用户名: 密码: 验证码:
南昌市暴雨积涝模拟及气候风险评估研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
以南昌市为研究对象,围绕城市暴雨积涝灾害的形成机理、数学模拟、风险评估、监测预警等前沿问题,综合运用水文、气象、地理信息等有关学科理论,针对减轻城市暴雨积涝灾害损失并为城市规划提供科学依据的社会需求,充分利用城市地理信息资料、排水管网资料、雨量实况监测资料和雨量预报资料,借助地理信息系统平台,研究开发了城市暴雨积涝模拟模型,建立了依托气象部门雨量监测预报平台的暴雨积涝灾害预警系统,实现了南昌市城市暴雨积涝过程的数学模拟,提高城市暴雨积涝灾害监测、预警的科学水平,取得了有实际应用价值的研究成果。在研究过程中,结合实地测量和积涝模型调试,解决了模型中关键参数本地化问题。另外,本文基于南昌市历史日降水量和小时降水量资料,创造性地运用城市暴雨积涝模拟模型对南昌市暴雨积涝灾害进行了风险评估,为市政规划提供科学依据。在此基础上,提出了城市暴雨积涝临界雨量的概念,并给出了计算方法,为城市暴雨积涝预报服务提供了新手段。
     论文的主要结论如下:
     1、根据1961年以来的气象观测表明,受全球气候变暖影响,南昌和全国一样,气温呈现显著上升趋势,升温率0.23℃/10年,50年累计升温1.1℃;南昌市最近50年年平均降水量变化趋势不显著,最近50年年降雨日数减少,无降水日数在增加,小雨日数显著下降,中雨日数呈现下降趋势,但大雨、暴雨呈现上升趋势;说明在气候变暖背景下,南昌市降水强度在增强,面临的暴雨积涝灾害风险也在增加。
     2、南昌市的强降水主要分布在夏季,市区积涝灾害多发生于3月到9月,主要发生于每年5月、6月,但其它月份均有不同程度发生,只要发生15mm/h以上的降水,市区就会发生暴雨积涝灾害。暴雨积涝成因主要有气候变化、城市建设、排水设计、排水管理、地形地势等方面。
     3、通过对研究区域内和周边19个雨量监测资料,对不同空间插值方法计算误差的比较,得出了降水量在南昌市以二次曲面拟合精度最高的结论,确定了研究区域暴雨积涝模拟计算单元面雨量计算方法。
     4、根据雨水流到地面产生汇流,然后形成地面径流,再流入排水管的原理,以不规则网格为计算单元,得出了城市暴雨积涝模拟思路和计算步骤,确定了计算单元雨水有效产流量、计算单元之间水流量、排水设施排水流量、积水深度等计算模型。
     5、根据城市地表积水产汇流过程形成原理,通过暴雨积涝模拟和实况的对比调试,研究确定了南昌市不同地表类型的不透水面积百分率和地表糙率两个重要参数。
     6、利用主要暴雨积涝地段的实测暴雨积涝深度资料进行了大量暴雨积涝模拟试验,提出了模型的暴雨积涝等级误差优于暴雨积涝深度误差的结论。对重点暴雨积涝地段,详细模拟得出开始暴雨积涝的雨强、达到最大暴雨积涝深度的时间、退水时间等,为城市排水管网的改造提供依据。
     7、针对灾害风险评估的前沿问题,提出了城市积涝风险评估技术方法。利用历史长年代的降水资料,通过暴雨积涝模型的大量模拟,计算了研究区域不同地点出现不同等级暴雨积涝灾害的频率,绘制了南昌市暴雨积涝灾害气候风险分布图,为城市排水管网的改造和规划提供依据。
     8、提出了城市强降水积涝临界雨量的概念,计算了南昌市不同暴雨积涝等级的临界雨量,为城市暴雨积涝预警服务增加了新的思路。
     9、研发了南昌市暴雨积涝灾害模拟系统。针对城市水灾的形成机理、数学模拟、风险评估、监测预警等前沿问题,综合运用水文、气象、数学等有关学科基础理论,充分利用城市地理信息资料、排水管网资料、雨量监测和预报资料,研发了南昌市暴雨积涝灾害模拟系统,实现了城市暴雨积涝灾害的监测、预报、预警等功能,取得了有实际应用价值的研究成果,获得了软件著作权。
The research is based upon Nanchang City and cutting edge issues such as formation mechanism, mathematical simulation, risk evaluation, supervision and warning system for urban waterlogging have been studied by adopting comprehensively relevant scientific theories such as hydrology, weather and geographic information system etc. In order to decrease the loss of urban rainstorm and waterlogging, urban geographic information, drainage network, live monitoring data of rainfall and rainfall forecast materials have been fully taken advantage of for the research. Urban rainstorm and waterlogging stimulation model of Nanchang, which is based upon the rainfall monitoring and forecast platform in the meteorological department, has been established that has improved the overall level of urban rainstorm and waterlogging monitoring, forecast and disaster risk evaluation. Further more, according to per day and per hour precipitation, the waterlogging simulation model has been creatively utilized in waterlogging risk evaluation in Nanchang. Based on the model, the critical precipitation of the waterlogging has been calculated. So this model can be used in the urban waterlogging forecast system, as a new method.
     The main research findings and conclusion of this paper is as follows:
     1. According to the observation data from1961, influenced by global warming, Nanchang, the same as other cities, the temperature has obviously increased by1.1℃from1961. The warming rate is about0.23℃/10a. The annual precipitation doesn't change a lot, but the rainy day is decrease. Specially, the sprinkle days have obviously decreased. The moderate rainy days also decrease, while the heavy rainy days and rainstorm days increase. So under the background of climate change, the rain intense of Nanchang is increasing. The risk of waterlogging is also increasing.
     2. The heavy rain always happens in summer, so the waterlogging is also happens between March and September, mostly in May and June. If the rain is heavier than15mm/h, there should be waterlogging. The main reasons, which cause urban waterlogging, are climate change urban design, drain design, drain management and terrain.
     3. Utilizing19rainfall monitoring data in and surrounding the research area and comparing calculation errors of different spatial interpolation methods, we will know that quadric surface fitting is the best method that can be used to calculate grid cell surface rainfall in Nanchang.
     4. According to theory that rain drops to the ground, then becomes surface runoff and flows into drainage pipe, the calculation thinking of urban waterlogging is determined. First, calculate the initial depth of rain in the grid, then current flow on the grid channels and in drainage pipes and then water level in the grid the next moment. Mathematical models of waterlogging simulation have been determined, including calculation model of rainwater effective flow in each grid, dividing the grid in to land grid and watercourse grid according to surface features, flow calculation models of watercourse channels, land channels and land-watercourse channels according to the relations between bordering grids, calculation model of land grid drainage flow including drainage pipes and calculation model of ponding etc.
     5. According to urban surface ponding converging process, calibration method of impermeable area percentage and roughness coefficient could be determined.
     6. By using actually measured depth data for key waterlogging sections and analyzing waterlogging depth and level errors, the conclusion of similar simulation results and actual situation is reached. For same important sections, detailed analysis is conducted for initial rainfall intensity of waterlogging and time of highest waterlogging depth and recession time, providing the basis for urban drainage pipe network improvement.
     7. For cutting-edge issues of disaster risk assessment, we proposed the city waterlogging risk assessment techniques and methods. By using the history precipitation data, we can testify and adjust the simulation waterlogging model. By using this model, we will get the frequency of different levels waterlogging disasters in different sections in Nanchang and the waterlogging-risk distribution map of Nanchang city. So we can give same advices to the mapping and transforming of the urban drainage network.
     8. Concept of critical precipitation of torrential flood and geological disaster warning is introduced. The rainfall intensity of mild, moderate and severe waterlogging is defined as critical precipitation. And critical rainfall of different waterlogging levels is calculated, providing new methods for urban waterlogging warning serve.
     9. Waterlogging disaster warning platform in Nanchang has been developed. Cutting edge issues such as formation mechanism, mathematical simulation, risk evaluation, supervision and warning for urban waterlogging have been studied by adopting comprehensively relevant scientific theories such as hydrology, weather and geography etc. And urban geographic information, drainage network, live monitoring data of rainfall and rainfall forecast materials have been fully taken advantage of for the research and development of urban rainstorm and waterlogging stimulation model and rainstorm and waterlogging warning system to realize mathematical simulation for rainstorm and waterlogging in Nanchang City. And research results with practical value, software copyright have been gained for integrated innovation.
引文
1尚志海,丘世钧.当代全球变化下城市洪涝灾害的动力机制[J].自然灾害学报,2009,18(1):2-6.
    2王峰,颜正惠,黄伟乐,等.城市雨水内涝成因及对策[J].中国给水排水,2012,28(12):15-17.
    3金小麟,应舒.温州市城市防洪建设现状及对策分析[J].浙江水利科技,2002,(01):54-56.
    4陈振楼,王军,刘敏,俞立中,等.上海市主要自然灾害特点与应对策略[J].华东师范大学学报(自然科学版),2008(5):34-44.
    5 Lerat A, Wu Z N.Stable conservative multidomain treatments for implicit Euler solvers [J].Journal of Computational Physics,1996,123(1):45-64.
    6刘永琪,何永.关于北京城市排涝问题的探讨[J].城市发展研究.2012,19(1):6-9.
    7 Smith D I. Urban Flood Damage and Greenhouse Scenarios-The Implications for Policy: An Example from Australia [J]. Mitigation and Adaptation Strategies for Global Change, 1999(4):381-386.
    8 Jenny P, Muller B. Rankine-Hugoniot-Riemann solver considering source terms and multidimensional effects [J]. Journal of Computational Physics,1998,145(6):575-610.
    9 Harten Ami, Engquist Bjorn, Osher Stanley, et al,Uniformly high order accurate non oscillatory scheme[J]. Journal of Computational Physics,1987,71 (2):231-303.
    10吴斯文,张建明,涂清,陆中华.东莞市宏远片区内涝原因分析及整治方案设计[J].给水排水,2012,48(3):19-41.
    11刘诗雄.泉州市城市内涝治理工程措施探讨[J].中国水利,2012,19(5):48-49.
    12雷敏.城市内涝引发的设计思考与建议[J].中国水利,2012,21(7):51-53.
    13 Abbott M B, Bathurst J C, Cunge J A,et al,An introduction to the European Hydro logical System-Systeme Hydro logique Eurupeen,"SHE",1:History and philosophy of a physically-based,distributed modelling system[J].Journal of Hydrology,1986,87:45-59.
    14石海峰,曾肇京,张继昌,浅谈21世纪中国城市的防洪战略[J].水科学进展,2002,13(2):253-258.
    15方琦.我国城市水灾害防御体系研究[J].城市道桥与防洪.2012,(32)11:69-72.
    16张犁,城市洪水分析与模拟的GIS方法研究[J].地理学报,1995,S1:76-84.
    17 Suhyung Jang. Minock Cho. Jaeyoung Yoon. el al. Using SWMM as a tool for hydrologic impact assessment. Desalination.2007,212(25):344-356.
    18 Javier Tempranol, Scar Arangol, Juan Cagiao, Stormwater quality calibration by SWMM:A case study in Northern Spain[J].Water SA,2006,32(1):55-64.
    19 Nabil A, Zaghloul, Flow Simulation in Circular Pipes with Variable Roughness Using SWMM-EXTRAN Model [J]. Journal of Hydrographic Engineering,1998,(1):73-76.
    20赵冬泉,王浩正,陈吉宁,王浩昌.城市暴雨径流模拟的参数不确定性研究[J].水科学进展,2009,20(1):28-35.
    21张犁,林晖,李斌.互联网时代的地理信息系统[J].测绘学报,1998,22(1):9-15.
    22李莉.城市排水管道系统规划设计的研究[D].重庆:重庆大学,2004.
    23李纪人.地理信息系统在水利中的应用[J].中国水利,2001,17(8):67-68.
    24 Dean Djokic, David R. Application of GIS Network Routines for Water Flow and Transport [J]. Journal of Water Resource, Planning, and Management,1993(2):229-245.
    25 Schmitt T G,Thomas M,Ettrich N. Analysis and modeling of flooding in urban drainage systems[J]. Journal of Hydrology,2004(299):300-311.
    26 Batten P, Lambert C, Causon D M. Positively conservative high-resolution convection schemes for unstructured elements[J]. International journal for numerical methods in fluids,1996,39(11):1821-1838.
    27 Hsu M.H, Chen S.H, Chang Y.J. Inundation simulation for urban drainage basin with storm sewer system[J]. Journal Hydrology,2000,234(2):21-37.
    28 Makoto Takeda, Naoki Matsuo. Numerical Study for Influence of Sewerage System on Overland Flood Flow [J]. Annual Journal of Hydraulic Engineering,2000(44):467-478.
    29 Keedwell E, Khu S.T. A novel cellular aAutomata approach to optimal water distribution network design[J]. Journal of Computing in Civil Engineering,2006,20(1):49-57.
    30 Micha Werner, Doug Whitfield. Invited Commentary On model integration in operational flood forecasting [J]. Hydrological Processes,2007,21(11):1519-1521.
    31 Jessica Black. Theodore Endreny, Increasing Storm water Outfall Duration, Magnitude, and Volume through Combined Sewer Separation[J]. Journal of Hydro logic Engineering, 2006,11(5):472-481.
    32 Zhuge Zhengji, Guo Yiping. Analytical probabilistic flood routing for urban stormwater management purposes [J]. Canadian Journal of Civil Engineering,2008,13(5):487-499.
    33 Rabuffetti D, Milelli M. The hydro-meteorological chain in Piemonte region, Northwestern Italy-analysis of the HYDROPTIMET test cases [J]. Natural Hazards and Earth System Sciences,2005(5):845-852.
    34 Ole Marka, Sutat Weesakula, Chusit Apirumanekula, et al. Potential and limitations of ID modeling of urban flooding[J]. Journal of Hydrology,2004,299(3):284-299.
    35 Nguyen Tat Thang, Kazuya Inoue, Keiichi Toda, et al. A model for flood inundation analysis in urban area:verification and application [J]. Annual of Disaster Prevent Research institute, Kyoto University,2004,47(8):1-13.
    36 Glaister P, Conservative Upwind Difference Schemes for Shallow Water Equations [J].Computers and Mathematics with Applications,2000,39:189-199.
    37 Caleffi V, Valiani A. Finite volume method for simulating extreme flood events in natural channels [J]. Journal of Hydraulic Research,2003,41 (2):167-177.
    38 Brufau P, Vazquez Cendon M.E, Garcia-Navarro P. A numerical model for the flooding and drying of irregular domains[J]. International Journal for Numerical Methods in Fluids, 2002,39(3):247-275.
    39 Brufau P, Garcia-Navarro P. Two-dimensional dam break flow simulation [J]. International Journal for Numerical Methods in Fluids,2000,33(1):321-332.
    40 Bertrand-krajewski J, Chebbo G, Saget A. Distribution of pollutant mass vs, volume in stormwater discharges and the first flush phenomenon [J]. Water Research, 1998,32(8):2341-2356.
    41 Kawaike K, Inoue K, Toda K. Inundation flow modeling in urban area based on the unstructured meshes[J]. Hydraulic Engineering Software,2000(8):381-398.
    42 Palo S,Calabro. Cosmoss:conceptual simplified model for sewer system simulation, A new model for urban runoff quality [J]. Urban Water,2001(3):33-42.
    43 A. Amengual, T.Diomede, C.Marsigli,et al. A hydrometeorological model intercomparison as a tool to quantify the forecast uncertainty in a medium size basin [J]. National Hazards Earth System Science,2008,39(8):819-838.
    44 Characklis G.W, Wiesner M.R. Particles, metals and water quality in runoff from large urban watershed[J]. Journal of Environment Engineering-ASCE,1997,123 (8):753-759.
    45 Casulli V. Semi-implicit finite difference methods for the two-dimensional shallow water equations [J]. Journal of Computational Physics,1990,86(1):56-74.
    46 Deletic A. The first flush load of urban surface runoff [J]. Water Research,1988,32(8): 2462-2470.
    47 Singh V.P, Woolhiser D.A. Mathematical Modeling of Watershed Hydrology [J]. Journal of Hydrologic Engineering,2002,7(4):270-292.
    48 Diogo A.F, Walters G.A, de Sousa E.R,et al.3-dimensional optimization of urban drainage systems[J]. Computer-Aided Civil and Infrastructure Engineering,2000(15):409-426.
    49 Maheepala U.K, Takyi A.K, Perera B.J.C. Hydrological Data Monitoring for Urban Stormwater Drainage Systems [J]. Journal of Hydrology,2001,245(1):32-47.
    50 Chebbo G, Gromaier-Mertz M.C. Ahyerre MProduction and transport of urban wet weather pollution in combined sewer systems:the Marais experimental urban catchment in Paris[J]. Urban Water,2001,3(12):3-15.
    51李大鸣,管永宽,李玲玲,吕会娇,王强.蓄滞洪区洪水演进数学模型研究及应用.水利水运工程学报,2011,(3):27-35.
    52 Jose G, Vasconcelos, Steven J, et al. Numerical Modeling of Transition between Free Surface and Pressurized Flow, Environmental and Water Resources Engineering,2003, 113(7):25-35.
    53 Jeffrey G, Szabo, Steven G, et al. Performance of Wet Weather Treatment Facility for Control of Combined Sewer Overflows:Case Study in Cincinnati, Ohio [J]. Journal of Environment Engineering,2005,131(3):375-386.
    54 She Yuntong, Mao Zeyu. Flow simulation of urban sewer networks[J]. Tsinghua Science and Technology,2003,8(6):719-725.
    55 Ashley R.M, Arthur S, Cocghlan B, et al. Fluid sediment in combined sewers[J]. Water Science and Technology,1994,29(12):113-123.
    56 Greyvenstein GP. An implicit method for the analysis of transient flows in pipe networks[J]. International Journal for Numerical Methods in Engineering,2002,53: 1127-1143.
    57 Goutal N, Maurel F. A finite volume solver for 1D shallow-water equations applied to an actual river [J]. International Jouranl for Numerical Methods in Fluids,2002,38:1-19.
    58 Geng Y.F, Wang Z.L, Jin S. FVS scheme for severe transient flow in pipe networks[J]. Journal of Hydrodynamics,2005,17(5):621-628.
    59 Bryan W.K, Duncan M. Efficient calculation of transient flow in simple pipe networks [J]. Journal of Hydraulic Engineering, ASCE,1992,118(7):1014-1030.
    60 Hossein M.V.S, Alierza K. Transient flow in pipe networks[J]. J. Hydraulic Research, 2002,40(5):637-644.
    61 Johanna Merlein. Flow in submerged sewers with manholes[J].Urban water.2002,2: 251-255.
    62 M.Maharjan, A.Pathirana,B.Gersonius, K.Vairavamoorthy. Staged cost optimization of urban storm drainage systems based on hydraulic performance in a changing ernironment[J]. Hydrology and Earth System Sciences,2009,13:481-489.
    63杨开林.明渠结合有压管调水系统的水力瞬变计算[J].水利水电技术,2002,33(4):6-11.
    64周玉文,孟昭鲁,宋军.城市雨水管网非线性运动波法模拟技术[J].给水排水,1995,21(4):9-11.
    65张修忠,王光谦,金生.水沙运动一、二维分区祸合虚拟点算法[J].水科学进展,2004,15(2):151-155.
    66 Delis A.I. Improved application of the HLLE Riemann solver for the shallow water equations with source terms[J]. Communications in Numerical Methods in Engineering, 2003,19:59-83.
    67万五一.长距离输水系统的非恒定流特征研究[D].天津:天津大学,2004,6.
    68冯强,陶诗言,王昂生等.暴雨洪涝灾害对社会经济和人民生活的影响分析[J].灾害学,2001,16(03):44-48.
    69刘俊,城市雨洪模型研究[J].河海大学学报(自然科学版),1997,25(06):20-24.
    70徐向阳,平原城市雨洪过程模拟[J].水利学报,1998,(08):34-37.
    71郭光详,丁继勇,曾光.广州市暴雨内涝应急管理组织设计研究[J].中国水利,2012,19:44-47.
    72韩素芹,夏祥鳌,黎贞发等.天津市城区暴雨沥涝动态仿真模拟系统[J].灾害学,2001(01):14-22.
    73葛小平,许有鹏,张琪等.GIS支持下的洪水淹没范围模拟[J].水科学进展,2002,13(04):456-460.
    74邵尧明,邵丹娜.城市暴雨积水过程的计算方法[J].中国给水排水,2008.24(6):97-98.
    75谢莹莹,刘遂庆,信昆仑.城市暴雨模型发展现状与趋势[J].重庆建筑大学学报,2006,28(05):136-139.
    76解以扬,李大鸣,沈树勤等."030704"南京市特大暴雨内涝灾害的仿真模拟[J].长江科学院院报,2004,21(06):73-76.
    77解以扬,李大鸣,李培彦等.城市暴雨内涝数学模型的研究与应用[J].水科学进展,2005,16(3):384-390.
    78解以扬,韩素芹,由立宏等.天津市暴雨内涝灾害风险分析[J].气象科学,2004,24(03):342-349.
    79李大鸣,吕会娇.山区暴雨泥石流预报数学模型的研究.中国农村水利水电,2011,(6):24-35.
    80 Alcrudo F, Garcia-Navarro P. A high-resolution Godunov-type scheme in finite volumes for 2-D shallow-water equations[J]. International Journal for Numerical Methods in Fluids, 1988,16:489-505.
    81赵思健,陈志远,熊利亚.利用空间分析建立简化的城市内涝模型[J]自然灾害学报,2004(06):8-14.
    82丛翔宇,倪广恒,惠士博等.城市立交桥暴雨积水数值模拟[J]城市道桥与防洪,2006(02):52-55.
    83 Claus Dieter Munz. On the numerical dissipation of high resolution schemes for hyperbolic conservation laws [J].Journal of Computational Physics,1988,77:18-39.
    84徐向阳,刘俊,郝庆庆等.城市暴雨积水过程的模拟[J].水科学进展,2003,14(2):193-196.
    85张敏,沈荣芳.城市暴雨积水预报系统的理论模型及模拟计算[J].同济大学学报1994,22(3):334-340.
    86铁灵芝,廖文根,禹雪中.国外减轻城市洪涝灾害新设施发展综述[J].自然灾害学报,1995,4(增刊):225-234.
    87汪广丰.南京市城市排涝设施现状与对策[J].中国市政工程,2001,9(3):44-47.
    88郭绍光,梁扬武.城区小流域暴雨洪水计算方法的探讨[J].广西水利水电,2003(2):41-44.
    89仇劲卫,陈浩,刘树坤.深圳市的城市化及城市洪涝灾害[J]自然灾害学报,1998,7(2):67-73.
    90仇劲卫,李娜,程晓陶等.天津市城区暴雨沥涝仿真模拟系统[J].水利学报,2000,11:34-42.
    91刘俊,徐向阳.城市雨洪模型在天津市区排水分析计算中的应用[J].海河水利,2001,1(1):10-12.
    92李娜,仇劲卫,程晓陶等.天津市城区暴雨沥涝仿真模拟系统的研究[J].自然灾害学报,2002,11(2):112-119.
    93刘树坤,沈振明.利用洪水风险图指导洪泛区及城市建设[J].灾害学,1991,6(4):30-35.
    94李娜,程晓陶,苑希民等.上海市洪水风险图制作及洪水风险信息查询系统的开发[J].水利发展研究,2002,2(12):48-49.
    95周孝德,陈慧君,沈晋.滞洪区二维洪水演进及洪灾风险分析[J].西安理工人学学报,1996,12(3):244-250.
    96黄涛珍,王晓东.BP神经网络在洪灾损失快速评估中的应用[J].河海大学报,2003,7(4):456-460.
    97程涛,吕娟,张立忠等.区域洪灾直接经济损失即时评估模型实现[J].水利发展研究,2002,2(12):34-40.
    98王艳艳,陆吉康,郑晓阳等.上海市洪涝灾害损失评估系统的开发[J].灾害学,2001,16(2):7-13.
    99程杭平,韩曾萃.热污染的一、二维耦合模型及其应用[J].水动力学研究与进展,2002,(06):46-49.
    100 Quan Ling-qing. Equal time interval scheme for analysis of water hammer by characteristics[J]. J,Hydrodynamics,Ser, A,1997,12(2):188-195.
    101 Vadym Aizinger, Clint Dawson. A discontinuous Galerkin method for two-dimensional flow and transport in shallow water[J]. Advances in Water Resources,2002,25:67-84.
    102李大鸣,陈虹,李世森.河道洪水演进的二维水流数学模型[J].天津大学学报(自然科学与工程技术版),1998,31(4):339-346.
    103李大鸣,林毅,徐亚男,周志华.河道、滞洪区洪水演进数学模型[J].天津大学学报,2009,42(1):47-55.
    104李大鸣,林毅,周志华.蓄滞洪区洪水演进一、二维数值仿真及其在洼淀联合调度中的应用[J].中国工程科学,2010,12(3):82-89.
    105王志力,耿艳芬,金生.安康枢纽下游非恒定流数学模型研究[J].长江科学院院报,2005,22(5):4-8.
    106王志力.耿艳芬.金生.带源项的浅水方程的通量平衡离散[J].水科学进展.2005,16(3): 457-475.
    107王志力,耿艳芬,金生.二维洪水演进数值模拟[J].计算力学学报(InPerss),2004,24(3): 533-538.
    108王志力,耿艳芬,金生.具有复杂计算域、地形的二维浅水流动数值模拟[J].水利学报,2005,36(4):439-444.
    109张新华,隆文非,谢和平等.二维浅水波模拟在洪水淹没过程中的模拟研究[J].四川大学学报,2006,38(1):20-26.
    110吴寿昌.城市暴雨径流污染[J].甘肃环境研究与监测,1997,10(3):43-45.
    111吴作平,杨国录,甘明辉.复杂河网水沙数学模型研究[J].水科学进展,2004,15(3):336-340.
    112杨国录,吴卫民.一维河流数字模拟算法的概述[J].泥沙研究,1995,12(4):34-41.
    113曹志芳,李义天.蓄滞洪区平面二维干河床洪水演进数值模拟[J].应用基础与工程科学学报,2001,9(1):74-79.
    114白玉川,万艳春,黄本胜等.河网非恒定流数值模拟的研究进展[J].水利学报,2000,12:43-47.
    115李致家.通用一维河网不恒定流软件的研究[J].水利学报,1998,8:10-13.
    116耿艳芬,王志力,金生.一维浅水方程的高精度GODUNOC格式[J].水动力学研究与进展,2005,20(4):507-512.
    117潘存鸿,林炳尧,毛献众.一维浅水流动方程的Godunov格式求解[J].水科学进展,2003,4:430-436.
    118水鸿寿.一维流体力学差分方法[M].北京:国防工业出版社,1998.
    119谭维炎.计算浅水动力学一有限体积法的应用[M].北京:清华大学出版社,1998.
    120邓培德.城市暴雨公式统计中的若干问题[J].中国给水排水,1992,23(12):9-12.
    121丙孝芳.流域水文模型研究中的若干问题[J].水科学进展,1997,8(1):94-98.
    122任立良,刘新仁.基于数字流域的水文过程模拟研究[J].自然灾害学报,2000,9(4):45-52.
    123李艳红,周华君,时钟.山区河流平面二维流场的数值模拟[J].水科学进展,2003,14(3):424-429.
    124黄平,赵吉国.森林坡地二维分布型水文数学模型的研究[J].水文,2000,20(4:)1-4.
    125贺宝根,陈春根,周乃晟.城市化地区径流系数及其应用[J].上海环境科学,2003, 7(22):475-476.
    126郭生练,熊立华,杨井等.基于DEM的分布式流域水文物理模型[J].武汉水利电力大学学报,2000,33(6):1-5.
    127李兰,钟名军.基于GIS的LL-Ⅱ分布式降雨径流模型的结构[J].水电能源科学,2003,21(4):35-40.
    128丁国川,徐向阳.城市暴雨径流模拟及动态显示系统[J].海河水利,2003,1:40-42
    129岑国平,沈晋,范荣生.城市暴雨径流计算模型的建立和检验[J].西安理工大学学报,1996,12(3):184-191.
    130王林,秦其明,李吉芝等.基于GIS城市内涝灾害分析模型研究[J].测绘科学,2004,29(3):48-51.
    131周玉文,戴书健.城市排水系统非恒定流模拟模型研究[J].北京工业大学学报,2001,27(1):84-87.
    132 Li Da-ming, Zhang Hong-ping, Li Bing-fei, Xie Yi-yang et al. Basic theory and mathematical of urban rainstorm water logging[J]. Journal of Hydrodynamics, Ser.B,2004, 16(1):17-27.
    133刘仁义,刘南.基于GIS的复杂地形洪水淹没区计算方法[J].地理学报,2001,56(01):1-5.
    134袁艺,史培军,刘颖慧等.土地利用变化对城市洪涝灾害的影响[J].自然灾害学报,2003,12(3):6-13.
    135王宗敏,张杰,赵红领等.城市暴雨内涝计算中降雨插值算法的选取[J].人民黄河,2012,34(8),24-26.
    136武汉水利电力学院水力学教研室,水力学[M].北京,人民教育出版社.1975.5.
    137 Gromaier-Mertz M.C, Garnaud S, Saad M. Contribution of different sources to the pollution of wet weather flows in combined sewers [J]. Water Research,2001,35(2):521-533.
    138 Ming Z, Moharmed S.G. Godunov type solutions for water harmmer flows[J]. Journal of J, Hydraulic Engineering, ASCE,2004,130(4):341-348.
    139周玉文.瞬时单位线法求雨水管网系统入流流量过程线的数值计算方法[J].哈尔滨建筑大学学报,1997,30(5):41-46.
    140安智敏,岑国平,吴彰春.雨水口泄水量的试验研究[J]中国给水排水,1995,11(01):21-26.
    ]41曾晓岚,张智,丁文川等.城市雨水口地面暴雨径流模型研究[J].重庆建筑大学学报,2004,26(6):78-90.
    142 Hui WH, Kudriakov S. Computation of the shallow water equations using the unified coordinates [J]. SI AM Journal on Scientific Computing,2002,23:1615-1654.
    143 Garcia-Navarro P, Vazquez-Cendon M E. On numerical treatment of the source terms in the shallow water equations [J]. Journal of Hydraulic Engineering,2000,126(11):827-836.
    144朱元猍,金光炎.城市水文学[M].北京,中国科学技术出版社,1991,5.
    145吴持恭.水力学[M].北京,高等教育出版社,1982.11.
    146郑子成,何淑勤,吴发启,等.地表糙度与水力糙率系数的关系[J].山地学报,2004,22(2):236-239.
    147罗茂盛,刘兴年,罗宪吴,等.山区小流域坡面、沟道床面粗糙度与糙率测量方法探讨[J].四川大学学报(工程科学版),2008,40(6):57-62.
    148欧立业,郑海金.基于卫星遥感影像的南昌市热岛效应研究[J].测绘信息与工程,2009,34(4):28-30.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700