用户名: 密码: 验证码:
CINRAD-SA多普勒天气雷达速度模糊特征及退模糊方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
新一代天气雷达径向速度场存在速度模糊的问题。模糊一直困扰着雷达速度场的应用,使主观分析变得困难,使资料同化和风场反演结果变得不可靠。基于软件的退模糊算法是解决这个问题的途径之一。本文以CINRAD-SA业务雷达观测数据为研究对象,围绕着速度退模糊研究中存在的问题(速度模糊特征、退模糊算法的污染作用、连续噪声抑制、算法验证),开展了四个方面的研究。
     首先,用业务雷达观测数据,初步分析了速度模糊的特征,包括模糊的发生频率及其在站点、类型、时间和空间上的分布。分析结果认为:CINRAD-SA的速度模糊现象是普遍存在的,沿海雷达的模糊略多于内陆雷达,弱对流回波的模糊发生频率最高,冬半年的模糊远多于夏半年,而且模糊多出现在仰角为6.0。,方位角为70。(或250。),径向距离为50-60km,高度为5-6km的地方。这些特征为之后速度退模糊新算法的设计和验证提供依据。
     接着,从速度退模糊的基本原理出发,分析了退模糊错误的类型以及错误产生的原因。本文把错误分为两类,一类是一般错误,另一类是污染错误。通过分析发现,这两类错误的产生原因和危害不同,一般错误是由缺测引起的,而污染错误是由连续噪声所致。污染错误使退模糊后数据质量的改善情况变得不确定,这也是退模糊算法在应用中遇到的主要问题。因此,减小连续噪声的影响是提升退模糊算法性能的重要途径。
     基于上述的研究结果,本文提出了一种抗噪声的速度退模糊新算法(AND算法)。AND以减少污染错误为首要目标,通过消除连续噪声的影响提升算法性能。算法有三个步骤,噪声分离、曲线退模糊、噪声恢复,其中包含了一个无损的“分离-恢复”噪声抑制方案。这个方案解决了噪声抑制过程中误删除非噪声数据的问题,可以在有效抑制连续噪声的同时又不损失任何风场信息。退模糊时,以三条拟合曲线加权的方式来进一步抑制残留噪声,同时可以动态匹配不同尺度的风场。
     最后,为了验证AND算法的实际性能,从四站三年的业务雷达数据中选出所有模糊文件作为数据集,以文件正确率作为评分方法进行了全面的验证,与现有退模糊算法进行了直接和间接的比对,并给出了退模糊个例说明。验证结果表明:总的退模糊正确率接近90%,台风、强对流的退模糊正确率>94%,不连续层状云的退模糊正确率也达到了70%。AND算法明显优于WSR-88D退模糊算法,退模糊正确率比其高30个百分点,且污染错误的发生概率有较大幅度的降低。
Radial velocity fields from CINRAD weather radars are faced by the problem of velocity ambiguity. Ambiguity which inhibits the application of radar velocity fields will make subjective analysis difficult and make data assimilation and wind field retrieval unreliable. One effective solution is software-based dealiasing algorithm. In this paper, observations from CINRAD-SA operational radars were studied, and in response to the problems in velocity dealiasing (velocity ambiguity characteristics, contaminated errors, continuous noise inhibition ability, and algorithm validation), studies were conducted from four aspects.
     First, operational radar observations were used to pre-characterize velocity ambiguity, including the occurrence rate of ambiguity, and the inter-station, inter-type, temporal, and spatial distributions of ambiguity. The results showed that:velocity ambiguity was ubiquitous in CINRAD-SA; seashore radars were slightly more ambiguous than inland radars; echoes of weak convections had the highest occurrence rate of ambiguity; ambiguity occurred more frequently in winter half year than in summer half year; ambiguity occurred mainly at an elevation angle of6.0°, azimuth of70°or250°, radial distance of50-60km, or height of5-6km. Knowledge on these characteristics provides a foundation for design and validation of dealiasing algorithms.
     Second, the types and causes of dealiasing errors were analyzed by using the basic principles of velocity dealiasing. Errors were divided into two types:general error and contamination error. The two error types had different causes and harms. General error and contamination error were caused by missing data and continuous noise respectively. Contamination error showed negative effect on dealiasing algorithms and made data quality improvement unclear after dealiasing, so contamination error is a major problem for the application of dealiasing algorithms. Therefore, an important pathway to improve dealiasing performance is to reduce the impact from continuous noise.
     Third, based on the above results, a new anti-noise velocity dealiasing algorithm (AND algorithm) was proposed. The primary objectives of AND were to reduce contamination error and to improve algorithm performance by eliminating the impact of "continuous noise". AND was finished in three steps:noise separation, curve dealiasing, and noise restoration; it involved a lossless "separation-restoration" repressing scheme. This scheme could avoid the mistaken deletion of non-noisy data during noise suppression, effectively repress "continuous noise", and avoid the loss of any wind field information. During dealiasing, three fitted curves were weighted to further repress residual noise and dynamically match wind fields at varying scales.
     Fourth, all ambiguous files from4stations×3years of operational radar data were used to validate the actual performance of AND based on file precision; AND was also directly and indirectly compared with an existing dealiasing algorithm, with illustration by special cases. The results showed that:total dealiasing precision of AND was close to90%; precisions of typhoons and strong convections were>94%; precision of discontinuity stratus was70%. AND (with a dealiasing precision30%higher) was obviously superior over WSR-88D algorithm and greatly reduced the rate of contamination error.
引文
蔡亲波,颜琼丹.2009.二维多路多普勒雷达风场自动退模糊算法应用研究.气象科学,29(5):625-632
    楚志刚.2009.天气雷达开放式数据处理系统设计.南京信息工程大学硕士研究生毕业论文
    方德贤,刘国庆,董新宁,等.2007.区域生长法在多普勒天气雷达速度场分析中的应用.南京大学学报(自然科学版),43(1):102-110
    顾建峰,薛纪善,颜宏.2004.多普勒雷达四维变分分析系统概述.热带气象学报,20(1):1-13
    何平.1991.VAD技术的精度分析.气象科学研究院硕士论文
    胡明宝,高太长,汤达章.2000.多普勒天气雷达资料分析与应用.北京:解放军出版社,
    胡胜.2000.多普勒天气雷达产品软件的开发与设计.南京气象学院硕士研究生毕业论文
    胡玉玲,康健鹏,谢义明,等.2008.2007年7月3日苏皖龙卷风成因初步分析.安徽农业科学,36(27):11936-11939
    梁海河,张沛源,葛润生.2002.多普勒天气雷达风场退模糊方法的研究.应用气象学报,13(5):591-599
    刘黎平,邵爱梅,葛润生,等.2004.一次混合云暴雨过程风场中尺度结构的双多普勒雷达观测研究.大气科学,28(2):278-284
    刘娟,朱君鉴,魏德斌,等.2009.070703天长超级单体龙卷的多普勒雷达典型特征.气象,35(10):32-39
    刘淑媛,王洪庆,陶祖钰,等.2003.一种简易的多普勒雷达速度模糊纠正技术.应用气象学报,14(5):111-116
    刘晓阳,张培昌,顾松山.1992.用折叠线跟踪算法退除多卜勒速度折叠.南京气象学院学报,15(4):493-499
    潘新民,熊毅,柴秀梅,等.2010.新一代天气雷达退数据模糊方法探讨.气象与环境 科学,33(1):17-23
    陶岚,顾松山,徐芬,等.2007.1480型多普勒天气雷达中尺度气旋识别模块设计.南京气象学院学报,30(3):417-423
    陶祖钰.1992.从单Doppler雷达速度场反演矢量场的VAP方法.气象学报,50(1):81-90
    陶祖钰,石坚.1993.多普勒速度模糊的切向消除技术.应用气象学报,4(2):145-153
    王俊.2005.利用K-领域频数法处理多普勒雷达原始资料.气象,31(6):51-54
    王丽荣,胡志群,汤达章,等.2007.多普勒雷达径向速度资料在对流天气预报中的应用.气象科学,27(6):695-701
    王珊珊,黄兴友,苏磊,等.2008.利用雷达回波自动识别锋线的方法.南京气象学院学报,31(4):563-573
    伍志方;叶爱芬;胡胜,等.2004.中小尺度天气系统的多普勒统计特征.热带气象学报,20(4):391-400
    徐芬,夏文梅,胡志群,等.2007.多普勒天气雷达风场产品在螺旋度计算中的应用.气象科学,27(5):495-501
    许映龙,矫梅燕,毕宝贵,等.2006.近海台风雷达定位方法应用研究.大气科学.30(6):1119-1128
    许致火,何建新,史朝,等.2012.我国地基天气雷达技术系统发展介绍.气象科技,40(3):321-329
    夏网萍,魏鸣,李南.2010.单多普勒雷达SVVP风场反演及应用.气象科学,30(4):503-509
    杨川,刘黎平,胡志群,等.2012.C波段多普勒雷达双PRF模式速度混淆区识别和处理方法研究.气象学报,70(4):875-886
    仰美霖.2010.新一代天气雷达退速度模糊的方法研究及效果分析.中国气象科学研究院硕士研究生毕业论文
    仰美霖,刘黎平,苏德斌,等.2011.二维多途径退速度模糊算法的应用及效果研究.气象,37(2):203-212
    杨毅,邱崇践,龚建东,等.2008.三维变分和物理初始化方法相结合同化多普勒雷达 资料的试验研究.气象学报,66(4):479-488
    俞小鼎,王迎春,陈明轩,等.2005.新一代天气雷达与强对流天气预警.高原气象,24(3):456-464
    俞小鼎,姚秀萍,熊廷南等.2006.多普勒天气雷达原理与业务应用.北京:气象出版社,314pp
    张建云,张持岸,孙召平.2012.用频域滤波和双PRF技术提高新一代天气雷达数据质量,气象科技进展,2(1):6-11
    张培昌,杜秉玉,戴铁丕.2001.雷达气象学.北京:气象出版社,499pp
    张少波,陆汉城,张鹏,等.2007.基于MVAD技术的多普勒雷达径向速度退模糊方法的改进研究.热带气象学报,23(5):497-504
    郑媛媛,俞小鼎,方翀,等.2004.一次典型超级单体风暴的多普勒天气雷达观测分析.气象学报,62(3):317-238
    朱立娟,龚建东.2006.OIQC技术在雷达反演VAD廓线资料退模糊中的应用研究.高原气象,25(5):862-869
    庄薇,刘黎平,余燕群,等.2012.雷达地物回波模糊逻辑识别法的改进及效果检验.气象学报,70(3):576-583
    Bargen D W, Brown R C.1980. Interactive radar velocity unfolding//Preprints,19th Conf. on Radar Meteorology. Miami, FL, Amer Meteor Soc,278-283
    Bergen W R, Albers S C.1988. Two and three dimensional dealiasing of Doppler radar velocity. J Atmos Ocean Technol,5(2):305-319
    Boren T A, Cruz J R, Zrnic D S.1986. An artificial intelligence approach to Doppler radar velocity dealiasing//Preprints,23rd Conf. on Radar Meterology. Snowmass, CO, Amer Metero Soc,107-110
    Brown R, Wood V.2005. Evaluation of the Velocity Dealiasing Algorithm modified for superresolution WSR-88D data. Final Report for the FY 2005 NSSL-ROC MOU (Task 5.1),13pp.
    Browning K A, Wexler R.1986. The determination of kinematic properties of a wind field using Doppler radar. J Appl Meteor,7(1):105-113
    Doviak R D, Zrnic D S.1993. Doppler Radar and Weather Observations.2d edtion Academic Press
    Eilts M D, Smith S D.1990. Efficient dealiasing of Doppler velocities using local environment constraints. J Atmos Ocean Technol,7(1):118-128
    Gao J D, Kelvin K D.2004. A variational technique for dealiasing Doppler radar velocity data. J Appl Meteor,43(6):934-940
    ——,——, Gong J D, et al.2004:A Method for Retrieving Mean Horizontal Wind Profiles from Single-Doppler Radar Observations Contaminated by Aliasing. Mon Wea Rev, 132(6):1399-1409
    Gong J D, Wang L L, Xu Q.2003. A three-step dealiasing method for Doppler velocity data quality control. J Atmos Ocean Technol,20(12):1738-1748
    Haase G, Landelius T.2004. Dealiasing of Doppler Radar Velocities Using a Torus Mapping. J Atmos Oceanic Technol,21(10):1566-1573
    He G X, Li G, Zou X L, et al.2012. Applications of a velocity dealiasing scheme to data from the China new generation weather radar system (CINRAD). Wea Forecasting,27(1): 218-230
    ——,——,——, et al.2012. A Velocity Dealiasing Scheme for Synthetic C-Band Data from China's New Generation Weather Radar System (CINRAD). J Atmos Oceanic Technol,29,1263-1274
    Hennington L.1981. Reducing the effects of Doppler radar ambiguities. J Appl Meteor, 20(12):1543-1546
    Hennington L D, Burgess D W.1981. Automated recognition of mesocyclones from single Doppler radar data.//Preprints 20th Conf. on Radar Meteor. Boston, Amer Meteor Soc, 704-706
    Hogg W D.1978. Quality control and analysis of an archive of digital radar data.//Preprints, 18th Conf. on Radar Meteorology, Atlanta, GA, Amer Meteor Soc,150-154
    Holleman I, Beekhuis H.2003. Analysis and correction of dual PRF velocity data. J Atmos Ocean Technol,20(4):443-453
    James C N, Houze R A.2001. A real-time four-dimensional Doppler dealiasing scheme. J Atmos Ocean Technol,18(10):1674-1683
    Jing Z Q, Wiener G.1993. Two-dimensional dealiasing of Doppler velocities. J Atmos Ocean Technol,10(6):798-808
    Joe P, May P T.2003. Correction of dual PRF velocity errors for operational Doppler weather radars. J Atmos Ocean Technol,20(4):429-442
    Johnson G N, Smith P L, Nathanson F E, et al.1975. An analysis of techniques for dealing with anomalous propagation.//Preprints,16th Conf on Radar Meteorology, Houston, TX, Amer Meteor Soc,374-377
    Harris F I, Glover K M, Smythe G R.1985. Gust Front Detection and Prediction.//Preprints, 14th Conf on Severe Local Storms, Boston, MA, Amer Meteor Soc
    Kessinger C, Ellis S, VanAndel J.2001. NEXRAD data quality:The AP clutter mitigation scheme.//Preprints,30th Conf. on Radar Meteorology, Munich, Germany, Amer Meteor Soc,707-709
    Lhermitte R M, Atlas D.1961. Precipitation motion by pulse Doppler radar//Preprints,9th Conf. on Weather Radar. Boston, Amer Meteor Soc,218-223
    Li N, Wei M.2010. An automated velocity dealiasing method based on searching for zero isodops. Quart J Roy Meteor Soc,136(651):1572-1582
    Lim E, Sun J.2010. A velocity dealiasing technique using rapidly updated analysis from a four-dimensional variational Doppler radar data assimilation system. J Atmos Oceanic Technol,27,1140-1152
    Merritt M W.1984. Automatic velocity dealiasing for real-time applications//Preprints,22nd Conf. on Radar Meteorology. Zurich, Switzerland, Amer Meteor Soc,528-533
    Mitchell E D, Vasiloff S V, Stumpf G J, et al.1998. The National Severe Storms Laboratory Tornado Detection Algorithm. Wea Forecasting,13(2),352-366
    Moszkowicz S, Ciach G J, Krajewski W F.1994. Statistical detection of anomalous propagation in radar reflectivity patterns. J Atmos Oceanic Technol,11:1026-1034
    Oye R, Carbone R.1981. Interactive Doppler editing Software.//Preprints,20th Conf On Radar Meteorology, Boston, Amer Meteor Soc,683-689
    Ray P S, Ziegler C.1977. De-aliasing first-moment Doppler estimates. J Appl Meteor,16(5): 563-564
    Sun J, Crook N A.1997. Dynamical and microphysical retrieval from Doppler radar observations using a cloud model and its adjoint. Part I:Model development and simulated data experiments. J Atmos Sci,54:1642-1661
    Smalley D J, Bennett B J, Frankel R.2005. MIGFA:The machine intelligent gust front algorithm for NEXRAD.//Preprints,32nd Conf on Radar Meteorology, Amer Meteor Soc
    Tabary P, Scialom G, Germann U.2001. Real-time retrieval of the wind from aliased velocities measured by Doppler radars. J Atmos Ocean Technol,18(6):875-882
    Tang D Z, Geotis S G, Passarelli R E, et al.1984. Evaluation of an alternating-PRF method for extending the range of unambiguous Doppler velocity.//Preprints,22nd Conf on radar meteorology, Zurich, Switzerland, Amer Meteorol Soc,523-527
    Testud J, Breger G, Amayenc P, et al.1980. A Doppler radar observation of a cold front.Three dimensional air circulation, related precipitation system and associated wave-like motions. J Atmos Sci,37:78-98
    Waldteufel P, Corbin H.1979. On the analysis of single-Doppler radar data. J Appl Meteor,18: 532-542
    Wei M, Liu Y A, Pan J W, et al.2009. New Velocity Dealiasing of Doppler Radar with the Interactive Method. World Congress on Computer Science and Information Engineering, Los Angeles, CA,5:7-11
    Witt A.2007. Performance of two velocity dealiasing algorithms on Terminal Doppler Weather Radar data.//Preprints,33rd Conf on Radar Meteorology. Cairns, QLD, Australia, Amer Meteor Soc, PI3
    ——, Brown R A, Jing Z Q.2009. Performance of a new velocity dealiasing algorithm for the WSR-88D//Preprints,34th Conf. on Radar Meteorology. Williamsburg, VA, Amer Meteor Soc, P4.8
    Xin L, Reuter G 1998. VVP technique applied to an Alberta storm. J Atmos Oceanic Technol, 15:587-592
    Xu Q, Nai K, Wei L, et al.2011. A VAD-based dealiasing method for radar velocity data quality control. J Atmos Ocean Technol,28(1):50-62
    Yamada Y, Chong M.1999. VAD-based determination of the Nyquist interval number of Doppler velocity aliasing without wind information. J Meteor Soc Japan,77:447-457
    Zhang J, Wang S X.2006. An automated 2D multipass Doppler radar velocity dealiasing scheme. J Atmos Ocean Technol,23(9):1239-1248
    Zittle W D, Bannon T.1991. On the performance of three velocity dealiasing techniques over a range of Nyquist velocities rPreliminary findings.//Preprints,25th Conference On Radar Meteorology, Boston, Amer Meteor Soc,53-55
    Zrnic D S, Burgess D W, Chen Y G. 1984. Automated Detection of Mesocyclonic Shear Test Results. NEXRAD JSPO publication,51 pp

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700