用户名: 密码: 验证码:
针对大地震设防的地震动参数确定方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
大地震(M≥7.0)是地震灾害的主要原因,建筑物倒塌是人员伤亡的直接原因。我国大地震频度大、分布广、危害大。我国当前的抗震设防体系在防御大地震,确定大震概率性设计地震动参数方面存在诸多不足。本文探讨了“大地震”与罕遇、极罕遇地震作用的区别与联系,并详细分析了基岩场地上罕遇地震动(超越概率50年2%)、极罕遇地震动(年超越概率1×10-4)峰值加速度(PGA)与基本地震动(超越概率50年10%)比值(分别定义为K2和K1)的统计特征和空间分布规律,探讨了K极值所对应的地震环境,开展了不同地震环境认识引起K2和K1空间不确定性方面的影响研究。在不同形状超越概率曲线的基础上耦合了结构倒塌能力的不确定性,提出了一般建设工程抗倒塌风险的控制方法。针对城市与城市群的抗震设防,本文尝试着考虑场点间地震危险性的空间相关性,以重现期和区域内地震动参数允许被同时超越面积为风险指标,提出了利用蒙特卡罗(随机模拟)模拟区域内二维的地震动场空间分布的区域地震危险性分析方法。最后建议建立健全软、硬结合的大地震综合防御体系才能切实减轻大地震所造成的灾害。
     本文首先回顾了20世纪前后历史上的大地震对我国造成的巨大灾难。利用我国丰富的历史地震资料分析了我国大地震(M≥7.0)地震的空间分布和频度分析特征;利用我国第五代地震动参数区划图震级上限大于7.0的潜在震源区(以下简称“潜源”)资料,探讨了我国高震级上限潜源的空间分布特点;最后分析了我国高震级上限潜源内城市分布的特征。研究分析表明我国地处地质构造活跃地区,易发生大地震的形势严峻。较多城市位于高震源上限潜源内部,设防大地震的任务紧迫。
     本文阐明“大地震”与罕遇、极罕遇地震作用的区别与联系,以龙门山地震带中段的北川-映秀潜源为例揭示“大地震作用”与罕遇、极罕遇地震作用的关系。然后利用我国第四、五代地震动参数区划图所确定的六套潜源方案,获得了全国范围内各网格点上K1和K2值,统计不同潜源方案、不同地震区、不同衰减关系分区及不同加速度分区全国范围内K2和K1值的统计特征和频度分布特征。明确了不同潜源方案K2和K1值的面积统计关系、不同级别城市的K2和K1值分布特点,以及探讨极大与极小值的空间分布特征及相应的地震环境,最后揭示了不同潜源方案引起K2和K1值标准差和变异系数的空间分布特征。可以得到如下认识:
     中国大陆地区K值分布在空间位置分布相当不均匀,这种分布与其相应的地震环境紧密联系。总体上说强震活动区的K2和K1值相对小一点,而中强地震活动区的K2和K1值稍大一点。具有极大与极小K值的场点其地震危险性主要是受单一潜源所控制。潜源方案不确定性导致K2和K1标准差和变异系数的空间分布形态基本上不受超越概率水平的影响,超越概率水平仅仅影响标准差和变异系数的大小,并且标准差和变异系数均随着风险水平的增大而增大。标准差和变异系数较大的地区主要位于我国东部地区,西部则主要沿着大型断裂带分布。对于我国现行的抗震设防体系中大震下的一般结构的变形验算,本文建议使用单一超越概率(50年10%)加速度值所确定的区划图、考虑不确定性的K2值空间分布图及相应的土层放大系数共同确定大震下的抗震设防参数值;强震活动地区,“防大地震”就应该考虑极罕遇地震作用;高震级上限潜源内部的地震动参数设防值应该使用确定性方法和概率性方法的最大值。
     本文以汶川地震后修改的潜源方案为数据基础,在不同形状的超越概率曲线的基础上耦合了ATC-63所推荐的倒塌能力的不确定性,提出了建筑物抗倒塌风险的控制方法,并获得了全国范围内96189个网格场点上对应于MCE水平PGA的倒塌概率、50年1%倒塌概率所对应的PGA以及50年1%倒塌概率所对应的PGA与MCE水平PGA比值(本文称“风险系数”)。研究分析认为(1)中国大陆地区MCE水平的PGA大致相当于50年1%倒塌率所对应的PGA,中国大陆地区风险系数绝大部分集中在0.8-1.2之间,MCE水平的PGA只需做较小的调整就能达到50年1%的倒塌率的风险水平。(2)虽然中国大陆地区MCE水平的PGA大与50年1%倒塌率所对应的PGA空间分布形态较为相似,为了满足“小震不坏、中震可修、大震不倒”的功能要求,对于一般建筑本文建议利用风险系数图对MCE水平的PGA进行调整,才能在全国范围获得一致的倒塌率。(3)MCE水平PGA对应的倒塌概率50年2-5%的地区,除了人口稀少地区外,其它地区例如台湾西海岸包括台北盆地在内,以及我国东南沿海部分地区都属于人口稠密、经济发达地区,MCE水平下倒塌率明显高达其它地区,应该引起大家重视。
     本文针对大城市与城市群的防震设防,以中强地震活动的湖南示范区(长株潭城市群)作为研究区域,选取了衡阳核电潜源方案常德7.0级、长沙—益阳6.0级及湘潭—湘乡5.5级潜源及其地震活动性参数,提出了利用蒙特卡罗(随机模拟)模拟区域内二维地震动场空间分布的区域地震危险性分析方法,开展了传统的特定场点的地震危险性分析方法与本文提出的区域地震危险性方法的比较研究。研究表明,(1)传统的特定场点的地震危险性分析方法可能低估区域内罕遇大震的影响;(2)特定场点地震危险性分析方法控制着更加活跃源附近的设计加速度;区域性地震危险性分析方法控制着高震级源附近的设计加速度。(3)建筑物抗震设计的地震荷载应该同时满足特定场点风险和区域性的风险,能一定程度能解决罕遇大地震时控制其破坏的空间范围和破坏程度的问题。(4)考虑场点间地震危险性空间相关性的区域地震危险性分析方法为大城市及城市群的防震设防提供了理论基础。
     最后建议建立软、硬件防灾相结合,城市规划和防灾规划一致的大地震综合防御体系才能真正为我国未来的防震减灾提供坚实的基础。
Great earthquakes (M≥27.0) are the main reason of the earthquake disaster and the collapse of buildings is the direct cause of the casualties. Great earthquakes in China are frequently occurred, widely distributed, great harmful. There are many shortcomings in the current seismic fortification system of China, especially, determination design ground motion parameters for rare ground motion. This article expbres difference and relationship between "great earthquake" and rare ground motion, very ground motion, and detailed analyzed the statistical characteristics and spatial distribution of the ratio between basis ground motion(10%probability of exceedance in50years) and c(2%PE in50years), very ground motion(1×10-4PE in one year) on rocks, and defined as K2and Kl, respectively. Coupling the probability distribution for the collapse capacity with a corresponding ground motion hazard curve for the location of the structure, we proposed method of controlling collapse risk for general construction projects. We attempted to consider correlation of seismic risk for different sites, and using Monte Carb (stochastic simulation) simulate two-dimensional distribution of ground motion, to proposed aggregate seismic hazard analysis method Finally in order to achieve better urban disaster prevention and mitigation work, we suggested that only integrated defense system of soft and hard Measures for great earthquake should be established and improved
     Firstly we reviewed the great earthquake disaster before and after20th century in China, using rich data of historic earthquake in China, analyzed spatial distribution and frequency feature of great earthquakes (M≥7.0); using potential seismic source zone with magnitude greater than7.0in China's fifth generation ground motion map, analyzed the space distribution characteristics of potential source zone with high magnitude limit, final analyzed the distribution characteristics of urban in potential seismic source zone with high upper limit magnitude. The analysis shows that our country is located in an active tectonically regions, and is prone to occur great earthquakes. More cities located in potential seismic source zone with high upper limit magnitude, and the task of fortification against great earthquakes is urgent.
     This article stated that difference and relationship between "great earthquake" and rare ground motion, very ground motion, and taking Beichuan-Yingxiu potential seismic source zone in middle of Longmenshan seismic belt as example to reveal relationship between "great earthquake" and rare ground motion, very ground motion. And then using six of potential seismic source zone schemes of the fourth, fifth generations seismic ground motion parameter zonation, the K1and K2values on each grid point in China was obtained and analyzed the statistical characteristics and frequency distribution characteristics of the Kl and K2values in different potential seismic source zone schemes, different seismic zones, different partition of attenuation relationship and different acceleration Zoning. Finally, the space distribution characteristics of maximum and minimum value of K2and Kl values, as well as standard deviation and coefficient of variation for K2and Kl value were made clear. We can get the following understanding:
     Distribution of K-value was quite unevenly, which was closely linked to its earthquake environment. K2and Kl values in seismic active area were small relatively, but slightly larger overall in Stable area. Seismic hazard of sites with a maximum and minimum value of K is mainly controlled by a single potential seismic source zone. Uncertain of potential seismic source zone does not affect the spatial distribution of standard deviation and coefficient of variation of K2and Kl, only affect its area. And standard deviation and coefficient of variation increases with the level of risk. Areas with larger Standard deviation and coefficient of variation are mainly located in eastern China, mainly distributed along big active fault in western China. We suggested using acceleration values of a single probability of exceedance (50years,10%), the spatial distribution of K2values with uncertain and amplification coefficients of soil jointly determine seismic fortification parameter values of rare ground motion; very rare ground motion should be considered, in order to "anti-great earthquake "; the maximum value of deterministic method and Probability approach should be used to fortify in potential seismic source zone with high upper limit magnitude.
     Using data of potential seismic source zone modified after the Wenchuan earthquake, and coupling the probability distribution for the collapse capacity recommended by ATC-63with a corresponding ground motion hazard curve for the location of the structure, method of controlling collapse risk for general construction projects was proposed And accessed the probability of the collapse targeted at the MCE level PGA, PGA corresponding to the50-year probability of1%collapse and ratio for PGA of50-year1%collapse probability and PGA of MCE level,(hereinafter referred to as "risk factor") on96,189grid point. Research and analysis shown that (1) PGA of MCE level is roughly equivalent to PGA for50years the rate of1%collapse in China and risk factor in China is most concentrated in the0.8-1.2. PGA of MCE level slightly adjusted to the risk level of the collapse rate of1%in50years.(2) Though spatial distribution PGA of MCE is similar to PGA of the collapse rate of1%in50years, we proposed use of risk factor of this paper to adjust PGA of MCE level,in order to get a consistent collapse rate in China.(3) Collapse rate for PGA of MCE level was significantly higher than other regions, for example, the west coast of Taiwan, including Taipei Basin, and the southeast coast of China, and this should arouse the attention.
     Using Monte Carb (stochastic simulation) to simulate the two-dimensional distribution field of PGA, aggregate seismic hazard analysis method was proposed for fortification of big cities and urban agglomerations. Selecting potential seismic source zone of Changde7.0, Changsha-yiyang6.0and Xiangtan5.5to carry out seismic risk analysis for specific and aggregate site, and comparison of this two methods was made. Studies have shown that (1) site-specific seismic hazard analysis method may underestimate the impact of great earthquakes rarely occurred in the region;(2) design acceleration near more active source was controlled by site-specific seismic hazard analysis; acceleration near source with high magnitude was controlled by aggregate hazard analyses.(3) Seismic design of buildings should meet site-specific seismic risk and aggregate risk at the same time, which can to some extent control the spatial extent of the destruction and the extent of the damage under great rare earthquake.(4) Aggregate seismic hazard analysis method, which considers spatial correlation of seismic hazard among sites, can provide a theoretical basis of earthquake fortification for the big cities and urban agglomerations.
     Finally, we suggest that only combination of soft and hardware disaster prevention system, Consistency of urban planning and disaster planning can really provide a solid foundation for earthquake disaster reduction in future.
引文
·陈汉尧、胡聿贤、霍俊荣,1992,衰减关系系数不确定性对地震危险性分析结果的影响[J],华北地震科学,10(4),49-54.
    ·陈鲲、高孟谭,2006,SuperMap Object在地震灾害预估中应用浅析[J],中国地震,22(3),327-331.
    ·陈鲲,高孟潭.2010.地震动参数区划中的不确定性分析[J].地震学报,32(2),184-192.
    ·陈培善,白彤霞,1991,震源参数之间的定量关系[J],地震学报,13(4):401-411.
    ·陈顒,彭文涛,徐文立.2004.21世纪地震灾害的一些新特点[J],地球科学进展,19(3):359-363
    ·崔京浩,2006,灾害的严重性及土木工程在防灾减灾中的重要性,工程力学,23(2),49-77。
    ·丁韫玉、狄秀玲,1991,潜在震源区不确定性因素分析[J],中国地震,7(4),33-38.
    ·高孟潭、韩炜,1992,抗震设计中的大、中、小地震的确定[M],地震工程研究文集,地震出版社.
    ·高孟潭,潘华.1993a.地震区划结果的随机场特征[J].地震学报,15:53-60.
    ·高孟潭.1993b.空间线形展布系统的地震危险性分析方法[J].地震学报,15(5):347-352.
    ·高孟潭,2003,新的国家地震区划图[J],地震学报,25(6),630-636.
    ·高孟潭,卢寿德.2006.关于下一代区划图编制原则与关键技术的初步探讨[J].震灾防御技术,1(1):1-6.
    ·高小旺,鲍霭斌.1986.用概率方法确定抗震设防标准[J].建筑结构学报,2:55-63.
    ·郭星,潘华,高孟潭.2009.基于蒙特卡罗方法的梯级电站系统地震危险性分析[J].中国地震,25(1):94-99.
    ·高玉峰、谢康和、曾国熙、颜志平、王朝晖,1998,地震危险性分析中不确定性因素的研究,浙江大学学报,32(5),590-596.
    ·高玉峰、谢康和、王朝晖、颜志平、曾国熙,1999,潜在震源区范围的不确定性对地震危险性分析结果的影响规律,科技通报,15(4),258-262.
    ·国家质量技术监督局,2001,中国地震动参数区划图(GB18306-2001)[S].北京:中国标准出版社.
    ·国家质量技术监督局,2008,中国地震动参数区划图第1号修改单(GB18306-2001)[S].北京:中国标准出版社.
    ·胡聿贤.1990.地震危险分析中的综合概率法[M],1-30,地震出版社:北京.
    ·胡聿贤.1993.有关设计地震动的几个问题[J],土木工程学报,26(2):1-8.
    ·胡聿贤、陈汉尧,1994,关于地震危险性估计中不确定性的统一分析,地震学报,16(4),511-518.
    ·胡聿贤,1999,地震安全性评价技术教程,地震出版社:北京.
    ·胡聿贤、高孟潭,2001,GB18306-2001《中国地震动参数区划图》宣贯教材,中国标准出版社.
    ·胡聿贤,2006,工程地震学,地震出版社:北京.
    ·黄玮琼、吴宣,2003,地震活动性参数不确定性对城镇危险性估计的影响,地震学报,25(6),615-620.
    ·蔺明河,谢定义,吴先维.2006,中国地震灾害的严峻性及其相应对策,西北水力发电,22(3):83-86.
    ·雷建成,高孟潭,吴健,亢川川.2010.双场点地震危险性分析方法及其应用[J].地震学报,32(3):310-319.
    ·雷建成、高孟潭、吕红山等.2010,四川及邻区不同风险水平下地震动峰值加速度的比值特征,地震学报,32(5):588-600.
    ·雷建成.2002.攀西地区不同风险水平下基岩地震动参数之间的关系[J].中国地震,18(2):193-202.
    ·李金臣,潘华,吴健,鄢家全,2007,不同超越概率水平PGA关系研究[J].震灾防御技术,2(2):207-211.
    ·李小军、彭青、刘文忠,2001,设计地震动参数确定中的场地影响考虑,世界地震工程,17(4):34-41.
    ·李亚琦,1999,中国地震危险性特征区划,工学硕士学位论文,中国地震局工程力学研究所.
    ·卢啸,陆新征,张万开,叶列平.2011,特大地震一超高层建筑的倒塌模拟,中国科学,41(11),1045-1416.
    ·陆新征,唐代远,叶列平,施炜.2011,我国7度设防等跨RC框架抗地震倒塌能力研究,地震工程与工程振动,31(5),13-20
    ·马杏垣,1989,板内块体的现代运动,中国岩石圈动力学地图集,北京:中国地图出版社,21.
    ·马玉宏、谢礼立,2002年,考虑地震环境的设计常遇地震和罕遇地震的确定,建筑结构学报,23(1):43-67.
    ·马宗晋、赵阿兴,1991,中国地震灾害概况和减灾对策建议,中国地震,7(1):89-94.
    ·潘华,赵凤新,高孟潭.2004.城市地震影响特征研究[J].地震学报,26(2):203-210.
    ·潘华、黄玮琼,2003,地震统计区划分不确定性对场点地震危险性计算的影响,地震学报,25(2):199-204.
    ·沈建文、蔡长青,1997,地震危险性与抗震设防标准的确定,地震工程与工程振动,17(2):27-36。
    ·时振梁,鄢家全,高孟潭.1991.地震区划原则和方法的研究-以华北地区为例[J].地震学报,13:179-188.
    ·时振梁、环文林、武宦英、曹新玲,1973,我国强震活动与板块构造,地质科学,4:281-293.
    ·时振梁、王健、张晓东,1995,中国地震活动性分区特征,地震学报,17(1):20-24.
    ·施炜,叶列平,陆新征,唐代远.2011,不同抗震设防RC框架结构抗倒塌能力的研究,工程力学,28(3),41-68.
    ·汤保新,叶列平,陆新征.2011.丙类与乙类设防RC框架结构抗地震倒塌能力对比[J].建筑结构学报,32(10):30-38.
    ·唐丽化,高孟潭,姜慧,2007,新疆地区不同设防水准下设计地震动关系研究[J].中国地震,23(1):10-16.
    ·王阜.1986.描述地震危险性分析中地震发生率的更新过程模型[J].地震工程与工程振动,6(2):17-25.
    ·王亚勇,高孟潭,叶列平,陆新征,钱稼茹.2010,基于大震和特大震下倒塌率目标的建筑抗震设计方法研究方案,土木建筑与环境工程,32(supply2):291-297
    ·汪素云、俞言祥、高阿甲、阎秀杰,2000,中国分区地震动衰减关系的确定,中国地震,16(2):99-106.
    ·肖亮,2011,水平向基岩强地面运动参数衰减关系研究,中国地震局地球物理研究所,博士论文.
    ·杨智娴、张培震、郑月君,1998,用逻辑树方法估计地震年发生率的不确定性,地震学报,20(2):185-193.
    ·叶列平,曲哲,陆新征,冯鹏.2008,提高建筑结构抗地震倒塌能力的设计思想与方法,建筑结构学报,29(4):42-50.
    ·叶列平,陆新征,赵世春,李易.2009a,框架结构抗地震倒塌能力的研究,建筑结构学报,30(6):67-76.
    ·叶列平,马千里,缪志伟.2009b,抗震分析用地震动强度指标的研究[J].地震工程与工程振动,29(4),150-163.
    ·鄢家全、韩炜、高孟潭,1996,地震活动性参数的不确定性及其对区划结果的影响,中国地震,Vol.12, Supplement:71-77
    ·鄢家全,陈家庚,高孟潭,郝玉芹.2000.抗震设防地震的概率标定[J]。国际地震动态,(9):1-7.
    ·俞言祥,李山有,肖亮.2013.为新区划图所建立的地震动衰减关系.震灾防御技术,8(1):24-33.
    ·张晓梅,2000,基于抗倒塌设防目标的设计地震动区划研究,工学硕士学位论文,中国地震局地球物理研究所。
    ·张培震,2008,中国地震灾害与防震减灾,地震地质,30(3):577-583.
    ·中国地震局,2001,中国地震动参数区划图(GB183062-2001),北京:中国标准出版社.
    ·中国地震局震害防御司,1995,中国历史强震目录(公元前23世纪-公元1911年)[M].北京:地震出版社.
    ·中国地震局震害防御司,1999,中国近代地震目录(公元1912年-1990年Ms≥4.7)[M].北京:中国科学技术出版社.
    ·中华人民共和国建设部.1989.建设抗震设计规范GBJ11-89[M].北京:中国建筑工业出版社.
    ·中华人民共和国建设部.2001.建筑抗震设计规范GB50011-2001[M].北京:中国建 筑工业出版社.
    ·中华人民共和国住房和城乡建设部和中华人民共和国国家质量监督检验检疫总局.2010.建筑抗震设计规范GB50011-2001局部修订[M].北京:中国建筑工业出版社.
    ·中华人民共和国国家质量监督检验检疫总局,中国国家标准化管理委员会.2008.中国地震烈度表(GB/T 17742—2008)[s].北京:中国标准出版社.
    ·中华人民共和国国家质量监督检疫检验总局,中国国家标准化管理委员会.2005.工程场地地震安全性评价(GB17741-2005)[S].北京:中国标准出版社.
    ·周克森,吴鹏,王东霞.1991.地震危险性分析多维不确定性的复合概率模型[J].地震工程与工程振动,11:19-29.
    ● Algermissen S T, Perkins D M.1976. A probabilistic estimate of maximum acceleration in rock in the contiguous United States[R]. U. S. Geol. Surv. Open-File Report:76-416.
    ● Allen, T.I. and Wald, D. J.,2007, Topographic Slope as a Proxy for Seismic Site-Conditions (Vs30) and Amplification around the Globe:U. S. Geological Survey Open-File Report 2007-1357,69p.
    ● American Society of Civil Engineers.2006. Minimum Design Loads for Buildings and Other Structures, ASCE/SEI 7-05. ASCE, Reston, Virginia.
    ● Arroyo D and Ordaz D.2007. Inelastic-Strength Spectra in Probabilistic Seismic-Hazard Analysis [J]. Bull. Seism. Soc. Am.97(6):2171-2181.
    ● Applied Technology Council.1978. Tentative Provisions for the Development of Seismic Regulations for Building, Report ATC-3-06. Redwood City, California:Applied Technology Council.
    ● ASCE,2005a, Minimum Design Loads for Buildings and Other Structures (ASCE Standard 7-05, Including Supplement No.1). American Society of Civil Engineers, Reston, VA.
    ● ASCE,2005b, Seismic Design Criteria for Structures, Systems and Components in Nuclear Facilities, (ASCE Standard 43-05). American Society of Civil Engineers, Reston, VA.
    ● Augusto A, G6mez Capera, Vera D'Amico, Carlo Meletti, Andrea Rovida, and Dario Albarello.2010. Seismic Hazard Assessment in Terms of Macroseismic Intensity in Italy:A Critical Analysis from the Comparison of Different Computational Procedures. Bull. Seism. Soc. Am.100(4):1614-1631.
    ● Bazzurro R and Luco N.2005. Accounting for uncertainty and correlation in earthquake loss estimation[C]. Proc. ICOSSAR 2005, Safety and Reliability of Engineering Systems and Structures.
    ● Bazzurro P and Cornell C A.2004. Nonlinear Soil-Site Effects in Probabilistic Seismic-Hazard Analysis[J]. Bull. Seism. Soc. Am. 94(6):2110-2123.
    ● Bommer J J, Scherbaum F, Bungum H, Cotton F, Sabetta F and Abrahamson N A.2005. On the Use of Logic Trees for Ground-Motion Prediction Equations in Seismic-Hazard Analysis[J]. Bull. Seism. Soc. Am.95(2):377-389.
    ● Bommer J J and Pinho R.2006. Adapting earthquake actions in Eurocode 8 for performance-based seismic design[J]. Earthq. Eng. Struct. Dyn. 35:39-55.
    ● Boore, D. M., Joyner, W. B., and Fumal, T. E.,1993, Estimation of response spectra and peak accelerations from Western North American earthquakes:an interim report, U.S. Geol. Surv. Open-File Rept.93-509.
    ● Boore D M and Atkinson G M.2007. Boore-Atkinson NGA ground motion relations for the geometric mean horizontal component of peak and spectral ground motion parameters [R]. PEER Report 2007/01, Pacific Earthquake Engineering Research Center, University of California, Berkeley.
    ● Borcherdt, R. D., Wentworth, C. M., Fumal, T. E.,, and Gibbs, J.,1991, Methodology for predictive GIS mapping of special study zones for strong ground motion in the San Francisco Bay region, CA, in Proc. Fourth Int. Cont. on Seismic Zonation, Earthquake Engineering Research Institute, Oakland, California,545-552.
    ● Borcherdt, R. D.,1994, Estimates of site-dependent response spectra for design (methodology and justification), Earthquake Spectra 10,617-654.
    ● BSSC,1998,1997 Edition NEHRP Recommended Provisions for Seismic Regulation for New Building and Other Structures, Part I:PROVISIONS and Part 2: Commentary, FEMA302/303, Washington, DC.
    ● BSSC,2001,2000 Edition NEHRP Recommended Provisions for Seismic Regulation for New Building and Other Structures, Part 2:Commentary, FEMA369, Washington, DC.
    ●BSSC,2004,2003 Edition NEHRP Recommended Provisions for Seismic Regulation for New Building and Other Structures, Part 1:PROVISIONS and Part 2: Commentary, FEMA450, Washington, DC.
    ●BSSC,2009,2003 Edition NEHRP Recommended Provisions for Seismic Regulation for New Building and Other Structures, Part 1:PROVISIONS and Part 2: Commentary, FEMA750, Washington, DC.
    ●Building Seismic Safety Council.2004. NEHR P Recommended Provisions for Seismic Regulations for New Buildings and Other Structures (2003 edition) [S]. Washington D C:Building Seismic Safety Council, FEMA 450/451:19-38.
    ● Cao T, Petersen M D, Cramer C H, Toppozada T R, Reichle M S and Davis J. 1999. The calculation of expected loss using probabilistic seismic hazard [J]. Bull. Seism. Soc. Am.89:867-876.
    ● Chiou, B. S.-J., and Youngs, R. R.,2006, PEER-NGA empirical ground motion model for the average horizontal component of peak acceleration and pseudo-spectral acceleration for spectral periods of 0.01 to 10 seconds, Interim Report for USGS Review,219 pp., http://peer.berkeley.edu/lifelines/repngamodels.html(last accessed December 2006).
    ● Cornell C A.1968. Engineering Seismic risk analysis [J]. Bull. Seism. Soc. Am. 58:1583-1606.
    ● Cornell C A.1971. Probabilistic analysis of damage to structures under seismic loads[M], in Dynamic Waves in Civil Engineering, D. A. Howells, I. P. Haigh and C. Taylor (Editors), Wiley, New York,473-488.
    ● Cornell, C. A.1994. Risk-Based Structural Design, Proceedings of Symposium on Risk Analysis, Ann Arbor:University of Michigan.
    ● Crowley H, and Bommer J J.2006. Modelling seismic hazard in earthquake loss models with spatially distributed exposure[J]. Bull. Earthq. Eng. 4(3):249-273.
    ● Ebel J E and Kafka A L.1999. A Monte Carlo approach to seismic hazard analysis[J]. Bull. Seism. Soc. Am.89(4):854-866.
    ● Ellingwood. Galambos, Macgregor, Cornell 1980, Development of a Probability Based Load Criterion for American National Standard A58.
    ● Ellingwood, B. R.1994. "Probability-based Codified Design for Earthquakes." Engineering Structures 17(7).
    ● Farr, T. G., and Kobrick, M.,2000, Shuttle Radar Topography Mission produces a wealth of data:EOS Trans., v.81,583-585.
    ●FEMA273, FEMA274, FEMA366, NEHRP Guidelines for the Seismic Rehabilitation of Buildings [S]. Washington D C:Federal Emergency Management Agency, 1996.
    ●FEMA,2000, FEMA 356:Prestandard and Commentary for the Seismic Rehabilitation of Buildings, Report No. FEMA356, prepared by Applied Technology Council, prepared for Federal Emergency Management Agency, Washington, DC.
    ● FEMA,2009, FEMAP695, Quantification of building seismic performance factors [S]. Report No. FEMAP695, prepared by Applied Technology Council, prepared for Federal Emergency Management Agency, Washington, DC.
    ● FEMA,2009, FEMA P-750, NEHRP Recommended Seismic Provisions for New Buildings and Other Structures [S]. Report No. FEMAP750, prepared by Applied Technology Council, prepared for Federal Emergency Management Agency, Washington, DC.
    ●Field E H and Petersen M D.2000. A Test of Various Site-Effect Parameterizations in Probabilistic Seismic Hazard Analyses of Southern California[J]. Bull. Seism. Soc. Am.90(6B):S222-S244.
    ●Frankel, Arthur, Mueller, Charles, Barnhard, Theodore, Perkins, David, Leyendec her, E. V., Dickman, Nancy, Hanson, Stanley, Hopper and Margaret.1996. National Seismic Hazard Maps, June 1996, Documentation:U. S. Geological Survey, Open-File Report,96-532.
    ● Fumal, T. E., and Tinsley, J. C.,1985, Mapping shear-wave velocities in near-surface geological materials, in Evaluating Earthquake Hazards in the Los Angeles Region-An Earth Science Perspective, J. I. Ziony (Editor), U.S. Geol. Surv. Profess. Pap.1360,127-150.
    ● Holzer, T. L., Padovani, A. C., Bennett, M. J., Noce, T. E., and Tinsley, J. C.,2005, Mapping NEHRP Vs30 site classes, Earthquake Spectra 21,353-370.
    ● Joyner, W. B. and Fumal, T. E.,1985, Predictive mapping of earthquake ground motion, in Evaluating Earthquake Hazards in the Los Angeles Region--An Earth-Science Perspective, J. E. Ziony (Editor), U.S. Geol. Surv. Profess. Pap.]360,203-220.
    ● Kennedy, R. P. and S. A. Short.1994. Basis for Seismic Provisions of DOE-STD-1020, UCRL-CR-111478. Prepared for Lawrence Livermore National Laboratory. Livermore:University of California.
    ● Kishor Jaiswal and Ravi sinha,2007, Spatial variation of maximum considered and design basis earthquakes in peninsular India, CURRENT SCIENCE, VOL.92, NO.5,639-645.
    ● Kiureghian, A. Der. and Ang, A. H-S,,1977, A Fault-Rupture Model for Seismic Risk Analysis, Bull. Seism. Soc Amer, Vol.67, No.4.1173-1194
    ● Leonard G and Steinberg D. M.2002. Seismic hazard assessment:simultaneous effect of earthquakes at close and distant sites [J]. Earthq. Spectra.18(4): 615-629
    ● Leyendecker E V, Hunt R J, Frankel A D and Rukstales K S.2000. Development of maximum considered earthquake ground motion maps[J], Earthq. Spectra. 16(1):557-578.
    ● Luco, N. (2006). "Risk-targeted approach to selecting return periods for design maps," Proceedings of the 3rd ATC-35/USGS National Earthquake Ground-Motion Mapping Workshop, Applied Technology Council, Redwood City, CA
    ● Malhotra P K.2005. Return period of design ground motions [J]. Seism. Res.Lett,76(6):693-699.
    ● Malhotra P K.2006. Seismic risk and design loads [J]. Earthq. Spectra,22(1): 115-128.
    ● Malhotra P K.2008. Seismic Design Loads from Site-specific and Aggregate Hazard Analyses[J]. Bull. Seism. Soc. Am.98(4):1849-1862.
    ● Matsuoka, M. K., Wakamatsu, K., Fujimoto, K., and Midorikawa, S.,2005, Nationwide site amplification zoning using GIS-based Japan Engineering Geomorphologic Classification Map, In Proc.9th int. conf. on struct. Safety and reliability,239-246.
    ● McGuire R K,1990, Demonstrations of a risk-based approach to high-level waste repository evaluations EPRI, NP-7057,9.1-9.16.
    ● McGuire R K.1995, Probabilistic seismic hazard analysis and design earthquakes:closing the loop[J]. Bull. Seism. Soc. Am.85(5):1275-1284.
    ● McGuire R K.2004. Seismic Hazard and Risk Analysis[M]. Earthquake Engineering Research Institute, Oakland, CA,221 pp.
    ● Musson R M W,1998. On the use of Monte Carlo simulations for seismic hazard assessment[C]. Proceedings of 6th U.S. National Conference on Earthquake Engineering. Seattle, Washington.
    ● Musson R M W.1999. Determination of design earthquakes in seismic hazard analysis through Monte Carlo simulation[J]. Journal of Earthquake Engineering,3(4):463-474.
    ● Park, S., and Elrick, S.,1998, Predictions of shear-wave velocities in southern California using surface geology, Bull. Seism. Soc. Am.88,677-685.
    ● Petersen, M. D., Bryant, W. A., Cramer, C. H., Reichle, M. S., and Real, C. P.,1997, Seismic ground motion hazard mapping incorporating site effects for Los Angeles, Orange, and Ventura counties, California:a geographical information system application, Bull. Seism. Soc. Am.87,249-255.
    ● Petersen M D, Frankel A D, Harmsen S C, Mueller C S, Haller K M, Wheeler R L, Wesson R L, Zeng Yuehua, Boyd 0 S, Perkins D M, Luco N, Field E H, Wills C J and Rukstales K S.2008. Documentation for the 2008 Update of the United States National Seismic Hazard Maps:U.S. Geological Survey Open-File Report 2008-1128,61 p.
    ● Rhoades D A and McVerry G H.2001. Joint hazard of earthquake shaking at two or more locations [J]. Earthq. Spectra,17(4):697-710.
    ● Reiter L.1991. Earthquake hazard analysis-issues and insights[M], Columbia University Press, New York,254 pp.
    ● Smith W D.2003. Earthquake hazard and risk assessment in New Zealand by Monte Carlo methods[J]. Seism. Res. Lett,74(3):298-304.
    ● Steidl J H.2000. Site Response in Southern California for Probabilistic Seismic Hazard Analysis[J]. Bull. Seism. Soc. Am.90(6B):S149-S169.
    ● Stirlong M, Litchfield N, Gerstenberger M, Clark D, Bradley B, Beavan J, Mcverry G, Dissen R V.Nical A, Wallace L and Buxton R.2011. Preliminary Probabilistic Seismic Hazard Analysis of the C02CRC Otway Project Site, Victoria, Australia[J]. Bull. Seism. Soc. Am.90(6B):S149-S169.
    ● Tinsley, J. C., and Fumal, T. E.,1985, Mapping Quaternary sedimentary deposits for areal variations in shaking response, in Evaluating Earthquake Hazards in the Los Angeles Region—An Earth Science Perspective, J. I. Ziony (Editor), U.S. Geol. Surv. Profess. Pap.1360,101-126.
    ● Vamvatsikos, D., and C. A. Cornell.2002. "Incremental Dynamic Analysis, " in Earthquake Engineering and Structural Dynamics,31(3):491-514.
    ● Wald, D. J., Worden, B.C., Quitoriano, V., and Pankow, K. L.,2006, ShakeMap Manual:Technical manual, user's guide, and software guide:U.S. Geological Survey,156p.
    ● Wald, D. J., and Allen, T. I.,2007, Topographic Slope as a proxy for Seismic Site Conditions and Amplification, Bull. Seism, soc. Amer., Vol.97, No.5, 1379-1395.
    ● Wessel, P., and Smith, W. H. F.,1991, Generic Mapping Tools, EOS 72,441.
    ● Wells D L and Coppersmith K J.1994. New empirical relationships among magnitude, rupture length, rupture width, rupture area, and surface displacement[J]. Bull. Seismol. Soc. Am.84(4):974-1002.
    ● Wesson R L and Perkins D M.2001. Spatial correlation of probabilistic earthquake ground motion and loss[J]. Bull. Seism. Soc. Am.91(6): 1498-1515.
    ● Wills, C. J., Petersen, M., Bryant, W. A., Reichle, M., Saucedo, G. J., Tan, S., Taylor, G., and Treiman, J.,2000, A Site-conditions map for California based on geology and shear-wave velocity:Bull. Seism. Soc. Am., v90, no.6B, p. S187-S208.
    ● Wills, C. J., and Clahan, K. B.,2006, Developing a map of geologically defined site-condition categories for California, Bull. Seism. Soc. Am.96, 1483-1501.total:134

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700