用户名: 密码: 验证码:
结构非线性动力分析中地震动记录的选择和调整方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
地震动输入的确定是开展结构动力反应分析的重要环节,如何有效地反映地震动对建筑结构地震反应及其破坏的影响,是开展结构非线性地震反应分析时面临的重要问题。随着基于性能的抗震设计理论的不断完善、结构动力分析软件的快速发展和计算机性能的不断提高,结构非线性动力分析逐渐成为结构抗震性能评估和重要工程抗震设计的主要方法。选择合适的地震动是有效地估计结构抗震性能的基础。尽管有关结构动力分析中地震动输入的研究迄今已有不少有价值的成果,各国抗震规范也对地震动记录的选取作了一些规定和要求,但由于地震动的随机性及其对工程结构破坏作用的复杂性,在选择及调整地震动输入时如何能有效地反映地震动的破坏作用还未能形成共识。深入研究地震动输入的选择方法和调整方法对基于性能的结构抗震设计及性能评估具有重要意义。
     本论文以实际地震动记录为基础,围绕地震参数的有效性、地震动记录的调整方法、结构地震性能估计中地震动样本容量、基于设定地震的地震动选择方法及基于条件平均谱的地震动选择方法等相关问题开展研究。研究内容和研究成果如下:
     一、开展了地震动参数的有效性研究。系统总结归纳了44种地震动参数,包括地震动幅值特征参数、地震动频谱特征参数、地震动持时特征参数以及其他由地震动幅值、频谱和持时组合而成的地震动参数。建立了具有不同周期和延性系数的弹塑性单自由度结构模型,通过分析地震动参数之间以及地震动参数与结构弹塑性位移反应之间的相关性,对这些地震动参数进行分类,探寻对结构地震反应有显著影响的地震动参数,研究不同地震动参数的有效性。结果表明:峰值加速度(PGA)类参数适用于表征短周期结构的地震影响;峰值速度(PGV)类参数适用于表征中等周期结构的地震影响;峰值位移(PGD)类参数适用于表征长周期结构的地震影响;对应于结构基本周期的反应谱值参数适用于表征短、中及长周期结构的地震影响,是比较理想的描述地震作用的参数。
     二,开展了地震动的调整方法研究。建立了从低层到高层的六个钢筋混凝土框架模型,采用非线性动力分析方法计算结构的地震反应,通过结构地震反应与对应于不同周期的反应谱值的相关性分析,定量研究对结构反应起控制作用的地震动反应谱周期;对比分析了单周期点地震动调整、多周期点地震动调整和谱值匹配方法的适用性。研究表明:通过结构反应与不同周期对应的反应谱值的相关性分析,可以定量有效地给出对结构地震反应起主要控制作用的地震动反应谱周期。短周期结构的地震反应主要受控制于对应于结构基本周期(T1)的反应谱值;中长周期结构的地震反应主要受控制于0.2T1-2T1范围内的反应谱值。对于短周期结构或当地震动强度较低时,单周期点地震动调整法已具有较好的效果。对于中长周期结构和当地震动强度较高时,结构可能进入非线性阶段,应该充分考虑高阶振型和振动周期延长的影响,多周期点地震动调整方法和谱值匹配方法是比较有效地方法。
     三、开展了基于可靠度的地震动样本容量研究。通过分析在大样本地震动作用下结构非线性地震反应的统计特征,研究了估计结构地震反应时,取样本最大值和平均值的差异,分析了结构地震反应的概率分布模型,提出基于可靠度的地震动样本容量的确定方法,并对比分析了不同地震动调整方法对样本容量需求的影响,为小样本地震动作用下对结构地震反应的有效估计提供依据。研究表明:1)在进行地震反应估计时,最大值法增大了计算结果的不确定性,并且结果偏于保守,建议采用平均值法来确定结构在小样本地震动作用下的地震反应估计值:2)通过假设检验,结构的地震反应最可接受对数极值分布的假设,也可接受对数正态分布假设,完全拒绝正态分布假设;3)提出了基于可靠度的地震动样本容量估计方法,可对结构反应估计值的可靠度和误差范围给出一个定量的判断;4)多周期点调整方法、谱值匹配法以及人工合成地震动能够有效地减少地震动样本容量的需求。
     四、开展了基于设定地震的地震动选择方法研究。首先确定了设定地震对应的加速度反应谱,用来表征设定地震的强度水平,并将此作为地震动记录选取和调整的目标谱;然后针对地震特征参数(震级,距离,断层类型)和局部场地条件探讨了该目标谱的有效性,为地震动的选择提供了定量的参考。研究认为,以设定地震反应谱作为目标谱选择地震动时,应当充分考虑震级、距离、断层类型和场地条件的影响。当在地震动记录有限情况下,可以适当放宽对距离的限制。另外提出了能够有效考虑反应谱离散性和谱形的地震动选择和调整方法,保证了调整后的地震动记录与设定地震反应谱在统计意义上的一致性,克服了Greedy优化算法的局限性。
     五、开展了基于条件平均谱的地震动选择方法研究。研究了标准差系数ε对反应谱谱形和结构非线性地震反应的影响。并详细介绍了条件平均谱的概念和计算方法。通过五种方法选取地震动记录,比较不同方法对应的结构地震反应分布特征,研究条件平均谱的有效性。分析表明:1)标准差系数£与地震动记录的反应谱谱形有密切的关系,对结构的非线性地震反应有重要的影响;2)条件平均谱克服了一致概率反应谱过于保守的问题,利用条件平均谱选择地震动记录所计算的结构地震反应具有一定的无偏性,离散性也较小,可有效地估计结构的地震反应。
The ground motion input is one important part of structural dynamic analysis. The important issue for performing nonlinear dynamic analysis is to reflect the influence of ground motions for structural response and damage effectively. With the rapid development of the theory of performance-based seismic design, structural dynamic analysis software and computational facilities, nonlinear dynamic analysis is becoming more common in seismic analysis and design of numerous vital projects. Selecting the suitable ground motions is the basis of evaluate the anti-seismic performance. So far a lot of valuable results and regulations had been developed in many codes for seismic design of buildings; however, due to the stochastic of ground motions and the complexity of structure damage excited by ground motion, no consensus has been formed for selection and scaling ground motions. Thoroughly study on the methods of selection and scaling ground motions have significance value for performance-based seismic design and structural performance evaluation.
     In this study, the effectiveness of ground motion parameters, scaling methods, sample size of ground motions, selection methods for scenario earthquake and conditional mean spectrum are developed base on the real earthquake ground motions.
     The detail contents of research and conclusions are as follows:
     1. Study on the effectiveness of ground motion parameters. Forty-four ground motion parameters have been summarized, including amplitude type, frequency type, duration type and combined parameters. The three hundred elastic-plastic single-degree-of-freedom (SDOF) systems with different natural vibration periods and ductility factors are created as the structural model. The correlation between different parameters and the correlation between elastic-plastic displacements and ground motion parameters have been analyzed to classify these parameters and seek for the suitable parameter which has an important impact on structural seismic response. The study shows that:the peak ground acceleration (PGA) type parameters are suited to represent the seismic influence for short period structures; the peak ground velocity (PGV) type parameters are suited to represent the seismic influence for medium period structures; the peak ground displacement (PGD) type parameters are suited to represent the seismic influence for long period structures; spectral acceleration at the first mode period of vibration of the structure(Sa(T1)) are suited to short, medium and long period structure, which are regard as the ideal parameter to describe seismic action.
     2. Study on scaling methods of ground motions. Six reinforced concrete structure models with different height are created for nonlinear dynamic analysis. The correlation between structures' nonlinear dynamic response and spectral acceleration at different periods had been analyzed to quantitative research the period range which play main role in structural seismic response. Comparative analysis of single-period scaling method, multi-periods method and spectrum-matching method are done to research the applicability of each scaling methods. The study shows that:The analysis of correlation between structures' nonlinear dynamic response and spectral acceleration at different periods could quantitative seek the period range which play main role in structural seismic response. The short period structure's responses are controlled by spectral acceleration at the first mode period of vibration of the structure. The medium and long period structures' responses are controlled by spectral acceleration at one period range0.2T1~2T1. For the short period structure or low level earthquake intensity, the single-period method would have a good effect. For the medium and long period structure or high level earthquake intensity, the structure would be enter in the nonlinear stage, the effect of higher modes and vibration period extended should be fully considered, so the multi-periods method and spectrum-matching method are the better choices.
     3. Study on the sample size of ground motion based on reliability. By analyzing the statistical characteristics of the structural seismic response subject to large samples of ground motions, the difference between maximum and average value of structural seismic response is investigated and the probability distribution models of structural response are analyzed. Method for determining the sample size of ground motion is proposed based on reliability. The effect of ground motion adjustment methods on the sample size demand is analyzed, providing the basis for estimates of structural response by using small sample of ground motions. The studies show that:1) maximum value method increases the uncertainty in the estimation of structural response, and the results are too conservative. Mean value method is more appropriate to estimate the structural response when using small sample of ground motions.2) as seen through hypothesis testing, extreme value distribution is the most acceptable probability distribution model of seismic response, lognormal assumption is acceptable and normal distribution assumption is completely rejected.3) reliability-based method to determine the sample size of ground motions is proposed, which can give a quantitative judgment on confidence level and margin of error to the estimated structural response.4) multi-periods adjustment method, spectral-matching method as well as synthetic ground motion can effectively reduce the demand of ground motion sample size.
     4. Study on the scenario earthquake based ground motion selection method. Firstly, the demand spectrum is determined to characterize the seismic intensity level of the scenario earthquake. And this demand spectrum is set as the target spectrum to select and adjust ground motion records. Then the validity of the demand spectrum is investigate in terms of the seismic parameters (magnitude, distance, fault type) and local site conditions, providing a quantitative reference to ground motions selection. The studies shows that, magnitude, distance, fault type and site conditions should be fully considered when selecting ground motions based on the demand spectrum of the scenario earthquake. The restriction on distance can be appropriately relaxed when the number of record is not sufficient. The ground motion selection and adjustment method is proposed by effectively considering the variability of response spectra and spectral shape, ensuring that the adjusted ground motion records consistent with the demand spectrum in the statistical sense, and overcoming the limitations of Greedy Algorithm.
     5. Study on conditional mean spectrum based ground motion selection method. The impact of standard deviation factor ε on spectral shape and structural nonlinear dynamic response has been investigated. Then the concept and algorithmic method of conditional mean spectrum are introduced in detail. Five different ground motion selection methods are compared to research the effective of conditional mean spectrum. The study shows that:1) The standard deviation factor ε has close ties to the spectral shape and has an important impact on structural nonlinear dynamic response.2) The conditional mean spectrum overcome the conservative of uniform hazard spectrum. Structural responses from ground motions matching the conditional mean spectrum have lower bias from record scaling and smaller dispersion.
引文
常志旺.2010.建筑结构最不利设计地震动研究[D]哈尔滨工业大学
    陈厚群,李敏,石玉成.2005.基于设定地震的重大工程场地设计反应谱的确定方法[J].水利学报.36(12):1399-1404
    陈永祁.1986.地震作用下结构弹塑性反应的统计分析[J].土木工程学报.19(1):16-26
    褚延涵.2010.地震地面运动加速度记录与强度参数选择的统计方法研究[D].哈尔滨工业大学
    崔江余,杜修力.2000.重大工程设定地震动确定[J].世界地震工程.16(4):25-28
    邓军,唐家祥.2000.时程分析法输入地震记录的选择和实例.[J]工业建筑.8(6):9-12
    董娣.2006.地震动特性的影响因素与不确定性分析[D].北京工业大学
    冯启民.2004.GB/T 19428-2003《地震灾害预测及其信息管理系统技术规范》宣贯教材[M].北京:中国标准出版社
    郝敏.2006.地震烈度物理标准及地震动破坏势研究[D].哈尔滨工业大学
    胡文源,邹晋华.2003.时程分析法中有关地震波选取的几个注意问题[J]南方冶金学院学报.24(4):25-28
    高学奎,朱晞.2005.近场地震动输入问题的研究[J].华北科技学院学报.2(3):80-83
    国家质量监督检验检疫总局.2003.地震灾害预测及其信息管理系统技术规范.GB/T 19428-2003.
    耿修林.2008.社会调查中样本容量的确定[M].北京:科学出版社
    郭子雄,王妙芳.2006.人造地震动合成的研究现状及展望[J].华侨大学学报(自然科学版).27(1):7-11
    郝敏.2005.关于地震烈度物理标准研究的若干思考[J].地震学报.27(2):230-234
    胡聿贤.2006.地震工程学[M].第二版.北京:地震出版社
    赖明,杨红.1994.罕遇地震作用下剪切型结构的可靠性分析[J].重庆建筑工程学院学报.16(2):13:24
    李爽,谢礼立.2007.近场问题的研究现状与发展方向[J].地震学报.29(1):102-111
    李小军,赵凤新,胡聿贤.1997.空间相关地震动场模拟的研究[J].地震学报.19(2):212-215
    李英民,丁文龙,黄宗明.2001.地震动幅值特性参数的工程适用性研究[J].重庆建筑大学学报.23(6):16-21
    李英民,赖明,白绍良.2002.从结构抗震设计理论看地震动输入[J].工程力学.增刊:549-554
    李英民,赖明,白绍良.2003.工程结构的地震动输入问题[J].工程力学.增刊:76-87
    李英民,刘立平.2011.工程结构的设计地震动[M].北京:科学出版社
    刘金兰.2007.管理统计学[M].天津:天津大学出版社
    刘良林.2009.基于弹性总输入能的地震波选择方法[J].华侨大学学报(自然科学版).30(2):191-194
    刘小弟,苏经宇.1992.具有天然地震特征的人工地震波研究[J].工程抗震.(3):33-36
    陆新征、叶列平、缪志伟,等.2009.建筑抗震弹塑性分析—原理、模型与在ABAQUS,MSC.MARC和SAP2000上的实践[M].北京:中国建筑工业出版社
    吕红山,赵凤新.2007.适用于中国场地分类的地震动反应谱放大系数[J].地震学报,29(1):67-76
    王德才.2010.基于能量分析的地震动输入选择及能量谱研究[D].合肥工业大学
    王刚.2010.地震波选择方法,工具,及其在基于性能的抗震设计中的应用[C].第四届粤港澳地震科技研讨会.156-166
    王国新,李宏男等.2008.结构地震反应分析中的地震动输入问题研究[J].沈阳建筑大学学报(自然科学版).24(6):993-998
    王国新,鲁建飞.2010.工程结构地震反应与地震动输入关系研究[J].防灾减灾工程学报.30(增刊):41-44
    王国新,鲁建飞.2012.地震动输入的选取与结构反应研究[J].沈阳建筑大学学报(自然科学版).28(1):15-22
    王亚勇.1991.建筑结构时程分析法输入地震波的研究[J].建筑结构学报.12(2):51-60
    王亚勇.1992.结构抗震时程分析法输入地震记录的选择方法及其应用[J].建筑结构.(5):3-7
    王亚勇.2000.关于设计反应谱、时程法和能量方法的探讨[J].建筑结构学报.21(1):21-28
    谢礼立,翟长海.2003.最不利设计地震动研究[J].地震学报.25(3):250-261
    谢俊举.2010.汶川Ms8.0地震近断层强地面运动特征[D].中国地震局地球物理研 究所
    徐超.2012.基于地震动参数的RC框架结构易损性分析研究[D].中国地震局地球物理研究所
    杨溥.1999.基于位移的结构地震反应分析方法研究[D].重庆建筑大学
    杨溥,李英民,赖明.2000.结构时程分析法输入地震波的选择控制指标[J].土木工程学报.33(6):33-37
    叶献国.1998.地震强度指标定义的客观评价[J].合肥工业大学学报(自然科学版).21(5):7-11
    翟长海,谢礼立.2002.估计和比较地震动潜在破坏势的综合评述[J].地震工程与工程振动.22(5):1-7
    翟长海.2004.最不利设计地震动及强度折减系数的研究[D].哈尔滨工业大学
    中国工程建设标准化协会.2004.建筑工程抗震性态设计准则(试用)[M].北京:中国计划出版社
    中华人民共和国建设部.GBJ 11-89.建筑抗震设计规范[S].北京:中国建筑工业出版社.1989
    中华人民共和国建设部.GB 50011-2001.建筑抗震设计规范[S].北京:中国建筑工业出版社.2001
    中华人民共和国建设部.GB 50011-2010.建筑抗震设计规范[S].北京:中国建筑工业出版社.2010
    中华人民共和国建设部.GB 50010-2002.混凝土结构设计规范[S].北京:中国建筑工业出版社.2002
    周锡元,齐微.2006.震级、震中距和场地条件对反应谱特性影响的统计分析[J].北京工业大学学报.32(2):97-103
    朱东生,劳远昌,沈大元,李乔.2000.桥梁地震反应分析中输入地震波的确定[J].桥梁建设.3:1-4
    朱晓炜.2011.强震记录的选择和缩放方法研究[D].中国工程力学研究所.
    Abrahamson N.A.1988. Statistical properties of peak ground accelerations recorded by the SMART 1 array [J].Bulletin of the Seismological Society of America,78(1):26-41.
    Anderson, J. C., and V. V. Bertero.1987. Uncertainties in Establishing Design Earthquakes[J]. J. Structural Engineering.113(8):1709-1724.
    Applied Technology Council (ATC3-06).1978.Tentative provisions for the development of seismic regulations for buildings. Applied Technology Council, Redwood City, California
    Applied Technology Council.2009. Guidelines for Seismic Performance Assessment of Buildings (ATC-58 50% draft) Applied Technology Council, Redwood City, California
    Applied Technology Council.2011. Seismic Performance Assessment of Buildings 90% Draft, ATC-58-1, Applied Technology Council, Redwood City, California
    Arias A.1970. A measure of earthquake intensity, in Seismic Design for Nuclear Power Plants. MIT Press:Cambridge, Massachusetts
    Ayala A G, Ye X G.1995. Analytical evaluation of the structural seismic damage of reinforced concrete frames[C]. Proc. of 7th Canadian Conference on Earthquake Engineering, Montreal, Canada
    Baker, J. W., and Cornell, C. A.2005. Vector-valued ground motion intensity measures for probabilistic seismic demand analysis[R].Blume Center Technical Rep.#150, Stanford Univ., Stanford, CA.
    Baker, J. W., and Cornell, C. A.2006. Spectral shape, epsilon and record selection[J] Earthquake Eng. Struct. Dyn.,35(9):1077-1095.
    Baker, J. W., and Jayaram, N.2008. Correlation of spectral acceleration values from NGA ground motion models[J]. Earthquake Spectra,24(1):299-317
    Baker,J.W.2011.Conditional Mean Spectrum:Tool for Ground Motion Selection [J].Journal of Structural Engineering,137(3):322-331
    Bekir Ozer Ay. Sinan Akkar.2012.A procedure on ground motion selection and scaling for nonlinear response of simple structural. systems[J]. Earthquake Eng. Struct. Dyn.41:1693-1707
    Benjamin,J,R and Associates,1988. A criterion for determining exceedance of the Operating Basis Earthquake[R]. EPRI Report NP-5930,Electric Power Research Institute, Palo Alto, California
    Bojorquez,E. and Iervolino,I.2011. Spectral Shape proxies and nonlinear structural response[J].31:996-1008
    Bommer J.J.,Scott S.G.,and Sarma S.K.2000. Hazard-consistent earthquake scenarios[J]Soil Dynamics and Earthquake Engineering.19:219-231
    Bommer,J. and Acevedo,A.2004. The use of real earthquake accelerograms as input to dynamic analysis.Journal of Earthquake Engineering 8:special issue 1,43-91
    Boore, D.M. and G.M. Atkinson.2008. Ground-motion prediction equation fro the average horizontal component of PGA, PGV, and 5%-Damped PSA at spectral periods between 0.01s and 10 s[J]. Earthquake Spectrum,24(1):99-138
    Chen Bo, Wen Zengping.2012. An Improved IDA Method Using Inelastic Spectral Acceleration Based on MPA[C].15th World Conference on Earthquake Engineering, Lisbon,Portugal
    Chopra A K and Kan C.1973. Effects of stiffness degradation of earthquake ductility requirements for multistory buildings [J]. Earthquake Engineering and Structural Dynamics,2(1):35-45
    Conte J P, Pister K S and Mahin S A.1990 Influence of the earthquake ground motion process and structural properties on response characteristics of simple structure [M]. Report No.UCB/EERC-90/09, EERC,University of California,Berkeley.CA
    Cordova P.P., Deierlein G.G., Mehanny S.S.F., and Cornell C.A.,2001. Development of a twoparameter seismic intensity measure and probabilistic assessment procedure[C].The Second U.S.-Japan Workshop on Performance-Based Earthquake Engineering Methodology for Reinforced Concrete Building Structures, Sapporo, Hokkaido,187-206
    David M. Boore and Gail M. Atkinson.,2008. Ground-Motion Prediction Equations for the Average Horizontal Component of PGA, PGV, and 5% -Damped PSA at Spectral Periods between 0.01s and 10.0s Earthquake Spectra,24(1):99-138
    Department of Energy.1996.Guidelines for use of probabilistic seismic hazard curves at department of nergy sites for department of energy facilities[R].Standard DOE:1024-1092
    DGML.2010. Technical Report for the PEER Ground Motion Database Web Application:10-12
    Eurcode 8.1994, Design Provisions for Earthquake Resistance of Structure. ENV 1998-1,CEN,Brussel:854-876
    Fajfar P, Vidic T, Fischinger M.1990. A measure Dynamics of earthquake motion capacity to damage medium-period structures[J]. Soil Dynamics and Earthquake Engineering,9(5):236-242
    Fahjan.Y, Ozdemir Z.2008.Scaling of Earthquake Accelerograms for Non-Linear Dynamic Analyses To Match the Earthquake Design Spectra[C].The 14th World Conference on Earthquake Engineering:156-172
    Gang Wang.2011. A ground motion selection and modification method capturing response spectrum characteristics and variability of scenario earthquakes[J] . Soil Dynamics and Earthquake Engineering,31:611-625
    H. M. Westergaard,1934.Measuring earthquake intensity in pounds per square foot[J]. Eng. News Rec.,110,16
    Hancock, J., Bommer, J., and Stafford, J.,2008. Numbers of scaled and matched accelerograms required for inelastic dynamic analyses [J].Earthquake Engineering and Structural Dynamics,37,1585-1607.
    Hancock, J., Watson-Lamprey J. Abrahamson N A,et al.2006. An improved method of matching response spectra of recorded earthquake ground motion using wavelets [J] Journal of Earthquake Engineering,10(1):67-89
    Hancock J, Bommer JJ.2007. Using spectral matched records to explore the influence of strong-motion duration on inelastic structural response[J]. Soil Dynamics and Earthquake Engineering.27(4):291-299
    Haselton CB.2009. Evaluation of ground motion selection and modification methods: Predicting median interstory drift response of buildings[R].Pacific Earthquake Engineering Research Center University of California, Berkeley
    Housner G W.1952. Spectrum intensities of strong motion characteristics and seismic energy dissipation. Earthquake Engineering & Structures, California
    Housner G W, Jennings PC.1964. Generation of artificial earthquakes [J]. Journal of the Engineering Mechanics Division,90(EM1):113-150
    Housner G W.1975.Measures of severity of earthquake ground shaking [C]. Proceedings of the U.S. National Conference on Earthquake Engineering. EERI, Ann Arbor
    Huang, Y. N., Whittaker, A. S., Luco, N., and Hamburger, R. O.2010. Scaling earthquake ground motions for performance-based design[J] Journal of Structral Engineering:37(3):311-321
    Husid R L.1969. Analisis de terremotos:analisis general[J]. Revista del ID1EM,Santiago Chile,8(1):21
    Ishikawa Y, Kameda H,1991. Probability based determination of specific scenario earthquake, Proc 4th International Conference on Seismic Zonation.2,3-10
    Kappos AJ, Kyriakakis P..2000. A re-evaluation of scaling techniques for natural records[J]. Soil Dynamics and Earthquake Engineering.20:111-123
    Kennedy,R.P.,1980. Ground motion parameters useful in structural deisgn[C]. Conference on Evaluation of Regional Seismic Hazards and Risk, Santa Fe, New Mexico
    Kottke A, Rathje EM.2008. A semi-automated procedure for selecting and scaling recorded earthquake motions for dynamic analysis[J].Earthquake Spectra: 24(4):911-932
    Kramer S L.1996. Geotechnical earthquake engineering[M]. U. S.:Prentice-Hall
    Luco, N., Cornell, C A.2007a. Structure-specific scalar intensity measures for near-source and ordinary earthquake ground motions [J]. Earthquake Spectra 23(2):357-392
    Luco, N., Bazzurro, P..2007b. Does amplitude scaling of ground motion records result in biased nonlinear structural drift responses?[J] Earthquake Engineering and Structural Dynamics 36(13):1813-1835
    Lutes,L.D., Chokshi,N.C. Maximum Response Statistics for Linear Structures,Proc.5WCEE.Vol.2,1973
    Mackie K.2005. Fragility-based seismic decision making for highway overpass bridges. Ph.D.Dissertation. Department of Civil and Environmental Engineering of UC Berkeley
    Mahmoud M.Hachem, Neville J.Mathias, Ya Yong Wang et al.2010. An International Comparison of Ground Motion Selection Criteria for Seismic Design[C].Codes in Structural Engineering. Dubrovnik,Croatia
    Martinez-Rueda JE.1998.Scaling procedure for natural accelerograms based on a system of spectrum intensity scales [J].Earthquake Spectra.14(1):135-152
    Mukherjee S, Gupta VK. Wavelet-based generation of spectrum-compatible time-histories[J].Soil Dynamic and Earthquake Engineering.(22):799-804
    Nau J M, Hall W J.1984 Scaling methods for earthquake response spectra. Structure Engineering [J].110(7):1533-1548
    Naeim F., Lew M.1995. On the use of design spectrum compatible time histories [J] Earthquake Spectra.11 (1):111-127
    Naeim F, Alimoradi A, Pezeshk S.2004. Selection and scaling of ground motion time histories for structural design using genetic algorithms[J]. Earthquake Spectra. 20(2):413-426
    NEHRP.2011.Selecting and Scaling Earthquake Ground Motions for Performing Response-History Analysis[R] National Institute of Standards and Technology
    Neumann F.1960.A broad formula for estimating earthquake forces on oscillators, Proceedings of the Second World. Conference on earthquake engineering, Band II:849-862
    Nirmal Jayaram, Ting Lin, Jack W Baker.2011. A Computationally Efficient Ground -Motion Selection Algorithm for Matching a Target Response Spectrum Mean and Variance[J].Earthquake Spectra.27(3):797-815
    NIST.2011. Selecting and Scaling Earthquake Ground Motins for Performing Response-History Analysis[R].National Institute of Standards and Technology
    Pacific Earthquake engineering Research Center (PEER). http://www.peer.berkeley.edu/smcat/search.html
    Park Y. J., Ang A. H., Wen Y. K.1985. Seismic Damage Analysis of Reinforced Concrete Buildings [J]. Journal of Structural Engineering. 111(4):740-757
    Reinhorn, A M., Kunnath C K., Valles, R E., Li, C. and Madan, A. (2006). Idarc-2D v.6.1.A program for the inelastic damage analysis of buildings. Buffalo, NY: SUNY.
    Reiter L.1990. Earthquake hazard analysis:Issues and insights[M]. Columbia University Press,New York,254 pp.
    Reyes, J.C., and Kalkan, E.2012. How many records should be used in ASCE/SEI-7 ground motion scaling procedure. Earthquake Spectra[J]. (Nov):In press.
    Riddell R,Garcia E J,2001.Hysteretic energy spectrum and damage control [J]. Earthquake Engineering and Structure Dynamics.30(12):1791-1816
    Shome N, Cornell CA, Bazzurro P, Carballo JE..1998. Earthquakes, records, and nonlinear responses[J]. Earthquake Spectra.14(3):469-500
    Shome, N., Cornell, C A..1999. Probabilistic seismic demand analysis of nonlinear structures[R] Report No. RMS-35, RMS Program, Stanford University, Stanford, CA.
    Stewart J P, Chious S J, Bray J D, etal.2001. Ground motion evaluation procedures for performance-based design[R]. Berkeley, California:Pacific Earthquake Engineering Research Center. Report No.01-09:63-67
    Suarez L E, Montejo L A.2005. Generation of artificial earthquakes via the wavelet transform[J].Journal of Solids and Structures (42):5905-5919
    Sucuoglu H, Nurtug A.1995. Earthquake ground motion characteristics and seismic energy dissipation. Earthquake Engineering & Structural Dynamics,24(9): 1195-1213
    Trifunac M.D. and Brady A.G. A study on the duration of strong earthquake ground motion[J]. BSSA,65(3):581-626
    Takizawa H. and Jennings P.C.1980. Collapse of a model for ductile reinforced concrete frame under extreme earthquake motions[J]. EESD,8(2):117-144
    Tso W.K., Zhu T.J., Heidebrecht A.C.1992.Engineering implication of ground motion A/V ratio. Soil Dynamics and Earthquake Engineering.11:133-144
    Uniform Building Code (UBC).1997. International Conference of Building official,Whittier,1234-1253
    USGS,2012.2008Interactive Deaggregation(Beta). Earthquake Hazard Program, https://geohazards.usgs.gov/deaggint/2008/.
    Watson-Lamprey J, Abrahamson N.2006. Selection of ground motion time series and limits on scaling[J]. Soil Dynamics and Earthquake Engineering.26:477-482
    YeongAe Heo,Sashi K.Kunnath, Norman Abrahamson.2011.Amplitude-Scaled versus Spectrum-Matched Ground Motions for Seismic Performance Assessment[J] Journal of Structure Engineering,137(3):278-288.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700