用户名: 密码: 验证码:
震动图预测的不确定性及其应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
破坏性地震常常导致大量人员伤亡和财产损失,给人类社会造成巨大灾难。目前,受多种条件所限,地震预报短期内很难取得突破性进展。为了减轻地震带来的灾害,必须加强抗震设防和地震应急研究。震动图作为地震应急的一项重要内容,能在地震发生后快速划定地震影响范围,是高效救灾的第一手资料。
     震动图的产出涉及台站观测数据(强震、测震)、虚拟台站地震动参数估计、区域插值计算、震动烈度(仪器烈度)转换、场地效应校正等多个方面,各个环节均会造成不同程度的不确定性。鉴于此,USGS的ShakeMap(?)系统在产出仪器烈度分布、峰值加速度分布、峰值速度分布以及0.3s、1.0s、3.0s加速度反应谱分布的同时,还会发布不确定性分布图,以描述前四种图件的可信程度,并依据该图进行震害快速评估。国内震动图的研究还处于起步阶段,因而对其不确定性的研究还比较少。
     在有强震台站的场点,可直接得到与结构破坏密切相关的加速度记录;在有测震台站的场点,可以利用测震台网的速度记录预测加速度,但此过程存在不确定性问题;在强震台站和测震台站均没有的场点,需要通过地面运动预测方程估计地震动参数,这就涉及地面运动预测方程的不确定性问题;在将地震动参数转换为震动烈度时,由于两者之间没有确定的对应关系,同样会涉及不确定性。论文从这三个方面着手,对影响震动图的不确定性问题就行研究,并将结果用于震害快速评估。另外,文章还构建了城镇地震重灾指数,以评定地震发生后特定城镇遭遇严重破坏的可能性。
     本文主要工作如下:
     1.利用美国NGA数据库的强震记录,拟合得到包含场地效应且以断层投影距为参数的新的地面运动预测方程。作者没有将其转换到中国大陆,原因在于:第一,本文选用的数据是全球板内活跃区浅层地壳的数据,并不是局限于一个地区;第二,由于烈度本身具有较高的不确定性,用烈度转换只会加大地面运动预测方程的不确定性;第三,新的预测方程采用断层投影距,而烈度预测方程多采用震中距,对大震而言震中距会造成较大误差。
     2.从地面运动预测方程中的ε出发,提出了场点(城镇)遭遇不同烈度的概率计算方法:利用预测方程的估计值和预测方程的标准差,构造峰值加速度(PGA)变化的对数正态分布,以烈度分档对应的PGA范围,计算了震区各城镇遭遇不同烈度的概率及各城镇抗震设防烈度被超越的概率。
     3.利用Hi-net和KiK-net共同记录到的282次Mj≥5.0、震源深度在100km以内的地震资料,分析了Hi-net速度微分与KiK-net加速度对数峰值比、对数反应谱比的分布特征及其随震级、距离的变化关系。同时,拟合得到Hi-net速度峰值与KiK-net加速度峰值、Hi-net速度微分峰值与KiK-net加速度峰值、Hi-net速度微分的反应谱与KiK-net加速度反应谱之间的对数线性关系。以上结论都表明,利用速度记录预测加速度不论是幅值还是频谱均存在一定的不确定性。
     4.建立考虑不确定性的震动图模型,并利用此模型生成了庐山Ms7.0级地震的震动图,结果与USGS的ShakeMap符合良好。
     5.将城镇烈度的概率计算方法用于庐山地震的震害快速评估。由于受选取的地震易损性模型所限,对经济损失的估计虽然与实际损失在同一数量级,但是偏低,而对死亡人数的估计则过高。
     6.利用城镇烈度的概率计算方法,构建了城镇地震重灾指数。由于城镇重灾指数表达的是城镇遭遇严重破坏的可能性,所以可以为抗震救灾指挥部门快速制定紧急救援方案、调配救援力量提供重要参考。另外,华北地区设定地震下的城镇地震重灾指数,可以作为一个重灾数据库,为以后类似地震的应急救援提供必要的依据。
Destructive earthquakes often cause heavy casualties and property losses, posing a great disaster to human society. Because of the extreme complexity involved in the earthquake process, reliable earthquake prediction is not currently possible. In order to reduce earthquake damage, seismic fortification and earthquake emergency research must be strengthened. As a tool for earthquake response, shaking map can portray the extent of potentially damaging shaking following an earthquake, providing distinctly important information for earthquake relief.
     The output of shaking map involves many aspects, such as observations (from macroseismograph or seismograph), ground motion prediction for phantom station, interpolation method, acquisition of shaking intensity (instrumental intensity), site effect and so on. Each of them can cause uncertainty in some ways. For this reason, the ShakeMap(?) system implemented by United States Geological Survey releases uncertainty map besides instrumental intensity, peak ground acceleration, peak ground velocity, and response spectrum. Since shaking map research in China is in its infancy, there is less study on its uncertainty.
     If there is a macroseismograph, the ground motion acceleration, which is closely related to structure damage, can be obtained directly. If there is a seismograph, the ground motion acceleration can be estimated from the velocity record and there is uncertainty in the process. If there is no seismic station, the ground motion is just estimated from Ground Motion Prediction Equation (GMPE), which brings uncertainty due to GMPE itself. Lack of certain relationship between intensity and ground motion parameters, there is uncertainty when changing ground motion parameters into intensity. These uncertainties are analyzed in this dissertation and the results are used in rapid earthquake damage assessment in the end. Also, as another application of shaking map, the heavy damage index is built to judge which county will suffer heavy damage after an earthquake.
     The main work and results are as follows:
     1. A new Ground Motion Prediction Equation is gained based on NGA strong motion data, which includes site term and Joyner-Boore Distance. The new GMPE has not been converted for China Mainland and there are several reasons to do this:(1) NGA collects strong motion data from shallow crustal earthquake all over the world, not confined to one region.(2) Due to high uncertainty of intensity, the transform of GMPE from one region to another through intensity will result in increasing uncertainty.(3) The new GMPE adopts Joyner-Boore distance, while intensity prediction equation often uses epicentral distance.
     2. We propose a method to compute the probability of shaking intensity for counties in seismic area by means of the stochastic variable ε in GMPE. Specifically, we build the logarithmic normal distribution about peak ground acceleration, using the estimated value and the standard deviation of the GMPE, to calculate the probability of every possible shaking intensity and the probability exceeding seismic fortification intensity for counties in seismic area. It is thought that the intensity displayed in a probability way is much more reasonable.
     3. Using the data recorded by both Hi-net and KiK-net from282earthquakes with JMA magnitude greater than5and focal depth less than100km, we study the distribution of peak acceleration ratio and acceleration response spectrum ratio between Hi-net velocity differential and KiK-net observed acceleration, as well as the ratios in relation to magnitude and focal distance. Also, we obtained statistical relation in peak value between Hi-net velocity and KiK-net acceleration, as well as statistical relations in peak value and acceleration response spectrum between Hi-net velocity differential and KiK-net acceleration. It turns out that the differential of digital velocity record is different from observed acceleration in both amplitude and spectrum, which therefore cannot be directly used as acceleration.
     4. We build a shaking map model which considers uncertainty. And it is employed to produce the shaking map for the Lushan earthquake, which conforms well to the result of USGS ShakeMap.
     5. Using the method of computing the probability of shaking intensity for counties, we compute the probability of every possible shaking intensity for counties in Lushan area. The intensites and their probabilities are then used to estimate economic losses and casualties. Due to the vulnerability model, the economic losses, in spite of the same scale, are lower than the actual economic losses and the estimation of deaths is higher than the true number.
     6. The heavy damage index, which is useful for earthquake emergency, is built based on the method of computing the probability of shaking intensity for counties to judge which county will suffer heavy damage after an earthquake. Besides, the heavy damage index for counties, under scenario earthquakes in North China, can be a damage database providing improtant information for future similar earthquakes.
引文
薄景山,齐文浩,刘红帅,刘博,刘德东,孙有为.2009.汶川特大地震汉源烈度异常原因的初步分析.地震工程与工程振动,29(6):53-64.
    陈鲲,俞言祥,高孟潭.2010.考虑场地效应的ShakeMap系统研究[J].中国地震,26(1):92-102.
    陈鲲,俞言祥,高孟潭,吕红山.2011a.考虑震源破裂过程的青海玉树地震震动图研究[J].中国地震,27(1):56-64。
    陈鲲,俞言祥,高孟潭.2011b.2010年4月14日青海玉树地震震动图[J].中国地震,27(1):99-102.
    陈颐,刘杰,陈棋福.1999.地震危险性分析和震害预测[M].北京:地震出版社.
    陈运泰,顾浩鼎.2008.震源理论基础(上册).
    陈运泰.2008.汶川地震何以如此严重[N].科学时报.
    大崎顺彦.1980.地震动的谱分析入门[M].北京:地震出版社:257-262.
    段洪杰,崔建文,周挚,刘琼仙.2009.ShakeMap二次开发与软件集成研究[J].地震研究,32(4):420-425。
    国家地震局地球物理研究所,河北省地震局.1985.一九六六年邢台地震照片集[M].北京:海洋出版社。
    国家减灾委员会与科学技术部抗震救灾专家组.2008.汶川地震灾害综合分析与评估[M].北京:科学出版社.
    国家质量技术监督局.2001.GB 18306-2001《中国地震动参数区划图》[S].北京:中国标准出版社.
    国家质量监督检验检疫总局.2009.GB/T 17742-2008《中国地震烈度表》[S].北京:中国标准出版社.
    国务院新闻办公室.2008年9月4日和9月25日新闻发布会.
    河北省地震局.1986.一九六六年邢台地震[M].北京:地震出版社。
    环文林,时振梁,李世勋.2003.对1556年81/4级大地震震中位置和发震构造的新认识[J].中国地震,19(1):20-32.
    胡聿贤.1999.地震安全性评价技术教程[M].北京:地震出版社.
    胡聿贤.2006.地震工程学[M].北京:地震出版社.
    金星,马强,李山有.2004.利用数字化速度记录实时仿真位移与加速度时程[J].地震工程与工程震动,24(6):18-30.
    李俊,苏枫,米宏亮,陈颙2010.ShakeMap及其在地震动快速预估中的应用[J].中国地震,26(1):103-111.
    林雪麟.2009.汶川特大地震造成多大损失[N].四川统一战线.
    李山有,金星,陈先,马强.2002.地震动强度与地震烈度速报研究[J].地震工程与工程震动,22(6):1-7.
    李山有,金星,刘启方,孔戈.2003.中国强震动观测展望[J].地震工程与工程震动,23(2):1-7.
    李树桢,尹之潜.1993.地震损失评估与数据系统[J].中国地震,9(3):264-275.
    刘传正.2008.四川汶川地震灾害与地质环境安全[J].地质通报,27(2):1907-1912.
    刘杰,易桂喜,张致伟,官致君,阮祥,龙峰,杜方.2013.2013年4月20日四川芦山M7.0级地震介绍[J].地球物理学报,56(4):1404-1407.
    倪四道.2008.应急地震学的研究进展[J].中国科学院院刊,23(4):311-316.
    潘晓红,贾铁飞,温家洪,颜建平.2009.多灾害损失评估模型与应用评述[J].防灾科技学院学报,11(2):77-82.
    单修政.1988.1556年华县地震人口死亡原因浅析[J].灾害学,(4).
    史培军,刘连友,刘吉夫.2008.汶川地震灾害及其损失评估[Z].中国城市发展报告,151-159.
    苏克忠.1990.华县大地震及其震害考证[J].水利水电技术,(12),24-29.
    王汝雕.2007.1556年华县地震震亡83万人质疑[J].山西地震,(2):42-46.
    王士成.2011.ShakeMap系统的研究及应用[D].哈尔滨:中国地震局工程力学研究所.
    汪素云,俞言祥,高阿甲,阎秀杰.2000.中国分区地震动衰减关系的确定[J].中国地震,16(2):99-106.
    王为民,郝全来,姚振兴.2013.2013年4月20日四川芦山地震震源破裂过程反演初步结果[J].地球物理学报,56(4):1412-1417.
    王晓青,丁香,王龙,王岩.2009.四川汶川8级大地震灾害损失快速评估研究[J].地震学报,31(2):205-211.
    谢中华.2010MATLAB统计分析与应用:40个案例分析[M].北京:北京航空航天大学出版社:163-164.
    徐国栋,方伟华,史培军,袁艺.汶川地震损失快速评估[J].地震工程与工程振动,28(6):74-83.
    徐阶,张居正.1368-1644.大明世宗肃皇帝实录[M].
    姚兰予,聂永安,赵靖华,卞真付.2004.利用测震台网记录获得加速度波形的方法研究[J].中国地震,20(1):39-46.
    原廷宏,冯希杰等.2010.一五五六年华县特大地震[M].北京:地震出版社.
    肖亮,俞言祥.2010.一种新的拟合地震动衰减关系的分步回归法[J].地震学报,32(6):725-732.
    肖亮.2011.水平向基岩强地面运动参数衰减关系研究[D].北京:中国地震局地球物理研究 所.
    俞瑞芳,俞言祥,肖亮,徐伟进.2008.利用国家数字地震台网记录计算汶川地震余震峰值加速度分布图[J].国际地震动态,6(354):4-8.
    俞言祥,汪素云,胡聿贤.2002.用数字宽频带速度记录和加速度记录计算长周期反应谱的对比分析.新世纪地震工程与防震减灾.北京:地震出版社:566-575.
    张勇,许力生,陈运泰.2013.芦山4.20地震破裂过程及其致灾特征初步分析[J].地球物理学报,56(4):1408-1411.
    宗臣.1560.宗子相集[M].
    中国地震局.2008.汶川8.0级地震烈度分布图.
    中国地震局震害防御司.1995.中国历史强震目录[M].北京:地震出版社.
    中华人民共和国建设部,国家质量监督检验检疫总局.2001.GB 50011-2001《建筑抗震设计规范》[S].北京:中国标准出版社.
    周中红.2009.震害快速评估中信息预测和空间分析研究[D].兰州:中国地震局兰州地震研究所.
    Abrahamson N A, Youngs R R.1992. A Stable Algorithm for Regression Analysis using the Random Effects Model. Bull. Seismol. Soc. Am,82:505-510.
    Aoi S, Kunugi T, Fujiwara H.2004. Strong-Motion Seismograph Network Operated By NIED:K-net and Kik-net. Journal of Japan Association for Earthquake Engineering, 4(3):65-74.
    Bommer J J, Abrahamson N A.2006. Why Do Modern Probalilistic Seismic-Hazard Analyses Often Lead to Increased Hazard Estimates?[J]. Bull. Seismol. Soc. Am, 96(6):1967-1977.
    Boore D M,Gibbs J F, Joyner W B, Tinsley J C,Ponti D J.2003. Estimated Ground Motion from the 1994 Northridge, California, Earthquake at the Site of Interstate 10 and La Cienega Boulevard Bridge Collapse,West Los Angeles,California[J]. Bulletin of Seismological Society of America,93(6):2737-2751.
    Brillinger D R, Preisler H K.1985. Further Analysis of the Joyner-Boore Attenuation Data[J]. Bull. Seismol. Soc. Am,75:611-614.
    Cornell C A.1968. Engineering Seismic Risk Analysis[J]. Bull. Seismol. Soc. Am, 58(5):1583-1606.
    EPRI.2003. CEUS Ground Motion Preject:Model Development and Result[R]. EPRI Open File Report.
    Esteva L.1970. Seismic risk and seismic design decisions, in Seismic Design for Nuclear Power Plants, Ed. R J Hansen, MIT Press, Cambridge, Massachusetts, 142-182.
    Fujima K, Shigihara Y, Tomita T, Honda K, Nobuoka H, Hanzawa M, Fujii H, Ohtani H, Orishimo S, Tatsumi M, Koshimura S-I.2006. Survey Results of the Indian Ocean Tsunami in the Maldives. Coastal Engineering Journal,48(2):81-97.
    Ganchin Y V, Smithsona S B, Morozova I B, Smytheb D K, Garipovc V Z, Karaevd N A, Kristoffersone Y.1998. Seismic studies around the Kola Superdeep Borehole, Russia. Tectonophysics,288(1):1-16.
    Gutenberg B, Richter C F.1942. Earthquake magnitude, intensity, energy and acceleration[J]. Bull Seism. Soe. Am.,32(3):163-191.
    Gutenberg B, Richter C F.1956. Earthquake magnitude, intensity, energy and acceleration (second paper) [J]. Bull. Seism. Soc. Am.46(2):105-145.
    Joyner W B, Boore D M.1981. Peak Horizontal Acceleration and Velocity from Strong Motion Records including Records from the 1979 Imperial Valley, California, Earthquake [J]. Bull. Seismol. Soc. Am,71 (6):2011-2038.
    Kanai K.1958. A Study of Strong Earthquake Motions[J]. Bulletin of the Earthquake Research Institute,36(3):295-310.
    Kanamori H, Hauksson E, Heaton T.1991. TERRAscope and CUBE project at Caltech, Eos Trans. AGU,72(50):564.
    Kanamori H.2005. Real-Time Seismology and Earthquake Damage Mitigation. Annual Review of Earth and Planetary Sciences,33 (1):195-214.
    Liu P, Lynett P, Fernando H, Jaffe B, Fritz H, Higman B, Morton R, Goff J, Synolakis C.2005. Observations by the International Tsunami Survey Team in Sri Lanka. Science,308(5728):1595.
    Luco N, Karaka E.2007. Extending the USGS National Seismic Hazard Maps and ShakeMaps to Probabilistic Building Damage and Risk Maps, Proceedings of the 10th International Conference on Applications of Statistics and Probability in Civil Engineering.
    Matsutomi H, Sakakiyama T, Nugroho S, Matsuyama M.2006. Aspects of Inundated Flow due to the 2004 Indian Ocean Tsunami. Coastal Engineering Journal, 48 (2):167-195.
    McGuire R K. FORTRAN Computer Program for Seismic Risk Analysis[R]. USGS Open File Report.
    Michelini A, Lauciani V, Selvaggi G, Lomax A.2010. The 2010 Chile Earthquake:Rapid Assessments of Tsunami, Eos Trans. AGU,91(35),305.
    Milne, WG, Davenport A G.1969. Distribution of earthquake risk in Canada[J]. Bull. Seism. Soc. Am.,59(2):729-754.
    Mori N, Takahashi T, T. Yasuda T, Yanagisawa H.2011. Survey of 2011 Tohoku Earthquake Tsunami Inundation and Run-up, Geophysical Research Letters,38, L00G14.
    Mori N, Takahashi T, the 2011 Tohoku Earthquake Tsunami Joint Survey Group.2012. Nationwide Post Event Survey and Analysis of the 2011 Tohoku Earthquake Tsunami, Coastal Engineering Journal,54(1):1250001,27p.
    National Institute of Building Sciences and Federal Emergency Management Agency(NIBS and FEMA).2003. Multi-hazard Loss Estimation Methodology, Earthquake Model, HAZUS(?)H Technical Manual, Federal Emergency Management Agency, Washington, DC.
    Okada Y, Kasahara K, Hori S, Obara K, Sekiguchi S, Fujiwara H and Yamamoto A. Recent progress of seismic observation networks in Japan:Hi-net, F-net, K-NET and KiK-net[J].2004. Earth, Planets and Space,56:xv-xxviii.
    Pavlenkova N I.1992. The Kola Superdeep Drillhole and the nature of seismic boundaries. Terra Nova,4(1):117-123.
    Richard M A, Kanamori H.2003. The Potential for Earthquake Early Warning in Southern California[J]. Science,300(5620):786-789.
    Seismological and Volcanological Department, Japan Meteorological Agency. 2002. Outline of JMS's Seismic Intensity Meter[R].
    Wu Y M, Shin T C, Chen C C, Tsai Y B, Lee W H K, Teng T L.1997. Taiwan Rapid Earthquake Information Release System[J]. Seismological Research Letters,68(6).
    The 2011 Tohoku Earthquake Tsunami Joint Survey Group.2011. Nationwide Field Survey of the 2011 Off the Pacific Coast of Tohoku Earthquake Tsunami, Journal of Japan Society of Civil Engineers, Series B,67(1)::63-66.
    USGS.1996. USGS Response to an Urban Earthquake, Northridge 1994. Open File Report 96-263.
    Wald D J, Quitoriano V, Heaton T H, Kanamori H, Scrivner C W, Worden B C.1999a.TriNet "ShakeMaps":Rapid Generation of Peak Ground-Motion and Intensity Maps for Earthquakes in Southern California[J]. Earthquake Spectra,15(3):537-555.
    Wald D J, Quitoriano V, Heaton T H, Kanamori H.1999b. Relationship between Peak Ground Acceleration, Peak Ground Velocity, and Modified Mercalli Intensity for Earthquakes in California[J]. Earthquake Spectra,15(3):557-564.
    Wald D J, Worden B C, Quitoriano V, Pankow K L.2006. ShakeMap Manual Version 1.0: Technical Manual, User's Guide, and Software Guide[R]. USGS Open File Report.
    Wald D J, Allen T I.2007. Topographic Slope as a Proxy for Seismic Site Conditions and Amplification[J]. Bulletin of Seismological Society of America, 97(5):1379-1395.
    Wald D J, Lin K W, Quitoriano V.2008. Quantifying and Qualifying USGS ShakeMap Uncertainty[R]. USGS Open File Report.
    Wu Y M, Teng T L, Shin T C, Hsiao N C.2003. Relationship between Peak Ground Acceleration, Peak Ground Velocity and Intensity Taiwan[J]. Bulletin of Seismological Society of America,93(1):386-396.
    Wu Y M.Teng T L, Hsiao N C, Shin T C, Lee W H K.2003. Progress on Earthquake Rapid Reporting and Early Warning System in Taiwan[C]. American Geophysical Union, Fall Meeting 2003.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700