用户名: 密码: 验证码:
设定地震确定方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
概率地震危险性分析方法目前广泛应用于工程结构设计地震动参数确定工作中,其优点在于能够全面的表现场点周边所有可能的地震对于场点的地震动影响。但同时也带来一个明显的缺点,即地震概念的缺失,简单说就是没有一个地震能够产生概率地震危险性分析方法得到的反应谱。这导致一些需要考虑与地震相关地震动特性的工作难以开展。因此需要在概率地震危险性分析方法的理论框架下和具体的地震构造环境中,识别出能够体现区域地震构造特点并具有构造含义的设定地震,来确定与地震相关的一系列地震动参数用于后续的定性或定量的分析工作。
     本文的目的是在我国的地震危险性分析方法的理论框架下,系统分析概率地震危险性分析方法和工程结构动力反应分析原理,结合国内外关于设定地震确定方法的已有研究成果,建立适合我国方法体系和工程应用目的的基于概率地震危险性分析方法的设定地震参数的确定原则和计算方法,使得到的设定地震参数能够用于工程结构等对象的最不利地震反应分析,并分析地震活动性参数和地震动离散等因素对设定地震参数的不确定性影响。在此基础上,研究分析与我国新一代地震动参数区划图相匹配的设定地震参数分布特征,服务于工程结构抗震设防与地震反应分析、地震灾害损失预测、工程场地地基失效评价、地震地质灾害评价与防治、地震预警系统设计等工作。
     为达到上述目的,本文从系统分析了我国现有概率地震危险性分析方法理论体系、地震构造模型构建方法及地震动参数计算方法,以及工程结构动力学分析原理及常见工程结构的弹性及弹塑性动力反应特征,提出基于我国的概率地震危险性分析方法的设定地震参数确定一般性原则,并提出了适用于设定地震参数确定和今后复杂地震构造模型及衰减关系模型的完整的地震活动性空间离散-衰减关系逐点校正算法。为考虑地震动参数的不确定性对于设定地震参数确定的影响,本文从理论分析、案例分析和地震动离散分析三个方面开展工作,.提出了概率地震危险性分析算法中对衰减关系不确定校正的原则和方法。为考虑地震活动性参数的不确定性对于设定地震参数确定的影响,本文计算分析了四代图五套潜在震源区方案在华北地震区接近1.6万个场点上四个超越概率水平下四个反应谱值的总体设定地震参数,并进行了不确定性分析,同时验证了提出的设定地震确定原则与计算方法的合理性。在此基础上,基于五代图潜在震源区划分方案、地震活动性参数方案和衰减关系模型,计算了全国大陆地区接近11万个场点上四个超越概率水平下四个反应谱值的总体设定地震和基于构造设定地震参数,并对这些设定地震参数的分布特征和影响因素进行了分析。基于全新数据得到的全国范围内的设定地震参数与新一代全国地震动参数区划图计算方案完全匹配,能够满足今后十年内的防震减灾相关工作的需求。
     在上述工作的基础上,本文在以下四个主要方面获得了新的成果和认识:
     1.首次提出了在我国概率地震危险性分析理论框架下的考虑地震动参数不确定性、工程结构弹性及弹塑性动力反应特性、工程结构地震反应分析目的要求的设定地震确定原则和计算方法。根据该原则,设定地震分为总体设定地震和基于构造的设定地震两种,总体设定地震用于描述整个地震环境对场址的地震危险性影响特征,基于构造的设定地震描述特定地震构造对场址的地震危险性影响特征。
     2.首次同时在理论分析、案例分析和地震动离散分析三个方面系统分析了概率地震危险性分析方法中衰减关系不确定性校正范围对地震危险性评价结果的影响特征,并明确建议计算较低超越概率(年超越概率小于等于10-4)地震动参数时地震动不确定性校正范围应不小于4倍标准差。
     3.在全面分析概率地震危险性分析原理的基础上,首次完整系统的提出了地震活动性空间离散-衰减关系不确定性逐点校正的概率地震危险性分析算法,并通过与经典的CPSHA90算法的比较分析,认为新算法能够满足设定地震参数确定和今后采用复杂地震构造模型及衰减关系模型进行概率地震危险性分析时的需要。
     4.首次给出了我国大陆地区四个主要反应谱值的在四个不同超越概率水平下的设定地震参数分布图,并分析了分布特征及主要影响因素。该项工作完全基于全新的地震活动性模型和地震动衰减关系模型,与新一代全国地震动参数区划图所依据的基础数据和参数模型完全一致,能够满足今后十年时间内一般建设工程和重大建设工程及各类规划对于设定地震参数的一般性需求。
The probabilistic seismic hazard analysis (PSHA) is widely used to determine design-based ground motion parameters. The primary advantage of PSHA over alternative representations of the earthquake threat is that PSHA integrates over all possible earthquake occurrences and ground motions to calculate a combined probability of exceedence that incorporates the relative frequencies of occurrence of different earthquakes and ground-motion characteristics. A disadvantage of PSHA is that the concept of "earthquake" is lost. This disadvantage results directly from the integrative nature of PSHA, and it means that other characteristics of the ground motion (e.g., the duration or non-stationary) must be estimated in an ad hoc fashion if these characteristics are important for analysis or design. So one or more "scenario earthquakes" should be identified based on PSHA method to estimate the characteristics of the ground motion those cannot be obtained by PSHA directly.
     The total purpose of this study is to establish a systematic methodology which can identify scenario earthquakes and determine the parameters of these earthquakes such as magnitude, distance and discreteness characteristics of ground motions under Chinese PSHA theoretical framework. The scenario earthquakes determined by this method should have explicit geology background and can induce the most unfavorable dynamics reaction of target engineering structures.
     To achieve this purpose, this study analysis the theory of Chinese PSHA and structure dynamics, summarize the dynamics response characteristics of critical projects in China, propose the general principles and calculation method can be used in the determination of scenario earthquakes, and a new algorithm (can be called "seismic activity spatial discretization-attenuation uncertainty pointwise correction ", abbrev. SASD-APC) is presented. To analysis the influence of attenuation uncertainty on determination of scenario earthquakes parameters, the calculation principles and method are presented based on mathematical analysis, case studies of sites and distribution analysis of ground motion. To analysis the influence of seismic activity parameters uncertainty on determination of scenario earthquakes parameters, the scenario earthquakes of four response spectra values on different periods with four probabilities of exceedence on about16,000sites of North China are calculated and compared based on five sets potential source models. Finally, the scenario earthquakes of four response spectra values on different periods with four probabilities of exceedence on about110,000sites of China mainland based on the potential source model and attenuation relationship used in5th generation Seismic ground motion parameters zonation map of China.
     Based on the studies above mentioned, four aspects new understandings of scenario earthquake and PSHA are obtained:
     1. The general principles and calculation method of scenario earthquake are first put forward. The new principles and calculation method considered uncertainty of seismic activity and ground motion parameters, the elasticity and elastoplastic dynamics response characteristics of typical critical projects, the purposes of dynamics response analysis of engineering structures. According to the principals proposed in this study the scenario earthquake can be divided two type:overall scenario earthquake which describes the influence of whole seismotectonic settings on target ground motion parameters on specific site, and scenario earthquake based on seismogenic structure which describes the influence of single seismogenic structure on target ground motion parameters on specific site.
     2. A mathematical analysis of the influence of the truncation level on PSHA, case studies of sites in different seismotectonic settings, and a distribution analysis of ground motion residuals are conducted in this study. It is concluded that ε=4is the minimum acceptable value for engineering applications for APEs within0.002to10-4. The three aspects analysis and the conclusion are all first put forward.
     3. Based on the analysis of theory of PSHA, the complete SASD-APC algorithm is first put forward. Compared to the classical CPSHA90algorithm, the new algorithm is more suitable for calculation of scenario earthquake parameters and PSHA with complex seismogenic model and attenuation relationship model.
     4. It is first put forward that the distribution of scenario earthquake parameters of four response spectra values on different periods with four probabilities of exceedence of China mainland. The main factors which affect the distribution of scenario earthquake parameters are studied in this work. This analysis are based on the potential source model and attenuation relationship used in5th generation Seismic ground motion parameters zonation map of China, so the result can meet general demanding of dynamics analysis of engineering structures and different types of planning.
引文
Abrahamson N. A., Birkhauser P., Koller M., Mayer-Rosa D., Smit P., Sprecher C., Tinic S., and Graf R.2002. A comprehensive probabilistic seismic hazard assessment for nuclear power plants in Switzerland [C]//Proc. of the 12th European Conf. on Earthquake Engineering, London, UK:9-14.
    Abrahamson N. A., Silva W.2008. Summary of the Abrahamson & Silva NGA ground-motion relations [J]. Earthq. Spectra,24 (1):67-97.
    Adams J., Atkinson G.2003. Development of seismic hazard maps for the proposed 2005 edition of the National Building Code of Canada [J]. Can. J. Civil Eng.30(2):255-271.
    Ameri G., Pacor F., Cultrera G., Franceschina G.2008. Deterministic ground-motion scenarios for engineering applications:The case of Thessaloniki, Greece [J]. Bull. Seism. Soc. Am.98(3): 1289-1303.
    Barani S., Spallarossa D., Bazzurro P.2009. Disaggregation of probabilistic ground-motion hazard in Italy [J]. Bull. Seism. Soc. Am.90(5):2638-2661.
    Bazzurro, P., Cornell C. A.1999. Disaggregation of seismic hazard [J]. Bull. Seism. Soc. Am. 89(2):501-520.
    Bender, B.1984. A two-state poisson model for seismic hazard estimation [J]. Bull. Seism. Soc. Am.74(4):1463-1468.
    Benreuter, D. L., Boissonnade A. C., Short C. M.1996. Investigation of techniques for the development of seismic design basis using probabilistic seismic hazard analysis [R]//LLNL (Lawrence Livermore National Laboratory) Rept. NUREG/CR-6606.
    Boissonnade A., Chokshi N., Berlreuter D., Murphy A.1995. Determination of controlling earthquakes from probabilistic seismic hazard analysis for nuclear reactor sites [C]//Proc. of the Thirteenth International Conference on Structural Mechanics in Reactor Technology, SMiRT 13, Porto Alegre, Brazil:771-776.
    Bommer J. J., Abrahamson N. A., Strasser F. O. Pecker A., Bard P-Y, Bungum H., Cotton F., Sabetta F., Scherbaum F., Studer, J.2004. The challenge of defining upper bounds on earthquake ground motions [J]. Seimol. Res. Lett.75(1):82-95.
    Bommer J. J., Scherbaum F.2005. Capturing and limiting ground motion uncertainty in seismic hazard assessment [G]//Gulkan P., Anderson J. G. ed. Future Directions of Strong Motion Instrumentation, Dordrecht:Springer:25-40.
    Boore D. M., Atkinson G M.2008. Ground-motion prediction equations for the average horizontal component of PGA, PGV, and 5%-damped PSA at spectral periods between 0.01 s and 10.0 s [J]. Earthq. Spectra,24(1):99-138.
    Campbell K. W., Bozorgnia Y.2008. NGA ground motion model for the geometric mean horizontal component of PGA, PGV, PGD, and 5% damped linear elastic response spectra for period ranging from 0.01 to 10s [J]. Earthq. Spectra,24(1):139-171.
    Chandler A. M., Lam N. T. K.2002. Scenario predictions for potential near-field and far-field earthquakes affecting Hong Kong [J], Soil Dyn. Earthq. Eng.22(1):29-46.
    Chapman M. C.1995. A probabilistic approach to ground motion selection for engineering design [J]. Bull. Seism. Soc. Am.85(3):937-942.
    Chiou B., Youngs R.2008. An NGA model for the average horizontal component of peak ground motion and response spectra [J]. Earthq. Spectra.24(1):173-215.
    Chopra A. K著,谢礼立等译.2007.结构动力学—理论及其在地震工程中的应用(第二版)[M].北京:高等教育出版社.
    Choun Y.S., Choi I. K., Seo J.M.2008. Improvement of the seismic safety of existing nuclear power plants by an increase of the component seismic capacity:A case study[J]. Nucl. Eng. Des.238(6):1410-1420.
    Cornell C. A.1968. Engineering seismic risk analysis [J]. Bull. Seism. Soc. Am.58(5):1583-1606.
    Cornell C. A., Vanmarcke E. H.1969. The major influences on seismic risk [C]//Proc. World Conf. Earthquake Eng., Santiago, Chile.
    Corradini M.L.2003. Letter from chairman of the US Nuclear Waste Technical Review Board to the Director of the Office of Civilian Radioactive Waste Management [OL]. http://www.nwtrb.gov/corr/mlc010.pdf,检索于2010年9月.
    Cramer C. H., Petersen D.1996. Predominant seismic source distance and magnitude maps for Los Angeles, Orange, and Ventura Counties, California [J]. Bull. Seism. Soc. Am.86(5): 1645-1649.
    Electric Power Research Institute (EPRI), U.S. Department of Energy (DOE).2006. Program on Technology Innovation:Truncation of the Lognormal Distribution and Value of the Standard Deviation for Ground Motion Models in the Central and Eastern United States [R]. Report 1013105.
    Hao H., Gaull B.A.2009. Estimation of strong seismic ground motion for engineering use in Perth Western Australia [J], Soil Dyn. Earthq. Eng.29(5):909-924.
    Harmsen S., Frankel A.2001. Geographic deaggregation of seismic hazard in the United States [J]. Bull. Seism. Soc. Am.91(1):13-26.
    Idriss I. M.2008. An NGA empirical model for estimating the horizontal spectral values generated by shallow crustal earthquakes [J]. Earthq. Spectra.24 (1):217-242.
    Ishikawa Y., Kameda H.1988. Hazard-consistent magnitude and distance for extended seismic risk analysis [C]//Proc.9th WCEE Vol. Ⅱ:89-94.
    Ishikawa Y., Kameda H.1991. Probability-based determination of specific scenario earthquakes [C]//Proc.4th International Conference on Seismic Zonation, Vol. Ⅱ:3-10.
    Ishikawa Y., Kameda H.1993. Scenario earthquakes vs. probabilistic seismic hazard [C]// Proc., Int. Conf on Structural Safety and Reliability, Innsbruck.
    Kameda H., Ishikawa Y., Li.1994. Probability based determination of scenario earthquakes, in Seismic Risk Assessment of Urban Facilities in a Sedimentary Region [G]//Natural Hazard Reduction and Mitigation in the East Asia Final Rept. Part 3:67-85.
    Kameda H., Loh C. H., Nakajima M.1994. A comparative study in Japan and Taiwan by means of probabilistic scenario earthquakes [C]//Proc. of Fourth KAIST-NTU-KU Tri-Lateral Seminar-Workshop on Civil Engineering, Kyoto, Japan:27-37.
    Kameda H., Nojima N.1988. Simulation of risk-consistent earthquake motion [J], Earthq. Eng. Struct. D.16(7):1007-1019
    Kimball J. K., Chander H.1996. Department of Energy seismic siting and design decisions: consistent use of seismic hazard analysis [R]//Proc. Twenty-Fourth Water Reactor Safety Information Meeting 3, Bethesda. U.S. Nuclear Regulatory Commission NUREG/CP-0157.
    Kiureghian A. D., A. H-S. Ang.1977. A fault-rapture model for seismic risk analysis [J]. Bull. Seism. Soc. Am.67(4):1173-1194
    Kramer S. L.1996. Geothecnical Earthquake Engineering, Prentice-Hall International Series in Civil Engineering and Engineering Mechanics [M]. New Jersey:Prentice-Hall.
    McGuire R. K.1976. Fortran computer program for seismic risk analysis [R]. USGS Open-File Rept.76-67.
    McGuire R. K.1977. Effects of uncertainty in seismicity on estimates of seismic hazard for the east coast of the United States [J]. Bull. Seism. Soc. Am.67(3):827-848
    McGuire R. K.1995. Probabilistic seismic hazard analysis and design earthquakes:closing the loop [J]. Bull. Seism. Soc. Am.85(5):1275-1284.
    McGuire R. K.2001. Deterministic vs. probabilistic earthquake hazards and risks [J], Soil Dyn. Earthq. Eng.21(5):377-384.
    McGuire R. K., Shedlock K. M.1981. Statistical uncertainties in seismic hazard evaluations in the United States [J]. Bull Seism. Soc. Am.71(4):1287-1308.
    Megawati K., Chandler A. M.2006. Distant-earthquake simulations considering source rupture propagation:Refining the seismic hazard of Hong Kong [J], Earthq. Eng. Struct. D.35(5): 613-635.
    Mitchell D., Adams J., Ronald H. D., Robert C. L., Weichert D.1986. Lessons from the 1985 Mexican Earthquake [J]. Can. J. Civil Eng.13(5):535-557.
    Montilla J., Casado C. L., Romero J. L.2002. Deaggregation in magnitude, distance, and azimuth in the South and West of the Iberian Peninsula [J]. Bull. Seism. Soc. Am.92(6):2177-2185.
    Mualchin L.2011. History of modern earthquake hazard mapping and assessment in California using a deterministic or scenario approach [J]. J. Appl. Geophys.168(3-4):383-407.
    National Research Council.1988. Probabilistic seismic hazard analysis [R]//Rept. of the Panel on Seismic Hazard Analysis. Washington:National Academy Press.
    Pace B., Boncio P., Brozzetti F., Lavecchia G., Visini F.2008. From regional seismic hazard to "scenario earthquakes" for seismic microzoning:A new methodological tool for the Celano Project [J], Soil Dyn. Earthq. Eng.28(10-11):866-874.
    R.克拉夫,J.彭津著.王光远等译.2006.结构动力学(第二版)[M],北京:高等教育出版社.
    Rowshandel B.2009. Ground motion hazard and scenario design earthquakes including source rupture effects, case in study:City of San Francisco [J]. Earthq. Spectra.25 (2):379-414.
    Senior Seismic Hazard Analysis Committee (SSHAC).1997. Recommendations for probabilistic seismic hazard analysis:guidance on uncertainty and use of experts [R]. NRC NUREG/CR-6372.
    Sousa M. L., Costa A. C.2009. Ground motion scenarios consistent with probabilistic seismic hazard disaggregation analysis. Application to mainland Portugal [J], B. Earthq. Eng.7(7): 127-147.
    Stepp J. C., Silva W. J., McGuire R. K., Sewell R. T.1993. Determination of earthquake design loads for a high level nuclear waste repository facility [C]//Proc. of 4th DOE Natural Phen. Haz. Mitig. Con/., Atlanta.
    Stepp J. C., Wong I., Whitney J., Quittemeyer R., Abrahamson N. A., Toro G., Youngs R., Coppersmith K., Savy J., Sullivan T.2001. Probabilistic seismic hazard analyses for ground motions and fault displacements at Yucca Mountain, Nevada [J]. Earthq. Spectra.17(1): 113-151.
    Strasser F. O., Bommer J. J.2005. Preliminary simulations with EXWIM:Calibration and assessment of ground-motion variability in the near-source region [OL], Research Report 05-002-SM, Imperial College London. http://www.imperial.ac.uk/civilengineering/research/researchnewsandreports/researchreports/,检索于2010年9月.
    Strasser F. O., Bommer J. J.2009a. Large-amplitude ground-motion recordings and their interpretations [J]. Soil Dyn. Earthq. Eng.29(10):1305-1329,
    Strasser F. O., Bommer J. J.2009b. Review:Strong ground motions-have we seen the worst? [J]. Bull. Seismol. Soc. Am.99(5):2613-2637.
    Strasser F. O., Bommer J. J., Abrahamson N. A.2008. Truncation of the distribution of ground-motion residuals [J]. J. Seism.12(1):79-105.
    Strasser, F. O., Abrahamson N. A., Bommer J. J.2009. Sigma:issues, insights and challenges [J]. Seism. Res. Lett.80(1):41-56.
    U.S. Department of Energy (U.S. DOE).1996. Natural Phenomena Hazards Assessment Criteria [R]. DOE-STD-1023-96.
    U.S. Nuclear Regulatory Commission.1997. Identification and characterization of seismic sources and determination of safe shutdown earthquake ground motion [S]. Regulations 10 CFR Part 100, Regulatory Guide 1.165, Appendix C.
    U.S. Nuclear Regulatory Commission.2007. A performance-based approach to define the site-specific earthquake ground motion [S]. Regulations 10 CFR Part 100, Regulatory Guide 1.208, Appendix D.
    Yazdani A., Abdi M. S.2011. Stochastic Modeling of Earthquake Scenarios in Greater Tehran, J. Earthq. Eng.15(2):321-337.
    Youngs R. R., Abrahamson N. A., Makdisi F., Sadigh K.1995. Magnitude dependent dispersion in peak ground acceleration [J]. Bull. Seismol. Soc. Am.85(4):1161-1176.
    鲍霭斌,李中锡,高小旺,周锡元.1985.我国部分地区基本烈度的概率标定[J],地震学报.6(1):100-109.
    陈达生,刘汉兴.1986.地震烈度椭圆衰减关系[J].华北地震科学.7(3):31-42.
    陈厚群,李敏,石玉成.2005.基于设定地震的重大工程场地设计反应谱的确定方法[J].水利学报.36(12):1399-1404.
    崔江余,杜修力.2000.重大工程设定地震动确定[J].世界地震工程.16(4):25-28.
    丁原章,李坪,时振梁,林纪曾,朱振宇.1988.海南岛北部地震研究文集[M].北京:地震出版社.
    杜强,贾丽艳.2009. SPSS统计分析:从入门到精通[M].北京:人民邮电出版社.
    高孟潭.1984.京津唐地区地震危险性分析[D].北京:国家地震局地球物理研究所.
    高孟潭.1986.地震危险性分析方法概述[J].国际地震动态.11:10-13.
    高孟潭.1994.潜在震源区期望震级和期望距离及其计算方法[J].地震学报.16(3):346-351.
    高孟潭.2003.新的国家地震区划图[J].地震学报.25(6):630-636.
    高孟潭,鄢家全,韩炜.1995.设计近场地震和设计远场地震的确定方法[J].地震学报.17(3):370-374.
    国家地震局.1988.鲁南地震危险性评定专辑[J].中国地震.4(3).
    国家地震局.1990.中国地震烈度区划图(1990)概论[M].北京:地震出版社.
    韩竹军,张裕明,黄昭.1999.城市震害预测中设定地震的确定问题[J].中国地震,15(4):349-356.
    侯爽,欧进萍.2004.结构Pushover分析的侧向力分布及高阶振型影响[J].地震工程与工程振动.24(3):89-97
    胡聿贤,张敏政.1984.缺乏强震观测资料地区地震动参数的估算方法[J].地震工程与工程振动.4(1):1-11
    胡聿贤,周克森,阎秀杰.1996.缺乏地震动加速度记录地区地震动估计的映射法[J].地震工程与工程振动.16(3):1-10
    胡聿贤.1990.地震危险性分析中的综合概率法[G]//地震危险性分析中的综合概率法,北京:地震出版社:1-8
    胡聿贤主编.1999.地震安全性评价技术教程[M].北京:地震出版社.
    胡聿贤.2006.地震工程学(第二版)[M].北京:地震出版社.
    胡聿贤主编.2001.GB18306-2001《中国地震动参数区划图》宣贯教材[M].北京:中国标准出版社.
    黄玮琼,常向东,环文林等.1989.地震活动时空不均匀性年平均发生率估计[J].中国地震.5(2):44-50.
    霍俊荣.1989.近场强地面运动衰减规律的研究[D].哈尔滨:中国地震局工程力学研究所.
    寇立夯,金峰,迟福东,王琳.2007.国内外混凝土拱坝原型振动试验分析[J].水力发电学报.26(5):31-37
    李山有,廖振鹏.1999.基于概率地震危险性分析的重大工程结构设计地震的研究[J].工程抗震.3:18-21.
    柳胜华,夏祖讽.2010.核设施结构单向模态反应组合新方法的应用研究[J].核动力工程.31(6):15-19.
    龙驭球,包世华主编.2006.结构力学Ⅱ—专题教程(第二版)[M].北京:高等教育出版社.
    楼梦麟,张静.大跨度拱桥地震反应分析中阻尼模型的讨论[J].振动与冲击.28(5):22-26.
    卢寿德主编.2006.GB17741-2005《工程场地地震安全性评价》宣贯教材[M].北京:中国标准出版社:85-86.
    雷建成,张耀国,周荣军,蒲晓红,何玉林.1999.自贡市设定地震的确定[J].中国地震.15(4):357-369.
    罗奇峰.1996.概率一致设定地震及其估计方法.地震工程与工程振动.16(3):22-28.
    潘华.2000.概率地震危险性分析中参数不确定性研究[D].北京:中国地震局地球物理研究所.
    沈飞,楼梦麟.2012超高层建筑地震反应中高阶振型影响分析[J].工程力学.29(Suppl Ⅰ):23-28
    沈建文,蔡长青.1998.概率一致的期望地震和概率一致的保守地震[J].地震学报.20(6):607-613.
    石岩峰,卫宏,许东翰,骆俊晖.2011.某核电站安全壳的地震反应分析[J].工业建筑.41(6):84-87.
    山东省地震局,国家地震局分析预报中心,国家地震局地球物理研究所,国家地震局地质研究所.1988.鲁南地区地震区划综合研究报告[R].北京:中国地震局地球物理研究所.
    时振梁,环文林,曹新玲等.1974.中国地震活动的某些特征[J].地球物理学报.17(1):1-13.
    时振梁,李裕澈.2001.中国地震区划[J].中国工程科学.25(6):65-68.
    时振梁,鄢家全,高孟潭.1991.地震区划原则和方法研究—以华北地区为例[J].地震学报.13(4):179-189
    宋良玉.1982.华北基岩最大加速度概率值[R].北京:中国地震局地球物理研究所.
    陶华,陈泉.2010.高阶振型对大跨度两塔悬索桥地震反应的影响[J].山西建筑.36(1):326-328
    陶夏新.1981.基岩场地地震危险性分析[D].哈尔滨:中国科学院工程力学研究所.
    汪素云,俞言祥,高阿甲,阎秀杰.2000.中国分区地震动衰减关系的确定[J].中国地震.16(2):99-106.
    王阜.1986.地震发生的更新过程模型及其在地震危险性分析中的应用[J].地震工程与工程振动.6(2):17-26.
    翁大根,徐植信.对上海市抗震设计反应谱及时程曲线的认识[J].地震工程与工程振动.21(1):79-83.
    肖亮.2011.水平向基岩强地面运动参数衰减关系研究[D].北京:中国地震局地球物理研究所.
    胥广银,高孟潭.2007.潜在地震破裂面源模型及在概率地震危险性分析中的应用方法.地震学报.29(3):285-294.
    胥广银.2003.潜在震源三维空间模型及其在地震危险性概率分析中的应用研究[D].北京:中国地震局地球物理研究所.
    徐植信,翁大根.1982.强烈地面运动持续时间对结构物倒塌的影响[J].同济大学学报.2:7-24
    易立新,胡晓,钟菊芳.2004.基于EPA的重大工程设计地震动确定[J].地震研究.27(3):271-276.
    俞言祥.1999.地震动衰减关系[R]//山东海阳核电厂工程场地地震安全性评价报告.中国地震局地球物理研究所研究报告(No.98F03008):249-269.
    俞言祥.2002.长周期地震动衰减关系研究[D].北京:中国地震局地球物理研究所.
    俞言祥.2005.地震动衰减关系[R]//广东阳江核电站厂址SL-2级设计基准地面运动参数复核及确定工作报告,中国地震局地球物理研究所研究报告(No.05FC3004):79-96.
    俞言祥.2009.近场地震动衰减关系确定技术[R].国家科技支撑计划专题技术报告(2006BAC13B01-0401):31-39
    张光斗,张楚汉,李未显,王光给.1986.泉水拱坝的振动测量与分析[J].中国科学(A辑).1:100-112.
    张力飞,邢国良,张敏.1998.龙羊峡重力拱坝强震分析[J].水力发电.12:14-17.
    张裕明.1999.潜在震源区划分[G]//胡聿贤主编.地震安全性评价技术教程.北京:地震出版社:130-153.
    章在墉,陈达生.1982.二滩电站坝区场地地震危险性分析[J].地震工程与工程振动.2(3):1.15.
    赵听,孙华华,丁洁民,祁晓昱.2010.上海中心大厦输入地震动分析与选用[J].建筑结构.40(11):40-44
    中国地震动参数区划图编制组.2012.中国地震动参数区划图技术报告:地震动衰减关系确定专题报告[R].中国地震局.
    中国地震动参数区划图编制组.2012.中国地震动参数区划图技术报告:地震活动性参数确定专题报告[R].中国地震局.
    中国地震动参数区划图编制组.2012.中国地震动参数区划图技术报告:中国及邻区地震区带和潜在震源区划分工作专题报告[R].中国地震局.
    中国地震局地球物理研究所.2012.辽宁大唐国际庄河核电项目可行性研究阶段地震安全性评价报告[R].中国地震局地球物理研究所
    周克森,吴鹏,王东霞.1991.地震危险性分析多维不确定性的符合概率模型(1)—地震活动的非均匀性[J].地震工程与工程振动.11(1):19-29.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700