用户名: 密码: 验证码:
中国大陆现今地壳运动的GPS分析与构造变形模拟
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
中国大陆位于欧亚板块东南部,受印度板块、菲律宾板块和西伯利亚一蒙古亚板块的夹持,是全球岩石圈变形和地壳运动最强烈的地区之一,也是全球大陆地震多发区。因而研究我国大陆内部的变形对于认识长期的岩石圈动力学过程与变形模式,了解断层的作用机制以及进行地震危险性评估都有十分重要的意义。
     我国于20世纪80年代末开始用GPS监测地壳形变,之后的20多年,先后在青藏高原、川滇、天山等地区陆续开展了流动GPS观测,获取了大量的GPS测站资料。随着中国地壳运动观测网络(简称网络工程)和中国大陆构造环境监测网络(简称陆态网络)的实施和运行,我国的地壳运动监测能力和相关研究取得了长足进步。
     近年来,随着GPS处理软件的模型精度和参考框架精度的显著提高,较以往基于较短时期内解算的速度场结果,新的参考框架、软件处理模型和观测时间更长的GPS数据资料为我们获取更为精确的速度场结果提供了可靠保障。本文工作以网络工程的GPS资料为主,辅以陆态网络部分站点的GPS区域站资料和国内外其它研究小组公开发表的速度场结果,对中国大陆的地壳运动和变形场进行研究。在对GPS数据进行处理时,与以往采用GIPSY或GAMIT软件不同的是,本文的GPS数据处理采用的是BERNESE软件,并使用最新的软件模型进行统一处理。具体研究内容和结果包括以下3个方面:
     1)使用最大似然估计(MLE)方法对网络工程1999-2010年的GPS基准站位置时间序列进行了噪声分析,研究了基准站GPS时间序列的时间和空间相关性,定量评估了基准站速率的可靠精度。此外除周年、半周年信号以外,还评估了其他异常周期信号对噪声分析结果的影响,主要内容和结论有:
     对网络工程基准站位置时间序列空间滤波前、滤波后以及共模信号进行了噪声分析。在空间滤波时使用了改进的加权叠加滤波方法进行空间滤波以去除各测站位置时间序列之间的空间相关性,并且主要考虑了1000km以内的测站残差时间序列来形成共模误差。通过MLE分析发现共模误差主要由白噪声和闪烁噪声组成,其中白噪声在北向、东向和垂向幅度的均值分别为0.65、0.72、1.39mm,闪烁噪声在北向、东向和垂直方向的幅度均值为2.86、2.98、10.11mm/a1/4。此外,在“白噪声+闪烁噪声”的组合噪声模型假设下,空间滤波前、后测站速率之差在北向、东向和垂向的均值(及其相应的标准偏差)分别为0.04±0.09,0.06±0.15,-0.06±0.34mm/a。说明在空间滤波前、后,测站速率的结果具有很好的一致性。
     通过MLE方法比较、分析各类不同噪声模型,滤波前GPS位置时间序列有色噪声的主要成分是闪烁噪声,而滤波后时间序列有色噪声的主要成分为幂指数噪声。总体来说,对于滤波前的原始时间序列,纯白噪声模型得到的速率误差与“白噪声+闪烁噪声”或“白噪声+幂指数噪声”相比,可能会被低估8-10倍;对滤波后的时间序列,纯白噪声模型得到的速率误差与“白噪声+闪烁噪声”或“白噪声+幂指数噪声”相比,可能会被低估8-16倍。当使用“白噪声+闪烁噪声”的模型时,滤波前GPS位置时间序列在北向、东向和垂直方向速率误差中值分别为0.16、0.17、0.58mm/a,滤波后时间序列在北向、东向和垂直方向速率误差的中值分别为0.09、0.10、0.40mm/a。
     2)采用网络工程1999-2011年6期区域网GPS数据和陆态网络2009-2011年部分测站的2期GPS数据构建中国大陆地壳运动的水平速度场;利用网络工程近10年区域站GPS资料构建中国大陆长期的垂直运动速度场;综合其它区域已公开发表速度场结果,获取了整个中国大陆及周边地区更为完整、空间分辨率更高的现今地壳运动速度场。
     本文垂直速度场结果表明:中国大陆大部分地区的地壳垂直运动速率较低,其中青藏高原地区地壳垂直运动趋势整体表现为较低速率的隆升。青藏高原东北部的祁连山-阿拉善地区测站的垂直速率均值约为1.0mm/a;藏南拉萨地块内部测站垂向速率均值约为1.6mm/a;巴颜喀拉地块东部、龙门山以西的川西地区测站垂直速率均值约为1.9mm/a;天山块体的内部整体上表现为低速的隆升,该地区测站的垂直运动速率约为1.8mm/a;华南地区以及塔里木盆地内部的地壳垂直运动十分微弱,测站垂直运动速率小于1mm/a;在华北平原,有部分地区(如河北、山东、江苏、天津等地)由于长期开采地下水,一些测站的垂直运动表现为十分显著的沉降,个别测站下沉速率达到6-10cm/a东北地区的北部地壳垂直速率相对较高,部分测站达到3-5mm/a。
     3)利用本文处理得到的中国大陆水平运动速度场结果,精化中国大陆活动地块的运动学模型,在顾及地块旋转和块体边界断层滑移所产生的弹性应变条件下,整体性反演实测GPS速度场,获取了各活动地块与边界断裂带的运动速率。在GPS观测精度内,该模型整体上较好地反映了中国大陆构造变形的主要特征,模型给出的主要断层滑动速率在中国西部的青藏高原及周边为5-20mm/a,在中国东部地区为1-2mm/a。例如:华南块体的运动速率为6.4mm/a,华北平原运动速率为4.1mm/a,准噶尔块体为4.5mm/a,塔里木块体的运动速率为13.1mm/a。阿尔金断裂带中东段的左旋走滑速率约为6mm/a,海原断裂带左旋走滑速率约为6mm/a,东昆仑断裂带左旋走滑速率约为8-10mm/a,甘孜-玉树-鲜水河断裂带的左旋走滑速率约为12-15mm/a,喀啦昆仑断裂带右旋走滑速率约为7mm/a,红河断裂带右旋走滑速率约为8-12mm/a。
The Chinese mainland, which is located in the southeastern part of Eurasia plate, is one of the most actively deoforming areas with significant crustal movement and widespread earthquakes, due to its contact with India plate, Philippine plate and Siberia-Mongolia subplate. Therefore, the study of the deformation of Chinese mainland is critical to understand long-term crustal deformation and dynamic processes, and has important implications for faulting mechanism and earthquake hazard assessment.
     In the late1980s, China began to utilize GPS measurements in order to monitor the crustal deformation. Over the next20years, several campaign-mode GPS surveys were carried out in the Tibet plateau, Sichuan-Yunan and Tienshan, etc., and abundant GPS data had been obtained since then. With the implementation and operation of "Crustal Movement Observation Network of China "(CMONOC) and " Continental Tectonic Environment Monitoring Network of China "(CTEMNC), the capability of monitoring the crustal movement and its related research has made considerable progresses in China.
     Nowadays, owing to the improvements for the models related to the GPS data processing and the precisions of the GPS reference frame, the new software models, new reference frame and data with much longer time span provide us the oppotunity to obtain more precise velocity field. This work utilize the GPS data mainly from CMONOC, combined with the data from CTEMNC and the published velocity field results from other research groups, in order to study the crustal movement and active deformation in the Chinese mainland. The GPS data in this study are processed homogeneously using the BERNESE GPS software, which is deferent from previously used GAMIT or GIPSY softwares. The main content and conclusions are as follows:
     1) Decade-long coordinate time series of26continuous GPS sites of CMONOC are analyzed for their noise content using maximum likelihood estimation (MLE). The noise properties of continuous GPS time series of CMONOC are studied for both the temporally and spatially correlated characteristics, and the velocity uncertainties of the continuous GPS sites are quantified. Besides, in addition to the annual and semiannual signals, the influence of other periodic signals on the noise assessment is also analyzed.The main conclusions are:
     This work study the noise properties of continuous GPS time series of CMONOC for the unfiltered, filtered solutions and also the common mode signals in terms of power law plus white noise model. In the spatial filtering, a common mode error was removed for every time series from a modified stacking of position residuals from other sites within~1000km of the selected site. The common mode signal in our network has a combination of spatially correlated flicker noise and a common white noise with large spatial extent. The common mode signal removed in the spatial filtering has a mean magnitude of0.65(north),0.72(east),1.39(vertical) mm of white noise and a mean magnitude of2.86(north),2.98(east),10.11(vertical) mm/a1/4of flicker noise, respectively. In addition, the mean of the velocity differences (and their corresponding standard deviations) obtained from the white noise plus flicker noise model between unfiltered and filtered solutions is0.04±0.09,0.06±0.15,-0.06±0.34mm/a, for north, east and vertical components, respectively, indicating an overall agreement between the velocity estimates of the unfiltered and filtered coordinate time series.
     Through the comparison of different noise models, we can draw that for the unfiltered solutions the main coloured noise is a flicker process; whereas for the filtered solutions the main coloured noise is a general power law noise process with any estimated spectral index. On the whole, for the unfiltered solutions, when a pure white noise model is assumed, the velocity error in CMONOC continuous GPS position time series may be underestimated by factors of8-10compared with that of the white plus flicker noise or white plus power law noise model. For the filtered solutions, when a pure white noise model is assumed, the velocity error may be underestimated by factors of8-16compared with that of the white plus flicker noise or white plus power law noise model. In addition, when using a white plus flicker noise model, the median values of the velocity errors for the unfiltered solutions are0.16,0.17and0.58mm/a for the north, east and vertical components, respectively; and the median values for the filtered solutions are0.09,0.10and0.40mm/a for the north, east and vertical components, respectively.
     2) The horizontal velocity field was derived using the campaign-mode GPS data from CMONOC surveyed in1999-2011and CTEMNC surveyed in2009-2011. The vertical velocity field was obtained using the campaign-mode GPS data from CMONOC surveyed in1999-2011. Besides, combined with other published results, a more complete and high resolution horizontal velocity field covering the whole Chinese mainland and its surrounding areas has also been given.
     Preliminary results from vertical velocity field demonstrate that most of the Chinese mainland has a low-speed vertical motions and the general trend of Tibetan Plateau is toward uplift with low rates.Specifically speaking, the GPS sites in the Qilian-Alashan of northeastern Tibet have a mean vertical rate of1.0mm/a; the GPS sites in the Himalaya and Lhasa blocks have a mean vertical rate of1.6mm/a; the sites in the western Sichuan have a mean vertical rate of1.9mm/a; the sites within the Tienshan have a low uplift trend with a mean rate of1.8mm/a; the sites within the South China and Tarim blocks have insignificant vertical rates of<1mm/a; in the North China plain, many sites show significant subsidence due to the effect of groundwater pumping, and several sites even have subsidence rates of6-10cm/a; the sites in the northeastern China have a relatively high vertical uplift rates of3-5mm/a.
     3) Taking advantage of the velocity field obtained above, this work refine the active block model for the Chinese mainland. To interpret the GPS velocity field, the GPS velocities are inverted simultaneously for the effects of block rotations, elastic strain induced by the block-bounding faults and the block movement and fault slip rates are calculated from this block model. Within the precision of GPS measurements, this block model provides a first-order description of the active tectonics of Chinese mainland.The slip rates inferred from this model is in a range of5-20mm/a for the major faults in Tibet and its margins and1-2mm/a in eastern China. For instance, the velocities of South China, North China plain, Dzunggar, Tarim blocks are~6.4mm/a,~4.1mm/a,~4.5mm/a and~13.1mm/a, respectively.The left-lateral slip rate for Altyn Tagh is~6mm/a; the left-lateral slip rate for Kunlun is about8-10mm/a; the left-lateral slip rate for Ganzi-Yushu-Xianshuihe is about12-15mm/a; the right-lateral slip rate for Karakorum is~7mm/a; the right-lateral slip rate for red revier is about8-12mm/a, etc.
引文
陈俊勇,王泽民,庞尚益,等.2001.论珠穆朗玛峰地区地壳运动.中国科学(D),31(4):265-271
    邓起东,张培震,冉勇康,等.2002.中国活动构造基本特征.中国科学(D),32(12):1020-1030
    邓起东,张培震,冉勇康,等.2003.中国活动构造与地震活动.地学前缘,10卷(特刊),66-73
    邓起东.1996.中国活动构造研究.地质论评,42(4):295-299
    丁国瑜,卢演俦.1991.活动亚板块、构造块体的相对运动.见:丁国瑜主编:中国岩石圈动力学概论.北京:地震出版社,142-153
    顾国华,符养,王武星.2004.1999-2001年中国大陆地壳水平运动.地震学报,26(增):50-57
    顾国华.2001.参考框架的一致性及其对形变分析的影响.地壳形变与地震,21(2):31-36
    顾国华.2005.GPS观测得到的中国大陆地壳垂直运动.地震,25(3):1-7
    顾国华.2008GNSS数据处理与分析(中国科学院研究生院2008-2009秋季学期讲稿)
    赖锡安,徐菊生,黄立人,等编著.2004.中国大陆现今地壳运动.北京:地震出版社
    李海兵,司家亮,潘家伟,等.2008.活动断裂的变形特征及其大地震复发周期的估算.地质通报,27(12):1968-1991
    李强,游新兆,杨少敏,等.2012.中国大陆构造变形高精度大密度GPS监测—现今速度场.中国科学(D),42(5):629-632
    李延兴,杨国华,李智,等.2003.中国大陆活动地块的运动与应变状态.中国科学(D),33(增):65-80
    刘经南,姚宜斌,施闯,等.2002.中国大陆现今垂直形变特征的初步探讨.大地测量与地球动力学,22(3):1-5
    刘静,徐锡伟,李岩峰,等.2007.以海原断裂甘肃老虎山段为例浅析走滑断裂古地震记录的完整性——兼论古地震研究中的若干问题.地质通报,26(6):650-660
    马杏垣.1989.中国岩石圈动力学地图集.北京:中国地图出版社
    牛之俊,王敏,孙汉荣,等.2005.中国大陆现今地壳运动速度场的最新观测结果.科学通报,50(8):839-840
    牛之俊,游新兆,王琪,等.2003.中国地壳运动速度场——GAMIT与GIPSY结果比对.大地测量与地球动力学.23(3):4-8
    乔学军,游新兆,王琪,等.2009.2008年1月9日西藏改则扎西错Ms6.9级地震的InSAR 实测形变场.自然科学进展,19(2):173-179
    乔学军,游新兆,杨少敏,等.2009.当雄Ms6.6级地震InSAR观测及断层位错反演.大地测量与地球动力学,29(6):1-7
    汪一鹏.2001.青藏高原活动构造基本特征.见马宗晋主编.青藏高原岩石圈现今变动与动力学研究论文集.北京:地震出版社,251-262
    王敏.2009.GPS观测结果的精化分析与中国大陆现今地壳形变场研究.中国地震局地质研究所博士学位论文
    王敏,沈正康,董大南.2005.非构造形变对GPS连续站位置时间序列的影响和修正.地球物理学报,48(5):1045-1052
    王敏,沈正康,牛之俊,等.2003.中国大陆地壳运动与活动块体模型.中国科学(D),33(增):21-33
    王敏,张培震,沈正康,等.2006.全球定位系统(GPS)测定的印尼苏门答腊巨震的远场同震地表.科学通报,51(3):365-368
    王琪.2004.用GPS监测中国大陆现今地壳运动:变形速度场与构造解释.武汉大学博士学位论文
    王琪,牛之俊,石俊成.2003.中国地壳运动观测网络基本网观测精度研究.大地测量与地球动力学,23(3):9-13
    王琪,张培震,牛之俊,等.2001.中国大陆现今地壳运动和构造变形.中国科学(D),31(7):529-537
    王阎昭,王恩宁,沈正康,等.2008.基于GPS资料约束反演川滇地区主要断裂现今活动速率.中国科学(D),38(5):582-597
    王阎昭,王敏,沈正康,等.2011.2010年玉树地震震前甘孜-玉树断裂形变场分析.地震地质,33(3):525-532
    徐锡伟, P. Tapponnier, Van Der Woerd,等.2003.阿尔金断裂带晚第四纪左旋走滑速率及其构造运动转换模式讨论.中国科学(D),33(10):967-974
    徐锡伟,闻学泽,陈桂华,等.2008.巴颜喀拉地块东部龙日坝断裂带的发现及其大地构造意义.中国科学(D),38(5):529-542
    徐锡伟,闻学泽,郑荣章,等.2003.川滇地区活动块体最新构造变动样式及其动力来源.中国科学(D),33(增):151-152
    徐锡伟,张培震,闻学泽,等.2005.川西及其邻近地区活动构造基本特征与强震复发模型.地震地质,27(3):446-461
    杨少敏,兰启贵,聂兆生,等.2012.用多种数据构建2008年汶川特大地震同震位移场.地球物理学报,55(08):2575-2588
    杨少敏,李杰,王琪.2008.GPS研究天山现今变形与断层活动.中国科学(D),38(7):872- 880
    杨少敏,王琪,游新兆.2005.中国现今地壳运动GPS速度场的连续变形分析.地震学报,27(2):128-138
    张辉,高原,石玉涛,等.2012.基于地壳介质各向异性分析青藏高原东北缘构造应力特征.地球物理学报,55(1):95-104
    张培震,邓启东,杨晓平,等.1996.天山的晚新生代构造变形及其地球动力学问题.中国地震,12(2):127-140
    张培震,邓起东,张国民,等.2003,中国大陆的强震活动与活动地块.中国科学(D),33(增):12-20
    张培震,甘卫君,沈正康,等.2005.中国大陆现今构造作用的地块运动和连续变形的耦合模型.地质学报,2005(06):748-756
    张强,朱文耀.2000.中国地壳各构造块体运动模型的初建.科学通报,45(9):967-972
    张青松,周耀飞,陆祥顺,等.1991.现代青藏高原上升速度问题.科学通报,36(7):529-531
    张智,田小波.2011.青藏高原中部地壳和上地幔各向异性分析.地球物理学报,54(11):2761-2768
    郑文俊,张培震,袁道阳,等.2009.GPS观测及断裂晚第四纪滑动速率所反映的青藏高原北部变形.地球物理学报,52(10):2491-2508
    周宇,聂兆生,贾治革,等.2012.基于非均匀地壳模型的格林函数法反演2001年昆仑山口西Ms8.1级地震的同震滑移.大地测量与地球动力学,32(3):22-26
    朱智琴,李征航,刘万科.2009.相位中心改正模式的转变对GPS数据处理的影响.武汉大学学报信息科学版,34(11):1301-1304
    Abdrakhmatov, K.Y., S. A. Aldazhanov, B. H. Hager, et al.1996. Relatively recent construction of the Tien Shan inferred from GPS measurements of present-day crustal deformation rates.Nature,384:450-453
    Ader, T., J.P. Avouac.,J. Liu, et al.2012. Convergence rate across the Nepal Himalaya and interseismic coupling on the Main Himalayan Thrust:Implications for seismic hazard. J. Geophys. Res.,117(B04403), doi:10.1029/2011JB00907
    Agnew, D.,1992.The time domain behavior of power law noises. Geophys. Res. Lett. 19(4):333-336,doi:10.1029/91GL02832
    Altamimi, Z., X. Collilieux, J. Legrand,et al.2007. ITRF2005:a new release of the international terrestrial reference frame based on time series of station positions and earth orientation parameters 2007. J. Geophys. Res.,112(B09401),doi:10.1029/2007JB004949
    Altamimi, Z., et al.2012. ITRF2008 plate motion model.J. Geophys. Res.,117(B07402),doi:10.1029/2011JB008930
    Altamimi, Z., P. Sillard, C. Boucher,2002. ITRF2000:a new release of the international terrestrial reference frame for earth science applications. J. Geophys. Res.,107(B10),2214. doi:10.1029/2001JB000561
    Altamimi, Z., X. Collilieux, and L. Metivier,2011. ITRF2008:an improved solution of the International Terrestrial Reference Frame. Journal of Geodesy,85:457-473
    Amiri-Simkooei, A.R.,2009. Noise in multivariate GPS position time-series. Journal of Geodesy, 83(2):175-187.doi:10.1007/s00190-008-0251-8
    Amiri-Simkooei, A.R., C.C.J.M. Tiberius, P.J.G. Teunissen,2007. Assessment of noise in GPS coordinate time series:methodology and results. J. Geophys. Res.,112,B07413
    Armijio, R., P. Tapponnier and T.L. Han,1989. Late Cenozoic right-lateral strike-slip faulting in southern Tibet. J.Geophy. Res.,94(B3):2787-2838
    Armijo, R., P. Tapponnier, J. L. Mercier, et al.1986.Quaternary extension in Southern Tibet: Field observations and tectonic implications. J. Geophys. Res.,91(B14):13803-13872
    Avouac, J. P. and P. Tapponnier,1993. Kinematic model of active deformation in central Asia. Geophys. Res. Lett.,20(10):895-898
    Banerjee, P., R. Burgmann,2002. Convergence across the northwest Himalaya from GPS measurements. Geophys. Res. Lett.,29(13),1652,doi:10.1029/2002GL015184
    Banerjee, P., R. Burgmann, B. Nagarajan, et al.2008. Intraplate deformation of the Indian subcontinent. Geophys. Res. Lett.,35, L18301, doi:10.1029/2008GL035468
    Beavan, J.,2005. Noise properties of continuous GPS data from concrete pillar geodetic monuments in New Zealand, and comparison with data from US deep drilled braced monuments. J. Geophy. Res.,110(B8),B08410,doi:10.1029/2005JB003642
    Bendick, R., R. Bilham, J. T. Freymueller, et al.2000. Geodetic Evidence for a low slip rate in the Altyn Tagh Fault and Constraints on Asian Deformation.Nature,404:69-72
    Bell, M. A., J. R. Elliott and B. E. Parsons,2011.Interseismic strain accumulation across the Manyi fault (Tibet) prior to the 1997 Mw 7.6 earthquake.Geophys. Res. Lett.,38, L24302, doi:10.1029/2011GL049762
    Bilham, R., K. Larson, J. T. Freymueller, et al.1997. GPS measurements of present-day convergence across the Nepal Himalaya.Nature,386,61-64
    Blewitt, G. and D. Lavallee,2002. Effect of annual signals on geodetic velocity. J. Geophys. Res., 107,2145, doi:10.1029/2001JB000570
    Brown, E. T., R. Bendick, D. L. Bourle's, et al.2002. Slip rates of the Karakorum fault, Ladakh, India, determined using cosmic ray exposure dating of debris flows and moraines. J. Geophys. Res.,107(B9),2192, doi:10.1029/2000JB000100
    Burov, E. B. and A. B. Watts,2006. The long-term strength of continental lithosphere:"jelly sandwich" or "creme brulee"? GSA today,16(1),4-10
    Byerlee, J. and W. Brace,1968. Stick slip, stable sliding, and earthquakes—effect of rock type, pressure, strain rate, and Stiffness. J. Geophys. Res.,73,18:6031-6037
    Calais, E., L. Dong, M. Wang, et al.2006.Continental deformation in Asia from a combined GPS solution. Geophys. Res. Lett.,33, L24319, doi:10.1029/2006GL028433
    Calais, E., M. Vergnolle,V. San'kov, et al.2003. GPS measurements of crustal deformation in the Baikal-Mongolia area (1994-2002):Implications for current kinematics of Asia. J. Geophys. Res.,108(B10),2501,10.1029/2002JB002373
    Chen, Z., B. Burchfiel, Y. Liu, et al.2000. Global Positioning System measurements from eastern Tibet and their implications for India/Eurasia intercontinental deformation. J Geophys Res, 105,B7,16215-16227
    Chen, Q., J. T. Freymueller, et al.2004a. A deforming block model for the present-day tectonics of Tibet. J. Geophys. Res.,109,B01403
    Chen, Q., J. T. Freymueller,et al.2004b. Spatially variable extension in southern Tibet based on GPS measurements. J. Geophys. Res.,109,B09401
    Chevalier, M.L., H. Li, J. Pan, et al.2011.Fast slip-rate along the northern end of the Karakorum fault system, western Tibet. Geophys. Res. Lett.,38, L22309,doi:10.1029/2011GL049921
    Chevalier, M.L., P. Tapponnier, J. Van der Woerd, et al.2012.Spatially constant slip rate along the southern segment of the Karakorum fault since 200 ka.Tectonophysics, 530-531:152-179
    Chevalier, M.L., F.J. Ryerson, P. Tapponnier, et al.2005.Slip-rate measurements on the Karakorum fault may imply secular variation.Science,307:411-414, doi: 10.1126/science.1105466
    Chuang, R.Y. and K.M. Johnson.2011.Reconciling geologic and geodetic model fault slip-rate discrepancies in Southern California:Consideration of nonsteady mantle flow and lower crustal fault creep.Geology,39,7:627-630
    Collilieux, X., Z. Altamimi, D. Coulot,et al.2007.Comparison of very long baseline interferometry, GPS, and satellite laser ranging height residuals from ITRF2005 using spectral and correlation methods. J. Geophys. Res.,112,B12403,doi:10.1029/2007JB004933
    Dach, R., U. Hugentobler, P. Fridez, et al.2007. Bernese GPS Software Version 5.0,612 pp, Astron. Inst., Univ. of Bern, Bern
    Dixon, T.H., J. Decaix, F. Farina, et al.2002.Seismic cycle and rheological effects on estimation of present-day slip rates for the Agua Blanca and San Miguel-Vallecitos faults, northern Baja California, Mexico. J. Geophys. Res.,107(B10),2226, doi:10.1029/2000JB000099
    Dixon,T.H.,1991.An introduction to the global positioning system and some geological applications. Reviews of Geophysics.29(2):249-276.
    Dong, D.N., P. Fang, Y. Bock, et al.2002. Anatomy of apparent seasonal variations from GPS derived site position time series. J. Geophys. Res.,107(B4), doi:10.1029/2001JB000573
    Dong, D.N., P. Fang, Y. Bock,et al.2006.Spatiotemporal filtering using principal component analysis and Karhunen-Loeve expansion approaches for regional GPS network analysis. J. Geophys. Res.,111(B03405),doi:10.1029/2005JB003806
    England, P. and P. Molnar,1997. The field of crustal velocity in Asia calculated from Quaternary rates of slip on faults. Geophys.J.Int,130:551-582
    England, P. and P. Molnar,2005. Late Quaternary to decadal velocity fields in Asia. J. Geophys. Res,110,B12401
    Gan, W., P. Zhang, Z.K. Shen, et al.2007. Present-day crustal motion within the Tibetan Plateau inferred from GPS measurements. J. Geophys. Res.,112, B08416, doi:10.1029/2005 JB004120
    Gazeaux, J., S. Williams, M. King, et al.2013. Detecting offsets in GPS time series:first results from the detection of Offsets in GPS experiment. J. Geophys. Res.118, L23602, doi: 10.1002/jgrb.50152
    Hetland, E. A. and B. H. Hager.2004. Relationship of geodetic velocities to velocities in the mantle. Geophys. Res. Lett.,31(17), doi:10.1029/2004GL020691
    Hetland, E. A. and B. H. Hager.2006. Interseismic strain accumulation:Spin-up, cycle invariance, and irregular rupture sequences. Geochem. Geophys. Geosyst.,7(5), Q05004, doi:10.1029/2005GC001087
    Hetzel, R.,2013. Active faulting, mountain growth, and erosion at the margins of the Tibetan Plateau constrained by in situ-produced cosmogenic nuclides.Tectonophyics.582:1-24
    Hilly,G.E., K.M. Johnson, M. Wang, et al.2009. Earthquake-cycle deformation and fault slip rates in northern Tibet.Geology,37(1):31-34
    Holt, W. E., N. Chamot-Rooke,Le Pichon,et al.2000. Velocity field in Asia inferred from Quaternary fault slip rates and Global Positioning System observations. J. Geophys. Res. 105:19185-19209
    Huang, Z., L. Wang, D. Zhao, et al.2011. Seismic anisotropy and mantle dynamics beneath China. Earth and Planetary Science Letters,306(1):105-117
    Jackson, J.2002. Strength of the continental lithosphere:time to abandon the jelly sandwich? GSA Today,12:4-10
    Johnson, K. M. and P. Segall,2004. Viscoelastic earthquake cycle models with deep stress-driven creep along the San Andreas fault system. J. Geophys. Res.,109, B10403, doi:10.1029/2004JB003096
    Jolivet, R., C. Lasserre, M. P. Doin, et al.2012.Shallow creep on the Haiyuan fault (Gansu, China) revealed by SAR interferometry. J. Geophys. Res.,117,B06401
    Kenyeres, A. and C. Bruyninx,2004.EPN coordinate time series monitoring for reference frame maintenance.GPS Solutions,8:200-209
    Kogan, M. G. and G M. Steblov,2008.Current global plate kinematics from GPS (1995-2007) with the plate-consistent reference frame, J. Geophys. Res.,113, B04416, doi:10.1029/2007JB005353
    Lai, X., X. Wu, G. Seeber, et al.1992. The first epoch western Yunnan GPS survey:Data reduction and analysis with Geonap software. Earthq Res China,6:68-90
    Langbein, J. and H. Johnson,1997. Correlated errors in geodetic time series:Implications for time-dependent deformation. J. Geophys. Res.,102(B1):591-603
    Langbein, J.,2004. Noise in two-color electronic distance meter measurements revisited. J. Geophys. Res.109:B04406. doi:10.1029/2003JB002819
    Langbein, J.,2008. Noise in GPS displacement measurements from Southern California and Southern Nevada. J. Geophys. Res.113,B05405.doi:10.1029/2007JB005247
    Larson, K., R. Burgmann, R. Bilham, et al.1999. Kinematics of the India-Eurasia collision zone. J. Geophys. Res.104.B1,1077-1093
    Lasserre, C., Y. Gaudemer, P. Tapponnier, et al.2002. Fast late Pleistocene slip rate on the Leng Long Ling segment of the Haiyuan fault, Qinghai, China, J. Geophys. Res.,107(B11),2276, doi:10.1029/2000JB000060
    Lasserre, C., P. H. Morel,Y. Gaudemer, et al.1999. Postglacial left slip rate and past occurrence of M>8 earthquakes on the Western Haiyuan Fault, Gansu, China. J. Geophys. Res., 104(B8):17633-17651
    Lave, J. and J.P. Avouac.2000. Active folding of fluvial terraces across the Siwaliks Hills, Himalayas of central Nepal. J. Geophys. Res.105(B3):5735-5700
    Li, H., J. Van der Woerd, P. Tapponnier, et al.2005. Slip rate on the Kunlun fault at Hongshui Gou, and recurrence time of great events comparable to the 14/11/2001, Mw 7.9 Kokoxili earthquake. Earth and Planetary Science Letters,2005,237(1):285-299
    Li,Y.,Q. Wu, F. Zhang, et al.2011.Seismic anisotropy of the Northeastern Tibetan Plateau from shear wave splitting analysis. Earth and Planetary Science Letters,304(1):147-157
    Liu, J., Y. Klinger, X. Xu, et al.2007. Millenial recurrence of large earthquakes on the Haiyuan fault near Songshan, Gansu province, China. Bull. Seis. Soc. Am.,97(IB):14-34
    Liu, Y., C. Xu, Z. Li et al.2011. Interseismic slip rate of the Garze-Yushu fault belt in the Tibetan Plateau from C-band InSAR observations between 2003 and 2010.Advances in Space research.48(12):2005-2015
    Loveless, J.P. and B.J. Meade,2011.Partitioning of localized and diffuse deformation in the Tibetan Plateau from joint inversions of geologic and geodetic observations. Earth and Planetary Science Letters.303:11-24
    Lundgren, P., E. A. Hetland, Z. Liu et al.2009.Southern San Andreas-San Jacinto fault system slip rates estimated from earthquake cycle models constrained by GPS and interferometric synthetic aperture radar observations. J. Geophys. Res.,114, B02403
    Mao, A., C.G. Harrison, T.H. Dixon,1999. Noise in GPS coordinate time series. J. Geophys. Res. 104:2797-2816.
    Marquez-Azua, B. and C. DeMets,2003. Crustal velocity field of Mexico from continuous GPS measurements,1993 to June,2001:Implications for the neotectonics of Mexico. J. Geophys. Res.108(B9). doi:10.1029/2002JB002241.
    Maurin, T., F. Masson, C. Rangin,2010. First global positioning system results in northern Myanmar Constant and localized slip rate along the Sagaing fault.Geology.38,7:591-594
    McCaffrey, R. and J. Nabelek.1998.Role of oblique convergence in the active deformation of the Himalayas and southern Tibet plateau.Geology,26:691-694
    McCaffrey, R.,2005. Block kinematics of the Pacific-North America plate boundary in the southwestern US from inversion of GPS, seismological, and geologic data. J. Geophys. Res, 110,B07401
    Meade, B.J. and J. P. Loveless,2009. Block Modeling with Connected Fault-Network Geometries and a Linear Elastic Coupling Estimator in Spherical Coordinates, Bulletin of the Seismological Society of America,99(6):3124-3139
    Meade, B.J. and B.H. Hager,2005. Block models of crustal motion in southern California. J. Geophys. Res.,110, B03403, doi:10.1029/2004JB003209
    Meade, B.J.,2007. Present-day kinematics at the India-Asia collision zone.Geology.35:81-84
    Meriaux, A.S., F. J. Ryerson, P. Tapponnier, et al.2004. Rapid slip along the central Altyn Tagh Fault:Morphochronologic evidence from Cherchen He and Sulamu Tagh, J. Geophys. Res., 109, B06401, doi:10.1029/2003JB002558
    Meriaux, A.S., J. Van der Woerd, P. Tapponnier, et al.2012. The Pingding segment of the Altyn Tagh Fault (91°E):Holocene slip-rate determination from cosmogenic radionuclide dating of offset fluvial terraces,J. Geophys. Res.,117, B09406, doi:10.1029/2012JB009289
    Meyer, B., P. Tapponnier, L. Bourjot,et al.1998.Crustal thickening in Gansu-Qinghai, lithospheric mantle subduction,and oblique, strike-slip controlled growth of the Tibet plateau. Geophys.J.Int.,135:1-47
    Mignard, F.,2005. FAMOUS, frequency analysis mapping on usual sampling. Technical report. Obs. de la Cote d'Azur Cassiopee. Nice, France.
    Molnar, P. and S. Ghose,2000.Seismic moments of major earthquakes and the rate of shortening across the Tien Shan. Geophysical Research Letters,2000,27(16):2377-2380.
    Molnar, P. and H. Lyon-Caen,1989.Fault plane solutions of earthquakes and active tectonics of the Tibetan Plateau and its margins. Geophys. J. Int.,99:123-153
    Molnar, P., P. England and J. Martinod,1993. Mantle dynamics, uplift of the Tibetan Plateau, and the Indian Monsoon. Rev. Geophys.,31(4):357-396, doi:10.1029/93RG02030.
    Morgan, W. J.1968. Rises, trenches, great faults, and crustal blocks. J. Geophys. Res. 73(6):1959-1982,doi:10.1029/JB073i006p01959
    Okada, Y.,1985.Surface deformation due to shear and tensile faults in a half-space. Bull. Seismol.Soc.Am,75:1135-1154
    Peltzer, G. and F. Saucier,1996.Present-day kinematics of Asia derived from geologic fault rates. J. Geophys. Res,101(B12):27943-27956
    Penna, N.T., M. A. King, and M. P. Stewart,2007. GPS height time series:Short-period origins of spurious long-period signals. J. Geophys. Res.,112:B02402,doi:10.1029/2005JB004047
    Ray, J., Z. Altamimi, X. Collilieux et al.2008.Anomalous harmonics in the spectra of GPS position estimates. GPS Solution,12(1):55-64
    Rebischung, P., J. Griffiths, J. Ray, et al.2012. IGS08:the IGS realization of ITRF2008. GPS Solution,16(40):483-494
    Ren, J., X. Xu, R. S. Yeats, et al.2013.Latest Quaternary paleoseismology and slip rates of the Longriba fault zone, eastern Tibet:Implications for fault behavior and strain partitioning.Tectonics,32, doi:10.1002/tect.20029
    Replumaz, A., and P. Tapponnier,2003. Reconstruction of the deformed collision zone between India and Asia by backward motion of lithospheric blocks.J. Geophys.Res.,108(B6),2285
    Royden, L. H., B.C. Burchfiel,R.W. King, et al.1997. Surface deformation and lower crustal flow in eastern Tibet. Science,276(5313):788-790.
    Santamaria-Gomez, A., M-N Bouin, X. Collilieux,et al.2011.Correlated errors in GPS position time series:Implications for velocity estimates. J. Geophys. Res., 116,B01405,doi:10.1029/2010JB007701
    Santamaria-G6mez,A.,2010. Phd thesis.Estimation of Crustal Vertical Movements with GPS in Geocentric Frame Within the Framework of The TIG A Project
    Savage, J.C. and M. Lisowski,1998.Viscoelastic coupling model of the San Andreas Fault along the big bend, southern California. J. Geophys. Res.,103(B4):7281-7292
    Savage, J.C. and W.H. Prescott,1978. Asthenosphere Readjustment and the Earthquake Cycle. J. Geophys. Res.,83(B7):3369-3376
    Savage, J.C.,1983.A dislocation model of strain accumulation and release at a subduction zone.J. Geophys. Res.,88:4984-4996
    Savage, J.C.,2000. Viscoelastic-coupling model for the earthquake cycle driven from below. J. Geophys. Res.,105:25525-25532
    Savage, J.C., and R.O. Burford,1973. Geodetic determination of relative plate motion in central California.J. Geophys. Res.,78:832-845
    Savage, J.C., W.J. Gan and J.L. Svarc,2001. Strain accumulation and rotation in the eastern California shear zone.J. Geophys. Res.,106:21995-22007
    Segall, P. and J.L. Davis,1997.GPS applications for geodynamics and earthquake studies. Annual Review of Earth and Planetary Sciences,25:301-336.
    Segall, P.,2002. Integrating Geologic and Geodetic Estimates of Slip Rate. International Geology Review,44:62-82
    Segall, P.,2010. Earthquake and volcano deformation. Princeton University Press.457pp
    Sella, G.F., T. H. Dixon and A. Mao,2002. ReVEL:A model for recent plate motion velocities from space geodesy.J. Geophys. Res,107(B4),2081,doi:10.1029/2000JB000033.
    Shen, Z.K., J.N. Lu, M. Wang, et al.2005. Contemporary crustal deformation around the southeast borderland of the Tibetan Plateau. J. Geophys. Res.,110:B11409
    Shen, Z.K., C.K. Zhao, A. Yin, et al.2000. Contemporary crustal deformation in east Asia constrained by Global Positioning System measurements. J Geophys Res, 105(B3):5721-5734
    Shen, Z.K., M. Wang, Y.X. Li, et al.2001. Crustal deformation along the Altyn Tagh fault system,western China, from GPS. J. Geophys. Res.,106(B12):30607-30621
    Socquet, A., C. Vigny, N. Chamot-Rooke, et al.2006. India and Sunda plates motion and deformation along their boundary in Myanmar determined by GPS. J. Geophys. Res., 111, B05406, doi:10.1029/2005JB003877
    Sun, W., Q. Wang, H. Li,et al.2009. Gravity and GPS measurements reveal mass loss beneath the Tibetan Plateau:Geodetic evidence of increasing crustal thickness. Geophys. Res. Lett., 36,L02303.doi:10.1029/2008GL036512
    Tapponnier, P., Z.Q. Xu, F. Roger, et al.2001.Oblique stepwise rise and growth of the Tibet Plateau.Science,294(5547):1671-1677
    Taylor, M. and A. Yin,2009. Active structures of the Himalayan-Tibetan orogen. Geosphere.5(3): 199-214.doi:10.1130/GES00217.1
    Teferle, F.N., S.D.P. Williams, H.P. Kierulf, et al.2008. A continuous GPS coordinate time series analysis strategy for high accuracy vertical land movements. Phys. Chem. Earth. 33(3-4):205-216,doi:10.1016/j.pce.2006.11.002
    Teunissen, P.J.G. and A.R. Amiri-Simkooei,2008. Least-squares variance component estimation. J. Geod.82(2):65-82, doi:10.1007/s00190-007-0157-x
    Thatcher,W.,1983.Nonlinear Strain Buildup and the Earthquake Cycle on the San Andreas Fault. J. Geophys. Res.,88,B7,5893-5902
    Thatcher, W.,2007.Microplate model for the present-day deformation of Tibet. J. Geophys. Res., 112,B01401,doi:10.1029/2005 JB004244
    Thatcher, W.,2009.How the Continents Deform:The Evidence From Tectonic Geodesy. Annual Review of Earth and Planetary Sciences,37(1):237-262
    Thatcher, W. and F.F. Pollitz,2008.Temporal evolution of continental lithospheric strength in actively deforming regions.GSA Today,18:4-11
    Thompson, S.C., R.J. Weldon, C.M. Rubin, et al.2002.Late Quaternary slip rates across the central Tien Shan, Kyrgyzstan, central Asia. J. Geophys. Res.,107(B9):2203
    Van Dam, et al.2001. Crustal displacements due to continental water loading. Geophys. Res. Lett.,28:651-654.
    Van Der Woerd, J., P. Tapponnier, F.J. Ryerson, et al.2002. Uniform postglacial slip-rate along the central 600 km of the Kunlun Fault (Tibet), from 26A1, 10Be, and 14C dating of riser offsets, and climatic origin of the regional morphology. Geophy. J. Int.,148(3):356-388.
    Van der Woerd, J., X. Xu, H. Li, et al.2001. Rapid active thrusting along the northwestern range front of the Tanghe Nan Shan (western Gansu, China), J. Geophys. Res., 106(B12):30475-30504
    Van der Woerd,J., F.J. Ryerson, P. Tapponnier, et al.2000. Uniform slip rate along the kunlun fault. Geophys Res Lett.,27(160:2353-2356
    Vigny,C., A. Socquet, C. Rangin,et al.2003. Present-day crustal deformation around Sagaing fault,Myanmar. J. Geophys. Res.,108(B11),2522,10.1029/2002JB001999
    Wallace, L.M., J. Beavan, R. McCaffrey, et al.2004. Subduction zone coupling and tectonic block rotations in the North Island, New Zealand. J. Geophys. Res., B12406, doi:10.1029/2004JB003241
    Wang, C.Y., L.M. Flesch, P.G. Silver, et al.2008. Evidence for mechanically coupled lithosphere in central Asia and resulting implications. Geology,36(5):363-366
    Wang, Q., P. Z. Zhang, J.T. Freymuller.et al.2001. Present-day crustal deformation in China constrained by GPS measurement.Science,294:574-577
    Wang, W., B. Zhao, S.M. Yang, et al.2012. Noise analysis of continuous GPS coordinate time series for CMONOC. Advances in Space Research,49(5):943-956
    Wang, Y, M. Wang, Z.K. Shen, et al.2013.Inter-seismic deformation field of the Ganzi-Yushu fault before the 2010 Mw 6.9 Yushu earthquake. Tectonophysics,584,1:138-143
    Wang, H., T. J. Wright, and J. Biggs,2009. Interseismic slip rate of the northwestern Xianshuihe fault from InSAR data.Geophys. Res. Lett.,36, L03302, doi:10.1029/2008GL036560
    Wdowinski, S., Y. Bock, J. Zhang,et al.1997. Southern California Permanent GPS geodetic array: Spatial filtering of daily positions for estimating coseismic and postseismic displacements induced by the 1992 Landers earthquake. J. Geophys. Res.,102:18,057-18,070
    Williams, S.D.P.,2003. The effect of coloured noise on the uncertainties of rates estimated from geodetic time series. Journal of Geodesy,76 (9-10):483-494
    Williams, S.D.P., Y. Bock, P. Fang,et al.2004. Error analysis of continuous GPS position time series. J. Geophys. Res.,109,B03412,doi:10.1029/2003JB002741
    Williams, S.D.P. and P. Willis,2006. Error analysis of weekly station coordinates in the DORIS network. Journal of Geodesy.,80:525-539, doi:10.1007/s00190-006-0056-6
    Wright, T., B. Parsons, P. England,2004. InSAR Observations of Low Slip Rates on the Major Faults of Western Tibet.Science,305:236-239
    Xu, C., J.N. Liu, C.H. Song,et al.2000. GPS measurements of present-day uplift in the Southern Tibet.Earth Planets Space,52:735-759
    Zhang, P.Z., Z.K. Shen, M. Wang,et al.2004.Continuous deformation of the Tibetan Plateau from global positioning system data.Geology,32:809-812
    Zhang, Z., R. McCaffrey, P.Z. Zhang,2013. Relative motion across the eastern Tibetan plateau: Contributions from faulting, internal strain and rotation rates. Tectonophysics,584:240-256,doi:10.1016/j.tecto.2012.08.006
    Zhang, J., Y. Bock, H. Johnson,1997. Southern California Permanent GPS Geodetic Array:Error analysis of daily position estimates and site velocities. J. Geophys. Res., 102(B8):18035-18055
    Zhao, B., W. Wang, S.M. Yang, et al.2012.Far field deformation analysis after the Mw9.0 Tohoku earthquake constrained by cGPS data.J. Seismology.,16(2):305-313

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700