用户名: 密码: 验证码:
雷暴云地面电场特征和基于多源观测资料的雷电预警研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
对大气电场观测实验区(南京、镇江、扬州以及常州地区)大气电场仪联网观测数据进行质量控制和统一标定,结合天气雷达、闪电定位仪和探空等多源资料对地面大气电场时空演变特征和电荷结构进行分析,提出基于单一来源资料及综合利用多源资料进行雷电临近预警的多种方法,对预警效果进行评估。论文主要工作和结论如下:
     (1)针对实验区大气电场联网观测数据,提出了地面大气电场仪单站观测数据的质量控制方法和联网观测数据的统一标定方法,实现了对联网观测数据的质量控制和客观分析。对统一标定之后的大气电场仪联网观测数据进行客观分析,显现出电场强度分布、雷达回波和闪电发生位置之间有较好的吻合性,发现闪电通常发生在电场梯度较大之处。
     (2)对不同天气特别是雷暴天气情况下的地面大气电场变化特征进行总结和分析,发现单体雷暴地面电场演变过程一般比较清晰而多单体雷暴地面电场演变过程则更为复杂;雷暴地面电场可分为正向增大、负向增大和上下震荡三种类型;大气电场演变过程与闪电的发生具有密切关系,闪电的发生演变过程和雷暴电场的三种类型具有较好的相关性。大气电场幅值慢变化、电场跳动和电场极性反转的现象是雷暴发生时大气电场的显著变化特征,这些特征可以用在雷电预警工作中。
     (3)建立了基于大气电场、雷达以及探空等数据的雷暴云电荷结构分析模型,研究了南京周边地区雷暴云电荷结构特征。假设雷暴云电荷团内电荷密度在空中呈准正态分布,对不同电荷结构(单极性、偶极性、三极性)及电荷团内电荷分布参数的雷暴云地面电场进行模拟计算,结合雷达回波的强度与空间分布数据、实测地面大气电场和模拟电场对比来反推雷暴云电荷结构。发现南京及周边地区雷暴电荷结构具有多样性和复杂性,但主要为偶极性,也存在三极性电荷结构。其次将雷达回波和雷暴初生特征以及环境温度和电荷区域特征运用于确定雷暴云电荷团内电荷密度为准正态分布的电荷分布参数(中心密度、中心位置、分布范围),得到了这些雷暴云过程的电荷密度随时间的演变过程以及电荷密度空间分布特征。同时将模拟得到的联网电场和电荷密度分布与插值联网电场以及其他观测资料进行对比分析发现,雷达回波和闪电发生位置与模型模拟结果基本吻合,而与插值联网电场有一定偏差。这一定程度说明模型以及结果具有一定合理性,也同时说明了站点布置对于电场联网的重要性。
     (4)提出了基于单一来源资料及综合利用雷达、大气电场仪、闪电定位系统及探空等多源资料进行雷电预警的方法,并对预警效果进行评估。单独利用大气电场、雷达和闪电定位等数据进行雷电临近预警并进行效果分析发现:利用闪电位置与电场测站之间的距离进行预警的方法是可行的;在3个雷达体扫时间内出现“电场绝对值超过1kv/m"的时间比例达1/3、在2个雷达体扫时间内出现“电场差分幅值绝对值超过0.15kV/m"达2次,这两个指标可分别用于南京以及周边地区的电场幅值阈值和电场差分阈值预警。将大气电场结合雷达数据对雷暴云首次地闪进行预报研究,发现6km高度上雷达反射率因子达到30dBZ是最优雷达预警阈值,两年数据统计得到POD为82.7%、FAR为14.6%、CSI为72.4%,平均预警时间是20.8min。同时,根据电场仪、雷达以及闪电定位仪观测的时间和空间关系,提出了将三种数据融合进行雷电预警的方法,得到POD为87.1%、FAR为16.5%、CSI为74.4%,平均预警时间为24.4min。对移过测区的典型雷暴过程进行区域性雷电临近预警,直观呈现局部测区的雷暴云和闪电的发生发展以及预报过程。同时区域性雷电临近预警可以增强大气电场仪的功能,不但能实现对一个地区进行预警,而且能对经过观测区的雷暴云的整个过程进行监测预警。
In this paper, firstly, the data of atmospheric electric field in Nanjing, Zhenjiang, Yangzhou and Changzhou have been quality controlled, uniformed calibrated and network organized, then the spatial variations of atmospheric electric field and charge structures have been analyzed by combining with the data of radar, lightning location and sounding data. Finally, the lightning forecasting methods are proposed and the results have been analyzed by using the above multivariate observations separately and synthetically.
     According to the characteristcs of atmospheric electric field observations, quality controlling method for the data of atmosphere electric field has been proposed in order to improve the quality of atmospheric electric field data. After quality controlling, uniformed calibration and network organization, we ananlyed the data and found that the distribution characteristics of atmospheric electric field consistent with radar echo and lightning positionning data. The lightnings occur in the area where the electric field gradient is large.
     The characteristics of electric field under different weather conditions (especially thunderstorm) were analyzed. The results showed that the isolated thunderstorms'electric field had a clear evolution process while the multi-units thunderstorms'were complicated. The evolutions of thunderstorms's electric field can be divided into three types:positive increasing, negative increasing and up-down jitter. In the meantime, the evolution of electric field closely realted with lighting occurrence and the lighting process was agreed well with three types of the evolution of thunderstorms's electric field. The slow change, jumpiness and polarity inversion are the features of electric field used for distinguishing thunderstorm and can be used for lightning forecasting.
     As for the charge structure of thunderstorm, first, the electric field evolution was simulated under different charge structures, and then the charge structure of thunderstorm was analyzed by comparing the electric field observation data with simulation electric field with the help of radar data. It is found that the charge structures of thunderstorms are complicated and diversified. The charge structure of thunderstorms is mainly dipole and the tripole charge structure is also existed. The relation of radar reflectivity and thunderstorm initial feature, the characteristics of environmental temperature and charge distribution were implemented in the inversion of charge distribution parameters in this paper, and then a quasi-normal charge distribution model was proposed. The method was used to analyze three isolated thunderstorms and a MCS that passed through the experiment site in2009. The evolution of charge density with time and the space distribution of these thunderstorms can be abtained. The simulated space electric field and charge density space distribution were compared with other observation and networked electric field with interpolation method. It is found that the distribution of atmospheric electric field agrees well with radar echo and lightning location data. The lightning occurred in the place where the electric field gradient is large. In addition, it illustrate that the model and obtained parameters are reasonable to some extent, and the method for networking electrostatic field using radar and sounding data is feasible. There existed some deviation between networked electric field with interpolation method and the location of lightning and radar echo. Therefore, it also showed that the site deploy of electric field mill is very important.
     The methods and the effect of lightning forecasting based on atmospheric electrostatic field, radar and lightning location data separately were analyzed and found that:the lightning forecasting made use of lightning location data is feasible; the proportion of EF absolute amplitude which exceed1kV/m reach1/3is considered the best electrostatic field amplitude index, while the best electrostatic field differential index is defined as the times of difference absolute amplitude which exceed0.15kV/m reach2times in two radar scan times, which are more suitable indexes for the region in this study.
     Based on the lightning forecasting with atmospheric electrostatic field, radar and lightning location data separately, a method of cloud-ground (CG) lightning nowcasting based on electric field observations, radar data was proposed. The experimental (2009) and independent test (2010) results shows that POD (Probability of Detection, POD) is82.7%, FAR (False Alarm Rate, FAR) is14.6%, CSI (Critical Success Index, CSI) is72.4%and average lead time is20.8min. Besiades, on the basis of the temporal relationship of electric field mills, radar and lightning location mill observation when thunderstorms move toward, a lightning nowcasting method based on a combination of lightning location system, electric field and radar data was proposed and the results show that POD, FAR and CSI values were87.1%,16.5%and74.4%respectively and average lead time was24.4min. Finally, a classical thunderstorm example of regional lightning warning in the region is analyzed. Results show that this method can present a visual development of thunderclouds and lightning; it can provide some useful information about the region's lightning characteristics.
引文
[1]马明,吕伟涛,张义军,等.1997-200年我国雷电灾情特征[J].应用气象学报,2009,19(4):393-400.
    [2]Rakov V A, Uman M A. Lightning:Physics and Effects [M].Cambridge, UK:Cambridge University Press, 2003.
    [3]张鸿发,程国栋,董万胜,等.青藏铁路沿线区域闪电分布和闪电气候[J].干旱气象,2005,23(1):1-9.
    [4]Ten Duis H J. Lightning strikes:Danger overhead [J]. Br J Sport Med,1998,32:276-283.
    [5]Elsom D M. Deaths and injuries caused by lightning in the United Kingdom:Analyses of two databases [J]. Atmospheric Research,2001,56:325-334.
    [6]Elsom D M. Deaths caused by lightning in England and Wales [J]. Weather,1993,48:83-90.
    [7]Lpez R E, Holle R L. Changes in the number of lightning deaths in the Unit ed Stat es during the twentieth century[J]. J Climate,1998,11:70-77.
    [8]Coates L, Blong R, Siciliano F. Lightning fatalities in Australia. Nat Hazards,1993,8:217-233.
    [9]马明,陶善昌,祝宝友,等.卫星观测的中国及周边地区闪电密度的气候分布[J].中国科学(D辑),2004,34(4):298-306.
    [10]Christian H J, Blakeslee R J, Boccippio D J, et al. Global frequency and distribution of lightning as observed from space by the optical transient detector [J]. Geophys Rese,2003,108(D1):4005-4019.
    [11]麻碧华.强雷区农村防雷的现状与对策研究,硕士论文,山东师范大学,2008.
    [12]胡先锋,刘彦章,肖稳安.1998-2004年中国雷电灾害特征分析[J].气象与减灾研究,2007,30(3):56-59.
    [13]Workman E J and Reynolds S E. Electrical activity as related to thunderstorm cell growth [J]. Physical Review,1949,74,1231-1232.
    [14]Larsen H R and Stansbury E J. Association of lightning flashes with precipitation cores extending to height 7 km [J]. Atmo. Terr. Phys.,1974,36,1547-1533.
    [15]Marshall J S and Radhakant S. Radar precipitation maps as lightning indicators [J]. Appl. Meteor.,1978, 17,206-212.
    [16]Dye J E, Jones J J. Weinheimer A J, et al. Winn, Observationswithin two regions of charge during initial thunderstorm electrification[J]. J. R. Meteorol. Soc.,1989,114(483),1271-1290.
    [17]Dye J E, Jones J J, Winn W P, et al. Early electrification and precipitation development and precipitation development in a small, isolated Montana cumulonimbus [J]. Geophys. Res.,1986,91,1231-1247.
    [18]Goodman S J, Buechler D E, Wright P D, et al. Lightning and precipitation history of a microburst-producing storm [J]. Geophys. Res. Lett.1988,15,1185-1188.
    [19]陈瑶.雷电监测预警系统.中国科学院研究生院(空间科学与应用研究中心),硕士论文,2006.
    [20]Cummins K L, Murphy M J, Bardo E A, et al. A combined TOA/M DF technology upgrade of the U. S. National lightning detect ion network [J]. Geophys Res,1998,103(D8):9035-9044.
    [21]Jerauld J, Rakov V A, Uman M A, et al. An evaluation of the performance characteristics of the NLDN using triggered lighting [C]. Helsinki:18th Lightning Detect ion Conference,2004.
    [22]朱男男,宫全胜,易笑园.地面大气电场资料在强对流天气预报中的应用[J].气象科技,2010,38(4):423--426.
    [23]许小峰.雷电灾害与监测预报[J].气象,2004,12(30):277-284.
    [24]Francis J M and Jennifer G W. On the Magnitude of the Electric Field near Thunderstorm-Associated Clouds [J]. Journal of applied meteorology and climatology.2008,47:240-248.
    [25]Hager W W, Nisber J S and Kasha J R. The evolution and discharge of electric fields within a thunderstorm [J]. Journal of computational physics,1989,82,193-217.
    [26]李荣,王才伟.甘肃雷暴云电荷分布和闪电特征的个体差异[J].高电压技术,2001,21(2):74-75.
    [27]叶宗秀,邵选民,刘欣生.雷暴云的电场及电荷分布模式[J].高原气象,1987,6(3):234-243.
    [28]刘欣生.云地闪点电荷模式的适用性及云闪的折线流光模式[J].高原气象,1985,4(2):167-175.
    [29]吴健,陈毅芬,曾智聪.利用地面电场仪与闪电定位资料进行短时雷电预警的方法[J].气象与环境科学,2009,32(1):47-51.
    [30]张义军,孟青,马明,等.闪电探测技术发展和资料应用[J].应用气象学报,2006,17(5):611-620.
    [31]蔡晓云,宛霞,郭虎.北京地区闪电定位资料的应用分析[J].气象科技,2001,4:33-38.
    [32]陶祖钰,赵听奕. 京津冀地区闪电的气候分析[J].气象学报,1993,51(3):325-332.
    [33]郄秀书,郭昌明,刘欣生. 北京与兰州地区的地闪特征[J].高原气象,1990,9(4):388-394
    [34]冯桂力,陈文选,刘诗军,等.山东地区闪电的特征分析[J].应用气象学报,2002,13(3):347-355.
    [35]易燕明,杨兆礼,万齐林,等.近50年广东雷暴、闪电时刻变化特征的研究[J].热带气象学报,2006,22(6):539-546.
    [36]郄秀书,袁铁,谢毅然,等.青藏高原闪电活动的时空分布特征[J].高原气象,2004,47(6):997-1002.
    [37]袁铁,郄秀书.青藏高原中部闪电活动与相关气象要素季节变化的相关分析[J].气象学报,2005,63(1):123-127.
    [38]王义耕,陈渭民,刘洁.TRMM卫星观测到的华南地区的闪电时空分布特征[J].热带气象学报,2009,25(2):227-233.
    [39]Reeve N, Toumi R. Lightning activity as an indicator of climate change [J]. Q. J. R. Meteoro. Soc.,1999, 125(555):893-903.
    [40]Boccippio D J, Goodman S J, Heckman S. Regional differences in tropical lightning distributions[J]. Appl. Meteorol,2000,39(12):2231-2248.
    [41]郄秀书.全球闪电活动与气候变化[J].干旱气象,2003,21(3):69-73.
    [42]Tuck A F. Product ion of nitrogen oxides by lightning discharges [J]. Quart J Roy Meteor Soc,1976,102: 779-755.
    [43]Chameides W L, St edman D H, Dickerson R R, et al. NOx production in lightning[J]. J Atmos Sci,1977, 34:14.
    [44]Price C. Evidence f or a link between global lightning activity and Upper troposphere water vapor [J]. Nature,2000,406:290-293.
    [45]黄美元,徐华英.云和降水物理[M].北京:科学出版社,1999.207-217.
    [46]张鸿发,程国栋,张彤.中国区域闪电分布和闪电气候的特点[J].干旱气象,2004,22(4):17-25.
    [47]Serge Soula, Serge Chauzy. Some aspects of the correlation between lightning and rain activities in thunderstorms. Atmospheric Research,2001,56:355-373.
    [48]Battan L J. Some factors governing precipitation and lightning from convective clouds[J]. J Atmos Sci,1965,22:79-84.
    [49]Sheridan S C, Griffiths J H, Orville R E. Warm season cloud-To-ground lightning precipitation relationships in the South-Central United States[J]. Wea Forecasti ng,1997,12:449-458.
    [50]Piepgrass M V, Krider E P, Moore C B. Lightning and surface rainfall during Florida thunderstorms [J].J Geophys Res,1982,87(13):11193-11201.
    [51]Holle R L, Watson A L, Lopez R E, et al. The life cycle of lightning and severe weather in a 3-4 June 1985 PRE-ST ORM mesoscale convective system [J]. Mon Wea Rev,1994,122:1798-1808.
    [52]Nielsen K E, R A Maddox, S V Vasiloff. The evolution of Cloud-t o-Ground lightning within a portion of the 10-11 June1985 squall line[J]. Mon Wea Rev,1994,122:1809-1817.
    [53]Moriah Kohn, Eli Galanti, Colin Price,et al.Nowcasting thunderstorms in the Mediterranean region using lightning data [J]. Atmospheric Research,2011:489-502.
    [54]姚叶青,袁松,张义军,等.利用闪电定位和雷达资料进行雷电临近预报方法研究[J].热带气象学 报,2011,27(6):905-911.
    [55]Murphy M J, Holle R L. Warning of cloud-to-ground lightning hazard based on combinations of lightning detection and radar information [R] 19th Intl. Lightning Detection Conf., Tucson,AZ, Vaisala Inc. international lighting detection Conference,2006, Tucson, Arizona,USA.
    [56]吕伟涛,张义军,孟青.雷电临近预警方法和系统研发[J].气象,2009,气象,2009,35(5):10-18.
    [57]罗林艳,祝燕德,王智刚,等.基于大气电场与闪电资料的雷电临近预警方法[J].成都信息工程学院学报,20 1 0,25(5):524-530.
    [58]Rakov V A, Uman M A. Lightning:physics and effects[M]. Cambridge University Press.2006,687 pp.
    [59]言穆弘,肖庆复,申巧南.1988年9-11月西太平洋海区大气电场特征分析[J].高原气象,1990,9(4):395-404.
    [60]袁箴,蒋本汤,任丽新,.强电场探空仪及雷雨云电场探测结果的分析[J].气象学报,1965,35(4):440-448.
    [61]刘欣生,郭昌明,王才伟等.闪电引起的地面电场变化特征及雷暴云下部的正电荷层[J].气象学报,1987,45,500-504.
    [62]言穆弘.雷暴下金属尖端放电所致空间电荷层分布的数值计算[J].大气科学,1984,10(3):302-309.
    [63]Rycroft M J, Israelsson S and Price C. The global atmospheric electric circuit, solar activity and climate change[J]. Atmos Sol Terr Phys,2000,62:1563-1576.
    [64]吕达仁,张凌,宣越健,等.南极中山站大气电场基本特征[J].南极研究,1995,7(1):36-43.
    [65]言穆弘,孙安平,张义军.太阳、地磁、大气电扰动与天气、气候相关研究[J].高原气象,1999,18(3):377-391.
    [66]Harnwell, G P, Voorhis V. Electrostatic generating voltmeter[J], Rev. Sci. Instrum.1933, Vol.4, p.540.
    [67]Miyakc F. A generating voltmeter for the measurement of high potentials[J], Rev. Sci. Instrum.1932, Vol. 3,p.1.
    [68]张腾飞.大气电场仪的改进及其标定系统设计,硕士论文,南京信息工程大学,2010.
    [69]朱男男,易笑园,宫全胜.大气静电场仪组网在天津雷电预警中的初步应用[C]//第七届中国国际防雷论坛论文摘编.北京:中国气象局雷电防护管理办公室和中国气象学会雷电防护委员会,2008:54.
    [70]罗福山,何渝晖,张华伟,等.电场的标定方法[J].空间科学学报,2007,27(3):223-226.
    [71]张腾飞,季鑫源,行鸿彦.电场仪标定系统设计[J].气象水文海洋仪器,2010,04:67-72.
    [72]杨波,邱实,高太长.大气电场仪联网数据一致性及预警方式的改进[J].解放军理工大学学报(自然科学版),2007,8(4):400-403.
    [73]陆新义,文元利,郭鹏,等.场磨式大气电场仪干扰环境定性测量//第七届中国国际防雷论坛论文摘编.北京:中国气象局雷电防护管理办公室和中国气象学会雷电防护委员会,2008:121-123.
    [74]杨仲江,朱浩,唐宏科,等.地面电场仪测量数据的误差来源及分析处理[J].大气科学学报,2010,33(6):751-756.
    [75]耿雪莹,张其林,刘明远.地面建筑物对雷暴云大气电场影响的模拟研究.第28届中国气象年会-雷电物理、检测预警与防护,2011.
    [76]刘国强,赵凌志.Ansoft工程电磁场有限元分析[M].北京:电子工业出版社,2005.
    [77]Montanya J, Aranguren D, Pineda N, et al. Total lightning.eltctrostatic field and meteorological radar applied to lightning warning.20th international lighting detection Conference, Tucson, Arizona, USA.2008.
    [78]董文乾.地面电场监测数据在雷暴预报中的应用[J].陕西气象,2007,(1):25-28.
    [79]孟青,吕伟涛,姚雯,等.地面电场资料在雷电预警技术中的应用[J].气象,2005,31(9):30-33.
    [80]柴瑞,王振会,肖稳安,等.大气电场资料在雷电预警中应用[J].气象科技,2009,37(6):724-728.
    [81]丁德平,李迅,邓长菊,等.北京地区大气电场的特征及雷电预警中的订正分析[J].沙漠与绿洲气象,2012,6(4):68-73.
    [82]刘春泉,厚军学,刘凯.利用大气电场资料进行雷暴预警预报[J].宁夏工程技术,2010,9(3):202-205.
    [83]孟青.雷电监测预警系统关键技术研究[J].气象科学,2004,24-25.
    [84]孟青.雷电临近预警预报技术的业务应用[J].气象科学,2008,41-43.
    [85]罗福山,何渝晖,张华伟,等.电场的标定方法[J].空间科学学报,2007,27(3):223-226.
    [86]Bazelyan E M, Aleksandrov,N L, Raizer, Y P, et al. The effect of air density on atmospheric electric fields required for lightning initiation from a long airborne object [J]. Atmospheric Research,2007,86:126-138.
    [87]Martin J M, Ronald L H, Nicholas W S. Cloud-to-ground lightning warnings using electric field mill and lightning observations.20th International Lightning Detection Conference.2008.
    [88]Aranguren D, Montanya J, Sola G et al. On the lightning hazard warning using electrostatic field:Analysis of summer thunderstorms in Spain [J]. Journal of Electrostatics.2009,67,507-512.
    [89]高菊霞,张雅斌,李润强.利用地面大气电场监测实现雷电预警[J].陕西气象,2009(增刊),52-55.
    [90]高太长,黄子洋,张鹏,等.大气电场资料与雷达回波资料的融合方法[J].解放军理工大学学报(自然科学版),2006,7(3):302-306.
    [91]MacGorman D R and Rust W D. The Electrical Nature of Storms[J]. Oxford University Press,1998,422 pp.
    [92]Reynolds S E, Brook M and Gourley M F. Thunderstorm charge separation [J]. Meteor,1957,14: 426-436.
    [93]Takahashi T. Riming electrification as a charge generation mechanism in thunderstorms [J]. Atmos. Sci., 1978,35:1536-1548.
    [94]Gaskell W. and Illingworth A J. Charge transfer accompanying individual collisions between ice particles and its role in thunderstorm electrification [J]. Quart. J. Roy. Meteor. Soc.,1980,106,841-854.
    [95]Jayaratne E R, Saunders C P R and Hallett J. Laboratory studies of the charging of soft hail during ice crystal interactions [J]. Quart[J]. Roy. Meteor. Soc.,1983,109,609-630.
    [96]Dye J E, Winn W P, Jones J J, et al. The electrification of New Mexico thunderstorms,1. Relationship between precipitation development and the onset of electrification [J]. Geophys. Res.,1989,94,8643-8656.
    [97]Orville R E. The Lightning ground flash density in the contiguous United Stases [J].1989. Mon. Wea. Rev.,1991,119,573-577.
    [98]Carey L D and Rutledge S A. The relationship between precipitation and lightning in tropical island convection:A C-band polarimetric study [J]. Mon. Wea. Rev.,2000,128,2687-2710.
    [99]Williams E R and Lhermitte R M. Radar tests of the precipitation hypothesis for thunderstorm electrification[J]. Geophys. Res.,1983,88(C15),10984-10992.
    [100]Rutledge S A, Williams E R, and Keenan TD. The down under Doppler and electricity experiment (DUNDEE):Overview and preliminary results[J]. Bull. Am. Meteorol. Soc.,1992,73(1),3-16.
    [101]Zipser E J and Lutz K R. The vertical profile of radar reflectivity of convective cells:A strong indicator of storm intensity and lightning probability [J], Mon. Weather Rev.,1994,122(8),1751-1759.
    [102]Carey L D and Rutledge S A. A multiparameter radar case study of the microphysical and kinematic evolution of a lightning producing storm [J]. Meteorology and Atmospheric Physics,1996,59,33-64.
    [103]Petersen W A, Rutledge S A and Orville R E. Cloud-to-ground lightning observations to TOGA COARE, selected results and lightning location algorithm[J]. Mon. Weather Rev.,1996,124(4),602-620.
    [104]Petersen W A, Rutledge S A, Cifelli R C, et al. Shipborne Dual-Doppler operations during TOGA COARE:Integrated observations of storm kinematics and electrification[J]. Bull. Am. Meteorol. Soc.,1999, 80(1),81-96.
    [105]言穆弘,刘欣生,安学敏,张义军.雷暴非感应起电机制的模拟研究Ⅰ.云内因子影响[J].高原气象,1996,(4).425-437.
    [106]Williams E R and Coauthors.The behavior of total lightning activity in severe Florida thunderstorms[J]. Atmos. Res.,1999,51,245-265.
    [107]Gilmore M S and Wicker L J. Influences of the local environment on supercell cloud-to-ground lightning, radar characteristics, and severe weather on 2 June 1995[J]. Mon. Wea. Rev.2002,130,2349-2372.
    [108]石玉恒.雷暴雷达回波特征与闪电活动的相关关系.硕士论文.中国气象科学研究院,2011
    [109]Boccippio, D. J. Lightning scaling relations revisited[J]. Atmos. Sci.,2002,59(6),1086-1104.
    [110]Deierling W, Petersen W A.Total lightning activity as an indicator of updraft characteristics[J]. Geo-phys. Res.2008,113, D16210, doi:10.1029/2007JD009598
    [111]Petersen W A, Christian H J and Rutledge S A. TRMM observations of the global relationship between ice water content and lightning [J]. Geophys. Res. Lett.,2005,32, L14819, doi:10.1029/2005GL023236.
    [112]Wilson C T.R. On some determinations of the sign and magnitude of electric discharge in lightning flashes [J]. Proc. Roy.Soc.Lond., A.1916,92:555-574.
    [113]Simpson S G and ORbinson G D.The distribution of electricity in thunderclouds[J]. Proc.Roy. Soc. Lond., A.1937,161:309-352.
    [114]Wilson C T R. Investigation on lightning discharge and on the electric field of thunderstorm [J], Phil.Trans. ROy. Soc. Lond.1920,221:75-115.
    [115]Simpson G C. On the electricity of rain and snow [J]. Porc. Roy. Soc. Lond.1909,83:394-404.
    [116]Stolzenburg M, Rust W D, Marshall T C. Electrical structure in thunderstorm convective regions.2. Isolated storms[J]. Journal of Geophysical Research,1998,103,14079-14096.
    [117]Stolzenburg M, Rust W D, Marshall T C. Electrical structure in thunderstorm convective regions.1. Mesoscale convective systems[J]. Journal of Geophysical Research.1998,103,14059-14078.
    [118]罗霞,陈渭民,李照荣,等.雷暴云电结构与闪电关系初探[J].气象科学,2007,27(3):280-286.
    [119]谢屹然,郄秀书,郭凤霞.液态水含量和冰晶浓度对闪电频数影响的数值模拟研究[J].高原气象,2005,24(4):598-603.
    [120]付伟基.一次单体雷暴的地面电场演变特征[J].贵州气象,2006,30:13-16.
    [121]赵阳,张义军,董万胜,等.青藏高原那曲地区雷电特征初步分析[J].地球物理学报,2004,47405-410.
    [122]郭凤霞,张义军,言穆弘,等.青藏高原那曲地区雷暴云电荷结构特征数值模拟研究[J].大气科学,2007,31(1):28-35.
    [123]崔海华,郄秀书,张其林,等.甘肃中川地区云闪的多站同步观测及雷暴的等效电荷结构[J].高原气象,2009,28(4):808-815.
    [124]张廷龙,郄秀书,言穆弘,等.中国内陆高原不同海拔地区雷暴电学特征成因的初步分析[J].2009, 28(5):1006-1017.
    [125]邵选民,刘欣生.云中闪电及云下部正电荷的初步分析[J].高原气象,1987,6:317-325.
    [126]叶宗秀,邵选民,刘欣生.雷暴云的电场及电荷分布模式[J].高原气象,1987,6(3):234-243.
    [127]张廷龙,言穆弘,张彤,等.利用地面电场对中川地区一次雷暴过程电荷结构的研究[J].高原气象,2010,29(6):1524-1532.
    [128]Michimoto K,. A study of radar echos and their relation to lightning discharge of thunderclouds in the Hokuriku district. Part I:Observations and analysis of thunderclouds in summer and winter.[J]. Meteor. Soc. Japan,1991,69,327-335.
    [129]Krehbiel P R. The charge st ructure of t hunderstorms [M].The earth's electrical environment. Washington, D C:National Acad Press,1986:90-113
    [130]Hondl K D and Eilts M D. Doppler radar signatures of developing thunderstorms and their potential to indicate the onset of cloud-to-ground lightning [J]. Mon. Wea. Rev.,1994,122,1818-1836.
    [131]Gremillion M S and Orville R E. Thunderstrom characteristics of cloud-to-ground lightning at the Kennedy Space Center, Florida:a study of lightning initiation signatures as indicated by the WSR-88D [J].Wea. and Forecasting,1999,14,640-649.
    [132]Vincent B R, Carey L D, Schneider D, et al. Using WSR-88D reflectivity for the prediction of cloud-to-ground lightning:A Central North Carolina study [J]. Natl. Wea. Dig.,2004,27,35-44.
    [133]Wolf P. Anticipating the initiation, cessation, and frequency of cloud-to-ground lightning, utilizing WSR-88D reflectivity data [J]. NWA Electronic Journal of Operational Meteorology, December 2006.
    [134]Clements N C and Orville R E. The warning time for cloud-to-ground lightning in isolated, ordinary thunderstorms over Houston, Texas.3rd Conf. on Meteorological Applications of Lightning Data, New Orleans, LA, Amer. Meteor. Soc,2008.
    [135]Buechler D E and Goodman S J. Echo size and asymmetry-impact on NEXRAD storm identification [J]. Appl. Meteor.,1990,29,962-969.
    [136]Brandon R V, Lawrence D C, Douglas S, et al. Using WSR-88D reflectivity for the prediction of cloud-to-ground lightning:A central north Carolina study. National Weather Digest,2003,27:35-44.
    [137]王飞,张义军,赵均壮,等.雷达资料在孤立单体雷电预警中的初步应用[J].应用气象学报,2008,19(2):153-160.
    [138]Brandon R V, Lawrence D C, Douglas S, et al. Using WSR-88D reflectivity for the prediction of cloud-to-ground lightning:A central north Carolina study. National Weather Digest,2003,27:35-44.
    [139]Grene D R, Clark R A. Vertically Integrated Liquid Water-A New Analysis Tool [J]. Mon. Wea. Rev., 1972,100,548-552.
    [140]Watson A I, Holle R L and Lopez R E. Lightning from two national detection networks related to vertically integrated liquid and echo-top information from WSR-88D radar [J].Wea. Forecasting,1995,10, 592-605.
    [141]Goodman S J, Blakeslee R, Christian H, et al. The North Alabama Lightning Mapping Array:Recent severe storm observations and future prospects [J]. Atmospheric Research 2005,76,423-437.
    [142]Mosier R M, Schumacher C and Orville R E. Radar nowcasting of cloud-to-ground lightning over Houston, Texas [J]. Weather and forecasting,2011,26,199-212.
    [143]Zbynek Sokol. Nowcasting of 1-h precipitation using radar and NWP data [J]. Journal of Hydrology,2006,328,200-211.
    [144]Schultz C J, Petersen W A and Carey L D. Preliminary development and evaluation of lightning jump algorithms for the real-time detection of severe weather [J]. Journal of Applied meteorology and climatology, 2009,48:2543-2563.
    [145]常越,陈德生,郭在华.多普勒天气雷达与雷电预警关系研究[J].气象与环境科学,2010,33(1):36-39.
    [146]Lang T J and Rutledge S A. A framework for the statistical analysis of large radar and lightning datasets: results from STEPS 2000 [J]. American Meteorological 1 Society, doi:10.1175/MWR-D-10-05000.
    [147]李南.多普勒雷达资料的退速度模糊_风场反演和临近预报的研究.博士论文.南京信息工程大学,2011.
    [148]姚叶青,袁松,张义军,等.利用闪电定位和雷达资料进行雷电临近预报方法研究[J].热带气象学报,2011,27(6):905-911.
    [149]Muller C.Saxen T, Roberts R,et al.NCAR Auto—Nowcast System, Weather and Forecasting[J],2003, 18:545-561.
    [150]Rinehart R E, Garvey E T.Three-dimensional storm motion detection by conventional weather radar[J]. Nature,1978,273:287-289.
    [151]Li P W, Edwin S T L.Applications of radar-based nowcasting techniques for mesoscale weather forecasting in Hong Kong[J].Meteorol Appl,2004,11:253-264.
    [152]Dixon M, Wiener G. TITAN:Thunderstorm identification, tracing, analysis and nowcasting-A radar-based methodology[J]. Atmos. Ocea. Tech.,1993,10:785-797
    [153]郭凤霞,张义军,言穆弘,等.青藏高原雷暴云降水与地面电场的观测和数值模拟[J].高原气象,2007,26(2):257-263.
    [154]唐海,季鑫源,行鸿彦,等.差分式大气电场仪的设计[J].2008,29(8):305-308.
    [155]唐海,行鸿彦,季鑫源.大气电场仪中相敏检波器的分析与设计[J].现代电子技术,2009,13:8-10.
    [156]王振会,李青,张祎,等.大气电场仪观测资料数字序列的时间特征分析[J].电子测量技术,2010,33(12):20-23.
    [157]周俊驰,王振会,郭凤霞,等.大气电场仪观测结果的修订[J].南京信息工程大学学报:自然科学版,2011,3(3):244-249
    [158]张培昌,杜秉玉,戴铁丕,等.雷达气象学[M].北京:气象出版社,1992
    [159]刘寅.多普勒雷达资料直接同化试验研究[D].南京信息工程大学,硕士论文,2011.
    [160]许洪泽.江苏闪电定位网资料的分析与研究[D].南京信息工程大学,硕士论文,2007.
    [161]雷电监测定位系统ADTD雷电探测仪用户手册[E]中国科学院空间科学与应用研究中心ADTD雷电监测定位系统课题组二00四年十月.
    [162]朱飙.江苏雷暴活动时空变化特征及南京雷电预报初探[D].南京信息工程大学研究生毕业论文,2008.
    [163]冯民学,韦海容,焦圣明,等.南京市闪电定位资料的对比分析[J].南京气象学院学报,2008,31(2):151-157.
    [164]陈谓民.雷电学原理[M].北京:气象出版社,2003.
    [165]Golde R H, Lightning, Vol.1, Academic Press, London,1977.
    [166]Montanya J, Bergas J, Hermoso B.Electric field measurements at ground level as a basis for lightning hazard warning[J].Journal of Electrostatics,2004,60241-246.
    [167]Oliver M A, Webster R. Kriging. a method of interpolation for geographical information system. Int [J]. Geographical Information Systems,1990,4 (3):313-332.
    [168]Davis, John C. Statistics and Data Analysis in Geology, John Wiley and Sons, New York.1986.
    [169]Cressie N A C. Statistics for spatial data [M]. NewYork:John Wiley and Sons,1991.
    [170]徐栋璞,王振会,曾庆锋,等.近地面大气电场数据EMD方法分析[J].气象科技,2013,41(1):170-176.
    [171]徐栋璞.大气电场特征分析及雷电预警研究.[D].南京信息工程大学,硕士论文,2012.
    [172]言穆弘,葛正漠.利用极化起电机制模拟闪电之后的电场恢复[J].高原气象,1984,3(4):71-77.
    [173]Moore C B, Vonnegut B. Thundercloud in lightning. In:R H Golde,eds. Physics of Lightning. San Diego:Academic Press,1977. Vol.1,64-98.
    [174]MacGorman D R, Rust W D. The Electrical Nature of Storms[M]. New York:Oxford University Press, 1998.167-168.
    [175]Workman E J and Holzer R E. A preliminary investigation of the electrical structure of thunderstorms! J]. Aero. Tech.N ote.,1942,850,1-29.
    [176]Krehbiel P R, Brook M and McCrocy R A. An analysis of the charge structure of lightning discharges to ground[J].Geophys. Res.1979,84,2432-2456.
    [177]Stolzenburg. M.An observational study of electrical structure in convective regions of mesoscale convective systems,PHD Diss.Norman:Univ of Oklahomn,1996.137.
    [178]Krehbiel P R, Three dimensional lightning mapping observations during MEaPRS in central Oklahoma [C]. Proceedings 11thIntn 1. Conf. Atmospheric Electricity,Guntersville,Alabama,June 1999.
    [179]Williams E. The tripole structure of thunderstorms[J]. Geophys Res.,1989..94,13151-13167.
    [180]Krehbiel P R. The electrical structure of thunderstorms, in The Earth's Elect rical Environment [M]// Krider E P, R G Roble eds. Washington, DC:National Academy Press,1998:90-113.
    [181]张义军,葛正谟,陈成品等.青藏高原东部地区的大气电特征[J].高原气象,1998,17(2):135-141.
    [182]张义军,刘欣生,肖庆复.中国南北方雷暴及人工触发闪电电特性对比分析[J].高原气象,1997,16(2):141-149.
    [182]Lhermitte R, Krehbiel R P.1979. Doppler radar and radio observations of thunderstorms [J]. IEEE Tran. Geosci. Electron,1979,GE-17:162-171.
    [183]郄秀书,刘欣生,张广庶,等.甘肃中川地区雷暴的地闪特征[J].气象学报,1998,56(3):312-322.
    [184]Qie X S., Yu Y, Liu Q S,et al. (2000), K-type breakdown process of intracloud discharge in Chinese Inland plateau [J]. Progress in Natural Science.,10,607-611.
    [185]Rust W D, Marshall T C. On abandoning the thunderstorm tripole charge paradigm[J]. Geophys. Res, 1996,101,23499-23504.
    [186]周志敏,郭学良.2009.强雷暴云中电荷多层分布与形成过程的三维数值模拟研究[J].大气科学,33(3):600-620.
    [187]张义军,言穆弘,张翠华等.不同地区雷暴电荷结构的模式计算[J].气象学报,2000,58(5):617-627.
    [188]赵中阔,郄秀书,张廷龙,等.一次单体雷暴云的穿云电场探测及云内电荷结构[J].科学通报,2009.54:3532-3536.
    [189]Marshall T C and Rust W D. EF soundings through thunderstorms[J], Geophys. Res.,1991,96, 22297-22306.
    [190]Marshall T C, Rust W D, Stolzenburg, M. Electrical structure and updraft speeds in thunderstorm over the southern Great Plains[J]. Geophys. Res.,1995,100:1001-1005.
    [191]Krehbiel P R. An analysis of electric field change produced by lightning, PhD thesis.Univ of Manchest.,Manchester,U K.1981.
    [192]Procter D E. VHF radio pictures of cloud flashes[J].Geophys. Res.,1981,86,4041-4071.
    [193]Williams E R.The electrification of severe storms. Meteorol.Monogr,2001,28:527-561.
    [194]李玉林,杨梅,李玉芳.夏季雷暴云雷达回波特征分析[J].气象,2001,27(10):33-37.
    [195]罗树如,支树林,俞炳.强对流天气雷电参数和雷达回波特征个例分析[J].气象科技,2005,33(3):222-226.
    [196]易笑园,张义军,李培彦,等.MCS中地闪活动特征与雷达资料相关个例分析[J].气象科技,2007,35(5):665-669.
    [197]Steven A. Rutledge,中尺度对流系统和闪电[J].气象科技,1992,69-76.
    [198]Mansell E R, MacGorman D R, Ziegler C L, et al. Simulated three-dimensional branched lightning in a numerical thunderstorm model[J]. J. Geophys.Res.,2002,107:4075.
    [199]Sinpson.G, Scrace F J.Distribution of electricity in thunderclouds. Proc.R.Soc.London.Ser. A,161,1937, 362-259.
    [200]李荣,王才伟.我国两类电结构不同的雷暴云[J].高电压技术,1998,24(1):81-84.
    [201]张鸿发,孙安平,言穆弘,等.雷暴云动力与电结构耦合的数值模拟试验研究[J].科学技术与工程,2002,2(2):44-46.
    [202]吴慧.海南省降水量的正态分布特征及正态化变换[J].广东气象,2005,12-13.
    [203]Silomon R, Baker M. Electrification of New Mexico thunderstorms.[J].Mon. Wea. Rev.,1994,122: 1878-1886.
    [204]朱飙,黄兴友,王世文.南京地区闪电定位资料与探空资料的应用分析[J].气象科学,2008,28(6):659-662.
    [205]Wagner T J, FeltzW F, Ackerman SA. The Temporal Evolution of Convective Indices in Storm-Producing Environments.[J].Weather. Forecasting,2008,23 (5):786-794.
    [206]Tuttle J W, Foote G B. Determination of radar and the boundary layer airflow from a single Doppler radar.[J]. Atmos. Ocea. Tech.,1990,7:218-232.
    [207]Wilson J W, Roberts R D. Evaluation of radar and other variables of the 0-2 h forecast of thunderstorms. Preprints.29th Radar Meteor.,1999,5-8.
    [208]Saxen T R, Mueller C K, Jameson T C. et al.. Determining key parameters for forecasting thunderstorms at white sands missile range. Preprints.29th Radar Meteor.,1999,9-12.
    [209]吴明江,杜莉萍,陈勇斌,等.大气电场的特征及雷电预警技术研究[J].气象水文海洋仪器,2010,1:10-14.
    [210]Brownlee K A. Statistical theory and methodology in science and engineering,2nd ed[M]. Krieger Pub Co,1984,590 pp.
    [211]Mason I. Dependence of the critical success index on sample climate and threshold probability[J]. Aust Met Mag,1989,37:75-81.
    [212]许小峰,郭虎,廖晓农,等.国外雷电监测和预报研究[M].北京:气象出版社,2003.
    [213]Lhermitte R, Williams E. Thunderstorm electrification:a case study[J]. Geophys. Res,1985,90, 6071-6078.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700