用户名: 密码: 验证码:
中国地震台网观测系统特性分析与资料应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
2000年以来我国地震观测系统得到了迅速的发展,目前已建成了由国家数字地震台网、区域数字地震台网、火山数字地震台网和流动数字地震台网组成的新一代中国数字地震台网。中国地震台网中心每天汇集的数据量达到40G,可以说我国地震台网产出的观测数据积累到了一定程度,如此海量的地震波形数据为地震监测与研究提供了丰富的原始资料,也将在推动地球科学研究方面发挥重要作用。正确理解和使用不同类型数字地震仪器的特性,对于数据的应用至关重要。
     本文主要针对中国地震台网观测系统特性展开研究分析,首次基于中国地震数字台网观测系统特性进行全面系统的研究,对中国数字地震台网所使用的各种仪器的主要参数及其传递函数的计算方法进行了介绍与分析,结合我国数字地震台网中使用的地震观测系统,阐述了仪器传递函数的计算方法。中国数字地震台网的观测系统呈现多样化的特点。我国地震台网配置的地震计共计12大类19种,数据采集器的种类也有7种。我们对这几类的观测系统做了脉冲及正弦标定统计,各类系统脉冲标定波形记录正常,幅度、周期、阻尼、灵敏度变化幅度均在5%以内。统计结果表明,我国各类系统运行性能是稳定和可靠的。
     在此基础上对中国地震台网产出的数据进行了应用分析,探索了检测与评价高质量观测数据的方法,利用波形数据的各种动态指标,如:数据的连续性、完备性、噪声等,对波形数据的应用质量进行了检测,结果显示,一,中国地震台站时序质量明显次于IRIS台站,因此我国台站的运维水平亟待加强:二,中国大陆台网的噪声水平在不同区域有较大差异,经济发达地区整体噪声环境相对较高,而内陆的噪声较低。此外,安徽台网部分台站的高频信号部分噪声环境比国际标准NLNM的下限的偏低,有可能是台站给出的灵敏度偏大造成的。这些工作为进一步优化和改造中国地震台网提供了科学依据,并为发挥波形数据在研究工作中的作用提供有力保障。
     在充分了解中国地震台网观测的现状和产出数据质量的基础上,针对参数测定应用研究开展了相关工作,利用中国地震台网的观测数据进行地壳介质参数和震源参数的测定。首先基于新的中国数字地震台网观测系统产生的数据,最全面的给出了145个国家数字地震台和792个区域数字地震台站中658个地震台站下方的Moho面深度与Vp/Vs值,提供了最新的中国大陆Moho面深度分布图。将中国大陆Moho面结果与深反射人工测深(DSS)结果相当,具有较高的可信度。
     另一方面,基于中国数字地震台网观测资料,使用自行研制的常规化测定产出中强震震源机制解的系统和对实现快速计算大地震震源过程的系统,为大震快速产出提供产品。使用中强震震源机制解测定系统测定了发生在我国境内86次5级以上地震事件的快速震源机制解,并将这86次地震事件反演结果与全球矩张量解(GCMT)结果进行了对比。结果显示,震源机制类型一致的事件大约占总数的88%,测定矩震级结果与GCMT测定结果之差多数集中在-0.2-0.1震级单位范围内。大地震震源过程的系统虽然不能像有限源波形反演方法一样给出震源破裂过程的细节,但其理论简单,计算快捷。作为应用实例,本论文使用中国地震台网资料分别获取了2004年苏门答腊Ms8.9地震和2008年汶川地震Ms8.0地震的破裂过程,也验证了这一系统的可用性。
     同时,基于测定的南北地震带地区大量中小地震震源机制解,采用Michael等(1990)提出的震源机制一致性参数(Misfit角度),在汶川余震区开展震源机制一致性参数时空分布与强余震活动的关系研究。研究表明:整个余震区最大主应力方位复杂,存在明显的空间差异,各分段又具独自特有的形态。震源机制一致性、b值空间分布具有很好的对应关系。这项工作为探索强震的地点和时间预测提供参考方法,以印证使用中国台网数字资料的可用性,并为如何基于中国地震台网开展监测、科研、预报相结合提供了较好结合的范例。
     本文所完成的工作,为建立中国数字地震台网观测资料质量检测体系奠定了基础;为使用中国地震台网观测数据常规测定矩震级提供了技术保障;为促进监测工作与预报研究的科学结合应用提供了实例;为实现使用中国资料快速测定大地震的破裂信息进行了预研。
Since2000, China Seismic Observation System has been rapidly developed. By now, the new generation of China digital seismic network has been completed and composited of the China national digital seismic network, regional digital seismic network, volcanic digital seismic network and mobile digital seismic network. Every day, the China Seismograph Networks Center collect40G data, that is to say, the observation data of China Seismograph Networks has been accumulated to a certain extent. Such massive seismic waveform data not only provides rich raw materials for earthquake monitoring and research, but also these data will play an important role in promoting the earth science research. Therefore correctly, understanding and using of the characteristics of these different types of digital seismic instruments, is vital for application data.
     This article mainly studies and analyzes the China Seismograph Networks characteristic of China Seismic observation systems. This is the first research work, that based on the digital seismic network of China observation system features. In this article, the main parameters of the instruments of China digital seismic networks and the calculation method of transfer function are introduced and analyzed. And then combining with seismic observation system used in the digital seismic network in our country, we expound the calculation method of instrument transfer function. The types of observation system in China digital seismic networks have diversified characteristics. The kinds of seismometers have12categories of19species, the kinds of data collectors also have7kinds. We have done pulse and sine calibration statistics for a few kinds of observation system. All kinds of pulse calibration waveform recordings show that system is normal, namely amplitude, period and damping, change in sensitivity are within5%. Statistical result shows that the system performance is stable and reliable.
     On this basis of the above job, we further analysis the application of the China Seismograph Networks output-data, and explore the thinking of testing and evaluating of high quality observation data. By using various dynamic indexes of waveform data, such as:data continuity, completeness, noise, etc., we have tested the waveform data quality. According to the results, the temporal quality of Chinese seismic stations obviously inferior to IRIS stations, thus our jobs should be strengthened. On the other hand, China networks noise levels are different in different regions. The economic developed area overall noise environment is relatively high, and the interior noise is low. In addition, the high frequency signal parts of stations in Anhui network are lower than the limit of international standard NLNM noise, which is probably caused by the larger sensitivity of the stations. The results for the further optimizing and reforming the China Seismograph Networks provide a scientific basis, and give powerful guarantee for research work on waveform data.
     In the present situation of fully understanding on the China Seismograph Networks observation and output-data quality, we have done the related work in view of the parameter determination of applied research, namely using the observation data of the China Seismograph Networks to determine the crustal medium parameters and source parameters. Firstly we selected broadband teleseismic waveform data recorded by China Seismograph Networks to get P wave receiver function using deconvolution in Frequency Domain, then the Mo ho depth and Vp/Vs ratio in all over the country are estimated by teleseismic receiver function using H-κ method. Our results include these values under145national digital seismic stations and658regional digital seismic stations of792seismic stations. Our study provide the latest mainland China Moho depth distribution. The results of contrasting Moho surface from our jobs and that from artificial deep reflection sounding (DSS), has high credibility.
     On the other hand, based on the observation data, we applied the independent developed software to compute earthquake focal mechanism solutions and earthquake source process, providing reference for routine quickly Earthquake emergency products. The systems of determining of earthquake focal mechanism solutions has been used to get rapidly these parameters for86events more than magnitude5.0in territory of China. We have compared the focal mechanism solution and the inversion result of the86seismic events and the global moment tensor solutions (GCMT). According to the result, the focal mechanism type accounts for roughly88%of the total, the difference focus on moment magnitude between CENC and GCMT has range of-0.2~0.1unit. While, earthquake source process of the system has not like limited source waveform inversion method that is focused on the details of the source rupture process, but due to its simple theory, calculation is very fast. Respectively using Ms8.9Sumatra earthquake in2004and Ms8.0wenchuan earthquake in2008as application examples, this paper has obtained rupture process, also has verified the availability of this system.
     At the same time, we determined a great quantity focal mechanism solutions of medium and small earthquakes in the north-south seismic belt, using the method proposed by Michael (1990), that is the focal mechanism parameters (Misfit Angle), conducted focal mechanism parameters in wenchuan aftershock area and analyzed the consistency of space-time distribution and strong aftershock activity relationship.
     These jobs provide reference to find the place and time of earthquake prediction methods, and confirm the use of Chinese network digital information availability, as well as how to carry out monitoring, scientific research, forecast combining based on the China Seismograph Networks provide examples of good combination.
     Studies show that maximum principal stress orientation is complex all over of the entire regions. There is obvious space difference, and each segment has peculiar form alone. Focal mechanism consistency and b value space distribution have good corresponding relation. This job establishes the foundation of the observation data quality inspection system of China digital seismic network, provides the technical support for the use of the China Seismograph Networks data determination moment magnitude, promotes the monitoring and forecast science combined with the application instance of research, and achieves the pre-study for fast determination of earthquake rupture using China Seismograph Networks data.
引文
陈国光,计凤桔,周荣军,等.2007.龙门山断裂带晚第四纪活动性分段的初步研究,地震地质,29(3):657-673.
    陈九辉,刘启元,李顺成,等.2005.青藏高原东北缘—鄂尔多斯地块地壳上地幔S波速度结构,地球物理学报,48(2):333-342.
    陈培善,1995.地震矩张量及其反演,地震地磁观测与研究,16(5):19-53.
    陈颙,1978.用震源机制一致性作为描述地震活动性的新参数,地球物理学报,21(2):146-159.
    成瑾,1998.宽频带波形资料在测定中小地震震源机制和环境应力值中的应用研究,硕士学位论文,中国地震局地球物理研究所.
    程万正,阮祥,张永久.2006.川滇次级地块震源机制类型与一致性参数,地震学报,28(6):561-573.
    崔效锋,谢富仁.1999.利用震源机制解对中国西南及邻区进行应力分区的初步研.地震学报,21(5):513-522.
    崔效锋,谢富仁,赵建涛.2005.中国及邻区震源机制解的分区特征.地震地质,27(2):298-307.
    邓起东,陈社发,赵小麟.1994.龙门山及其邻区的构造和地震活动及动力学,地震地质,16(4):389-403.
    刁桂苓,徐锡伟,陈于高,等.2011.汶川Mw7.9和集集Mw7.6地震前应力场转换现象及其可能的前兆意义,地球物理学报,54(1):128-136.
    刁桂苓,于新昌.1980.唐山地震前后京、津、唐、张地区的综合断层面解,西北地震学报,2(3):39-47.
    刁桂苓,于新昌.1982.海坨山地震前综合断层面解矛盾比的变化,地震,(5):16-17.
    刁桂苓,于利民,李钦祖.1994.强震前后震源区应力场变化一例,地震学报,16(2),64-69.
    刁桂苓,赵英萍,啜永清,等.2004.大同晚期强余震前震源机制解的一致性特征,内陆地震,18(4):202-206.
    方韶东,1991.用地震波形资料反演国内地震的矩张量和震源机制解,硕士学位论文,中国地震局地球物理研究所.
    方韶东,陈培善,1993.用地震波形资料反演中国大陆六个中强地震的矩张量和震源机制,地震学报,15(3):261-267.
    付虹,王绍晋,李丽,等.2011.滇中地区震源机制一致性参数时空分布与强震活动,地震研究,34(2):113-118.
    郭祥云,陈学忠,李艳娥.2010.2008年5月12日四川汶川8.0级地震与部分余震的震源机制解,地震,30(1):50-60.
    韩忠东,陈顒,杨锋杰,等.2008.鄂尔多斯地台南部边缘环形构造的GPS证据及深部动力学解释,中国西部科技,7(3):1-5.
    胡幸平,俞春泉,陶开.2008.利用P波初动资料求解汶川地震及其强余震震源机制解,地球物理学报,51(6):1711-1718.
    嘉世旭,张先康.2005,华北不同构造块体地壳结构及其对比研究,地球物理学报,48(3):611-620.
    江为为,郝天珧,宋海斌.2005,鄂尔多斯盆地地质地球物理场特征与地壳结构,地球物理学进展,15(3):43-50.
    雷建设,周蕙兰,2002.中国西南及邻区上地幔P波三维速度结构,地震学报,24(2):126-134.
    李娟,钮凤林,2008.“中国数字地震观测网络”地震计方位校正.
    李世愚,陈运泰,2003.地震震源的研究,地震学报,25(5):453-464.
    李旭,1993.用地震波波形资料反演1990年青海共和地震的震源过程,硕士学位论文,中国地震局地球物理研究所.
    李勇,黄润秋,周荣军,等.2009.龙门山地震带的地质背景与汶川地震的地表破裂,工程地质学报,17(1):3-16.
    李勇,周荣军,Densmore, A. L.,等.2006.青藏高原东缘龙门山晚新生代走滑-逆冲作用的地貌标志,第四纪研究,26(1):40-51.
    李永华,吴庆举,安张辉,等.2006.青藏高原东北缘地壳S波速度结构与泊松比及其意义,地球物理学报,49(5):1359-1368.
    梁尚鸿,李幼铭,束沛镒等.1984.利用区域地震台网P、S振幅比资料测定小震震源参数,地球物理学报,27(3):249-257.
    刘杰,郑斯华,黄玉龙,2003.利用遗传算法反演非弹性衰减系数、震源参数和场地响应,地震学报,25(2):211-218.
    刘启元,Kind.R.,1997中国数字地震台网的接收函数及其非线性反演,地球物 理学报,40(3):356-368.
    刘宁,钮凤林,陈棋福,等.2010.地震台阵对2010 M8.8智利地震破裂过程的直接成像.地球物理学报,53(7):1605-1610.
    刘瑞丰,1996.数字地震资料在地震矩张量反演和常规分析中的应用研究,博士学位论文,中国地震局地球物理研究所.
    刘瑞丰,陈培善,党京平,张伟清,任克新,1997.宽频带数字地震记录仿真的应用,地震地磁观测与研究18(3):7-12.
    刘瑞丰,陈培善,李强,1993.云南及其邻近地区三位速度图像,地震学报,15(1):61-67.
    刘瑞丰,陈培善,任克新,党京平,李保昆,1999a.地震矩张量反演在地震观测报告中的应用,地震地磁观测与研究,20(4):1-6.
    刘瑞丰,陈运泰,Frank K.,成瑾,杨辉,韩炜,牟磊育,2000.用远场资料反演西藏玛尼地震的高阶地震矩张量.地震学报,22(3):225-232.
    刘瑞丰,陈运泰,周公威,涂毅敏,陈培善,1999b.地震矩张量反演在地震快速反应中的应用,地震学报,21(2):115-122.
    刘瑞丰,党京平,陈培善,1996.利用速度型数字地震仪记录测定面波震级,地震地磁观测与研究,17(2):17-21.
    刘瑞丰,党京平,方韶东,1995.全球地震台网(GSN)数字地震仪的传递函数,地震地磁观测与研究,16(5):1-5.
    刘瑞丰,党京平,方韶东,陈培善,1996.用广义射线理论线性反演一般地震点源的地震矩张量,地震学报,19(2):202-207.
    刘瑞丰,李鸿吉,陈培善,1995.大同地震序列的震源机制解,地震地磁观测与研究,16(2):20-35.
    龙锋,张永久,闻学泽,等.2010.2008年8月30日攀枝花—会理6.1级地震序列ML≥4.0事件的震源机制解,地球物理学报,53(12):2852-2860.
    吕坚,郑勇,倪四道,等.2008.2005年11月26日九江-瑞昌Ms5.7、Ms4.8地震的震源机制解与发震构造研究, 地球物理学报,51(1):158-164.
    陆一锋,徐鸣洁,王良书,等.2011.相位加权叠加方法在探测鄂尔多斯东南缘地壳结构中的应用,高校地质学报,17(4):562-568.
    马淑田,姚振兴,纪晨,1998.1996年5月3日内蒙古包头西Ms6.4级地震的震源机制研究,地球物理学报,41(6):795-804.
    倪江川,陈运泰,王鸣,吴明熙,周家玉,王培德,吴大铭,1991a.云南禄劝地震部分余震的矩张量反演,地震学报,13(4):412-419.
    倪江川,陈运泰,陈祥熊,1991b.地震矩张量及其反演,地震地磁观测与研究,12(5):1-17.
    任雪梅,高孟潭,冯静.2010.鄂尔多斯地块周缘历史强震的影响烈度研究,中国地震,26(4):450-456.
    时振梁,张少泉,赵荣国,吴开统,陆其鹊,张敏政,卓钰如著,1990.地震工作手册,北京:地震出版社.
    廖昌珍,张岳桥,温长顺.2007.鄂尔多斯盆地东缘边界带构造样式及其区域构造意义,地质学报,81(4):466-474.
    束沛镒,李幼铭,铁安,姚振兴,1983.利用远震P波波形反演渤海地震的震源参数,地球物理学报,26(1):30-37.
    滕吉文,张永谦,闫雅芬.2009.强烈地震震源破裂和深层过程与地震短临预测探索,地球物理学报,52(2):428-443.
    滕吉文,曾融生,闫雅芬等.2009.东亚大陆及周边海域Moho界面深度分布和基本构造格局,中国科学(D辑),32(2):89-100.
    童汪练,2000.国家数字地震台网台站地动噪声频谱分析报告.1-40.
    万永革,2008,美国Landers地震和Hector Mine地震前震源机制与主震机制一致现象的研究,中国地震,24(3):216-225.
    王椿镛,W.D.Mooney,王溪莉,吴建平,楼海,王飞,2002.川滇地区地壳上地幔三维速度结构的研究,地震学报,24(1):1-16.
    王俊国,刁桂苓.2005.千岛岛弧大震前哈佛大学矩心矩张量(CMT)解一致性的预测意义,地震学报,27(2):178-183.
    王勤彩,陈章立,郑斯华.2009.汶川大地震余震序列震源机制的空间分段特征,中国科学,54(16):2348-2354.
    T-卫民,赵连锋,李娟,等.2008.四川汶川8.0级地震震源过程,地球物理学报,51(5):1403-1410.
    王卫民,郝金来,姚振兴.2013.2013年4月20日四川芦山地震震源破裂过程反演初步结果.地球物理学报,56(4):1412-1417.
    韦生吉.2009.稀疏台网震源参数方法研究.博士学位论文.中国科学技术大学.
    韦生吉,倪四道,崇加军,等.2009.2003年8月16日赤峰地震:一个可能发生 在下地壳的地震?,地球物理学报,52(1):111-119.
    闻学泽,范军,易桂喜,等.2008.川西安宁河断裂上的地震空区,中国科学D辑:地球科学,38(7):797-807.
    闻学泽.1995.活动断裂地震潜势的定量评估,北京:地震出版社.
    吴庆举,李永华,张瑞青,等,2007.用多道反褶积方法测定台站接收函数.地球物理学报,50(3):791-796.
    吴建平,明跃红,王椿镛,2001.云南数字地震台站下方的S波速度结构研究.地球物理学报,44(2):228-237.
    吴忠良,陈运泰,1994.近震源宽频带记录地地震矩张量反演,地震学报,16(2):141-152.
    吴忠良,臧绍先,1991.用体波合成地震图方法确定渤海、永善两大地震的震源参数,地震学报,13(1):1-8.
    谢富仁,刘光勋,梁海庆,滇西北及邻区现代构造应力场,地震地质,1994,16(4):329-338.
    徐纪人,赵志新,石川有三,2008.中国大陆地壳应力场与构造运动区域特征研究,地球物理学报,51(3):770-781.
    徐锡伟,闻学泽,叶建青,等.2008.汶川Ms8.0地震地表破裂带及其发震构造,地震地质,30(3):597-629.
    徐锡伟,闻学泽,郑荣章,等.2003.川滇地区活动块体最新构造变动样式及其动力来源,中国科学(D辑),33(增刊):151-162.
    徐锡伟,张培震,闻学泽,等.2005.川西及其邻近地区活动构造基本特征与强震复发模型,地震地质,27(3):446-461.
    许力生,1995.地震破裂时空过程的研究,博士学位论文,中国地震局地球物理研究所.
    许力生,G.Patau,陈运泰,2002.用余震作为经验格林函数从CDSN长周期波形资料中提取1999年集集地震的震源时间函数,地震学报,24(2):113-125.
    许力生,陈运泰,1996.用经验格林函数方法从长周期数字波形资料中提取共和地震的震源时间函数,地震学报,18(2):156-169.
    许力生,陈运泰,1997a.用数字化宽频带波形资料反演共和地震的震源参数,地震学报,19(2):113-128.
    许力生,陈运泰,1997b.震源深度误差对矩张量反演的影响,地震学报,19(5): 462-470.
    许力生,陈运泰,1999.1997年中国西藏玛尼Ms7.9地震的时空破裂过程,地震学报,21(5):449-459.
    许力生,陈运泰,1999.1997年中国西藏玛尼Ms7.9地震的时空破裂过程,地震学报,23(3):225-238.
    许力生,陈运泰,2004.从全球长周期波形资料反演2001年11月14日昆仑山地震时空破裂过程,中国科学D辑,34(3):256-264.
    徐彦,张俊伟,苏有锦.2011.反投影全球子台网P波记录研究2010年4月14日玉树地震破裂过程.地球物理学报,54(5):1243-1250.
    许忠淮,戈澍谟,1984.用滑动方向拟合法反演富蕴地震断裂带应力场,地震学报,6(4):395-404.
    许忠淮,1985.用滑动方向拟合法反演唐山余震区的平均应力场,地震学报,7,349-362.
    许忠淮,汪素云,黄雨蕊,等,1989.由大量的地震资料推断的我国大陆构造应力场,地球物理学报,32(6):636-647.
    姚振兴,1979.层状介质、非轴对称震源情况下的反射法,地球物理学报,Vol.22(2):189-193.
    姚振兴,2001.理论地震图及其应用,中国科学院地质与地球物理研究所.
    姚振兴,郑天愉,温联星,1994.用P波波形资料反演中强地震地震矩张量的方法,地球物理学报,37(1):36-45.
    杨锋杰,王明镇,李增学,等.2006.鄂尔多斯盆地南部环形影像特征及地质意义,地球科学与环境学报,28(3):121-134.
    易桂喜,龙锋,张致伟.2012.汶川Ms8.0地震余震震源机制时空分布特征,地球物理学报,55(4):1213-1227.
    易桂喜,闻学泽,苏有锦.2008.川滇活动地块东边界强震危险性研究,地球物理学报,51(6):1719-1725.
    阴朝民,2001.防震减灾技术系统的建设与发展,地震地磁观测与研究,22(6):1-12.
    易桂喜,闻学泽.2000.时间-震级可预报模式在南北地震带分段危险性评估中的应用.地震,20(1):71-79.
    袁学诚主编,1996.中国地球物理图集,北京:地质出版社.
    泽仁志玛,刁桂苓,李志雄,等.2009.千岛岛屿2006年Mw8.3地震震前震源机制解的一致性变化,地震学报,31(4):467-470.
    张辉,2007.青藏高原东北缘基于小震震源机制解的区域应力场特征研究,中国地震局兰州地震研究所硕士学位论文.
    张培震,邓起东,张国民,等.2003.中国大陆的强震活动与活动地块,中国科学(D辑),33(增刊):12-20.
    张培震,徐锡伟,闻学泽,等.2008.2008年汶川8.0级地震发震断裂的滑动速率、复发周期和构造成因,地球物理学报,51(4):1066-1073.
    张学民,束沛镒,刁桂苓,2003.山西省部分台站下方S波速度结构研究及与地震关系探讨,地震学报,25(1):341-350.
    张勇,许力生,陈运泰.2009.2008年汶川大地震震源机制的时空变化,地球物理学报,52(2):379-389.
    张勇,许力生,陈运泰.2013.芦山4.20地震破裂过程及其致灾特征初步分析.地球物理学报,2013,56(4):1408-1411.
    张致伟,程万正,阮祥,等.2009.汶川8.0级地震前龙门山断裂带的地震活动性和构造应力场特征,地震学报,31(2):117-127.
    张致伟,张永久,程万正,等.2010.汶川8.0级地震序列的小震震源机制及应力场特征,地震研究,33(1):43-49.
    赵英萍,刁桂苓,高景春,等.2004.张北强余震前震源机制解的一致性特征,华北地震学报,22(2):1-4.
    郑斯华,杨健,1998.1988年澜沧地震(M=7.6)震源时空扩展参数的研究,地震学报,20(4):337-346.
    郑勇,马宏生,吕坚,等.2009.汶川地震强余震(Ms兰5.6)的震源机制解及其与发震构造的关系,中国科学,39(4):413-426.
    郑治真,1979.波谱分析基础,北京:地震出版社.
    钟继茂,程万正,2006.由多个地震震源机制解求川滇地区平均应力场方向,地震学报,28(4):337-346.
    周龙泉,刘杰,张晓东.2007.2003年大姚6.2和6.1级地震前三维波速结构的演化,地震学报,29(1):20-30.
    周荣茂,陈运泰,吴忠良,1999a.由矩张量反演得到的海南东方震群的震源机制,地震学报,21(4):337-343.
    周荣茂,陈运泰,吴忠良,1999b.由矩张量反演得到的北部湾地震的震源机制,地震学报,21(6):561-569.
    张学民,刁桂苓,束沛镒,2004.鄂尔多斯块体及其东南缘剪切波速度结构与波速比研究,中国地震,20(1):53-63.
    周云好,2002.用远场体波反演震源破裂过程研究,博士学位论文,中国地震局地球物理研究所.
    朱文林,姚立平等,1995.数字地震波形分析,北京:测绘出版社.
    庄灿涛,薛兵,杨大克等,1995.中国的数字化地震观测技术,地球与空间科学观测技术进展(庆贺秦馨菱院士八十寿辰),51-67,北京:地震出版社.
    庄灿涛,阴朝民,吴忠良主编,2003.数字地震观测技术,北京:地震出版社.
    中国地震局地球物理研究所,2001.中国数字地震台网观测报告,北京:地震出报社.
    中国地震局监测预报司,2002.2001年昆仑山口西8.1级大地震,北京:地震出版社.
    中国地震局监测预报司,2003.地震参数——数字地震学在地震预测中应用,北京:地震出版社.
    M.巴特著,郑治真等译,朱传镇校,1978.地球物理学中的谱分析,北京:地震出版社.
    Aki, K.,1984. Asperities, barriers, characteristic earthquakes and strong motion prediction,J. Geophys. Res.,89(B7),5867-5872.
    Aki, K. and H. Patton,1978. Determination of seismic moment tensor using surface waves, Tectonophysics,49,213-222.
    Aki, K. and P. G. Richards,1980. Quantative Seismology:Theory and Methods, W H Freeman San Francisco,1,557.
    Aki, K. and P. Richards,2002. Quantitative Seismology.2nd edn, University Science Books, Sausalito, Calif.,700.
    Barker, J. S. and C. A. Langston,1982. Moment tensor inversion of complex earthquakes, Geophys. J. R. Astr. Soc.,68,777-803.
    Bormann, P.,2002. IASPEI New Manual of Seismological Observatory Practice, GeoForschungsZentrum Potsdam.
    Bouchon, M.,1981. A simple method to calculate Green's functions for elastic layered media, Bull. Seism. Soc. Amer.,71,959-971.
    Brian, W. S. and R. J. Lane,1977. The determination of source properties by the linear inversion of seismograms, Bull. Seism. Soc. Amer.,67, No.6.
    Langston, C. A.,1979. Structure under Mount Rainer, Washingston, inferred from teleseismic body waves[J]. J. Geophys. Res.,84 (B9):4749-4762.
    Chandan, K. S.,1993. Modified frequency-wavenumber algorithm for regional seismograms using Filon's quadrature:modelling of Lg waves in eastern North America, Geophys. J. Int.,118,142-158.
    Charles, A. L.,1981. Source inversion of seismic waveforms:The Koyna, India, earthquakes of 13 September 1967, Bull. Seism. Soc. Amer,71.
    Cheng, W. Z., Z. W. Zhang, and X. Ruan,2009. Spatio-temporal variation and focal mechanism of the Wenchuan Ms8.0 earthquake sequence, Earthq Sci.,22,109-117.
    Choy, G. L. and J. W. Dewey,1988. Rupture process of an extended earthquake sequence:teleseismic analysis of the Chilean earthquake of March 3,1985. J. Geophys. Res.,93,1103-1118.
    Daniel, E. M. and P. B. Raymond,2004. Ambient Noise Levels in the Continental United States, BSSA, Vol.94, No.4,1517-1527.
    Dahm, T.,1996. Relative moment tensor inversion based on ray theory:theory and synthetic test, Geophys. J. Int.,124,245-257.
    Doornbos, D. J.,1982. Seimic moment tensors and kinematic source parameters, Geophys. J. R. Astr. Soc.,69,235-251.
    Ducker, K. G., Sheehan, A. F.1997. Mantle discontinuity structure from midpoint stacks of converted P to S waves across the Yellow stone hotspot track. Journal Geophysical Research,102 (B4):8313-8327.
    Dziewonski, A. M. and D. L. Anderson,1981. Preliminary reference earth model, Phys. Earth Planet. Inter.25,297-356.
    Dziewonski, A. M. and F. Gilbert,1974. Temporal variation of the seismic moment tensor and the evidence of precursive compression for two deep earthquakes, Nature, 247,185-188.
    Dziewonski, A. M. and J. H. Woodhouse,1983. An experiment in systematic study of global seismicity:Centriod-moment tensor solution for 201 moderate and large earthquake Of 1981, J. Geophys. Res.88, B4,3247-3271.
    Dziewonski, A. M., T.A. Chou, and J.H. Woodhouse,1980. Determination of earthquake source parameters from waveform data for studies of global and regional seismicity. J. Geophys. Res.,86,2825-2852.
    Dziewonski, A. M., G. Ekstrom, and N. N. Maternovskaya,2001. Centroid-moment tensor solution for July-September 2000, Phys. Earth Planet. Inter.,124,9-23.
    Dziewonski, A. M., G. Ekstrom, J. E. Franzen, and J. H. Woodhouse,1987. Global seismicity of 1977:Centroid-moment tensor solution for 471 earthquake, Phys. Earth Planet. Inter.,45,11-36.
    Dziewonski. A. M., J. E. Franzen, and J. H. Woodhouse,1984. Centroid-moment tensor solution for January-March 1984, Phys. Earth Planet. Inter,34,209-219.
    Ekstrom, G.,1989. A very broad band inversion method for the recovery of earthquake source parameter, Tectonophysics,166,73-100.
    Ellsworth, W. L. and X. Zhonghuai,1980. Determination of the stress tensor from focal mechanism data(abstract), Eos Trans. AGU,61,1117.
    Ellsworth, W. L.,1981. A general theory for determing the state of stress in the earth from fault slips measurements, Terra Cognita,2,2,170-171.
    Fitch, T. J.,1981. Correction and addition to'Estimation of the seismic moment tensor from teleseismic body wave data with applications to intraplate and mantle earthquakes'by T. J. Fitch, D. W. McCowan and M. W. Shields, J. Geophys. Res.,86, 9375-9376.
    Fitch, T. J., D. W. McCowan, and M. W. Shields,1980. Estimation of the seismic moment tensor from teleseismic body wave data with applications to intraplate and mantle earthquakes,J. Geophys. Res.,85,3817-3828.
    Frazer, L. N. and J. F. Gettrust,1984. On a generalization of Filon's method and the computation of the oscillatory integrals of seismology, Geophys. J. R. Astr. Soc.,76, 461-481.
    Frazer, L. N.,1977. Synthesis of shear-coupled PL, PhD thesis, Princeton University, Princeton, NJ.
    Fuchs, K. and G. Muller,1971. Computation of synthetic seismograms with reflectivity method and comparison with observations, Geophys. J. R. Astr. Soc.,23, 417-433.
    Geller, R. J.,1997. Earthquake prediction:A critical review, Geophys J Int,131, 425-450.
    Gephart, J. W. and D. W. Forsyth,1984. An improved method for determining the refional stress tensor using earthquake focal mechanism data:Application to the San Fernando earthquake sequence, J. Geophys. Res.,89,9305-9320.
    Gilbert, F. and A. M. Dziewonski,1975. An application of normal mode theory to the retrieval of structural parameters and source mechanisms from seismic spectra, Phil. Trans. R. Soc. London, A278,187-269.
    Gilbert, F. and R. Buland,1976. An enhanced deconvolution procedure for retrieving the seismic moment tensor from a sparse network, Geophys. J. R. Astr. Soc.,47, 251-255.
    Gilbert, F.,1970. Excitation of the normal modes of the Earth by earthquake source, Geophys. J. R. Astr. Soc.,22,223-226.
    Gilbert, F.,1973. Derivation of source parameters from low-frequency spectra, Phil. Trans. R. Soc. London, A274,369-371.
    Gutenberg, R. C. and F. Richter,1944. Frequency of earthquakes in California, Bull. Seism. Soc. Amer.,34,185-188.
    Hauksson, E.,1994. State of stress from focal mechanisms before and after the 1992 Landers earthquake sequence. Bull. Seism. Soc. Amer.,84(3),917-934.
    Herrmann, R. B. and C. Y. Wang,1985. A comparison of synthetic seismograms, Bull. Seism. Soc. Amer.,75,41-56.
    Hiroo, K. and W. G. Jeffrey,1981. Use of long-period surface waves for rapid determination of earthquake-source parameters, Phys. Earth Planet. Inter.,27,8-31.
    Howard, J. P. and E. R. George,2002. On the causes of biased estimates of seismic moment for earthquakes in central Asia, J. Geophys. Res.,107.
    Howard, J. P.,1998. Bias in the centroid moment tensor for central Asian earthquakes: Evidence from regional surface wave data, J. Geophys. Res.,103,26963-26974.
    Huang, W. C, G. Ekstrom, E. A. Okal, and M. P. Salganik,1994. Application of the CMT algorithm to analog recordings of deep earthquakes, Phys. Earth Planet. Inter., 83,283-297.
    Ishimoto, M. and K. Iida,1939. Observations of earthquakes registered with the microseismograph constructed recently, Bull. Earthquake Res. Inst.,17,443-478.
    Johnson, D. E. and C. A. Langston,1984. The effects of assumed source structure in inversion of earthquake source parameters:The eastern Hispanioda earthquake of 14 September,1981, Bull. Seism. Soc. Amer.,74,2115-2134.
    Jones, C. H., Phinney, R. A.1998. Seismic structure of the lithosphere from teleseismic converted arrivals observed at small arrays in the southern Sierra-Nevada and vicinity, California. Journal of Geophysical Research,103(B 5):10065-10090.
    Kagan, Y.Y.,1991.3-D rotation of double-couple earthquake sources, Geophys J Int, 106(3),709-716.
    Kagan, Y.Y.,2007. Simplified algorithms for calculating double-couple rotation, Geophys J Int,106(3),1-8.
    Kanamori, H. and J. W. Given,1981. Use of long-period surface waves for rapid determination of earthquake-source parameters, Phys. Earth Planet. Inter,27,8-31.
    Kanamori, H. and J. W. Given,1982. Use of long-period surface waves for rapid determination of earthquake source parameters:2. Preliminary determinations of source mechanisms of large earthquakes(Ms≥6.5)in 1980, Phys. Earth Planet. Inter., 30,260-268.
    Keiiti, A. and P. Howard,1978. Determination of seismic moment tensor using surface waves, Tectonophysics,49,213-222.
    Kennett, B. L. N. and N. J. Kerry,1979. Seismic waves in a stratified half space, Geophys. J. R. Astr. Soc.,57,557-583.
    Kennett, B. L. N.,1979. Theoretical reflection seismograms for elastic media, Geophys. Prosp.,27.
    Kennett, B. L. N.,1980. Seismic waves in a stratified half space-II theoretical seismograms, Geophys. J. R. Astr. Soc.,61,1-10.
    Kisslinger, C., Bowman, J. R. and Koch, K.,1981. Procedures for computing focal mechanisms from local (SV/P)z data, B.S.S.A., Vol.71, No.6,1719-1729.
    Kosarev, G., Kind, R., Sobolev, S. V. et al.1999. Seismic evidence for a detached India lithospheric mantle beneath Tibet. Science,283:1306-1309.
    Langston, C. A.,1981. Source inversion of seismic waveforms:The Koyna, India, earthquakes of 13 September 1976, Bull. Seism. Soc. Amer.,71,1-24.
    Lay, T. and T. C. Wallace,1995. Modern Global Seismology, Academic Press.
    Lay, T., J. W. Given, and H. Kanamori,1982. Long period mechanism of the 8 November 1980 Eureka, California, earthquake, Bull. Seism. Soc. Amer.72,439-456.
    Lu, Z., M. Wyss, and H. Pulpan,1997. Detail of stress directions in the Alaska subduction zone from fault plane solutions, J. Geophys. Res.,102,5383-5402.
    Li, A., Fischer, K. M, Wysession, M. E., et al.1998. Mantle discontinuities and temperature under the North American continental keel. Nature,395:160-163.
    Li, S. L., Mooney, W. D., Fan, J. Ch.2006.Crustal structure of mainland China from deep seismic sounding data. Tectonophysics,420:239-252.
    Owans, T. J., Zandt, G., Taylor, S. R.1984. Seismic evidence for ancient rift beneath the Cumberland plateau, T Tennessee:A detailed analysis of broadband teleseismic P waveforms. Journal of Geophysical Research,89 (B 9):7783-7795.
    Ma, S.T., Z. X. Yao, and C. Ji,1998. A study ofr the mechanism of Ms6.4 earthquake on May 3,1996 at west Bao Tou, Inner Mongol. Chinese J. Geophys. (in Chinese), 41(6),795-804.
    McCowan, D. W.,1976. Moment tensor representation of surface waves sources, Geophys. J. R. Astr. Soc.,44,59-599.
    Mendiguren, J. A.,1977. Inversion of surface wave data in source mechanism studies, J. Geophys. Res.,82,880-891.
    Michael, A. J., W. L. Ellsworth, and D. H. Oppenheimer,1990. Coseismic stress changes induced by the 1989 Loma Prieta, California Earthquake, Geophys. Res. Lett., 17(9),1441-1444.
    Michael A. J.,1991. Spatial variations of stress within the 1987 Whittier Narrows, California, aftershock sequence:new techniques and results, J. Geophys. Res.,96, 6303-6319.
    Michael, A. J.,1984. Determination of stress from slip data:faults and folds, J. Geophys. Res.,89,11517-11526.
    Michael, A. J.,1987. Use of focal mechanisms to determine stress:a control study, J. Geophys. Res.,92,357-368.
    Nakanishi, I. and H. Kanamori,1982. Effects of lateral heterogeneity and source process time on the linear moment tensor inversion of long-period Rayleigh waves, Bull. Seism. Soc. Amen,72,2063-2080.
    Nakanishi, I. and H. Kanamori,1984. Source mechanism of twenty-six large, shallow earthquakes(Ms≥6.5) during 1980 from P-wave first motion and long-period Rayleigh wave data, Bull. Seism. Soc. Amer.,74,805-818.
    Patton, H. and K. Aki,1979. Bias in the estimate of seismic moment tensor by the linear inversion method, Geophys. J. R. Astr. Soc.,59,479-495.
    Patton, H.,1980. Reference point equalization method for determinating the source and path effects of surface waves, J. Geophys. Res.,85,821-848.
    Romanowicz, B.,1981. Depth resolution of earthquakes in central Asia by moment tensor inversion of long-period Rayleigh waves:Effects of phase velocity variations across Eurasia and their calibration, J. Geophys. Res.,86,5963-5984.
    Romanowicz, B.,1982. Moment tensor inversion of long-period Rayleigh waves:a new approach, J. Geophys. Res.,30,242-259.
    Rydelek, P. A. and I. S. Sacks,1989. Testing the Completeness of earthquake Catalogues and the hypothesis of Self-similarity, Nature,337,251-253.
    Scholz, C. H.,1968. The frequency-magnitude relation to microfracturing in rock and its relation to earthquakes, Bull. Seism. Soc. Amer.,58,399-415.
    Sipnkin, S. A.,1982. Estimation of earthquake source parameters by the inversion of waveform data:synthetic waveforms, Phys. Earth Planet. Inter.,30,242-259.
    Sipnkin, S. A.,1986. Interpretation of nun-double-couple earthquake mechanisms derived from moment tensor inversion, J. Geophys. Res.,91,531-547.
    Sipnkin, S. A.,1987. Moment tensor solution estimated using optimal filter theory for 51 selected earthquakes,1980-1984, Phys. Earth Planet. Inter.,47,67-79.
    Strelitz, R. A.,1978. Moment tensor inversion and source model, Geophys. J. R. Astr. Soc.,52,359-264.
    Strelitz, R. A.,1980. The fate of the downgoing slab:A study of the moment tensor from body waves of complex deep-focus earthquakes, Phys. Earth Planet. Inter.,21, 83-96.
    Stump, B. W. and L. R. Johnson,1977. The determination of source properties by linear inversion of seismograms, Bull. Seism. Soc. Amen,67,1489-1502.
    Stump, B. W. and L. R. Johnson,1984. Near-field source characterization of contained nuclear explosion in tuff, Bull. Seism. Soc. Amen,74,1-16.
    Thio, H. K. and H. Kanamori,1995. Moment-tensor inversions for local earthquakes using surface waves recorded at TERRAscope, Bull. Seism. Soc. Amer.,85(4), 1021-1038.
    Kind, R. et al,1995, Receiver functions at the stations of the German Regional Seismic Network (GRSN) [J]. Geophys J Int.,121:191-202.
    Urhancic, T. I., C. I. Trifu, J. M. Long, et al.1992. Space-time correlation of b values with stress release, Pure Appl Geophys,139,449-462.
    Velasco, A. A., C. J. Ammon, and S. L. Beck,2000. Broadband source modeling of the November 8,1997, Tibet(Mw=7.5)earthquake and its tectonic implications, J. Geophys. Res.,105, B12,28065-28080.
    Velasco, A. A., C. J. Ammon, T. Lay, and M. Hagerty,1996. Rupture process of the 1990 Luzon, Philippines(Mw=7.7), earthquake, J. Geophys. Res.,101, B10, 22419-22434.
    Velasco, A. A., T. Lay, and J. Zhang,1992. Improved resolution of earthquake source parameters from long-period surface wave inversion, Phys. Earth Planet. Inter.,74, 101-107.
    Velasco, A. A., T. Lay, and J. Zhang,1993. Long-period surface wave inversion for source parameters of the 8 October 1989 Loma Prieta earthquake, Phys. Earth Planet. Inter.,76,43-66.
    Wallac, T. C, D.V. Helmberger, and G.R. Mellman,1981. A technique of the inversion of regional data in source parameter studies, J. Geophys. Res.,86,1679-1685.
    Wang, C. Y. and R. B. Herrmann,1980. A numerical study of P,SV and SH wave generation in a plane layered medium. Bull. Seism. Soc. Amer.,70,1015-1036.
    Ward, S. N.,1980. Body wave calculations using moment tensor soures in spherically symmetric, inhomogeneous media, Geophys. J. R. Astr. Soc.,60,53-66.
    Ward, S. N.,1981. Body wave inversion moment tensors and depths of oceanic intraplate bending earthquakes, J. Geophys. Res.,88,9315-9330.
    Wei, S. J., S. D. Ni, J. J. Chong, et al.2009. The August 2003 Chifeng earthquake:Is it a lower crust earthquake? Chinese J. Geophys. (in Chinese),52(1),111-119.
    Wiemer, S. and M. Wyss,1997. Mapping the frequency-magnitude distribution in asperities:An improved technique to calculate recurrence times?, J. Geophys. Res., 102(B7),15115-15128.
    Wiemer, S., M. Gerstenberger, and E. Hauksson,2002. Properties of the Aftershock Sequence of the 1999 Mw7.1 Hector Mine earthquake:Implications for aftershock Hazard, Bull. Seism. Soc. Amen,92(4),1227-1240.
    Wyss, M., and S. Wiemer,2000. Change in the probability for earthquakes in Southern California due to the Landers magnitude 7.3 earthquake, Science,290, 1334-1338.
    Woodhouse, J. H. and A. M. Dziewonski,1984. Mapping the upper mantle: three-dimensional modeling of Earth structure by inversion of seismic waveforms, J. Geophys. Res.,89,5953-5986.
    Wyss, M., D. Schorlemmer, and S. Wiemer,2000. Mapping asperities by minima of local recurrence time:San Jacinto-Elsinore fault zones, J. Geophys. Res.,105(B4), 7829-7844.
    Xu, L. S. and Y. T. Chen,2005. Temporal and spatial rupture process of the great Kunlun Mountain Pass earthquake of November 14,2001 from the GDSN long period waveform data, Sci. Chin. Earth Sci.,48(1),112-122.
    Yamakawa, N.,1971. Stress field in focal regions, J Phys Earth,19,347-353.
    Yuan, X. H., James, Ni., Kind, R. et al,1997. Lithospheric and upper mantel structure of mantle structure of southern Tibet from a seismological passive source experiment[J]. J.Geophys.Res.,102 (B12):491-500.
    Zandt, G., Myers, S. C., Wallace, T. C.1995. Crust and mantle structure across the Basin and Range-Colorado Plateau boundary at 37 C N latitude and implications for Cenozoic extensional mechanism. Journal of Geophysical Research,100(B 6):10529-10548.
    Zandt. G., Ammon, C. J.2002. Continental crust composition constrained by measurements of crustal Poisssons ratio. Nature,374:152-154.
    Zhao, L. S. and D. V. Helmberger,1994. Source Estimation from Broadband Regional Seismograms, Bull. Seism. Soc. Amer.,84,91-104.
    Zheng. Y., H. S. Ma, and J. Lu, et al.2009. Source mechanism of strong aftershocks (Ms≥5.6) of the 2008/05/12 Wenchuan earthquakes and the implication for seismotectonics, Sci. Chin. Earth Sci.,52(6),739-753.
    Zhou, G.W., X. L. Liu, L. S. Xu, C. Y. Hao, Z. L. Wu, and Y. T. Chen,2003. CDSN: Present status and future development. The CDSN Report to the FDSN.
    Zhu, L. P. and D. V. Helmberger,1996. Advancement in source estimation techniques using broadband regional seismograms, Bull. Seism. Soc. Amer,86(5),1634-1641.
    Zhu, L. P. and L. A. Rivera,2002. A note on the dynamic and static displacements from a point source in multi-layered media, Geophys. J. Int.,148(3),619-627.
    Zhu, L., Y. Tan, D. V. Helmberger, and C. K. Saikia,2006. Calibration of the Tibetan Plateau using regional seismic waveforms, Pageoph,163,1193-1213.
    Zhu, L., Kanamori.2000. Moho depth variation in southern California from teleseismic receiver functions. Journal of Geophysical Research,105 (B2) 2969-2980.
    Zoback, M. L.,1992. Fist- and second-order patterns of stress in the lithosphere the world stress map project, J Geophys,97(B8),11703-11728.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700