用户名: 密码: 验证码:
特殊孔缝的建模及电磁特性的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
缝隙不可避免的在各种各样的电子设备中大量的存在。可看作孔缝的结构在环境中也频繁的出现,如窗口、门缝、通风管道等等。孔缝在电磁兼容研究中是一个重要的领域。尤其是在越演越烈的现代电子战争中,防护自身电子设备和攻击敌方设备成为克敌制胜的关键。而孔缝在这些因素当中是重中之重。缝隙在微波器件当中的应用也十分的广泛。如目前随处可见的微带天线中,孔缝有被用作激励耦合结构,也有被用作辐射器。虽然目前人们能借助强大的计算机来分析这些结构的电磁特性,但是由于实际环境当中的孔缝复杂,而且通常连接两个或几个同样复杂的区域,以致很难分析,所以孔缝一直是电磁学中研究的热点、重点和难点。
     到目前为止,广大学者针对简单的或是相对复杂的孔缝进行了大量的研究,并得到相当成熟的建模方法和详细的电磁特性。但是对于多区域多电气尺寸的情况,研究还相当的欠缺。环境中的实际孔缝结构多为这种情况,如:三维任意形状的孔缝,三维电气细长孔缝,三维的孔缝阵列和孔缝后接微波网络。本文依托国家自然科学资金项目,研究了这些结构特殊的孔缝的建模方法及其电磁特性,以期用之以指导实际工程中遇到的电磁防护、辐射和耦合设计。论文的主要内容和创新体现在以下几个方面:
     1.详细分析和讨论了各种等效问题的等效性,深入分析了等效面的选择问题,并针对优化选择提出了一般性规则。
     2.以入射波为TE的后接微波网络的孔缝模型为基础,结合模式匹配法扩展了这种常见结构的分析模型。
     3.应用等效原理建立了三维任意形状孔缝的新模型,导出了相应的积分方程,并利用矩量法求解了孔缝处的等效磁流和表面感应电流以及分析区域内的场分布。在此基础上对处在非光滑表面上的一般性孔缝进行了分析。
     4.改进了前面提出的模型,使之适用于特殊形状的结构,并利用此改进模型对三维电气细长缝隙和孔缝阵列进行了研究和分析。
There are a lot of apertures(or cracks, slots, ducts, holes and so on) in(or on) all kinds of electronic equipments. There are many kinks of the apertures with the structures in the living environment, such as windows, doors, ventilation pipes, and so on. The electromagnetic characteristics of the aperture is an important research area in electromagnetic compatibility. Especially when the modern electronic warfare is getting worse, protecting our electronic devices and attacking the enemy's become the key to win the victory over the enemy. Among these, the aperture is a top priority. Apertures which are used in the microwave devices are also very widespread. They are used in the microstrip antenna which is a popular communication antenna today. They are used as a coupling structure, also as a radiator. Although people use powerful computers to analyze the electromagnetic characteristics of the structures nowadays, but because of the complexity of the actual environment, and usually the aperture is connecting two or more areas which are the same complex, so that it is still difficult to analysze such a problem. So, the aperture has been an interesting topic in electromagnetics for many years.
     So far, many scholars have done a lot of work on the aperture problems which are simple or complicate shapes. There are a few successful models for complicate slots, such as arbitrary shape in flat plane, having depth, of filled with different materials. And their electromagnetic characteristics are analyzed. But there are rare researches on the multi-scale and multi-region apertures. The apertures are this kind in the living environment, such as arbitrary shaped3D aperture,3D eletrical thin-long slots,3D aperture arrays and apertures which are backed by microwave networks. This thesis concentrates on the modeling of the multi-scale and multi-region apertures, studying their eletromagnetic characteristics. And it wishes to be used in the design. The main contents and several innovations are shown bellow:
     1. The equivalence of the equivalent problems is discussed in detial. And the selections of the different equivalence surface are deeply analized. A few rules are proposed for optimal modeling.
     2. Based on the model of the double2D slots backed by microwave network which is illuminated by a plane wave, an extended model which is combined with the mode matching technique is developed.
     3. By using the uniqueness theorem and the equivalence principle, a new model which is capable analyzing the arbitrary3D shape aperture is developed. The integral fromulations are deduced. Then, the matrix equations are formed by using the moment procedure. And the equivalence magnetic currents which are on the aperture's equivalence sruface are solved. The electric currents which are on the inside and outside of the cavity are calculated, and the electric fields as well. A3D aperture which is on the edge of the cavity is analyzed by applying the model.
     4. An improvement of the new model is developed. The optimal model is capable handling the multi-scale and multi-region apertures. And a few canonical examples are analyzed under the application of the optimal model.
引文
[1]. R. F. Harington, Time-Harmonic Electromagnetic Fields, New York, McGraw-Hill,1961.
    [2]. Silver and Saunders, "The External Field Produced by a Slot in an Infinite Circular Cylinder," J. Appl. Phy., vol.21, no.5, pp.153-158, Feb,1950.
    [3]. L. L. Bailin, "The Radiation Field Produced by a Slot in a Large Circular Cylinder," IRE Trans., vol. AP-3, no.3, pp.128-137, July,1955.
    [4]. A. W. Love (ed.), Electromagnetic Horn Antennas, New York:IEEE Press, 1976.
    [5]. Constantine A. Balanis, ANTENNA THEORY ANALYSIS AND DESIGN, Hoboken, New Jersey, John Wiley & Sons, Inc.,2005.
    [6]. Constantine A. Balanis, MODERN ANTENNA HANDBOOK, Hoboken, New Jersey, John Wiley & Sons, Inc.,2008.
    [7]. L. Bailin and S. Silver, "Exterior Electromagnetic Boundary Value Problems for Spheres and Cones," IRE Trans., vol. AP-4, no.1, pp.5-15, Jan,1956.
    [8]. H. A. Bethe, "Theory of diffraction by small holes." Phys. Revs, Vol.66. pp. 163-182, Oct.1944.
    [9]. S. B. Chon, "Determination of aperture parameters by electrolytic tank measurements," Proc. IRE, vol.39, pp.1416-1421, Nov.1951.
    [10]. S. B. Chon, "The electric polarizability of apertures of arbitrary shape," Proc. IRE, vol.40, pp.1069-1071, Sept.1952.
    [11]. S. B. Chon, "Microwave coupling by large apertures," Proc. IRE, vol.40, pp. 696-699, Sept.1952.
    [12]. R. Collin. Field Theory of Guided Waves.2 Edition, Wiley-IEEE Press,1990.
    [13]. J. A. Stratton, Electromagnetic Theory, New York, NY:McGraw-Hill Book Company, Inc..1941.
    [14]. R. F. Harrington, Field Computation by Moment Methods. New York: Macmillan,1968.
    [15]. R. F. Harrington, J. Mautz, "A generalized network formulation for aperture problems," IEEE Trans. Antennas Propag., vol.24, pp.870-873, Nov.1976.
    [16]. C. Butler, K. Umashankar, "Electromagnetic excitation of a wire through an aperture-perforated conducting screen," IEEE Trans. Antennas Propag., vol.24, pp.456-462, Jul.1976.
    [17]. D. T. Auckland, R. F. Harrington, "Electromagnetic Transmission through a Filled Slit in a Conducting Plane of Finite Thickness, TE Case," IEEE Trans. Microwave Theory and Techniques., vol.26, pp.499-505, Jul.1978.
    [18]. R. F. Harrington, D. Auckland, "Electromagnetic transmission through narrow slots in thick conducting screens," IEEE Trans. Antennas Propag., vol.28, pp. 616-622, Sep.1980.
    [19]. C. H. Liang, D. K. Cheng, "Electromagnetic fields coupled into a cavity with a slot-aperture under resonant conditions," IEEE Trans. Antennas Propag., vol.30, pp.664-672, Jul.1982.
    [20]. R. F. Harrington, "Resonant behavior of a small aperture backed by a conducting body," IEEE Trans. Antennas Propag., vol.30, pp.205-212, Mar. 1982.
    [21]. S. W. Hsi, R. F. Harrington, J. Mautz, "Electromagnetic coupling to a conducting wire behind an aperture of arbitrary size and shape," IEEE Trans. Antennas Propag., vol.33, pp.581-587, Jun.1985.
    [22]. G. Manara, M. Bandinelli and A. Monorchio, "Electromagnetic penetration and coupling to wires through apertures of arbitrary shape," Electromagnetic Compatibility, IEEE Transactions on, vol.40, pp.391-396,1998.
    [23]. L. K. Warne, K. C. Chen, "Relation between equivalent antenna radius and transverse line dipole moments of narrow slot aperture having depth," IEEE Trans. Electromagnetic Compatibility., vol.30, pp.364-370, Aug.1988.
    [24]. L. K. Warne, K. C. Chen, "Equivalent antenna radius for narrow slot apertures having depth," IEEE Trans. Electromagnetic Compatibility., vol.37, pp.824-834, July.1989.
    [25]. L. K. Warne, K. C. Chen, "Slot apertures having depth and losses described by local transmission line theory," IEEE Trans. Electromagnetic Compatibility., vol. 32, pp.185-196, Aug.1990.
    [26]. L. K. Warne, K. C. Chen, "A simple tansmission line model for narrow slot apertures having depth and loss," IEEE Trans. Electromagnetic Compatibility., vol.34,pp.173-182,Aug.1992.
    [27]. A. El-Hajj, K. Y. Kabalan, R. F. Harrington, "Characteristic modes of a slot in a conducting cylinder and their use for penetration and scattering, TE case," IEEE Trans. Antennas Propag., vol.40, pp.156-161, Jul.1992.
    [28]. K. Y. Kabalan, A. El-Hajj, R. F. Harrington, "Characteristic modes of a slot in a conducting cylinder and their use for penetration and scattering, TM case," IEEE Trans. Electromagnetic Compatibility., vol.139, pp.287-291, Jun.1992.
    [29]. A. El-Hajj, K. Y. Kabalan, "Scattering from and penetration into a dielectric-filled conducting cylinder with multiple apertures," IEEE Trans. Electromagnetic Compatibility., vol.36, pp.196-200, Aug.1994.
    [30]. A. El-Hajj, K. Y. Kabalan and R. F. Harrington, "Characteristic mode analysis of electromagnetic coupling through multiple slots in a conducting plane," Microwaves, Antennas and Propagation, IEE Proceedings H, vol.140, pp. 421-425,Jun.1993.
    [31]. A. El-Hajj, K. Y. Kabalan and A. Rayes, "Characteristic mode formulation of multiple rectangular apertures in a conducting plane with a dielectric-filled cavity," Electromagnetic Compatibility, IEEE Transactions on, vol.40, pp.89-93, Jun.1998.
    [32]. Y. Lu and R. F. Harrington, "Electromagnetic scattering from a plane conductor containing two slots terminated by a microwave network, TE case," Antennas and Propagation, IEEE Transactions on, vol.41, pp.1258-1264, Jun.1993.
    [33]. S. Rao, D. Wilton. A. Glisson, "Electromagnetic scattering by surfaces of arbitrary shape," IEEE Trans. Antennas Propag., vol.30, pp.409-418, May. 1982.
    [34]. T. Wang, R. F. Harrington and J. R. Mautz, "Electromagnetic scattering from and transmission through arbitrary apertures in conducting bodies," Antennas and Propagation, IEEE Transactions on, vol.38, pp.1805-1814, Jan.1990.
    [35]. J. D. Shumpert and C. M. Butler, "Penetration through slots in conducting cylinders.1. TE case," Antennas and Propagation, IEEE Transactions on, vol.46, pp.1612-1621,1998.
    [36]. J. D. Shumpert and C. M. Butler, "Penetration through slots in conducting cylinders. Part 2:TM case," Antennas and Propagation, IEEE Transactions on, vol.46, pp.1622-1628,1998.
    [37]. Y. Wen-Yan, L. Le-Wei, Y. Tat-Soon and L. Mook-Seng, "Multiple penetration of a TEz-polarized plane wave into multilayered cylindrical cavity-backed apertures," Electromagnetic Compatibility, IEEE Transactions on, vol.42, pp. 330-338,2000.
    [38]. Y. Wen-Yan, L. Le-Wei, Y. Tat-Soon, L. Mook-Seng and K. Pang-Shyan, "The near-zone field characteristics of an E-polarization plane wave penetrating through cylindrical multiple apertures (non) coated with lossy and lossless media," Electromagnetic Compatibility, IEEE Transactions on, vol.44, pp. 329-337,2002.
    [39]. A. Taflove, K. R. Umashankar, B. Beker, F. Harfoush, and K. S. Yee, "Detailed FD-TD analysis of electromagnetic fields penetrating narrow slots and lapped joints in thick conducting screens," Antennas and Propagation, IEEE Transactions on, vol.36, pp.247-257, Jun.1988.
    [40]. J. Gilbert and R. Holland, "Implementation of the Thin-Slot Formalism in the Finite-Difference EMP Code THREDII," Nuclear Science, IEEE Transactions on, vol.28, pp.4269-4274, Dec.1981.
    [41]. D. J. Riley and C. D. Turner, "Hybrid thin-slot algorithm for the analysis of narrow apertures in finite-difference time-domain calculations," Antennas and Propagation, IEEE Transactions on, vol.38, pp.1943-1950,1990.
    [42]. W. Bing-Zhong, "Enhanced thin-slot formalism for the FDTD analysis of thin-slot penetration," Microwave and Guided Wave Letters, IEEE, vol.5, pp. 142-143, May.1995.
    [43]. W. Chun-Te, P. Yi-Hsin and W. Ruey-Beei, "An improved formalism for FDTD analysis of thin-slot problems by conformal mapping technique," Antennas and Propagation, IEEE Transactions on, vol.51, pp.2530-2533, Sep.2003.
    [44]. M. A. Gkatzianas, C. A. Balanis and R. E. Diaz, "The Gilbert-Holland FDTD thin slot model revisited:an alternative expression for the in-cell capacitance," Microwave and Wireless Components Letters, IEEE, vol.14, pp.219-221, May. 2004.
    [45]. X. Run, C. Bin, Y. Qin, and C. Zhao-Yang, "Improved Formalism for the FDTD Analysis of Thin-Slot Penetration by Equivalence Principle," Antennas and Wireless Propagation Letters, IEEE, vol.10, pp.655-657, Jun.2011.
    [46]. M. Kuang-Pin, L. Min, J. L. Drewniak, T. H. Hubing and T. P. van Doren, "Comparison of FDTD algorithms for subcellular modeling of slots in shielding enclosures," Electromagnetic Compatibility, IEEE Transactions on, vol.39, pp. 147-155,1997.
    [47]. L. Min, M. Kuang-Ping, D. M. Hockanson, J. L. Drewniak, T. H. Hubing and T. P. Van Doren, "Numerical and experimental corroboration of an FDTD thin-slot model for slots near corners of shielding enclosures," Electromagnetic Compatibility, IEEE Transactions on, vol.39, pp.225-232,1997.
    [48]. L. Min, J. Nuebel, J. L. Drewniak, R. E. DuBroff, T. H. Hubing and T. P. van Doren, "EMI from cavity modes of shielding enclosures-FDTD modeling and measurements," Electromagnetic Compatibility, IEEE Transactions on, vol.42, pp.29-38,2000.
    [49]. L. Min, J. Nuebel, J. L. Drewniak, R. E. DuBroff, T. H. Hubing and T. P. Van Doren, "EMI from airflow aperture arrays in shielding enclosures-experiments, FDTD, and MoM modeling," Electromagnetic Compatibility, IEEE Transactions on, vol.42, pp.265-275,2000.
    [50]. L. Min, J. Nuebel, J. L. Drewniak, T. H. Hubing, R. E. DuBroff and T. P. Van Doren, "EMI reduction from airflow aperture arrays using dual-perforated screens and loss," Electromagnetic Compatibility, IEEE Transactions on, vol.42, pp.135-141,2000.
    [51]. L. Min, J. L. Drewniak, S. Radu, J. Nuebel, T. H. Hubing and R. E. DuBroff, et al., "An EMI estimate for shielding-enclosure evaluation," Electromagnetic Compatibility, IEEE Transactions on, vol.43, pp.295-304,2001.
    [52]. J. M. Jin and J. L. Volakis, "A finite-element-boundary integral formulation for scattering by three-dimensional cavity-backed apertures," Antennas and Propagation, IEEE Transactions on, vol.39, pp.97-104,1991.
    [53]. J. Jian-Ming, S. S. Ni and L. Shung-Wu, "Hybridization of SBR and FEM for scattering by large bodies with cracks and cavities," Antennas and Propagation, IEEE Transactions on, vol.43, pp.1130-1139,1995.
    [54]. J. Jian-Ming and K. Donepudi, "Electromagnetic scattering from large, deep, and arbitrarily-shaped open cavities," in Proc.1998 Antennas and Propagation Society International Symposium, IEEE, pp.2186-2189.
    [55]. R. P. Jedlicka, S. P. Castillo and L. K. Warne, "Coupling through tortuous path narrow slot apertures into complex cavities," Antennas and Propagation, IEEE Transactions on, vol.48, pp.456-466,2000.
    [56]. F. Chao and S. Zhongxiang, "A hybrid FD-MoM technique for predicting shielding effectiveness of metallic enclosures with apertures," Electromagnetic Compatibility, IEEE Transactions on, vol.47, pp.456-462,2005.
    [57]. M. A. Khorrami, P. Dehkhoda, R. M. Mazandaran and S. Sadeghi, "Fast Shielding Effectiveness Calculation of Metallic Enclosures With Apertures Using a Multiresolution Method of Moments Technique," Electromagnetic Compatibility, IEEE Transactions on, vol.52, pp.230-235,2010.
    [58]. A. Taflove and K. Umashankar, "A hybrid moment method/finite-difference time-domain approach to electromagnetic coupling and aperture penetration into complex geometries," Antennas and Propagation, IEEE Transactions on, vol.30, pp.617-627. Jun.1982.
    [59]. G. Cerri and R. Russo, "Hybrid MFIE/FDTD method for analysis of metallic enclosures with slots," Electronics Letters, vol.39, pp.502-504,2003.
    [60]. H. H. Park and H. J. Eom, "Electrostatic potential distribution through a rectangular aperture in a thick conducting plane," Microwave Theory and Techniques, IEEE Transactions on, vol.44, pp.1745-1747,1996.
    [61]. H. H. Park and H. J. Eom, "Electrostatic potential distribution through thick multiple rectangular apertures," Electronics Letters, vol.34, pp.1500-1501, 1998.
    [62]. H. H. Park and H. J. Eom, "Electrostatic potential distribution through thick multiple rectangular apertures," Electronics Letters, vol.34, pp.1500-1501, 1998.
    [63]. H. H. Park and H. J. Eom, "Electromagnetic penetration into 2D multiple slotted rectangular cavity:TE-wave," Electronics Letters, vol.35, pp.31-32, 1999.
    [64]. H. H. Park and H. J. Eom, "Electromagnetic penetration into a rectangular cavity with multiple rectangular apertures in a conducting plane," Electromagnetic Compatibility, IEEE Transactions on, vol.42, pp.303-307, 2000.
    [65]. H. H. Park and H. J. Eom, "Electromagnetic penetration into 2-D multiple slotted rectangular cavity:TM-wave," Antennas and Propagation, IEEE Transactions on, vol.48, pp.331-333,2000.
    [66]. H. H. Park and H. J. Eom, "Electromagnetic penetration into a rectangular cavity with multiple rectangular apertures in a conducting plane," Electromagnetic Compatibility, IEEE Transactions on, vol.42, pp.303-307, 2000.
    [67]. Y. B. Park and H. J. Eom, "Electromagnetic transmission through multiple circular apertures in a thick conducting plane," Antennas and Propagation, IEEE Transactions on, vol.52, pp.1049-1055,2004.
    [68]. Y. B. Park and H. J. Eom, "Electric polarizability for a thick eccentric annular aperture with a floating inner conductor," Microwave and Wireless Components Letters, IEEE, vol.15, pp.265-267,2005.
    [69]. M. D. Deshpande, Electromagnetic Field Penetration Studies, NASA, Hampton, VA, CR-2000-210 297,2000.
    [70]. C. F. Bunting, Y. Shih-Pin and Z. A. Khan, "Statistical shielding effectiveness-a modal/moment method approach to characterize the average shielding effectiveness over a wide frequency range including resonances," in Proc.2003 Electromagnetic Compatibility,2003 IEEE International Symposium on, pp. 532-536.2003.
    [71]. C. F. Bunting and Y. Shih-Pin, "Field penetration in a rectangular box using numerical techniques:an effort to obtain statistical shielding effectiveness," Electromagnetic Compatibility, IEEE Transactions on, vol.46, pp.160-168, 2004.
    [72]. V. Rajamani, C. F. Bunting, M. D. Deshpande and Z. A. Khan, "Validation of modal/MoM in shielding effectiveness studies of rectangular enclosures with apertures," Electromagnetic Compatibility, IEEE Transactions on, vol.48, pp. 348-353,2006.
    [73]. H. T. Anastassiu, "A review of electromagnetic scattering analysis for inlets, cavities, and open ducts," Antennas and Propagation Magazine, IEEE, vol.45, pp.27-40,2003.
    [74]. L. Qi-Feng, Y. Wen-Yan, X. Ming-Feng, M. Jun-Fa and L. Qing-Huo, "Shielding Characterization of Metallic Enclosures With Multiple Slots and a Thin-Wire Antenna Loaded:Multiple Oblique EMP Incidences With Arbitrary Polarizations," Electromagnetic Compatibility, IEEE Transactions on, vol.51, pp.284-292,2009.
    [75]. L. Qi-Feng, Y. Wen-Yan, M. Jun-Fa and C. Zhizhang, "Accurate Characterization of Shielding Effectiveness of Metallic Enclosures With Thin Wires and Thin Slots," Electromagnetic Compatibility, IEEE Transactions on, vol.51, pp.293-300,2009.
    [76]. D. B. O. Konditi, V. V. Dharmadhikary, E. K. Koech and J. K. Makiche, "Combined field integral equation formulation for broad wall radiating slots of arbitrary shape," in Proc.2009 AFRICON,2009. AFRICON'09., pp.1-6.2009.
    [77]. J. D. Mahony, "The Tapered Cosine Distribution on a Circular Aperture," Antennas and Propagation Magazine, IEEE, vol.51, pp.137-139,2009.
    [78]. R. W. Scharstein, "Complex Resonances of a Hard Rectangular Cavity Coupled to a Half-Space Through a Narrow Aperture," Antennas and Propagation, IEEE Transactions on, vol.57, pp.3835-3846,2009.
    [79]. J. D. Mahony, "An Approximate Expression for the Directivity of a Tapered-Cosine Distribution on a Circular Aperture," Antennas and Propagation Magazine, IEEE, vol.52, pp.126-128,2010.
    [80]. Y. S. Lee and H. J. Eom, "Field Penetration Into a Circular Aperture Pierced by a Long Cylinder," Antennas and Propagation, IEEE Transactions on, vol.58, pp.3734-3737,2010.
    [81]. J. J. Kim, H. J. Eom and C. H. Keum, "Electromagnetic Scattering From a Slotted Conducting Wedge," Antennas and Propagation, IEEE Transactions on, vol.58, pp.222-226,2010.
    [82]. T. R. Cameron, A. T. Sutinjo and M. Okoniewski, "Analysis and Design of Slitted Waveguides With Suppressed Slot-Mode Using Periodic FDTD," Antennas and Propagation, IEEE Transactions on, vol.60, pp.3654-3660, 2012.
    [83].王建国,屈华民,“孔洞厚度对高功率微波脉冲耦合的影响,”强激光与粒子束,vol.6,pp.282-286,1994.
    [84].范如玉,王建国,屈华民,华鸣and张廷斌,”微波脉冲与圆柱腔体耦合的时域有限差分模拟,”计算物理,pp.10-18,1995.
    [85].王建国,屈华民,”高功率微波与带孔洞腔体非线性耦合的理论研究,”强激光与粒子束,vol.7,pp.108-1 16, 1995.
    [86].孟萃,陈雨生,王建国,”瞬态电磁场对多孔洞目标耦合规律的数值研究,强激光与粒子束,vol.12,pp.732-736,2000.
    [87].王建国,刘国治,”微波脉冲孔缝线性耦合的数值与实验研究,”微波学报vol.11,pp.244-251,1995.
    [88].周金山,刘国治,王建国,”矩形孔缝耦合特性实验研究,”强激光与粒子束,vol.15,pp.1228-1232,2003.
    [89].聂小春,葛德彪,郑宏兴,袁宁,”广义网络法分析复杂孔缝耦合问题,”电子学报,vol.28,pp.82-85,2000.
    [90].聂小春,葛德彪,袁宁,”导电平板上任意孔缝的TM波散射及传输特性分析,”电子与信息学报,vol.23,pp.168-174,2001.
    [91].王建国,刘国治,周金山,”微波孔缝线性耦合函数研究,”强激光与粒子束,Vol.15,pp.1093-1099,20o3.
    [92].周金山,刘国治,彭鹏,王建国,”不同形状孔缝微波耦合的实验研究,”强激光与与粒子束,vol.16,pp.88-90,2004.
    [93].夏昌明,路宏敏,周力,”金属腔体孔阵电磁耦合的数值分析,”电子质量pp.25-27,2003.
    [94].谭旭,宋祖勋and朱光耀,”多形状孔缝耦合分析及其实验研究,”计算机工程与应用,vol.45,pp.206-208,2009.
    [95].谭旭,宋祖勋,朱光耀and胡楚锋,”基于矩量法的孔缝电磁耦合分析及其实验研究,”计算机测量与控制,vol.17,pp.1592-1593,1604,2009.
    [96].段洪,李建周and侯婷,”任意形状带隙结构电磁散射特性的精确分析,”电子测量技术,vol.32,pp.52-55,2009.
    [97].刘强,钱宝良and朱占平,”微波脉冲与不同形状带矩形孔缝腔体耦合的数值模拟,”强激光与粒子束,vol.21,pp.1859-1865,2009.
    [98].肖金石,刘文化,张世英and张金华,”超宽带电磁脉冲对腔体孔缝耦合效应的数值模拟,”强激光与粒子束,vol.22,pp.2959-2963,2010.
    [99].杨永亮and王化深,”带孔缝机箱对电磁脉冲的屏蔽效能研究,”铁路计算机应用,vol.20,pp.12-14,2011.
    [100].史记元,罗建书,倪谷炎,李颖and陈小平,”孔缝腔体内多导体传输线的耦合响应,”强激光与粒子束,vol.23,pp.849-852,2011.
    [101].吴刚,张新刚and刘波,”有孔矩形金属腔体屏蔽效能的估算,”强激光与粒子束,vol.23,pp.743-748,2011.
    [102].李英杰,”带孔缝机箱的屏蔽效能仿真研究,”工业控制计算机,vol.25,pp.106-107,2012.
    [103]. Lars. Josefsson and Patrik. Persson, Conformal Array Antenna Theory and Design, Hoboken, New Jersey, John Willey & Sons. Inc,2006.
    [1]. Y. Lu and R. F. Harrington, "Electromagnetic scattering from a plane conductor containing two slots terminated by a microwave network, TE case," Antennas and Propagation, IEEE Transactions on, vol.41, pp.1258-1264, Jun.1993.
    [2]. R. F. Harington, Time-Harmonic Electromagnetic Fields, New York, McGraw-Hill,1961.
    [3]. R. Collin. Field Theory of Guided Waves.2 Edition, Wiley-IEEE Press,1990.
    [4]. Jin. Au. Kong, Electromagnetic wave theory, New York:John Willy & Sons. Inc, 1986.
    [5]. Constantine. A. Balanis, Advanced Engineering Electromagnetics, New York: John Willy & Sons. Inc,1989.
    [6]. K. F. Riley, M. P. Hobson, S. J. Bence, Mathematical Methods for Physics and Engineering, Cambridge. New York,2006.
    [7]. C. Huygens, Traite de la Lumiere, Leyeden,1690. Translate into English by S. P. Thompson, London,1912 and reprinted by the University of Chicago Press. S. A.
    [8]. Schelkunoff, "Some equivalence theorems of elctromagnetics and their application-to radiation problems," Bell System Tech. J., vol.15, pp.92-122, 1936.
    [9]. J. D. Kraus and K. R. Carver, Electromagnetics, Second Edition, McGraw-Hill, New York,1973.
    [10], Frederic. Leymarie and Benjie. Kimia, "Wave propagation and the Rendering Problem in Computer Graphics," Draft, Dec.1998.
    [11]. A. E. H. Love, "The Integration of the equations of propagation of electric waves," Phil. Trans. Roy. Soc. London, Ser. A, vol.197, pp.1-45,1901.
    [12]. Constantine. A. Balanis, Antenna Theory Analysis and Design, New York:John Willy & Sons. Inc,2005.
    [13]. R. F. Harrington, The Electromagnetic Theory of Apertures, Department of Electrical and Computer Engineering. Syracuse University. Not published,1991.
    [14]. R. F. Harrington, Field Computation by Moment Methods, New York: Macmillan,1968.
    [15]. Johnson. J. H. Wang, Generalized Moment Methods in Electromagnetics, New York:John Willy & Sons. Inc,1991.
    [16].李庆扬,王超能,易大义,数值分析,武汉,华中理工大学出版社,1986.
    [17]. C. H. Papas, Theory of Electromagnetic Wave Propagation, New York, McGraw-Hill,1965.
    [18]. Tatsuo. Itoh, Numerical Techniques For Microwave and Millimeter-Wave Passive Structures, New York:John Willy & Sons. Inc,1989.
    [19]. Jaroslaw. Uher, Jens Bornemann, Uwe. Rosenberg, Waveguide Components for Antenna Feed Systems:Theory and CAD, Norwood, Artech House. Inc,1993.
    [20].吕英华,“计算电磁学的数值方法”, 北京市高等教育精品教材,高等院校信息与通信工程系列教材,清华大学出版社,ISBN 7-302-12090-0/TN·288中国版本图书馆CIP数据核字(2005)第130845号,2006年6月
    [1]. J. A. Stratton, Electromagnetic Theory, New York, McGraw-Hill,1941.
    [2]. R. F. Harrington. Time-Harmonic Electromagnetic Fields[M]. New York, McGraw-Hill,1961.
    [3]. C. A. Balmis. Advanced Engineering Electromagnetics[M]. New York, John Wiley & Sons,1989.
    [4]. W. L. Stutzman and G. A. Thiele, Antenna Theory and Design, New York, John Wiley & Sons,1981.
    [5]. R. S. Elliott, Antenna Theory and Design, New York, John Wiley & Sons,2003.
    [6]. R. E. Collin, Antennas and Radio wave Propagation, New York, McGraw-Hill, 1985.
    [7]. K. M. Chen, "A mathematical formulation of the equivalence principle," IEEE Trans. Microwave Theory and Techniques, vol.37, pp.1576-1581, Oct.1989.
    [8]. Kun-Mu. Chen, Special Topics in Electromagnetics, Taipei. Taiwan, National Taiwan University Press,2008.
    [9]. A. I. Borisenko,I. E. Tarapov, Vector and Tensor Analysis with Applications, New York, Dover Publications. Inc,1968. Translated by Richard A. Silverman.
    [1]. Weng. Cho. Chew, Mei. Song. Tong, Bin. Hu, Integral Equation Methods for Electromagnetic and Elastic Waves, Morgan & Claypool,2009.
    [2]. W. C. Chew, J. M. Jin, E. Michielssen, and J. Song, Fast and Efficient Algorithms in Computational Electromagnetics. Artech House,2001.
    [3]. K. K. Mei and J. G. Van Bladel, "Scattering by Perfectly-Conducting Rectangular Cylinders," IEEE Trans. Ant. Prop., Vol. AP-11, pp.185-192, March. 1963.
    [4]. M. G. Andreasen, "Comments on'Scattering by Conducting Rectangular Cylinders'," and reply by K. K. Mei, IEEE Trans. Ant. Prop., Vol. AP-12, pp.235-236, March.1964.
    [5]. L. G. Copley, "Fundamental Results Concerning Integral Representations in Acoustic Radiation," J. Acoust. Soc. Amen, Vol.44, pp.28-32,1968.
    [6]. H. A. Schenck, "Improved Integral Formulation for Acoustic Radiation Problems," J. Acoust. Soc. Amer., Vol.44, pp.41-58,1968.
    [7]. J. R. Mautz and R. F. Harrington, "H-Field, E-Field, and Combined-Field Solutions for Conducting Bodies of Revolution," Arch. Elektron. Ubertragungstech(AEU), Vol.32, pp.159-164,1978.
    [8]. J. R. Mautz and R. F. Harrington, "A Combined-Source Solution for Radiation and Scattering from a Perfectly Conducting Body," IEEE Trans. Ant. Prop., Vol. AP-27, pp.445-454, July.1979.
    [9]. A. D. Yaghjian, "Augmented Eletric and Magnetic-field Integral Equations," Radio. Sci., Vol.16, pp.987-1001, Nov.1981.
    [10]. Karl. F. Warnick, Numerical Analysis for Electromagnetic Integral Equations, Artech House, inc,2008.
    [11]. J. Foley, A. van Dam, S. Feiner, and J. Hughes, Computer Graphics:Principles and Practice. Addison-Wesley,1996.
    [12]. S. Rao, D. Wilton, and A. Glisson, "Electromagnetic scattering by surfaces of arbitrary shape," IEEE Trans. Antennas Propagat., vol.30,409-418, May.1982.
    [13]. Andrew. F. Peterson, Mapped Vector Basis Functions for Electromagnetic Integral Equations, Morgan & Claypool,2006.
    [14]. O. Ergul and L. Gurel, "Investigation of the inaccuracy of theMFIE discretized with the RWG basis functions," Proc. IEEE Antennas and Propagation Soc.Int. Symp., vol.3,3393-3396,2004.
    [15]. P. Yla-Oijala and M. Taskinen, "Calculation of CFIE impedance matrix elements with RWG and n×RWG functions," IEEE Trans. Antennas Propagat., vol.51,1837-1846, August 2003.
    [16]. L. Gurel and O. Ergul, "Singularity of the magnetic-field integral equation and its extraction," IEEE AntennasWireless Propag. Lett, vol.4,229-232,2005.
    [17]. J. M. Rius, E.'Ubeda, and J. Parr'on, "On the testing of the magnetic field integral equation with RWG basis functions in the method of moments," IEEE Trans. Antennas Propagat., vol.49,1550-1553, November 2001.
    [18]. O. Ergul and L. Gurel, "Solid-angle factor in the magnetic-field integral equation," Microw. Opt. Technol. Lett., vol.45,452-456, June 2005.
    [19]. O. Ergul and L. Gurel, "Improving the accuracy of the MFIE with the choice of basis functions," Proc. IEEE Antennas and Propagation Soc. Int. Symp., vol.3, 3389-2292,2004.
    [20]. R. D. Graglia, D. R. Wilton, and A. F. Peterson, "Higher order interpolatory vector bases for computational electromagnetics,"IEEE Trans. Antennas Propagat., vol.45,329-342,March 1997.
    [21]. O. Ergul and L. Gurel, "The use of curl-conforming basis functions for the magnetic-field integral equation," IEEE Trans. Antennas Propagat., vol.54, 1917-1926, July 2006.
    [22]. E. Ubeda and J. M. Rius, "MFIE MoM-formulation with curl-conforming basis functions and accurate kernel integration in the analysis of perfectly conducting sharp-edged objects," Microw. Opt. Technol. Lett., vol.44,354-358, February 2005.
    [23]. O. Ergul and L. Gurel, "Improving the accuracy of the magnetic field integral equation with the linear-linear basis function," Radio Sci., vol.41,2006.
    [24]. O. Ergul and L. Gurel, "Linear-linear basis functions for MLFMA solutions of magnetic-field and combined-field integral equations," IEEE Trans. Antennas Propagat., vol.55,1103-1110, April 2007.
    [25]. D. Wilton, S. Rao, A. Glisson, D. Schaubert,M. Al-Bundak, and C. M. Butler, "Potential integrals for uniform and linear source distributions on polygonal and polyhedral domains," IEEE Trans. Antennas Propagat., vol.32,276-281, March 1984.
    [26]. R. E. Hodges and Y. Rahmat-Samii, "The evaluation of MFIE integrals with the use of vector triangle basis functions," Micro. Opt. Tech. Lett., vol.14,9-14, January 1997.
    [27]. S. Caorsi, D. Moreno, and F. Sidoti, "Theoretical and numerical treatment of surface integrals involving the free-space green's function," IEEE Trans. Antennas Propagat., vol.41,1296-1301, September 1993.
    [28]. R. D. Graglia, "On the numerical integration of the linear shape functions times the 3-d green's function or its gradient on a plane triangle," IEEE Trans. Antennas Propagat., vol.41,1448-1454, October 1993.
    [29]. T. F. Eibert and V. Hansen, "On the calculation of potential integrals for linear source distributions on triangular domains," IEEE Trans. Antennas Propagat., vol.43,1499-1502, December 1995.
    [30]. A. Tzoulis and T. Eibert, "Review of singular potential integrals for method of moments solutions of surface integral equations," Advances in Radio Science, vol.2,97-99,2004.
    [31]. Denis Sievers, Thomas F. Eibert, and Volkert Hansen, "Correction to'On the Calculation of Potential Integrals for Linear Source Distributions on Triangular Domains'," IEEE Trans. Antennas Propagat., vol.53, pp.3113, Sep.2005.
    [32]. G. R. Cowper, "Gaussian Quadrature Formulas for Triangles", International Journal of Numerical Methods in Engineering, Vol 7, pp 405-408,1973.
    [33]. J. N. Lyness and D. Jespersen, "Moderate Degree Symmetric Gaussian Quadrature Rules for the Triangle", International Journal for Numerical Methods in Engineering, Vol 21, pp 1129-1148,1985.
    [34]. D. A. Dunavant, "High Degree Efficient Symmetrical Gaussian Quadrature Rules for the Triangle", International Journal of Numerical Methods in Engineering, Vol 21, pp 1129-1148,1985.
    [35]. Constantine. A. Balanis, Antenna Theory Analysis and Design, Third Edition, John Wiley & Sons. Inc,2005.
    [1]. A. J. Booysen, "Aperture theory and the equivalence theorem," IEEE Antennas and Propagation Society International Symposium., vol.2, pp.1258-1261, Aug. 1999.
    [2]. A. J. Booysen, "Aperture theory and the equivalence principle," IEEE Antennas and Propagation Magazine., vol.45, pp.29-40, Jun.2003.
    [3]. Karl. F. Warnick, Numerical Analysis for Integral Equations, Boston/London. Artech House,2008.
    [4]. J. G. Van Bladel, "Singular Eletromagnetic fields and Sources," New York, John Wiley & Sons,1996.
    [5]. A. Taflove, K. R. Umashankar, B. Beker, F. Harfoush, and K. S. Yee, "Detailed FD-TD analysis of electromagnetic fields penetrating narrow slots and lapped joints in thick conducting screens," Antennas and Propagation, IEEE Transactions on, vol.36, pp.247-257, Jun.1988.
    [6]. J. Gilbert and R. Holland, "Implementation of the Thin-Slot Formalism in the Finite-Difference EMP Code THREDII," Nuclear Science, IEEE Transactions on, vol.28, pp.4269-4274, Dec.1981.
    [7]. D. J. Riley and C. D. Turner, "Hybrid thin-slot algorithm for the analysis of narrow apertures in finite-difference time-domain calculations," Antennas and Propagation, IEEE Transactions on, vol.38, pp.1943-1950,1990.
    [8]. W. Bing-Zhong, "Enhanced thin-slot formalism for the FDTD analysis of thin-slot penetration," Microwave and Guided Wave Letters, IEEE, vol.5, pp. 142-143, May.1995.
    [9]. W. Chun-Te, P. Yi-Hsin and W. Ruey-Beei, "An improved formalism for FDTD analysis of thin-slot problems by conformal mapping technique," Antennas and Propagation, IEEE Transactions on, vol.51, pp.2530-2533, Sep.2003.
    [10]. M. A. Gkatzianas, C. A. Balanis and R. E. Diaz, "The Gilbert-Holland FDTD thin slot model revisited:an alternative expression for the in-cell capacitance," Microwave and Wireless Components Letters, IEEE, vol.14, pp.219-221, May. 2004.
    [11]. X. Run, C. Bin, Y. Qin, and C. Zhao-Yang, "Improved Formalism for the FDTD Analysis of Thin-Slot Penetration by Equivalence Principle," Antennas and Wireless Propagation Letters, IEEE, vol.10, pp.655-657, Jun.2011.
    [12]. Lars. Josefsson, Patrik. Persson, Conformal Array Antenna Theory and Design, John Wiley & Sons. Inc, Hoboken. New Jersey,2006.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700