用户名: 密码: 验证码:
琼东南盆地层序地层和深水区沉积充填特征
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
南海是我国也是西太平洋西部的一个巨大边缘海,北面靠近华南大陆边缘、西面邻接印支陆块、南面靠近加里曼丹岛、东面与马尼拉海沟为界,位于太平洋板块、印一澳板块和欧亚板块三大板块交汇的位置。由于西太平洋板块、欧亚板块和印度板块俯冲碰撞相互作用,以及巴拉望和礼乐滩等微陆块与加里曼丹岛挤压聚敛等构造活动,渐形成南海目前的构造格局:即北部边缘为被动陆缘,东部边缘为俯冲消亡带,西缘以走滑剪切,南缘以聚敛边缘为特征。南海自中中新世三亚组(16.7Ma)停止扩张,在扩张过程中,产生了许多沉积盆地,盆地内沉积了大量的来自于陆源的富含有机质物质,形成了良好的生、运、储等石油地质条件,因此南海成为我国深水油气资源勘探开发的首选最佳远景区。
     琼东南盆地位于南海北部大陆边缘,是新生代形成的断陷盆地。其构造演化上的特征为“下断上坳”,以破裂不整合面T60为界,经历了古近纪裂陷阶段和新近纪的裂后热沉降阶段。根据断裂发育情况以及盆地充填变形特征,将裂陷和裂后两大演化阶段进一步细分为4个构造幕,分别是裂陷Ⅰ幕(始新世-早渐新世断陷期)、裂陷Ⅱ幕(晚渐新世断坳期)、裂后Ⅰ幕(早-中中新世热沉降期)和裂后Ⅱ幕(晚中新世-第四纪加速沉降期)。
     本文以国家科技重大专项—“南海北部深水区潜在富生烃凹陷评价”中的子课题“南海北部深水区古气候和古环境研究”(2011ZX05025-002-03)为依托,以琼东南盆地深水区油气钻井LS33-1-1井和LS22-1-1井及贯穿琼东南盆地的十几条地震剖面为研究对象,通过地震与古生物地层标定,结合测井与沉积物粒度分析,建立了琼东南盆地等时层序地层格架,探讨了琼东南盆地沉积相和深水区沉积充填特征,为今后琼东南盆地石油勘探奠定了基础。论文主要成果包括:
     (1)通过地震地层和古生物地层标定,建立了LS22-1-1井和LS33-1-1井两口深水探井的年代地层框架。主要的地层单元包括:始新统岭头组,渐新统崖城组和陵水组,中新统三亚组、梅山组和黄流组,上新统莺歌海组,地层的地震界面分别为T100(始新统底界)、T80(32Ma)、T70(28.4Ma)、T60(23Ma)、T50(16.OMa)、T40(11.6Ma)、T30(5.5Ma)和T20(1.8Ma)。在32~1.8Ma的地层中,共识别出一级层序界面1个(T60),二级层序界面6个(分别是T100、T80、T70、T60、T40、T20)。以T60为界将地层分割为两个一级层序。以T100(始新统底)、T80(始新统顶)、T70(崖城组顶)、T60(陵水组顶)、T40(梅山组顶)、T20(莺歌海组顶)为界,将地层分割为5个二级层序。建立了包含18个三级层序的琼东南盆地的层序地层格架。划分出T60-T20各三级层序内的低位体系域、海进体系域和高位体系域共28个
     (2)通过LS33-1-1和LS22-1-1两口深水探井古生物资料,利用生物化石(主要为浮游有孔虫和钙质超微化石)基准面的年龄值,确定钻孔中年龄与深度的对应关系,建立了生物年代序列和等时层序地层格架,为油气地质条件分析和古环境恢复奠定了基础。
     (3)根据陆坡体系的外部形态及其内部沉积构成特征,在空间上自西向东可以将其划分为为4类:进积型陆坡、滑塌型陆坡、水道化型陆坡和宽缓单斜型陆坡。在陆坡上发育了:陆坡峡谷、浊流沉积、滑塌沉积、碎屑流沉积、滑移沉积和沉积物波等沉积类型。
     (4)琼东南盆地中央峡谷呈北东向展布,平面形态呈“S”型;西段起源于莺歌海盆地中部,向东经乐东、陵水、松涛、宝岛、长昌5大凹陷,最后延伸进入西沙海槽。在中央峡谷充填了块体流、天然堤及漫溢沉积、深海泥质沉积、浊积水道、浊积席状砂等沉积微相。峡谷西段的乐东凹陷和陵水凹陷的西部以浊积水道沉积为主,东段为浊积水道与块体流沉积互层沉积,浊积水道和浊积席状砂是深水区油气勘探的主要储层类型。
     (5)通过对琼东南盆地LS22-1-1井、LS33-1-1井岭头组、崖城组、陵水组、三亚组、梅山组和黄流组和莺歌海组地层的粒度资料分析,结果表明从始新世岭头组到上新世莺歌海组,沉积物的平均粒径总体上呈减小的趋势。盆地的沉积环境经历了湖相、滨岸相、陆表海相向浅海-半深海环境的演变,水动力条件从强到弱。
The South China Sea is a huge marginal sea at the western Pacific.The boundary of north is China continental margin;The boundary of west is near the Yinzhi continent;The boundary of south is near Kalimantan island;The boundary of east is near Marnila trench.The South China Sea is located in convergence parts of the Pacific plate、Indian-Australian plate and Eurasian plate.For the reason of subducting the Pacific plate to Eurasian plate,collision orogeny Indian-Australian plate to Eurasian plat, covergence Palawan and ReedBank to Kalimantan island. These tectonic activity cause the present tectonic framework of the South China Sea:the north is passive continental margin,the east is subduction belt, the south is covergence belt, the west is strike-slip shearing belt.The South China Sea stopped expanding from the end of the early Miocene(16.7Ma). During the expansion process, The South China Sea developed a wide range of depositional basin, which received a large amount of land-sourced material,riching in organic matter, and had good hydrocarbon source rock, transporting and storage of petroleum geological conditions. The deep water hydrocarbon prospective areas in the Northern South China Sea become the consensus of the international community.
     The Qingdongnan basin is located in the Northern South China Sea, which is a graben basin during Cenozoic. Its bottom half is graben basin, the top half is sag basin. The boundary between two half is seismic interface T60. Throughout the period of geological history, the South China Sea has main undergone rift epoch from Paleocene to early Oligocene, Rift fault-depression-squeeze reversed in late Oligocene and the sedimentation period from the early Pliocene to Quaternary.
     This paper is based on major national technology special project "The research on The evaluation about the potential rich hydrocarbon Sag in deepwater area of Northern South China Sea"-branch project:"The research of paleoenvironment and paleoclimate in deepwater area of Northern South China Sea"(2011ZX05025-002-03), basing on the paleontology information of the oil and gas well LS22-1-1、LS33-1-1and more than ten seismic profile. Analysing of the LS22-1-1、LS33-1-1well about the seismic interface icons of palaeontogical fossils data, log information, grain size of sediment, and then giving isochron sequence stratigraphic framework, analysis the sedimentary facies and depositional characteristics of deepwater area in Qingdongnan basin, give help to oilexploration in the future. The main conclusions are as follows:
     (1) Analysing of the LS33-1-1and LS22-1-1well about the seismic interface icons of palaeontological fossils data, and then giving paleontological stratigraphic division for the two wells. The main stratigraphic formation includes:eocene-lingtou formation; oligocene-yacheng and lingshui formation; miocene-sanya、meishan and huangliu formation; pliocene-yinggehai formation. The seismic interfaces are respectively T100、T80(32Ma)、T70(28.4)、T60(23.0Ma)、T50(16.0Ma) T40(11.6Ma)、T30(5.5Ma)、T20(1.8Ma). During32-1.8Ma, we recognise1primary sequence interface(T60),6sencondary sequence interface(T100、T80、T70、T60、 T50、T40、T30、T20), including2primary sequences、5sencondary sequences and18tertiary sequence stratigraphy, we recognise28low stand tract, transgressive stand tract and high stand tract.
     (2) Quantitative bio stratigraphic analysis methods were used to study the paleontological data of the LS33-1-1and LS22-1-1well, we determine the sequence interface age and the corresponding relation of age and depth,establish the biological sequence and isochronal sequence stratigraphic framework.
     (3) According to the slope system external form and its internal deposit formation, which can be divided into4classes from the west to the east:progradation slope, slumping slope, Channel change slope and Rolling monoclinic slope. Sedimentation type includes:Slope canyon、turbid flow、slumping、debris flow、slide and sediment waves.
     (4) The central valley is "s" type in the plane, extended direction NE. Originating from yinggehai basin to xisha trough,the central valley goes through ledong sag,lingshui sag, songtao sag, baodao sag and changchang sag.The sedimentary facies in The central valley includes5types,such as:turbidity channel, turbidite sand sheet,natural barrier and overtopping deposit, mass transport deposits, argillaceous sediment.
     (5) The analysis of the granularity of LS33-1-1and LS22-1-1well shows that, the average grain size of sediments is generally decreasing from yacheng formation to yingghai formation. Depositional environment of qiongdongnan basin changed from lake facies, near-shore facies, epeiric sea facies, to shallow sea-bathyal deposits, and it reflects that hydrodynamic condition is generally decreasing.
引文
[1]崔永刚,樊涛,孙昶旭,等,2007.构造对三级层序的控制作用JOURNAL OF STRATIGRAPHY,31(2):179-183.
    [2]崔涛,解习农,任建业,等,2008.莺歌海盆地异常裂后沉降的动力学机制.地球科学——中国地质大学学报,33(3):349-356.
    [3]崔莎莎,何家雄,陈胜红,等.珠江口盆地发育演化特征及其油气成藏地质条件[J].天然气地球科学,2009,20(3):384-391.
    [4]蔡佳.琼东南盆地古近系古地貌恢复及其对层序样式和沉积特征的控制:[博士学位论文].武汉:中国地质大学(武汉)矿产普查与勘探系,2009.
    [5]陈建文.深水盆地油气勘探新领域[J].海洋地质动态,2003,19(8):38-41.
    [6]陈长民,施和生,许仕策,等.珠江口盆地(东部)第三系油气藏形成条件[M].北京:科学出版社,2003:1-87.
    [7]陈春峰.世界深水勘探特点及中国深水勘探现状分析[J].石油天然气学报,2005,27(6):835-837.
    [8]陈维涛,杜家元,龙更生,等.珠江口盆地海相层序地层发育的控制因素分析.沉积学报,2012,30(1):73-83.
    [9]杜振川,丁述理,魏魁生.琼东南盆地第三纪高分辨率层序地层划分特征.辽宁工程技术大学学报,2002,21(6):709-712.
    [10]付彦辉,吕福亮,袁圣强等.琼东南盆地陆坡区深水浊积水道的地震相特征.热带海洋学报,2009,28(4):87-92.
    [11]葛黄敏,李前裕,钟广法等.南海北部第四纪高分辨率地震层序地层与古环境演化.海洋地质与第四纪地质,2012,32(4):49-60.
    [12]龚再升,李思田,谢泰俊,等.南海北部大陆边缘盆地分析与油气聚集[M].北京:科学出版社,1997.
    [13]龚再升,李思田,汪集肠,等,2004.南海北部大陆边缘盆地油气成藏动力学研究.北京:科学出版社,9-25.
    [14]郝诒纯,陈平富,万晓樵.南海北部莺歌海—琼东南盆地晚第三纪层序地层与海平面变化.现代地质,2000,14(30:237-245.
    [15]郝沪军,林鹤鸣,杨梦雄,等.潮汕坳陷中生界——油气勘探新领域[J].中国海上油气(地质),2001,15(3):157-163.
    [16]贺可强,安振远.崩滑碎屑流的形成条件与形成类型[J].河北地质学院学报,1996,19(3-4):344-351.
    [17]何家雄,夏斌,刘宝明,等.莺歌海盆地中深层天然气成藏条件分析及其与浅层成藏条件的比较[J].地质通报,2005,24(1):9-15.
    [18]何家雄,施小斌,夏斌,等.南海北部边缘盆地油气勘探现状与深水油气资源前景.地球科学进展,2007,22(3):261-270.
    [19]何家雄,李强,陈伟煌,等.琼东南盆地油气成因类型及近期天然气勘探方向探讨[J].海洋石油,2002,22(1):47-56.
    [20]何家雄,夏斌,孙东山,等.南海北部琼东南盆地油气成藏组合及运聚规律与勘探方向分析[J].石油勘探与开发,2006,33(1):53-58.
    [21]何家雄,夏斌,王志欣,等.南海北部边缘盆地西区油气运聚成藏规律与勘探领域及方向[J].石油学报,2006,27(4):12-18.
    [22]何家雄,陈伟煌,李明兴,等.莺—琼盆地天然气成因类型及气源剖析[J].中国海上 油气(地质),2000,14(6):398-405.
    [23]何家雄,梁可明,黄保家,等.莺歌海盆地海相烃源岩特征及油气运移的证据[J].南海石油,1990,7(3):8-22.
    [24]何廉声.多旋回板块构造运动与南海新生代构造[A].南海地质研究[C].广州:广东科学普及出版社,1988.98-108.
    [25]何云龙,解习农,陆永潮等.琼东南盆地深水块体流构成及其沉积特征.地球科学—中国地质大学学报,2011,36(5):905-913.
    [26]何云龙,解习农,李俊良等.琼东南盆地陆坡体系发育特征及其控制因素.地质科技情报,2010,29(2):118-122.
    [27]姜涛.莺歌海-琼东南盆地区中中新世以来低位扇体形成条件和成藏模式[D].武汉:中国地质大学(武汉),2005.22-40.
    [28]姜涛,解习农.细粒浊积体的油气地质意义[J].地质科技情报,2003,22(2):51-55.
    [29]金春爽,乔德武,姜春艳.国内外深水区油气勘探新进展.海洋地质动态,2003,19(10)20-23.
    [30]焦养泉,李思田,解习农,等.多幕裂陷作用的表现形式-以珠江口盆地西部及其外围地区为例[J].石油实验地质,1997,19(3):222-227.
    [31]李杰,林畅松,陈平.琼东南盆地莺歌海组一黄流组海平面变化与层序年代地层.地质论评,1999,45(5):514-520.
    [32]李俊良,左倩媚,解习农等.琼东南盆地深水区新近系沉积特征与有利储盖组合.海洋地质与第四纪地质,2011,31(6):109-116.
    [33]李颖虹,任小波.我国深水油气勘探领域主要科技问题与发展对策.科技与社会,2011,26(1):75-79.
    [34]李冬,王英民等.琼东南盆地中央峡谷深水天然堤—溢岸沉积.沉积学报,2011,29(4):689-694.
    [35]李文湘.测井解释模型的分辨能力[J].测井技术,1994,18(4):254-264.
    [36]李思田,林畅松,张启明,等,1998.南海北部大陆边缘盆地幕式裂陷的动力过程及10M a以来的构造事件.科学通报,43(8):797-810.
    [37]李绪宣,朱光辉.琼东南盆地断裂系统及其油气输导特征[J].中国海上油气,2005,17(1):1-7.
    [38]李前裕,郑洪波,钟广法,等,2005a.南海晚渐新世滑塌沉积指示的地质构造事件,地球科学-中国地质大学学报,30(1):19-24.
    [39]黎明碧,金翔龙,初凤友,等.神狐——统暗沙隆起中部新生代地层层序划分及沉积演化.沉积学报.2002,20(4):545-551.
    [40]林长松,高金耀,虞夏军,等.南海北部新生代的构造运动特征.海洋学报,2006,28(4):81-86.
    [41]刘铁树,何仕斌.南海北部陆缘盆地深水区油气勘探前景[J].中国海上油气(地质),2001,15(3):164-170.
    [42]刘昭蜀.南海地质构造与油气资源[J].第四纪研究,2000,20(1):69-77.
    [43]刘海龄,杨恬,吴世敏,等.南海西北部新生代沉积基底构造属性与演化[C]∥李家彪,高抒,等编.中国边缘海形成演化系列研究丛书第2卷.北京:海洋出版社,2003:80-91.
    [44]刘海龄,杨恬,朱淑芬,等.南海西北部新生代沉积基底构造演化[J].海洋学报,2004,26(3):54-67.
    [45]柳保军,申俊,庞雄,等.珠江口盆地白云凹陷珠海组浅海三角洲沉积特征[J].石油学报,2007,28(2):49-56.
    [46]柳保军庞雄颜承志.珠江口盆地白云深水区渐新世-中新世陆架坡折带演化及油气勘探意义.石油学报,2011,32(2):234-242.
    [47]林畅松,刘景彦,蔡世祥,等.莺-琼盆地大型下切谷和海底重力流体系的沉积构成和发育背景[J].科学通报,2001,46(1):69-72
    [48]雷超,任建业,裴健翔,等,2011.琼东南盆地深水区构造格局和幕式演化过程.地球科学——中国地质大学学报,36(1):151-162.
    [49]栾锡武,彭学超,邱燕.南海北部陆坡高速堆积体的构造成因[J].现代地质,2009,23(2):183-199.
    [50]吕文正.南海中央海盆条带磁异常特征及构造演化[J].海洋学报,1987,9(1):69-78.
    [51]吕福亮,贺训云,武金云,等.世界深水油气勘探现状、发展趋势及对我国深水勘探的启示[J].中国石油勘探,2007,6:28-31.
    [52]米立军,张功成,沈怀磊,等.珠江口盆地深水区白云凹陷始新统-下渐新统沉积特征[J].石油学报,2008,29(1):29-34.
    [53]米立军,王东东,李增学等.琼东南盆地崖城组高分辨率层序地层格架与煤层形成特征.石油学报,2010,31(4):534-541.
    [54]庞雄,陈长民,彭大钧等.南海珠江深水扇系统的层序地层学研究.地学前缘-中国地质大学(北京),2007,14(1):220-229.
    [55]庞雄,陈长民,施和生,等.相对海平面变化与南海珠江深水扇系统的响应[J].地学前缘,2005,12(3):167-177.
    [56]庞雄,陈长民,邵磊,等.白云运动:南海北部渐新统-中新统重大地质事件及其意义[J].地质论评,2007,53(2):145-151.
    [57]潘继平,金之均.中国油气资源潜力及勘探战略[J].石油学报,2004,25(2):1-6.
    [58]彭大钧,庞雄,陈长民,等.从浅水陆架走向深水陆坡———南海深水扇系统的研究[J].沉积学报,2005,23(1):1-11.
    [59]邱燕,温宁.南海北部边缘东部海域中生界及油气勘探意义[J].地质通报,2004,23(2):142-146.
    [60]秦国权.珠江口盆地新生代晚期层序地层划分和海平面变化[J].中国海上油气:地质,2002,16(1):1-18.
    [61]任建业,2004.渤海湾盆地东营凹陷S6界面的构造变革意义.地球科学——中国地质大学学报,29(1):69-76.
    [62]苏明,李俊良,姜涛等.琼东南盆地中央峡谷的形态及成因.海洋地质与第四纪地质,2009,29(4):85-93.
    [63]邵磊,李学杰,耿建华,等.南海北部深水底流沉积作用[J].中国科学D辑,2007,37(6):771-777.
    [64]邵磊,李献华,汪品先,等,2004.南海渐新世以来构造演化的沉积记录-ODP1148站深海沉积物中的证据.地球科学进展,19(4):539-544.
    [65]邵磊,庞雄,张功成,等,2009.南海北部渐新世末的构造事件.地球科学-中国地质大学学报,34(5):717-724.
    [66]佟殿君,任建业,雷超,等,2009.琼东南盆地深水区岩石圈伸展模式及其对裂后期沉降的控制.地球科学—中国地质大学学报,34(6):963-974.
    [67]苏明,解习农,姜涛,等,2011.琼东南盆地裂后期S40界面特征及其地质意义。 地球科学——中国地质大学学报,36(5):886-894.
    [68]陶宗普,邓宏文,苏宗富,等,2005.层序界面的转换性质与济阳坳陷下第三系三级层序统层.石油天然气学报(江汉石油学院学报),27(3):409-412.
    [69]陶维祥,何仕斌,赵志刚,等.琼东南盆地深水区储层分布规律[J].石油实验地质,2006,28(6):554-559.
    [70]陶维祥,丁放,何仕斌,等.国外深水油气勘探述评及中国深水油气勘探前景[J]地质科技情报,2006,25(6):59-67.
    [71]唐松,邵磊,赵泉鸿,2004.南海渐新世以来粘土矿物的演变特征及意义.沉积学报,22(2):337-342.
    [72]田珊珊.琼东南盆地裂后期构造沉降分析及古地貌恢复:[硕士学位论文].中国地质大学(武汉)能源地质工程系,2010.
    [73]王春修.琼东南盆地新生代层序地层学研究[J].中国海上油气(地质),1992,6(5):11-19.
    [74]王海荣,王英民,邱燕,等.南海北部陆坡的地貌形态及其控制因素[J].海洋学报,2008,30(2):70-79.
    [75]王家豪,刘丽华,陈胜红等.珠江口盆地恩平凹陷珠琼运动二幕的构造-沉积响应及区域构造意义.石油学报,2011,32(4):588-595.
    [76]王建桥,姚伯初,万玲,等.南海海域新生代沉积盆地的油气资源.海洋地质与第四纪地质,2005,25(2):91-99.
    [77]王振峰.深水重要油气储层———琼东南盆地中央峡谷体系.沉积学报,2012,30(4):646-653.
    [78]王根发,吴冲龙,周江羽等.琼东南盆地第三系层序地层分析.石油实验地质,1998,20(2):124-128.
    [79]王华,陆永潮,廖远涛等.琼东南盆地中东部三亚组层序构成及有利区带预测.地球科学-中国地质大学学报,2004,29(5):609-613.
    [80]王秀娟,吴时国,董冬冬,等.琼东南盆地块体搬运体系对天然气水合物形成的控制作用.海洋地质与第四纪地质.2011,31(1):109-118.
    [81]汪品先,赵泉鸿,翦知湣,等,2003a.南海三千万年的深海记录.科学通报,48(21):2206-2215.
    [82]魏魁生,崔旱云,叶淑芬等.琼东南盆地高精度层序地层学研究.地球科学——中国地质大学学报,2001,26(1):59-66.
    [83]武丽,施炜.琼东南盆地宝岛地区层序地层和砂体展布特征分析.地质力学学报,2005,11(1):43-52.
    [84]吴和源.层序地层学研究现状及进展:模式多样化.地质科技情报,2011,30(6):60-65.
    [85]吴时国,秦蕴珊.南海北部陆坡深水沉积体系研究.沉积学报,2009,27(5):922-930.
    [86]解习农,程守田,陆永潮.陆相盆地幕式构造旋回与层序构成.地球科学,1996,21(1):27-33.
    [87]谢文彦,张一伟,孙珍等.琼东南盆地断裂构造与成因机制.海洋地质与第四纪地质,2007,27(1):71-78.
    [88]邢焕清,姜在兴,王亚青,等.层序地层学的分辨率问题初探[J].煤田地质与勘探,2004,32(6):11-14.
    [89]杨木壮,王明君,梁金强,等,2003.南海万安盆地构造沉降及其油气成藏控制作用.海洋地质与第四纪地质,23(2):85-88.
    [90]杨川恒,杜栩,潘和顺,等.国外深水领域油气勘探新进展及我国南海北部陆坡深水区 油气勘探潜力[J].地学前缘,2000,7(3):247-256.
    [91]杨涛涛,吴敬武,王彬,等.琼东南盆地华光凹陷构造特征及沉积充填.海洋地质与第四纪地质.2012,32(5):13-18.
    [92]闫义,夏斌,林舸,等.南海北缘新生代盆地沉积与构造演化及地球动力学背景[J].海洋地质与第四纪地质,2005,25(2):53-61.
    [93]阎贫,刘海龄.南海及其周缘中新生代火山活动时空特征与南海形成演化模式[J].热带海洋学报,2005,24(2):33-41.
    [94]姚伯初.南海新生代的构造演化与沉积盆地[A].南海地质研究[C].武汉:中国地质大学出版社,1998.1-17.
    [95]姚伯初.南海北部陆缘新生代构造运动初探[A].南海地质研究[C].武汉:中国地质大学出版社
    [96]姚伯初.南海海盆在新生代的构造演化[A].南海地质研究[C].广州:广东科技版出版社,1991.9-23.
    [97]姚伯初,王光宇.南海海盆的地壳结构[J].中国科学B辑,1983,26(6):648-661.
    [98]姚伯初,万玲,刘振湖,等,2004a.南海南部海域新生代万安运动的构造意义及其油气资源效应.海洋地质与第四纪地质,24(1):69-77.
    [99]姚伯初,万玲,刘振湖,等.南海海域新生代沉积盆地构造演化的动力学特征及其油气资源[J].地球科学——中国地质大学学报,2004,9(5):543-549.
    [100]姚伯初,万玲,吴能友,2004b.大南海地区新生代板块构造活动.中国地质,31(2):113-122.
    [101]姚伯初,曾维军,陈艺中,等.南海北部陆缘东部的地壳结构.[J].地球物理学报,1994,37(1):27-35.
    [102]姚永坚,夏斌,徐行,等.南海南部海域主要沉积盆地构造演化特征[J].南海地质研究,2007,12(6):28-36.
    [103]姚永坚,等.南沙海域新生代主要构造运动的特征[J].中国海上油气(地质)2002,16(2):113-117.
    [104]姚根顺,袁圣强,吴时国等,琼东南盆地深水区双物源沉积模式及勘探前景.石油勘探与开发,2008,35(6):685-691.
    [105]袁圣强,曹锋,吴时国等.南海北部陆坡深水曲流水道的识别及成因.沉积学报,2010,28(1):68-75.
    [106]袁圣强,吴时国,姚根顺等.琼东南陆坡深水水道主控因素及勘探应用.海洋地质与第四纪地质,2010,30(2):61-66.
    [107]袁圣强,吴时国,赵宗举等.南海北部陆坡深水区沉积物输送模式探讨.海洋地质与第四纪地质,2010,30(4):39-47.
    [108]张功成,米立军,吴时国,等.深水区:南海北部大陆边缘盆地油气勘探新领域[J].石油学报,2007,28(2):15-21.
    [109]张娜,姜涛,张道军.琼东南盆地海底地形地貌特征及其对深水沉积的控制.海洋地质与第四纪地质,2012,32(5):27-33.
    [110]朱筱敏.层序地层学[M].山东东营:石油大学出版社,2003:1-207.
    [111]钟广法.海平面变化的原因及结果[J].地球科学进展,2003,18(5):706-712.
    [112]朱伟林,张功成,高乐.南海北部大陆边缘盆地油气地质特征与勘探方向[J].石油学报,2008,29(1):1-9.
    [113]朱伟林,张功成,杨少坤,等.南海北部大陆边缘盆地天然气地质[M].北京:石油工业出版社,2007:3-70.
    [114]钟志洪,王良书,李绪宣,等.琼东南盆地古近纪沉积充填演化及其区域构造意义[J].海洋地质与第四纪地质,2004,24(1):29-36.
    [115]郑民,贾承造,李建忠,等.全球被动陆缘深水勘探领域富油气特征及与我国南海被动陆缘深水区对比.地质科技情报,2010,29(6):45-54.
    [116]周蒂,孙珍,陈汉宗.世界著名深水油气盆地的构造特征及对我国南海北部深水油气勘探的启示[J].地球科学进展,2007,22(6):561-572.
    [117]Berggren,W.A., Kent, D. V., Swisher, C. C.&Aubry, M.1995. A revised Cenozoic geochronology and chronostratigraphy. in W.A. Berggren, Kent, D. V., Aubry, M.-P.&Hardenbol, J.(Eds) Geochronology, Time Scales and Global Stratigraphic Correlation, SEPM Special Publication.54:129-212.
    [118]Blow, W. H.1969. Late Middle Eocene to Recent planktonic foraminiferal biostratigraphy. Proceedings1st Planktonic Conference, Geneva,1967,1:199-421.
    [119]Bolli, H. M.&Saunders, J. B.1985. Oligocene to Holocene low latitude planktic foraminife In H. M. Bolli, Saunders, J. B.&Perch-Nielsen, K.(Eds) Plankton Stratigraphy, Cambridge, Cambridge University Press:155-262.
    [120]Casas, D., Ercilla,G., Baraza, J., et al.,2003. Recent mass movement Processes on the Ebro continental slope(NW Mediterranean).Marine and Petroleum Geology,20(5):445-457. doi:10.1016/S0264-8172(03)00078-3.
    [121]Chen P H, Chen Z Y, Zhang Q M. Sequence stratigraphy and continental margin development of the northwestern shelf of the South China Sea[J]. AAPG Bulletin,1993,77:842-862.
    [122]DEPTUCK M E, STEFFENS G S, BARTON M, et al.Architecture and evolution of upper fan channel-belts on the Niger Delta slope and in the Arabian Sea [J]. Marine and Petroleum Geology,2003,20:649—676.
    [123]Dodson J, Dodson T, Schm idt V. Target s below15000ft add new luster to shallow water acreage[J]. Off shore,2002(6):34-35.
    [124]Erwin W A, S chlager O. Basic types of submarine slope curvature[J]. Journal of Sedimentary Research,2000,70(4):814-828.
    [125]Ercilla G, Casas D, Est rada F, et al. Morphosedimentary features and recent depositional architectural model of the Cantabrian continental margin[J]. Marine Geology,2008,247:61-83.
    [126]Faugeres J C, Stow D A V, Imbert P, et al. Seismic features diagnostic of contourite drifts[J]. Marine Geology,1999,162:1-38.
    [127]Galloway W E. Genetic stratigraphic sequences in basin analysis:I.Architecture and genesis of flooding-surface bounded depositional units[J].AAPG Bulletin,1989,73:125-142.
    [128]Gradstein, F. M., Og g, J. G., Smith, A. G.,2004. A geologic time scale2004. Cambridge U niv. Press, Cambridge.
    [129]Grady D B, Syvitski J P M, Pratson L P, et al. Categorizing the morphologic variability of siliciclastic passive continental margins[J]. Geology,2000,28(3):207-210.
    [130]HEINIO P, DAVIES R J. Knickpoint migration in submarine channels in response to fold growth, western Niger Delta [J]. Marine and Petroleum Geology2007,24:434—449.
    [131]Silva,A.J.,Baxter,C.D.P.,LaRosa,P.T.,et al.,2004.Investigation of mass wasting on the continental slope and rise.Marine Geology,203(3-4):355-366.doi:10.1016/S0025-3227(03)00315-3
    [132]Kathleen D S, Richard B W, Stephan A G. Evolution and stratigraphic architecture of marine slope gully complexes:Monterey Formation (Miocene), Gaviota Beach, Cal ifornia[J]. Marine and Petroleum Geology,2009,26(2):269-288.
    [133]KOLLA V, POSAMENTIER H W, WOOD L J. Deep-water and fluvial sinuous channels-Characteristics, similarities and dissimilarities, and modes of formation [J]. Marine and Petroleum Geology,2007,24:388—405.
    [134]Kuenen Ph H. The difference between sliding and turbidity flow [J]. Deep Sea Research,1953,3(2):134-139
    [135]Latham A J. Commercial realities in deep and ultra deep water [A].17thWorld Petroleum Congress[R],2002.
    [136]Li, X. H., Wei, G. J., Shao, L., et a1.,2003. Geochemical and Nd isotopic variations in sediments of the South China Sea:A response to Cenozoic tectonism in SE Asia.Earth and Planetary Science Letters,211(3-4):207-220.
    [137]Li, Q. Y., Jian, Z. M., Su, X.,2005b. Late Oligocene rapid transformations in the South China Sea. Marine Micropaleontology,54(1-2):5-25.
    [138]Martini, E.1971. Standard Tertiary and Quaternary calcareous nannoplankton zonation. Proceedings2nd Planktonic Conference, Roma,1969,2:739-785.
    [139]Micallef,A.,Masson,D.G.,Berndt,C.,et al.,2009.Development and mass movement processes of the north-eastern Storegga slide.Quaternary Science Reviews,28(5-6):433-448.doi:10.1016/j. quascirev.2008.09.026
    [140]M iller K G. T he role of ODP in understanding the causes and effects of global sea level change [J]. JOIDES Journal,2002,28(1):23-28.
    [141]Mitchum R M, Vail P, Thompson S. seismic stratigraphy and global changes in sea level: Part2.The depositional sequence as the basic unit for stratigraphic analysis[C]//Paton C E. Sesimic stratigraphy:Application to hydrocarbon exploration.[S.1.]:AAPG Memoir26,1977:53-62.
    [142]Owen,M.,Day,S.,Maslin,M.,2007.Late Pleistocene submarine mass movements: occurrence and causes.Quaternary Science Reviews,26(7-8):958-978.doi:10.1016/j.Quascirev.2006.12.011
    [143]Pickering,K.T.,Corregidor,J.,2005.Mass-transport complexes,(MTCs) and tectonic control on basin-floor submarine fans,Middle Eocene,SouthSpanish Pyrenees.
    [144]Posamentier H W, Allen G P. Siliciclastic sequence stratigraphy:Concepts and applications[J]. SEPM Concepts in Sedimentology and Paleontology,1999,7:1-210.
    [145]Qiu X, Ye S, Wu S, et al. Crust al structure across the Xisha Trough,northwestern South Chin a Sea[J]. Tectonophysics,2001,341:179-193.
    [146]Ru, K., Pigott, J. D.,1986. Episodic rifting and subsidence in the South China Sea. AAPG Bulletin,70(9):1136-1155.
    [147]Shanmugam G.50years of the turbidite paradigm (1950s-1999s):Deep water processes and facies models a critical perspective[J]. Marine and Petroleum Geology,2000,17(2):174-231.
    [148]Vail P, Mitchum R M, Thompson S. seismic stratigraphy and global changes in sea level:Part4. Global cycles of relative changes of sea level [C]//Paton C E. Sesimic stratigraphy:Application to hydrocarbon exploration.[S.1.]:AAPG Memoir26,1977:83-98.
    [149]Vail P R. Seismic stratigraphy interpretation using sequence stratigraphy:Part1. Seismic stratigraphy interpretation procedure [C]//Bally A W. Atlas of seismic stratigraphy. AAPG Studies in Geology.Vol.27.[S.l.]:[s.n.],1987:1-10.
    [150]van Wagoner J C, Mitchum R M, Posamentier H W, et al. Sesimic stratigraphy interpretation using sequence stratigraphy:Part2.Key definitions of sequence stratigraphy [C]//Bally A W. Atlas of seismic stratigraphy. AAPG Studies in Geology.Vol.27.[S.l.]:[s.n.],1987:11-14.
    [151]Wang, P. X., Prell, W., Blum, P., et al.,2000. Proceedings of ocean drilling program, initial reports. Volume184,College Station:Ocean Drilling Program,25-38.
    [152]WYNN R B, CRONIN B T, PEAKALL J P. Sinuous deepwater channels:Genesis, geometry and architecture [J]. Marine and Petroleum Geology,2007,24:341—387.
    [153]Wheeler, P., White, N.,2002. Measuring dynamic topography:an analysis of Southeast Asia.Tectonics,21(5):1040-1051. Doi:10.1029/2001TC900023.
    [154]Xia, K., Xia, S., Chen, Z.,Huang,C.,1995. Geothermal characteristics of the South China Sea. In:Gupta,M.L.,Yamano,M.,eds.,Terrestrial heat flow and geothermal energy in Asia. IBH Publishing Co.Pvt.Ltd.,NewDelhi.
    [155]Xie,X., Muller, R. D.,Li, S.T., et al.,2006. Origin of anomalous subsidence along the northern South China Sea margin and its relationship to dynamic topography.Marine and Petroleum Geology,23(7):745-765.doi:10.1016/j.marpetgeo.2006.03.004.
    [156]XIE X N, Mller R D, LIST, et al. Origin of anomalous subsidence along the Northern South China Sea margin and its relationship to dynamic topography [J]. Marine and Petroleum Geology,2006,23(7):745-765.
    [157]Yan P, Zh ou D, Liu Z. A crustal structure profile across the northern continental margin of the South China Sea[J]. Tectonophysics,2001,338:1221.
    [158]Zhong, Z.,Wang,L.,Li,X.,et al.,2004. The Paleogene basin-filling evolution of Qiong dongnan basin and its relation with seafloor spreading of the South China Sea. Marine Geology and Quaternary Geology,24(1):29-36.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700