制问题日愈突出。及时掌握采场及周边的应力分布变化规律和变形规律,适时地提出保障矿山安全生产的合理化建议,为矿山工程的设计和巷道支护方法的选择以及充填体强度选择提供科学依据,是迫在眉睫的问题。
     本论文以金川集团公司重大科研项目《金川矿区应力场与岩石力学研究》及科技攻关项目《金川矿山深部高强度采掘条件下的岩石力学研究》为依托,针对金川镍矿Ⅱ号矿体深部开采过程中遇到的岩石力学及工程问题而开展工作。首先对金川镍矿区地质条件及岩体深部变形特征进行系统的调查分析及研究;其次系统的收集、整理、分析了金川镍矿区近几十年来地应力测量工作及取得的成果,在此基础上选取具有代表性的工作区域进行地应力实测,获得矿区深部地应力重要数据,开展矿区浅部与深部地应力特征的对比分析研究;然后,根据金川镍矿Ⅱ号矿体深部开采情况,选取Ⅱ号矿体F17断层以西的1000m、1150m和F17断层以东的1200m中段进行地应力现场实际测量;最后结合Ⅱ号矿体深部应力分布及变形特征,通过FLAC3D软件对Ⅱ号矿体深部大面积连续开采矿柱及深部巷道稳定性进行分析。通过上述工作获得以下主要成果:
     1、提出最大主地应力值随深度的变化是非线性的,浅部变化曲线的斜率较小,最大主应力随深度增加而增大的较快,深部变化曲线的斜率较大,最大主应力随深度增加而增大的较慢,深浅部应力变化的拐点大致在埋深400m的位置。
     2、研究发现矿区深部地应力分布与地质构造密切相关,而且明显受开采扰动的影响,造成深浅部最大主应力方向有所不同,浅部最大主应力方向以NNE-NE向为主;深部最大主应力方向以SSW-SW向为主,更加趋于复杂化;
     3、Ⅱ号矿体深部最大主应力倾角和中浅部相比明显不同。中浅部测点最大主应力倾角较小,最大主应力基本为近水平状态,矿体深部最大主应力倾角明显增大。本次测量深部多数最大主应力为倾斜状态,倾角已接近或超过40。,说明水平应力的主导性在深部采区中在逐渐减弱;矿体深部最大主应力量值与最小主应力量值的差值增大,剪应力增大,剪切破坏强度加大,这对矿山深部工程稳定具有十分不利的影响;
     4、在矿体深部地应力测量基础上,采用FLAC3D软件对Ⅱ号矿体深部大面积连续开采时,双中段开采水平矿柱及垂直矿柱稳定性进行了对比分析研究。
     5、对高地应力条件下深部巷道破坏及巷道支护机理分析探讨表明:随着巷道埋深的增加、围岩压力逐渐增大,巷道水平压力大于垂直压力;巷道不对称变形破坏严重,巷道一帮侧压内挤变形量常常大于另一帮;垂直压力为主的地段,巷道两侧形成剪切滑移体,侧墙易于产生不规则开裂及拱顶压坏现象;巷道底鼓现象显著。由于金川镍矿区地应力较高,矿岩破碎,单纯采用巷道支护的方式来控制巷道地压具有明显的局限性,因此,提出采用人工卸压和巷道支护相结合的巷道地压控制措施,对于控制巷道变形、维护巷道的稳定具有重要的指导借鉴意义。
The fault, joint and fissure are very developed in the Jinchuan large scale Ni orefield owing to the effect of many times of structural movement in the geological historic period. Moreover, this area is still in the structure active period at present time, which also has very disadvantageous influence on the stability of surface and underground engineering. After the beginning of deep mining of ore body II in the orefield, the mining influence becomes more and more violent because of the simultaneous mining on several level and the progressive carrying out the expansion and reformation of production ability. The fracture, expansion and creep deformation of wall rock in tunnel are very evident. The completeness and stability of rock body are very bad. The surface fissure expands, surface sinking intensifies, stress value increases. The stability control problem of deep tunnel and mining area becomes more and more prominent. The emergency problems are to put forward the timely rationalization proposal to ensure safety in mining production and to provide the scientific foundation for selection of mine engineering design and support method of tunnel.
     In this paper, we aim at the lithomechanics and engineering problems in deep mining process of ore body II in Jinchuan Ni orefield basing upon the important scientific project 《The Study on the Stress Field and Lithomechanics of Jinchuan Orefield》 of Jinchuan Company(Group) and scientific project of tackling key problems《The Study on the Lithomechanics under Deep High Intensity Mining Conditions of Jinchuan Mine》. First, the geological condition of Jinchuan Ni orefield and deep deformation characteristics of rock body are systematically surveyed, analyzed and studied; second, the crustal stress measurements in Jinchuan Ni orefield in recent scores of years are gathered, put in order and analyzed, then select the representative area for the survey on the spot based upon the working mentioned above in order to achieve the important data of deep crustal stress of orefield and carry out the comparison, analysis, study of surface and deep crustal stress characteristics of orefield. Afterwards, we select the level1000m,1150m west of F17of ore body II and the level1200m east of F17for the survey on the spot according to the deep mining situation of ore body II in Jinchuan Ni orefield. Finally, the stability of deep large area continuous mining mine pillar and deep tunnel is analyzed with the software FLAC3D in combination with the deep stress distribution and deformation characteristics of ore body II. Thus, we have achieved the following important results:
     1. We propose that the variation of maximum principal stress value in company with the depth change is nonlinear, which is varied approximately in the cube form. The slope of shallow variation curve is gentle. The maximum principal stress increases rapidly in company with the depth. Nevertheless, the slope of deep variation curve is steep. The maximum principal stress increases slowly in company with the depth. The inflection point of stress variation from the deep to the shallow is approximately at the depth underground400m.
     2. According to the study, the deep crustal stress distribution of orefield is in close relation not only to geological structure but also evidently influenced by the mining disturbance, which causes the difference of maximum principal stress direction of the deep from that of the shallow. The shallow maximum principal stress direction is mainly in NNE-NE, whereas the deep one is mainly in SSW-SW, ie, it is more complicated.
     3. The deep maximum principal stress dip angle of ore body II is evidently different from middle-shallow ones. The maximum principal stress dip angle of middle-shallow measuring point is gentle, the maximum principal stress is basically in nearly horizontal state. The deep maximum principal stress dip angle of ore body increases clearly. In this measurement, most deep maximum principal stress data are inclined and the dip angles approach or exceed40°, which shows that the dominance of horizontal stress has been weakened progressively in the deep mining area. The difference between maximum and minimum principal stress value increases, ie, the shear stress increases. The increase of shear damage intensity has a very disadvantageous influence on the stability of deep mining workings.
     4. Basing upon the deep crustal stress measurement of ore body, the stability of horizontal and vertical mine pillar of dual-level mining in deep large area continuous mining of ore body II is compared, analyzed and studied with the software FLAC3D.
     5. The analysis of and probe into damage and support mechanism of deep tunnel under high crustal stress show that the wall rock P progressively increases in company with the increase of tunnel depth, the horizontal P higher than vertical P of tunnel, the tunnel unsymmetrical deformation damage serious, the side extruding deformation of one wall often more intense than the other in the tunnel, the shear slide body formed on both sides of tunnel in the area mainly under the vertical P, the irregular fracture on side wall and arch roof pressure damage take place easily, tunnel bottom distension evident. Because of the high crustal stress in Jinchuan Ni orefield, ore and rock fracture, the tunnel crustal P control is limited by the tunnel support form alone. Therefore, we propose the tunnel crustal P control measures combining manual P discharge and tunnel support, which have the important guide and reference significance for the tunnel deformation control and the protection of tunnel stability.
引文
[1]何满潮,钱七虎.深部岩体力学基础[M].北京:科学出版社,2010,8.
    [2]中国科学院地质与地球物理研究所,金川集团有限公司技术中心,金川集团有限公司二矿等.《金川矿区地表岩移的GPS测定与井下系统归并研究》成果总结报告.内部资料,2003
    [3]金川集团有限公司二矿.二矿区简介.内部资料,2004
    [4]马宇,吴满路,廖椿庭.金川二矿区1178分段巷道变形特征及原因浅析[J].水文地质与工程地质,2006
    [5]金川镍钻研究设计院,北京科技大学.金川二矿区深部工程地质分区和岩体分类研究报告JR].内部资料,1995
    [6]中南大学,金川集团有限公司二矿.1150m中段大面积高应力水平矿柱中深孔采矿方法应用技术研究冈.内部资料,2004
    [7]蔡美峰,何满潮,刘东燕.岩石力学与工程[M].北京:科学出版社,2002.
    [8]谢和平.深部开采基础理论与工程实践[M].北京:科学出版社,2006.
    [9]何满潮.深部开采工程岩石力学的现状及其展望[C].第八次全国岩石力学与工程学术大论文集,科学出版社,2004,88-96.
    [10]孙广忠.岩体结构力学[M].北京:科学出版社,1988.
    [11]于学馥,郑颖人.地下工程围岩稳定分析[M].北京:煤炭工业出版社,1983.
    [12]廖椿庭,任希飞,丁原辰,等.金川矿区应力测量与构造应力场[M].北京:地震出版社,1985
    [13]钱七虎.深部岩体工程响应的特征科学现象及深部的界定[J].华东理工学院学报,2004,27(1):1-5
    [14]钱七虎.地下空间开发利用的第四次浪潮及中国的现状、前景和发展战略.中国岩石力学与工程学会第六次学术大会论文集[M].北京:中国科学技术出版社,2000
    [15]蔡美峰.地应力测量原理和方法的评述[J].岩石力学与工程学报,1993,12(3):275-283.
    [16]孟文,陈群策,杜建军,丰成君,秦向辉,安其美.新加坡地应力测量[J].地球物理学报.2012(08).
    [17]蔡美峰,彭华,乔兰,等.万福煤矿地应力场分布规律及其与地质构造的关系[J].煤炭学报,2008,33(11):1248-1252.
    [18]蔡美峰.地应力测量原理与技术[M].北京:科学出版社,2000.
    [19]王连捷,廖椿庭,丁原辰,等.KX-81型空心包体式三轴应力计[A],地质力学文集(八),地质出版社,1990.
    [20]乔兰,蔡美峰.应力解除法在某金矿地应力测量中的新进展[J].岩石力学与工程学报,1995,14(1):25-32.
    [21]蔡美峰.地应力及原位地应力测量,见:中国岩石力学与工程世纪成就[M].王思敬.江苏:河海大学出版社,2004,485-515.
    [22]TanChengxuau,WangRuijiang,SunYe,etal.Numericalmodelingestimationofthe-tectonicstresspl ane.(TSP)beneath topography with quasi U-shaped valleys[J].International Journalof Rock Mechanics and MiningSciences,2003,40(6)
    [23]侯明勋,葛修润,王水林.水力压裂法地应力测量中的几个问题[J].岩土力学,2003,(5):840-844.
    [24]Chunting Liao,Chunshan Zhang,Manlu Wu,et al.Stress change near the Kunlun fault befoand after the Ms 8.1 Kunlun earthquake[J].Geophysical Research Letters,2003,30(20):3-5
    [25]蔡美峰.地应力测量中温度补偿方法的研究[J].岩石力学与工程学报,1991,10(3):227-235
    [26]卢兴宇.关于Kaiser效应和应力方向的初步探讨[J].重庆建筑工程学院学报,1987.
    [27]雷扬.空芯包体地应力测量方法简介[J].金川科技,2006,(4):23-25.
    [28]郭怀志,马启超等.岩体初始应力场的分析方法[J].岩上工程学报,1983,5(3):64-75
    [29]瑞典吕律欧大学,金川有色金属公司.中国-瑞典关于金川二矿区技术合作岩石力学研究最终报告.1988
    [30]金川矿区原岩应力测量和构造应力场的研究[R].中国地质科学院地质力学研究所,国家地震区地质大队,1981年7月.
    [31]王富玉,高谦,张周平.金川矿区地应力规律与人工神经网络预测研究[J].岩石力学与工程学报,2003,22(增2):2601-2606.
    [32]李方全,陈群策,张志国.原地应力测量方法及原地应力测量的研究领域[J].中国大陆地壳应力环境研究[M],北京:地质出版社,2003.
    [33]李方全,刘光勋.我国现今地应力状态及有关问题[J].地震学报,1986,8(2):156-171
    [34]Ding Xunchu,Yang Zengxue,Liu Zongjian et al. Some problems concerning stress measurements at a hydroelectric station in upper reaches of the Huanghe River and its underground design[J].Proceedings of Crustal Tectonic and Crustal Sterss,1988,(2):59-68.
    [35]Dong Cheng, Wang Lianjie, Yang Xiaocong et al. Stress measurement of Anqing coper mining[J].Joumal of Geomechanics,2001,7 (3):259-264
    [36]吴爱祥,韩斌,刘同有等.金川镍矿不良岩层巷道变形与支护研究[J].岩石力学与工程学报.2003,22(增2):2595-2560
    [37]刘同有,马念杰,高谦.地下巷道工程可靠度分析[M].徐州:中国矿业大学出版社,1998
    [38]Hoek.E&E.T.Brown.Undergroundexeavationsinroek[M]. The Institute of Mining and Metallurgy, London,381-395,1980
    [39]韩金良,吴树仁,谭成轩等.东秦岭东江口花岗岩体水压致裂法与AE法地应力测量匕研究[J].岩石力学与工程学报,2007,1(26):81-56.
    [40]张延新,宋常胜,蔡美峰等.深孔水压致裂地应力测量及应力场反演分析[J].岩土工程,2010,4(29):778-753.
    [41]蔡美峰,刘卫东,李远等.玲珑金矿深部地应力测量及矿区地应力场分布规律[J].岩石与工 程学报,2010,2(29):227-233.
    [42]马宇.金川二矿区地应力场研究与地下工程稳定性[D].博士学位论文,中国地质科学院.2006.
    [43]李利峰,邹正盛,张庆.声发射Kaiser效应在地应力测量中的应用现状[J].煤田地质与勘探.2011(01)
    [44]吴满路,廖椿庭,张春山等.红透山铜矿地应力测量及其分布规律研究[J1.岩石力学与学报,2004,12(23):3943-3947.
    [45]康红普,姜铁明,高富强.预应力锚杆支护参数的设计[J].煤炭学报,2008,33(7):721-726.
    [46]安欧著.构造应力场[M].地震出版社,1992.
    [47]Kuznetsov,S.V.;Trofimov,V.A.Anomalous stress fields near tectonic violations in rock mass [J].Fiziko-Tekhnicheskie Problemy Razrabotki Poleznykh Iskopaemykh,2002(l):3-11.
    [48]朱焕春,李浩,等.论岩体构造应力[J].水利学报,2001,(9):81-85.
    [49]慕青松,马崇武,等.金川构造应力场对巷道工程稳定性的影响[J].金属矿山,2007,(7):18-22.
    [50]金川镍钻研究设计院.二矿区深部岩石力学参数测试试验研究报告.内部资料,1996
    [51]徐有基.构造及采动对金川二矿区1150中段围岩及矿岩稳定性的影响[D].硕士学位论文,兰州大学,2006.
    [52]蔡美峰,何满潮,刘东燕.岩石力学与工程[M].北京,科学出版社,2006.
    [53]柏建彪.高应力软岩巷道耦合支护研究[J].中国矿业大学学报,2007,36(4):421-425.
    [54]朱维申,何满潮.复杂条件下围岩稳定性与岩体动态施工力学[M].北京,科学出版社,1995.
    [55]李树清,王卫军,潘长良,等.水平煤层巷道煤帮稳定性分析[J].湖南科技大学学报,2008,23(2):1-4.
    [56]Riccardo Caputo.Stress variability and brittle tectonic structures[J].Earth-Science Reviews,2005,70(1-2):103-127.
    [57]HOU C J.Review of roadway control in soft surrounding rock under dynamic pressure[J].Journal of Coal Science&Engineering(China),2003,9(1):1-7.
    [58]刘美平.断层附近地应力分布规律及巷道稳定性分析[D].山东科技大学,2009.
    [59]陈立伟,唐征,田坤云.构造应力对煤层巷道围岩稳定性的影响研究[J].煤矿现代化,2007,(1):38-39.
    [60]勾攀峰,韦四江,张盛.不同水平应力对巷道稳定性的模拟研究[J].采矿与安全工程学报.2010(02)
    [61]X M Sun,F Cai,Jun Yang,et al.Numerical simulation of the effect of coupling support ofbolt-mesh-anchor in deep tunnel.Mining Science and Technology,2009,19(3):352-357.
    [62]蔡美峰,彭华,乔兰,等.万福煤矿地应力场分布规律及其与地质构造的关系[J].煤炭学报,2008,33(11):1248-1252.
    [63]Cai,M.and Blackwood,R.L.A technique for recovery and reuse of CSIRO hollow inclusioncells[J].Rock Mech.Min.Sci.Geomech.Abstr,1990,28(2):225-228.
    [64]何满潮,谢和平,彭苏萍,等.深部开采岩体力学研究[J].岩石力学与工程学报,2005,24(16):2803-2814.
    [65]Malan D.F.,Basson F.R.P.Ultra-Deep Mining:The Increased Potential for Squeezing Conditions[J].TheJournal of the South African Institute of Mining and Metallurgy,1998:353-362.
    [66]Malan D F.Simulation of the time-dependent behavior of excavations in hard rock[J].Rock Mechanics and Rock Engineering,2002,35(4):225-254
    [67]鲁岩.构造应力影响下的围岩稳定性原理及其控制研究[D].博士学位论文,中国矿业大学,2008.
    [68]侯明勋.深部地应力测量新方法新原理及其相关问题研究[R].武汉:中国科学院武汉岩土力学研究所,2004.
    [69]周宏伟,谢和平,左建平.深部高地应力下岩石力学行为研究进展[J].力学进展,2005,35(1):91-99.
    [70]杨春丽.金川二矿区深部巷道支护技术研究[D].昆明:昆明理工大学.2006.
    [71]杨红伟.深部矿岩工程条件与开挖稳定性分析[D].长沙:中南大学.2010.
    [72]李丽娟.金川矿山深部岩石岩爆倾向性研究[D].长沙:中南大学.2009.
    [73]熊仁钦,王卫军,卫修君,等.深井巷道地压控制的试验研究[J].煤炭科学技术,2007,35(2):72-75.
    [74]吴满路,廖椿庭.大茅隧道地应力测量及围岩体稳定性研究[J].地质力学学报,2000,6(2):71-76.
    [75]周小平,钱七虎等.深部岩体强度准则[J].岩石力学与工程学报,2008,27(1):117-123
    [76]葛修润,侯明勋一种测定深部岩体地应力新方法一钻孔局部壁面应力全解除法[J].岩石力学与工程学报,2004,23(23):3923-3927.
    [77]彭华,马秀敏,姜景捷,彭立国.赵楼煤矿1000m深孔水压致裂地应力测量及其应力场研究[J].岩石力学与工程学报.2011(08)
    [78]周春华,郭喜峰等.鄂西某隧道地应力场回归分析及其对工程稳定性影响[J].长江科学院院报,2008,25(5):59-62
    [79]Singh J.Strength of rocks at depth[A].In:Rock at Great Depth[C].Rotterdam:A.A. Balkema, 1989:37-44
    [80]姜耀东,刘文岗,赵毅鑫等.开滦矿区深部开采中巷道围岩稳定性研究[J].岩石力学与工程学报,2005,24(11):1857-1862
    [81]陈群策,李方全,毛吉震.水压致裂法三维地应力测量的实用性研究[J].地质力学学报,2001,7(1):69-78.
    [82]蔡美峰,乔兰,于劲波.空心包体应变计测量精度问题[J].岩土工程学报,1994,16(6):15-20.
    [83]Qiao Lan, Cai Meifeng. New development of stress relief method for determination of in-situ stresses in a gold mine[J]. Chinese Journal of Rock Mechanical and Engineering[J], 1995,14(1):25-32.
    [84]Wu Manlu, Li Guojun, Liao Chunting et al. Measurements of in-situ stress in the Pushihe hydropowerstation,Liaoning[J].Journal of Geomechanics,2006.12 (2):191-196.
    [85]周宏伟,谢和平等.深部高地应力下岩石力学行为研究进展[J].力学进展,2005,35(1):91-99
    [86]尹菲.对利用声发射凯塞效应测量地应力技术中几个问题的探讨[J].应用声学,1992,11(1):5-12.
    [87]Bruneaua G, Tylerb D B, Hadjigeorgioua J, et al.Influence of faulting on a mine shaft-a case study:part Ⅰ-background and instrumentation[J].International Journal of Rock Mechanics and Mining Sciences,2003,40:95-111
    [88]Everling,GModel Tests Concerning the Interaction of Ground and Roof Support in Gate-roads[J].Int.J.Rock Mech Mining Sci.,1964,1(1),319-326
    [89]路世豹,李晓,马建青.金川二矿区地下巷道变形监测分析及应用.岩石力学与工程学报[J].2004,23(3):488-492
    [90]盛谦.深挖岩质边坡开挖扰动区与工程岩体力学性状研究[D].武汉:中国科学院武汉岩土力学研究所,2002.
    [91]刘高,韩文峰,聂德新.金川矿区地应力场特征[J].天津城市建设学院学报,2002,(02):81-85.
    [92]王丽娟.金川二矿区地下采场和采准工程力学稳定性研究[D]兰州:兰州大学,2008.
    [93]侯哲生,韩文峰,李晓.金川二矿区巷道围岩力学参数空间效应数值分析.岩石力学与工程学报,2004,23(1):64-68
    [94]吴满路,廖椿庭,张春山等.红透山铜矿地应力测量与分布规律研究[J],岩石力学与工程学报,2004,23(23):3943—3947.
    [95]张百红,韩立军,韩贵雷,王延宁.深部三维地应力实测与巷道稳定性研究[J].岩土力学.2008(09)
    [96]Liao Chunting,Ma Yu,Wu Manlu,Zhang Chunshan,Ma Yingsheng&Ou Mingyi, Study on The Recent State of Stress of Yangbajing-kangma Region in Tibet Province[J].Proceedings of The International Symposium in-situ rock stress,Norway.2006.
    [97]Li Huamin, Zhou Ying, Su Chengdong, et al. Measurement and characteristics analysis of in-situ stresses of Yanbei coal mine[J]. Chinese Journal of Rock Mechanics and Engineering,2004,23(23):3938-3942.
    [98]Shi,GH.&Goodman,R.E.Two dimensional discontinuous analysis.Int.J.Numer.Anal.Methods Geomech.,1985,9:541-556
    [99]Wang Qi,Zhang Peizhen,T Jeffrey,et al.Present-day crustal deformation in China constrained by global positioning system measurements[J].Science,2001,294:574-577.
    [100]马建青.金川二矿区1138m分段道变形特征及稳定性研究[J].中国有色金属学会第五 届学术年会论文集,2003,88-91
    [101]谭云亮,王春秋.锚杆加固巷道顶板稳定性潜力机理分析[J].岩石力学与工程学报,2003,22(增):2210-2213
    [102]袁亮.深井巷道围岩控制理论及淮南矿区工程实践[M].北京:煤炭工业出版社,2004.
    [103]杨双锁,康立勋.锚杆支护研究的总结与展望[J].太原理工大学学报,2002,33:376-381.
    [104]朱维申,何满潮.复杂条件下围岩稳定性与岩体动态施工力学[M].北京:科学出版社,1996
    [105]王胜本,张晓.煤矿井下地质构造与地应力的关系[J].煤炭学报,2008,33(7):738—742
    [106]刘飞.深部矿井地应力场研究及其在冲击地压预测中的应用[D].徐州:中国矿业大学,2005:1-10.
    [107]Kelkar, S. et al(Los Alamos Natl Lab, Los Alamos, NM,, USA, Los Alamos Natl Lab, Los Alamos, NM, USA), EARTH STRESS MEASUREMENTS IN DEEP GRANITIC ROCK[C].Proceedings-Symposium on Rock Mechanics,1986:259-266
    [108]贾龙,王成虎.三维地应力测量过程中应力释放规律分析[J].人民长江.2012(05)
    [109]李文秀,梅松华,翟淑花.大型金属矿体开采地应力场变化及其对采区岩体移动范围的影响分析[J].岩石力学与工程地质学报,2004,23(23):4047-4051
    [110]黄祖强.金川二矿区深部巷道围岩变形特征与支护技术[J].中国矿山工程,2005,34(4):4-8
    [111]中国地质科学院地质力学研究所.金川集团有限公司技术开发项目实施方案《金川矿区应力场与岩石力学研究》.内部资料,2004
    [112]白俊光.高地应力峡谷高拱坝坝基开挖扰动效应与反弧开挖形式优化研究[D].天津大学博士学位论文,2009
    [113]金川镍钻研究设计院.《金川二矿区深部巷道稳定性与支护技术研究》阶段工作报告.内部资料,2004
    [1 14]康红普,林健,张晓,吴拥政.潞安矿区井下地应力测量及分布规律研究[J].岩土力学.2010(03)
    [115]SakuraiS,TakeuchiK.Back analysis of measured displace-ments of tunnels[J].Rock Mech and Rock Eng,1983,16,173-180
    [116]Wu Manlu, Liao Chunting Yuan Jiayin. A study of stress state and engineering stability of underground houses at the Huanggou accumulation power station[J].Acta Geoscientia sinica,2002,23(3):263-268.
    [117]蔡美峰,彭华,乔兰,马秀敏.万福煤矿地应力场分布规律及其与地质构造的关系[J].煤炭学报.2008(11).
    [118]伍佑伦.基于岩体断裂力学的巷道稳定性与锚喷支护机理研究[D].华中科技大学,博士 学位论文,2004
    [119]康红普,姜铁明,张晓,颜立新.晋城矿区地应力场研究及应用[J].岩石力学与工程学报.2009(01)
    [120]解联库,李华炜,杨天鸿等.侧向压力作用下巷道围岩破坏机理的数值模拟[J].中国矿业,2006,15(3):54-57
    [121]张强永,李术才等.岩体数值分析方法与地质力学模型试验原理及工程应用[M].中国水利水电出版社,北京,2005
    [122]杨松林,朱焕春等.加锚层状岩体的本构模型[J].岩土工程学报,2001,23(4):427-430
    [123]Goharizi,K.G.et al.Scale Model Studies to Investigate the Effects of Various Stress fields on the Stability of Pillars Between Mine Roadways[C].11th International Conference on Ground Control in Mining,the University of Wollongong,Australia,1992,7
    [124]切尔尼亚克等.深矿井采准巷道矿压控制(常惊鸿译)[M].煤炭工业出版社,1989
    [125]蒋斌松,张强等.深部圆形巷道破裂围岩的弹塑性分析[J].岩石力学与工程学报,2007,26(5):982-986
    [126]刘传孝,王同旭,杨永杰.高应力区巷道围岩破碎范围的数值模拟及现场测定的方法研究[J].岩石力学与工程学报,2004,23(14):2413-2416
    [127]杨双锁,康立勋,钱鸣高.煤矿回采巷道支护—围岩相互作用全过程分析[J].岩石力学与工程学报,2002,21(增):1978-1981
    [128]潘别桐,黄润秋.工程地质数值法[M].北京:地质出版社,1994
    [129]杨建辉.锚杆支护煤巷层状结构顶板稳定性研究与应用[D].北京科技大学,博士学位论文,2002
    [130]王明洋,宋华等.深部巷道围岩的分区破裂机制及深部界定探讨[J].岩石力学与工程学报,2006,25(9):1771-1775
    [131]贺永年,韩立军,邵鹏等.深部巷道稳定的若干岩石力学问题[J].中国矿业大学学报,2006,35(3):288-295
    [132]何满潮,孙晓明.中国煤矿软岩巷道工程支护设计与施工指南[M].北京:科学出版社,2004
    [133]洛锋,杨本生,孙利辉,杨万斌,崔景昆,张利.高垂直应力状态下巷道围岩分区破坏特征试验研究[J].采矿与安全工程学报.2012(04)
    [134]刘波,韩彦辉.FLAC原理、实例与应用指南[M].人民交通出版社,2005.9
    [135]傅鹤林,彭思甜,韩汝才,等.岩土工程数值分析新方法[M].长沙:中南大学出版社,2006.
    [136]Itasca Consulting Group Inc.Fast Lagrangian Analysis of Continua in 3 Dimensions User's Guide[R].Minnesota:Itasca Consulting Group Inc.,2003.
    [137]廖秋林,曾钱帮等.基于ANSYS平台复杂地质体FLAC3D模型的自动生成[J].岩石力学与工程学报,2005,24(6):1010-1013
    [138]张宇,何川等.复杂地质条件下隧道三维变形规律分析[J].岩土工程学报,2007,29(10):1465-1471
    [139]陈国祥,窦林名,乔中栋.褶皱区应力场分布规律及其对冲击矿压的影响[J].中国矿业大学学报,2008,37(6):751-754
    [140]黄龙现,杨天鸿,李现光,郑超.地应力场方向对巷道围岩稳定性的影响[J].中国矿业.2012(04)
    [141]余伟健,高谦,张周平,靳学奇,邓代强.构造带围岩特性实验及流变规律分析[J].中南大学学报(自然科学版).2009(04)
    [142]陈志敏,赵德安,李国良,余云燕.高地应力软弱围岩铁路隧道的衬砌压力[J].中国铁道科学.2011(06)
    [143]凌影.水电站地下厂房初始地应力反演及围岩稳定性分析[D].大连理工大学硕士学位论文,2010
    [144]郭建军,宋扬,路东尚.竖井保安矿柱采场数值模拟分析[J].有色金属,2004,56(2):11-13
    [145]陈晓辉.金川二矿区1150中段沿脉巷道支护体系的破坏过程及力学机制[D].兰州:兰州大学,2007
    [146]杨春丽.金川二矿区深部巷道支护技术研究[D].昆明.:昆明理工大学,2006
    [147]王永才,康红普.金川二矿区高应力碎胀蠕变巷道稳定性数值分析[J].中国矿山工程,2008,(02):4-7+26.
    [148]罗超文,李海波,刘亚群.深埋巷道地应力测量及围岩应力分布特征研究[J].岩石力学与工程学报.2010(07)
    [149]侯哲生;李晓;吕永高.金川二矿区开采过程中水平矿层内部应力特征分析[J].矿业研究与开发,2008,(05):6-8.
    [150]郭建军,路东尚,宋扬.保安矿柱回采地压监测数据分析[J].黄金,2004,24(9):20-27
    [151]KIM S H,BURD H J.Model testing of closely spaced tunnels in clay[J].Geotechnique, 1998,48(3):375-388
    [152]孙玉福.水平应力对巷道围岩稳定性的影响[J].煤炭学报.2010(06)
    [153]薛俊华,韩昌良.大采高沿空留巷围岩分位控制对策与矿压特征分析[J].采矿与安全工程学报.2012(04)
    [154]把多恒.金川二矿区深部巷道变形与支护研究[J].中国矿山工程.2008(01)
    [155]谢和平,周宏伟,刘建锋,等.不同开采条件下采动力学行为研究[J].煤炭学报.2011(07)
    [156]李刚,梁冰,张国华.高应力软岩巷道变形特征及其支护参数设计[J].采矿与安全工程学报.2009(02)
    [157]陈宗基.关于中国板块动力学及其在国民经济中的一些应用.1994-2013China Academic Journal Electronic Publishing House.All rights reserved.
    [158]范桃园,龙长兴,杨振宇等.中国大陆现今地应力场黏弹性球壳数值模拟综合研究.地 球物理学报.2012,55(4):1249-1260.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700