用户名: 密码: 验证码:
卸荷裂隙岩体变分问题及内时理论的研究应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
裂隙岩体是岩体工程最普遍的施工对象之一。由于工程施工的扰动,岩体原有的平衡状态被打破,由此引起岩体内的应力重分布,促使岩体中内在裂纹(裂隙)不断累积和发展,进而产生宏观的时效断裂,导致岩体发生破坏失稳。在实际工程中边坡稳定计算、变形等多数考虑的是加载理论,往往岩体卸荷裂隙是影响边坡岩体稳定性的重要因素。
     本文首先揭示了裂隙岩体在卸荷状态下裂隙岩体本构关系的各个阶段的力学机理,运用半反推法建立了卸荷岩体分别在小变形和大变形初值问题的以σij、uij或σij、εij为二类变量变分原理。
     在建立变分原理的基础上以引入拉氏乘子的方法将变分约束条件加入到能量泛函中从而导出广义变分原理,因此分别建立卸荷裂隙岩体在小变形和大变形以σij、εij或σij、εij为变量的广义变分原理能量泛函。
     根据Vananis提出的内时本构基础理论是依赖于材料的性质和变形历史,是用来描述整个变形和温度的历史功能的历史依赖性的力学响应。裂隙岩体是非线性材料,建立卸荷裂隙岩体在初级阶段的内时本构关系,并将理论值与实验值测得的应力应变进行比较,验证了内时变分理论在卸荷裂隙岩体初级阶段应用的正确性。
     结合以井冈山某工程为例,该工程在开挖过程中有地裂缝出现,首先对该实际工程中岩体出现的裂缝进行勘察。根据高密度电法原理查明了地裂缝的延伸范围、发育深度及裂面倾斜方向等要素并分析其形成原因,为实际工程提出相关建议和措施。
     运用分析软件ABAQUS一方面对井冈山某工程开挖后的下部边坡在考虑不同工况(天然状态下、降雨后、地震作用、新建建筑物建成后等)下建立计算模型,输入场地材料参数,进行边坡稳定性计算分析,计算出不同工况下的稳定系数,评价了该场地的稳定性。
     结合卸荷理论考虑井冈山某工程上部边坡开挖即卸荷过程对下部边坡的影响,选择开挖过程中含地裂缝的稳定性等综合因素较差的边坡作为原型,建立相应的ABAQUS计算模型,模拟开挖过程的卸荷情况,考查分析在开挖过程中地裂缝的应力应变的变化规律及与卸荷裂隙岩体的内时本构理论比较,发现在地裂缝的左右两侧应力应变呈现不同的变化规律,为实际工程提供一定的理论依据,将内时理论的应用进一步扩展。
Fractured rock mass is one of the most common rocks engineering construction objects. Due to the disturbance of the construction, the original rock mass balance is broken, which causes redistribution of stress in the rock mass, procures the continuous accumulation and development of the inherent cracks (fissures) in the rock mass, produces macro-aging fracture, and leads to instability of rock mass destruction. In the actual project, most consideration is given to rock-loading theory in slope stability calculation and deformation, and often, the rock-unloading is an important factor affecting the stability of rock slope.
     The various stages mechanical mechanism of fractured rock mass constitutive relation under unloading condition is first revealed in this dissertation. The variational principle of unloading rock mass with σij、uij or σij、εij as second type variables in the initial value problems of both small deformation and large deformation is established through the usage of semi-inverse method. The corresponding energy functional is derived.
     On the basis of establishing the variation principle, the variational constraint conditions are added to the energy functional through the method of introducing the Lagrange multiplier, which further derives the generalized variation principle. Therefore, the generalized variation principle energy functional of unloading fractured rock mass with Cy σij、uij or σij、εij as second type variables in small deformation and large deformation were established.
     According to the endochronic constitutive basic theory by Vananis which depends on the material properties and deformation history and is used to describe the history dependence mechanical response of the entire deformation and temperature history function. Fractured rock mass is non-linear material; Building up endochronic constitutive relation of the unloading fractured rock mass in the primary stage and making comparison between the theoretical and experimental values verify the correctness of the application of endochronic theory in the primary stage of the the fractured rock mass.
     Take Jinggangshan project for example, the ground fissures appeared in the excavation process and cracks of rock mass in the Engineering were surveyed to explore the cracks features. According to the high-density electrical method principle, extending scope and development depth of the ground fissures, tilt direction of crack surface and other factors have been investigated and reasons for its formation were analyzed. Some relevant recommendations and measures had been proposed for the practical engineering.
     By using the analysis software ABAQUS, on the one hand, different conditions (natural state, after the rainfall, after the earthquake, after the completion of the new buildings) are taken into account to establish computational model for the lower part of the slope after excavation in the Jinggangshan project. On the other hand, ground material parameters were input to calculate and analyze the Slope stability. Stability factor was calculated under different conditions and the stability of the site was evaluated.
     In Combination with the unloading theory, considering that the upper slope excavation influences the lower part during the unloading process in the Jinggangshan Engineering, choosing the poor slope with factors containing cracks stability as the computational model in the excavation process.building the corresponding ABAQUS calculation model, Simulating excavation unloading process, analyzing the variation of the stress-strain during excavation cracks and making comparison between the calculated data and the theoretical value of endochronic constitutive theory provide a theoretical basis for practical engineering and make a further expansion for the application of the endochronic theory.
引文
[1]Jaeger J.C.Brittle Fracture of Rocks[A].Proceedings of the Eighth Symposium on Rock Mechanics[M],Baltimore:Port City Press,1967:3-57.
    [2]Swanson S.R.et al.An Observation of Loading Path Independence of Fracture Rock[M]. Int.J.Rock Mech.Min.Sci.,1971,8(3):277-281.
    [3]Crouch S.L.A Note on Post-Failure Stress-Strain Path Dependence in Norite[J].Int.J.Rock Mech.Min.Sci.,1972,9(2):197-204.
    [4]陈顒,姚孝新,耿乃光.应力路径、岩石的强度和体积膨胀[J].中国科学,1979,(11):1093-1100.
    [5]陈旦熹,戴冠一.三向应力状态下大理岩压缩变形试验研究[J].岩土力学,1982,3(1).
    [6]吴玉山,李纪鼎.大理岩卸载力学特性研究[J].岩土力学,1984,5(1).
    [7]Ling Jianming.Appl.of Compute Meth.in Rock Mech[J].Shanxi Science and Technology Press,1993:727-732.
    [8]李天斌,王兰生.卸荷应力状态下玄武岩变形破坏特征的试验研究[J].岩石力学与工程学报,1993,12(4):321-327.
    [9]陶履彬,夏才初,陆益鸣.三峡工程花岗岩卸荷全过程特性的试验研究[J].同济大学学报,1998,26(3):330-334.
    [10]吴刚.红砂岩卸荷破坏特性的试验研究[A].岩土力学与工程的理论与实践[C].大连:大连理工大学出版社,1995:228-236.
    [11]吴刚.完整岩体卸荷破坏的模型试验研究[J].实验力学,1997,12(4):549-555.
    [12]吴刚,孙钧.卸荷应力状态下裂隙岩体的变形和强度特性[J].岩石力学与工程学报,1998,17(6):615-621.
    [13]吴刚.不同应力状态下岩石类材料破坏的声发射特性[J].岩土工程学报,1998,20(2):82-85.
    [14]吴刚.岩体在加、卸荷条件下破坏效应的对比分析[J].岩土力学,1997,18(2):13-16.
    [15]李仲奎,徐千军等.复杂节理裂隙岩体真三维卸载过程力学性能试验研究[J]中国岩石力学与工程学会第五次学术大会.1998,9.
    [16]任建喜,葛修润.岩石卸荷损伤演化机理CT实时分析初探[J].岩石力学与工程学报,2000,19(6):697-701.
    [17]沈军辉王兰生等.卸荷岩体的变形破裂特征[J].岩石力学与工程学报,2003,22(12):2028-2031.
    [18]沈明荣,石振明,张雷.不同加载路径对对岩石变形特性的影响[J].岩石力学与工程学报,2003,22(8):1234-1238.
    [19]高春玉,徐进.大理岩加卸载力学特性的研究[J].岩石力学与工程学报,2005,24(3):456-460.
    [20]刘维国,单钰铭,等.岩石三轴实验中应力路径与应力应变分析[J].成都理工大学学报(自然科学版),2005,32(4):356-361.
    [21]哈秋聆.岩石边坡工程与卸荷非线性岩石(体)力学[J].岩石力学与工程学报,1997,16(4):386-391.
    [22]李建林.卸荷岩体力学理论与应用[M].北京:中国建筑工业出版社,1999
    [23]周维垣,等.岩体边坡非连续非线性卸荷及流变分析[J].岩石力学与工程学报,1997,16(3):210-216.
    [24]尤明庆,华安增.岩石试样的三轴卸围压试验[J].岩石力学与工程学报,1998,17(1):24-29.
    [25]陈忠辉,林忠明,谢和平,王红卫.三维应力状态下岩石损伤破坏的卸荷效应[J].煤炭学报,2004,29(1):31-35.
    [26]何江达,谢红强,范景伟,王启智.卸载岩体弹脆塑性模型在高边坡开挖分析中的应用[J].岩石力学与工程学报,2004,23(7):1082-1086.
    [27]周小平,哈秋聆,张永兴.考虑裂隙间相互作用情况下围压卸荷过程应力应变关系[J].力学季刊,2002,23(2):227-235.
    [28]赵明阶,许锡宾,徐蓉.岩石在三轴加卸载过程中的一种本构模型研究[J].岩石力学与工程学报,2002,21(5):626-631.
    [29]王在泉,张黎明,贺俊征.岩石卸荷本构关系的BP神经网络模型[J].岩土力学,22004,25(Supp): 119-121.
    [30]钱伟长.变分法及有限元(上册)[M].北京:科学出版社,1980
    [31]钟万勰,欧阳华江,邓子辰.计算结构力学与最优控制[M].大连:大连理工大学出版社,1993
    [32]钟万勰.应用力学对偶体系[M].北京:科学出版社,2003
    [33]朱如曾.非完整力学的第二类、第一类和中间类型变分原理[J].中国科学,1999.29(1):49-54
    [34]R.Z.Zhu.Variational Principle of Second,First and Intermediate Kinds for Non-holonomic Mechanics[J].Science in China,1999,42(5):546-551
    [35]梁立孚.应用Lagrange乘子法推导一般力学中的广义变分原理中国科学[J].A辑,1999,29(12):1102-1108
    [36]L.F.Liang-Deriving Generalized Variational Principles in General Mechanics by Using Lagrangian Multiplier Method[J].Science in China,1999,42(12):1332-1339
    [37]梁立孚,胡海昌.一般力学中三类变量的广义变分原理[J].中国科学,A辑,2000,30(12):1130-1135
    [38]L.F.Liang,H.C.Hu.Generalized Variational Principle of Three Kinds of Variables in General Mechanics[J].Science in China,2001,44(6):770-776
    [39]L.F.Liang,H.B.Li.Generalized Variational Principle of in General Mechanics and Their Applications[J].CANCAM18,2001,06:13-14
    [40]梁立孚.应用一般力学中的广义变分原理来研究Chetaev条件[J].固体力学学报,2002,23(3):295-300
    [41]梁立孚,胡海昌,刘石泉.非等时变分和Holder原理[J].中国科学(G辑),2003,33(1):61-68
    [42]L.F.Liang,H.C.Hu,S.Q.Liu.Non-contemporaneous Variations and Holder's Principle[J].
    Science in China(Series G),2003,46(5):1-8
    [43]宋海燕,梁立孚,周轶雷.一般力学广义变分原理的对偶形式[J].哈尔滨工程大学学报,2004,25(6):740-743
    [44]梁立孚,胡海昌,陈德民.非完整系统动力学的Lagrange理论框架[J].中国科学G辑,2007,37(1):76-88
    [45]L.F.Liang,H.C.Hu,D.M.Chen.Lagrangian Theoretical Framework of Dynamics of Nonholonomic Systems[J].Science in China(Series G),2007,50(6):766-778
    [46]梁立孚,樊涛,周利剑.一般力学初值问题三类变量的广义变分原理[J].哈尔滨工程大学学报,2006,27(5):714-717
    [47]梁立孚,罗恩,冯晓九.分析力学初值问题的一种变分原理形式[J].力学学报,2007,39(1):106-111
    [48]冯晓九,梁立孚,胡超.一般力学初值问题两类变量的广义变分原理[J].哈尔滨工业大学学报,2008,40(1):22-24
    [49]罗恩梁立孚李纬华.分析力学的非传统Hamilton型变分原理[J].中国科学,G辑,2006(6):633-643
    [50]E.Luo,L.F.Liang,W.H.Li.Unconventional Hamilton-type Variational Principles for Analytical Mechanics[J].Science in China(Series G),2007,50(2):152-162
    [51]E.Hellinger.Der Allgemeine Ansatz der Meshanik der Kontinua.Encyclopadia der Mathematishen Wissenshaten,1914,4(4):602-694
    [52]E.Reissner.On a Variational Theorem in Elasticity.Journal of Mathematics and Physics,1950, 29(2):90-98
    [53]E.Reissner.On Variational Principles in Elasticity.Proceedings of Symposia in Applied Methematices,MacGraw Hill,1958,8:1-6
    [54]F.de Veubeke,B.,Bulltin Service Tech.Aeronaut[J],No.24,Bruxellex,1957
    [55]梁立孚,刘殿魁,宋海燕.非保守系统的两类变量的广义拟变分原理[J].中国科学,G辑,2005,35(2):201-212
    [56]L.F.Liang,D.K.Liu,H.Y.Song.Generalized Quasi-variational Principles of Non-conservative Systems with Two Kinds of Variables[J].Science in China(Series G),2005,48(5):600-613
    [57]钱令希.余能定理[J].中国科学,1950,1(2-4):449-456
    [58]胡海昌.论弹性体力学与受范性体力学的一般变分原理[J].物理学报,1954,10(3):259-289
    [59]H.C.Hu.On Some Variational Principles in the Theory of Elasticity and the Theory of Plasticity[J]. Scientia Sinica,1955,4(l):33-42
    [60]胡海昌.弹性力学的变分原理及其应用[M].北京:科学出版社,1981
    [61]刘世宁.弹性扁壳的广义变分原理及扁壳理论的某些问题[J].力学学报,1963,6(1):81-89
    [62]付宝连.热弹性力学的广义变分原理[J].力学学报,1964,7(2):168-170
    [63]K.Washizu.On the Variational Principles of Elasticity and Plasticity.Aeroelastic and Structures Research Laboratory, Massachusettes Institute of Technology[J],Technical Report, 25-18,March,1955
    [64]K.Washizu.Variational Method in Elasticity and Plasticity.New York[M]:Pergamon Press, 1968
    [65]钱伟长.弹性理论中广义变分原理的研究及其在有限元计算中的应用[J].力学与实践,1979,1(1):16-24;1(2):18-26
    [66]钱伟长.再论弹性力学中的广义变分原理[J].力学学报,1983,15(4):325
    [67]钱伟长.高阶拉氏乘子法和弹性理论中更一般的广义变分原理[J].应用数学和力 学,1983,4(2):137-148
    [68]匡震邦.广义变分与弹性薄板理论[R].西安交通大学科技报告,1964
    [69]匡震邦.非线性连续介质力学[M].上海:上海交通大学出版社,2002
    [70]I.Hlavacek.Derivation of Non-classical Variational Principles in the theory of Elasticity[J]. Aplikace Matematiky,1967,12,1:15
    [7 l]M.E.Gurtin,Variational Principles for Linear Elastodynamics[J].Archive for Rational Mechanics and Analysis,1964,16(1),34-50
    [72]E.Tonti.On the Variational Formulation of Linear Initial Value Problems[J].Annali di Matematica Pura ed Applicata,1973,95:18-28
    [73]罗恩.关于线弹性动力学中各种Gurtin型变分原理[J].中国科学,A辑,1987,(9):936-948
    [74]E.Luo.Gurtin-type Variational Principles in Linear Elastodynamics[J].Scientia Sinica(Series A),1988,31(3)293-312
    [75]E.Luo,Y.K.Cheung.On the Variational Principles in Linear Elastodynamics[J].Acta Mechanica Sinica,1988,4(4):337-349
    [76]罗恩.关于线粘弹性动力学中各种变分原理[J].力学学报,1990,22(4):484-489
    [77]E.Luo.Energy Principles in Theory of Elastic Materials with Voids[J].Acta Mechanica Sinica, 1992,8(1):44-50
    [78]E.Luo.On Some Basic Principles in Dynamic Theory of Elastic Materials with Voids[J].Acta Mechanica Sinica,1993,3(2):142-148
    [79]罗恩.有孔隙的耦合热弹性体动力学的一些基本原理[J].力学学报,1996,28(1):55-65
    [80]罗恩,李纬华.微孔黏弹性动力学的一些基本原理[J].中国科学,G辑,2007,50(2):259-266
    [81]E.Luo,W.H.Li.Some Basic Principles in Dynamic Theory of Viscoelastic Materials with Voids[J].Science in China(Series G),2007,50(3):370-378
    [821]罗恩,邝尚君.压电热弹性动力学的一些基本原理[J].中国科学(A),1999,29(9):851-860
    [83]E.Luo,S.Kuang.Some Basic Principles for Linear Coupled Dynamic Thermopiezoelectricity [J]. Science in China(Series A),1999,42(1):1292-1300
    [84]朱慧坚,罗恩.压电弹性厚板动力学的简化Gurtin型变分原理[J].动力学与控制学报,2007,5(4):302-307
    [85]罗恩,邝尚君.微孔压电热弹性动力学的能量原理[J].力学学报,2001,33(2):195-204
    [86]罗恩.耦合热弹性动力学中各类Hamilton型拟变分原理[J].固体力学学报,2001(3):239-246
    [87]梁立孚,罗恩,刘殿魁.非保守弹性动力学初值问题的简单Gurtin型拟变分原理[J].固体力学学报,2007,28(3):224-228
    [88]L.F.Liang.L.M.Dai,Q.Y.Guo.The Generalized Quasi-variational Principles of NCS and Its Application in Mechanical Vibration[C].Proceedings of ASME DETC2007,1565-1570
    [89]罗恩,朱慧坚.有限变形弹性动力学的Gurtin型变分原理[J].固体力学学报,2003,24(1):1-7
    [90]罗恩,邓鹏,朱慧坚.有限变形弹性动力学的非传统简化Gurtin型变分原理[J].固体力学学报,2004,25(3):310-314
    [91]罗恩,邝君尚,黄伟江,罗志国.非线性耦合热弹性动力学的非传统Hamilton型变分原理[J].中国科学,A辑,2002(4):337-347
    [92]E.Luo,S.Kuang,W.Huang,et al.Unconventional Hamilton-type Variational Principles for Nonlinear Coupled Thermoelastodynamics[J].Science in China(Series A),2002,45(6):783-794
    [93]黄伟江,罗恩,佘慧.Reissner夹层板动力学的非传统Hamilton型变分原理[J].应用数学和力学,2006,27(1):67-74
    [94]W.J.Huang,E.Luo,H.She.Unconventional-type Variational Principles for Dynamics of Reissner Sandwich Plate[J].Applied Mathematics and Mechanics,2006,27(1):75-82
    [95]朱慧坚,罗恩.压电弹性薄板动力学非传统Hamilton型变分原理[J].中山大学学报,2006,45(2):16-19
    [96]李纬华,罗恩,黄伟江.弹性正交索网结构动力学的各类非传统Hamilton型变分原理[J].应用数学和力学,2007,28(7):833-842
    [97]W.H.Li,E.Luo,W.J.Huang.Unconventional Hamilton-type Variational Principles for Nonlinear Elastodynamics of Orthogonal Cable-net Structures[J].Applied Mathematics and Mechanics, 2007,28(7):931-942
    [98]李纬华,罗恩.弹性膜结构动力学的各类非传统Hamilton型变分原理[J].动力学与控制学报,2007,5(3):209-215
    [99]姜凤华,罗恩.空间框架结构弹性动力学非传统Hamilton型变分原理[J].动力学与控制学报,2008,6(3):223-228
    [100]姜凤华,罗恩.分段线性弹性薄板动力学的非传统Hamilton型增量变分原理[J].振动与冲击,2008,27(11):109-114
    [101]罗恩,黄伟江,张贺沂.相空间非传统Hamilton型变分原理与辛算法[J].中国科学,A辑,2002(12):1120-1126
    [102]E.Luo,W.Huang,H.Zhang.Unconventional Gurtin-type Variational Principles in Phase Space and Symplectic Algorithm[J].Science in China(Series A),2003,46(3):248-258
    [103]罗恩,黄伟江,姜凤华.蜂窝夹层板动力分析的Hamilton体系与辛算法[J].航空学报,2006(2):
    [104]刘淼,罗恩,仲政.薄板动力学相空间非传统Hamilton变分原理与辛算法[J].固体力学学报,2007,28(2):207-211
    [105]R.Mclachian.The World of Symplectic Space[J].New Scientist,1994,19:32-35
    [106]K.Feng.On Difference Schemes and Symplectic Geometry.Proc of the 5th Inter Sym on Differential Geometry and Differential Equations[M].Beijing:Science Press,1984,42-58
    [107]K.Feng.Difference Schemes for Hamiltonian Formalism and Symplectic Geometry[J].JCM, 1986,4(3),279-289
    [108]K.Feng,H.Wu,M.Qin,et al.Construction of Canonical Difference Schemes for Hamiltonian Formalism via Generating Functions[J].JCM,1989,7(1):71-96
    [109]K.Feng,H.Wu,M.Qin.Symplectic Difference Schemes for Linear Hamiltonian Canonical Systems[J].JCM,1990,8(4):371-380
    [110]K.Feng, D.Wang. Symplectic Difference Schemes for Hamiltonian Systems in General Symplectic Structure [J]JCM,1991,9(1):86-96
    [111]钟万勰,欧阳华江,邓子辰,等.计算结构力学与最优控制[M].大连:大连理工大学出版社,1993:269-277
    [112]钟万勰.结构动力方程的精细时程积分法[J].大连理工大学学报,1994,34(2):131-136
    [113]K.C.Valanis. A Theory of Viscoplesticty Without a Yield Surface [J].Part I, General Theory, Arch. Mech.23,517,1971
    [114]K.C.Valanis.Achives of Mechanics,1971,23(4):535-551
    [115]K.C.Valanis, H C Wu.Endochronic Represention of Cyclic Creep and Relaxation of Metals [J]. J. of Appl. Mech. March,1975,67-73
    [116]K.C.Valanis.Effect of Proior Deformation on Cyclic Response of Metals [J]. J.of Appl.Mech, 1974, June,441-447
    [117]Z.P.Bazant A new Approach to inleasticity and failure of concrete [C]. sand rock: endochronic theory,Proc.Soc.of Eng Sci.11th Annual Meeting,1974
    [118]Z.P.Bazant.Some questions of material inelasticity and failure in the design of concrete structures for nuclear reactors [J]. On Street. Mech. In Reactor Tech.London, Vol.3,1975
    [119]Z.P.Bazant and P. Bhat.Endochronic theory of inelasticity and failure of Concrete [J]. Engng. Mech. Div., Proc.Am.Soc.Civi.Engrs.1976,102,701-722
    [120]Z.P.Bazant.Adddendum to report:Endochronic theory for Inelasticity and failure of concrete structure [J].Struct.Engng Rep.No.1976-12/259
    [121]Z.P.Bazant, C.L.Shieh.Endochronic model for nonlinear tri-axial behavior of concrete[J].Nuclear Engng Design 1977
    [123]A.A.Ei Zaroughi. Application of Endochronic Constitutive Law for Normally consolidated cohesive soils[J].Ph.P.Dissertation,Civ Eng.Dept.Nortjwestern Uni versity,Evanston,Illinois, 166,1977
    [124]A.M.Ansal, Z.P.Bazant, R.J.Krizek.Viscoplasticity of normally consolidated clays[J]. J.Geotech.Eng.Div.,105,591-537,1979
    [125]A.M.Ansal,R.J.Krizek, Z.P.Bazant.Seismic Analysis of an Earth Dam Based on Endochronic constitutive Law[C].Dept.Civ.Eng.Northwestern University, Evanston,lllinois, 1979
    [92]Z.P.Bazant, A.M.Ansal, R.J.Krizek.Viscoplasticty of Transversely Isotropic Clays[J].J.Eng. MEch. Div.,105,549-565,1979
    [126]Z.P.Bazant, C.L.Shieh, R.J.Krizek.Hysteretic Endochronic Theory for Sand[C]. Dept. Civ. Eng.'Northwestern University, Evanston, Illinois,1979
    [127]W.Kosinski, H.C.Wu.On Steady Viscoplastic Waves.Endochronic Theory, Bulletin de L'academie Polonaise des Scieuces.Sen'e des sciences techniques,Vol. Ⅹ Ⅹ Ⅵ,2,1978
    [128]W.Kosinski, H.C. Wu.Simple Wave Solutions in the Endochronic Theory of Plasticity. Onedimesional Case, Bulletin de L'academie Polonaise des Scieuces, Sen'e des sciences techniques,Vol.Ⅹ Ⅹ Ⅵ,7,1978
    [129]H.C.Wu,M.C.Yip.Strain Rate and Strain Rate History effects on the Dynamic Behavior of Metallic Materials[J].Int.J.Solids Strecture,16,537-543,1980
    [130]K.C.Valanis,H.E.Read.Science and Softwar Report[R].SSS-R-80-4294,1979
    [131]H.C.Wu, H.C.Lin.Plastic Waves in a thinwalled tube under combined longitudinal and torsional loads[C].10th Anniversary Meeting, Society of Engineering Science,North Carolina State University,1973
    [132]J.H.Fan.Ph.Dissertation University of cincineti[D].USA,Manuscript publications,University International,1983
    [133]K.C.Valanis, J.H.Fan.J.Appl.mech.50,789-793,1983
    [134]扶名福,林钟祥.用内时理论分析弹塑性薄板弯曲问题[C]。全国第一次塑性力学学术交流论文,1986,2,13-36,
    [135]扶名福,林钟祥.内时弹塑性力学边界积分理论和边界元计算(一)[C].华东地区计算力学学术交流论文,1987,上海力学,8(4)
    [136]K.C.Valanis,H.E.Read. Mech. of Mater.,5,277,1986
    [137]K.C.Valanis. Constitutive Laws for Engineering Materials[J].1987,Vol. 1247
    [138]扶名福,林钟祥,杨德品。内时弹塑性边界积分和边界元计算(2)[C].华东地区计算力学学术交流论文,1987,上海力学
    [139]Fu Ming-fu, Yang De-pin, Lin Zhong-xiang.Endochronic Boundary Integral Method for Elastoplastic Sphere Shell[C].2nd China-Iapan Symposium on Boundary Element Methoda,October 11-15,1988,Beijing,China
    [140]Nova R, Zaninetti A. Aninvestigation into the tensile behaviorof a Schistose rock. Int. Rock Mech. Sci. & Geomech. Abstr.1990,27,231-242
    [141]Okubo S, Jin F,Akiyama M. Loading-rate dependency of uniaxial and indirect tensile strength. Journal of the Mining and Materials Processing Institute of Japan.1993,109(11), 865-869
    [142]金丰年.岩石的非线性流变.工程兵工程学院博士后研究工作报告.1997
    [143]余寿文,冯西桥.损伤力学[M].北京:清华大学出版社,1997
    [144]Feng X Q, Yu S W. A new damage model for microcrack-weaked britte solids.Acta Mechanica Sinica.1993,9(3):251-260
    [145]Simo J C, Ju J W.Strain-and stress-based continuum damage models.Int.J.Solids Structures. 1987,23,821-840
    [146]Ortiz M.A constitutive steory for the inelastic behavior of concrete.Mech.Mater.1985,4, 67-93
    [147]Budiansky B, O'Connell R J.Elastic moduli of a cracked solid. Int.J.Solids Structures.1976, 12,81-79
    [148]Sumarac D, Krajcinovic D.A Self-consistent model for microcrack-weakened solids. Mechanics of materials.1987,6,39-52
    [149]Ju J W. On two-dimensional self-consistent micro mechanical damage models for brittle solids. International Journal of Solids and Structures.1991,27,227-258
    [150]何吉欢.大位移非线性弹性理论的广义变分原理[J].中国矿业大学学报,1999.28(2)
    [151]J.H.Fan,Journal of Chongqing University 5(1985)42-48.
    [152]J.H.Fan et al.,Journal of Chongqing University 6(1985)49-57.
    [153]孙道远,温丹等.岩石非弹性特性的内时理论模型[J].实验力学,Vol.19,No.3,2004
    [154]Xu H, Day S M and Minster J B. Model for nonlinear wave propagation derived from rock hysteresis measurement [J]. J. Geophysics. Res.,1998,103:29915-29926

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700