用户名: 密码: 验证码:
非均匀采样数据系统的辨识及其应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
非均匀采样数据系统的输入刷新和(或)输出采样呈现不等时间间隔,是一类更为广泛的多率采样数据系统。受到硬件设备的限制、经济条件的制约和环境因素的影响,这类系统在石油、化工、食品、医药等过程工业中普遍存在。然而,由于传统辨识方法和控制理论大多仅适用于单率采样数据系统,目前非均匀采样数据系统的辨识和控制水平仍然十分有限。因此,本文对非均匀采样数据系统的辨识问题进行深入研究,并探讨辨识方法在推理控制和软测量建模中的应用,具有重要的理论意义和实用价值。论文的主要工作包括以下几个方面:
     (1)在不同噪声干扰条件下研究了输入非均匀采样数据系统的辨识问题。首先,基于递阶梯度迭代搜索原理,推导了白噪声干扰输入非均匀采样数据系统输出误差模型的梯度迭代辨识算法。该算法的辨识性能优于辅助模型随机梯度算法,但是计算量却远小于最小二乘迭代算法。其次,推导了有色噪声干扰输入非均匀采样数据系统Box-Jenkins模型的基于滤波的递推最小二乘辨识算法。通过对系统模型参数和噪声模型参数进行交互估计,有效降低了算法的计算量并提高了估计精度。
     (2)针对有色噪声干扰条件下的输入输出同步非均匀采样数据系统,基于提升技术推导了描述这类系统的Box-Jenkins模型,并提出了相应的辅助模型多新息广义增广随机梯度辨识算法。该算法通过新息扩展,充分利用了可获得的数据信息,能够有效提高辨识性能。另外,考虑到提升状态空间模型涉及因果约束问题,而提升传递函数模型参数过多、结构过于复杂,都不便于输入输出同步非均匀采样数据系统的辨识和控制。通过引入时变后移算子,提出了一种结构简单的新型传递函数模型,并提出了该模型的辅助模型最小二乘辨识算法。
     (3)基于快速均匀刷新的输入数据和慢速非均匀采样且具有不确定延迟的输出数据,利用最大期望算法,将不确定延迟看作隐变量,提出了快速单率有限脉冲响应模型参数和不确定延迟的交互估计方法。进一步基于辨识得到的有限脉冲响应模型,分别利用最小二乘算法和最大期望算法,提出了快速单率输出误差模型的两种参数估计方法。仿真例子和实验结果表明,提出的辨识方法能够有效克服不确定延迟对辨识性能的影响,给出高精度的参数估计。
     (4)针对输入快速非均匀刷新、输出慢速均匀采样的系统,推导了可测输出与非均匀损失输出采样点上传递函数模型之间的数学关系,利用这一关系和辨识得到的可测输出点的模型参数,对损失输出点的模型参数进行估计;基于估计的模型对下一个非均匀采样点的输出进行预测,根据最小方差原理提出了输入非均匀采样数据系统的推理自适应控制算法。进一步借助于辅助变量,提出了未知有色噪声干扰下非均匀采样数据系统的推理控制方法。
     (5)针对一个实际的输出非均匀采样数据系统――直流蒸汽发生器,基于混合建模方法建立了蒸汽含量的软测量模型。首先,根据热量平衡原理推导了该过程的简单机理模型,利用温度、流量等常规过程变量对蒸汽含量进行实时估计;其次,利用蒸汽含量的实验室分析数据对机理模型的输出进行在线偏差补偿,以增强软测量模型的自适应能力;同时,利用预报误差方法优化模型参数和补偿项的加权系数,以获得精度最高的软测量模型;最后,对过程变量进行在线异常值检测和处理,以确保软测量模型在实际运行过程中的可靠性。
The non-uniformly sampled-data (NUSD) systems with irregular sampling intervalsfor the inputs and/or outputs are a class of more general multirate sampled-data systems.Due to hardware limitations, economic considerations and environmental impacts, suchNUSD systems can be widely found in petroleum, chemical, food, medicine and otherprocess industries. However, since traditional identifcation methods and control theoryare designed mainly for single-rate sampled-data systems, research on identifcation andcontrol of the NUSD systems is still relatively sparse. Therefore, this thesis focuses ondevelopment of new identifcation algorithms for the NUSD systems and investigates theirapplications in the inferential control design and the soft sensor development, which hasimportant theoretical signifcance and practical values. The major contribution of thisthesis includes:
     (1) Identifcation of the input NUSD systems under diferent noise interferences is stud-ied. First, a gradient-based iterative algorithm is derived for the output error modelof the input NUSD systems with white noise. The proposed algorithm not only hasbetter identifcation performance than the auxiliary model based stochastic gradi-ent algorithm, but also has lower computational cost than the least squares basediterative algorithm. Furthermore, a fltering based recursive least squares algorithmis derived for the Box-Jenkins model of the input NUSD systems with colored noise.The proposed algorithm interactively estimates the parameters of the system modeland the noise model; thus has low computational load and high estimation accuracy.
     (2) For the synchronous input-output NUSD systems with colored noises, the Box-Jenkins model is derived based on the lifting technique, and an auxiliary modelbased multi-innovation generalized extended stochastic gradient algorithm is pre-sented for the model identifcation. The proposed algorithm makes full use of theavailable data and improves the identifcation performance via innovation expan-sion. Considering that the lifted state-space model involves causality constraintproblem and the corresponding transfer function model is quite complicated withtoo many parameters, neither one is convenient for identifcation and control ofthe synchronous input-output NUSD systems. Therefore, a novel transfer functionmodel is derived by introducing a time-varying backward shift operator, and anauxiliary based least squares algorithm is developed for its identifcation.
     (3) An Expectation-Maximization (EM) based identifcation algorithm is developed forthe output NUSD systems with uncertain sampling delays, where the uncertain delays are considered as the hidden states, and the parameters of the underlyingfast-rate fnite impulse response model are estimated along with the delays. Fur-thermore, two algorithms are proposed to recover the approximated fast-rate outputerror model by using the least square algorithm and the EM algorithm, respectively.The simulation examples and experimental results illustrate that the proposed al-gorithm can overcome the negative impacts of uncertain delays on the identifcationperformance, and provide parameter estimates with high precision.
     (4) For the input NUSD systems with fast non-uniformly updated inputs and slowlysampled outputs, the mathematical relationship between the transfer function modelof the sampled outputs and the non-uniform missing outputs is derived. Basedon this relationship and using the identifed model of the sampled outputs, themodels of the missing outputs can be estimated. Then by using the estimatedmodel to predict the output at the next non-uniform sampling instant, an inferentialadaptive control algorithm is proposed for the input NUSD systems according tothe minimum variance criterion. By using the auxiliary variables, the proposedinferential control scheme is further extended to the input NUSD systems disturbedby unknown colored noises.
     (5) For a practical output NUSD system, i.e., the once-through steam generator, softsensors based on hybrid modeling technique are developed to predict its steamqualities. First, simplifed frst-principle models are derived according to the en-ergy balance equations, thus the steam qualities can be estimated online throughtemperatures, fows and other process variables. Then, to improve the adaptabilityof the soft sensors, of-line lab analyses of steam qualities are adopted to rectifythe frst-principle model predictions via bias compensation; and to obtain high-performance soft sensors, the predication error method is applied to optimize themodel parameters and the weighting factor in the bias update equation. Further-more, online outlier detection and rejection are considered to ensure the reliabilityof the developed soft sensors.
引文
1.丁锋,系统辨识新论[M].北京:科学出版社,2013
    2. Ding F, Chen T. Modeling and identifcation for multirate systems [J]. Acta AutomaticaSinica,2005,31(1):105–122
    3. Albertos P, Crespo A. Real-time control of non-uniformly sampled systems [J]. ControlEngineering Practice,1999,7(4):445–458
    4. Cuenca A, Salt J. RST controller design for a non-uniform multi-rate control system [J].Journal of Process Control,2012,22(10):1865–1877
    5. Fortuna L, Graziani S, Xibilia M. Soft sensors for product quality monitoring in debutanizerdistillation columns [J]. Control Engineering Practice,2005,13(4):499–508
    6. Gjerkes H, Malensek J, Sitar A, Golobic I. Product identifcation in industrial batch fer-mentation using a variable forgetting factor [J]. Control Engineering Practice,2011,19(10):1208–1215
    7. Ogawa M, Ohshima M, Morinaga K, Watanabe F. Quality inferential control of an industrialhigh density polyethylene process [J]. Journal of Process Control,1999,9(1):51–59
    8. Sharmin R, Sundararaj U, Shah S, Vande GL, Sun YJ. Inferential sensors for estimation ofpolymer quality parameters: Industrial application of a PLS-based soft sensor for a LDPEplant [J]. Chemical Engineering Science,2006,61(19):6372–6384
    9. Abedini H, Shahrokhi M. Inferential closed-loop control of particle size distribution forstyrene emulsion polymerization [J]. Chemical Engineering Science,2008,63(9):2378–2390
    10. Galicia HJ, He QP, Wang J. A reduced order soft sensor approach and its application to acontinuous digester [J]. Journal of Process Control,2011,21(4):489–500
    11. Galicia HJ, He QP, Wang J. Comparison of the performance of a reduced-order dynamicPLS soft sensor with diferent updating schemes for digester control [J]. Control EngineeringPractice,2012,20(8):747–760
    12.黎善斌,王智,张卫东,孙优贤.网络控制系统的研究现状与展望[J].信息与控制,2003,32(3):239–244
    13. Thornhill NF, Shoukat Choudhury M, Shah SL. The impact of compression on data-drivenprocess analyses [J]. Journal of Process Control,2004,14(4):389–398
    14. Ni B, Xiao D. Identifcation of non-uniformly sampled multirate systems with applicationto process data compression [J]. IET Control Theory&Applications,2010,4(6):970–984
    15.李延飞,李明,吴顺君.扇扫TWS雷达多目标跟踪中特殊问题的研究[J].信号处理,2005,21(4A):575–578
    16. Khan S, Goodall RM, Dixon R. Non-uniform sampling strategies for digital control [J].International Journal of Systems Science,2012, DOI:10.1080/00207721.2012.687785
    17.汪安民.基于非均匀采样的信号频率检测方法及其实现[D]:[博士学位论文].武汉:华中科技大学,2004
    18.汪安民,王殊,陈明欣.一种非均匀采样下小信号的检测方法[J].信号处理,2004,20(5):436–440
    19.陈涵,刘会金,李大路,崔雪.非均匀采样和最小二乘法在间谐波检测中的应用[J].中国电机工程学报,2009,29(10):109–114
    20. Kreisselmeier G. On sampling without loss of observability/controllability [J]. IEEE Trans-actions on Automatic Control,1999,44(5):1021–1025
    21. Cuenca A, Salt J, Albertos P. Implementation of algebraic controllers for non-conventionalsampled-data systems [J]. Real-Time Systems,2007,35(1):59–89
    22.吴瑶,罗雄麟.化工多采样率数字控制技术研究进展[J].化工进展,2008,27(9):1342–1347
    23. Li W, Han Z, Shah SL. Subspace identifcation for FDI in systems with non-uniformlysampled multirate data [J]. Automatica,2006,42(4):619–627
    24. Ding F, Liu G, Liu XP. Partially coupled stochastic gradient identifcation methods fornon-uniformly sampled systems [J]. IEEE Transactions on Automatic Control,2010,55(8):1976–1981
    25.丁锋,陈通文,萧德云.非均匀周期采样多率系统的一种辨识方法[J].电子学报,2004,32(9):1414–1420
    26. Mizumoto I, Chen T, Ohdaira S, Kumon M, Iwai Z. Adaptive output feedback control ofgeneral MIMO systems using multirate sampling and its application to a cart–crane system[J]. Automatica,2007,43(12):2077–2085
    27. Xu W, Zhang L, Gu X. Soft sensor for ammonia concentration at the ammonia converteroutlet based on an improved particle swarm optimization and BP neural network [J]. Chem-ical Engineering Research and Design,2011,89(10):2102–2109
    28. Lin B, Recke B, Knudsen JK, J rgensen SB. A systematic approach for soft sensor devel-opment [J]. Computers&Chemical Engineering,2007,31(5):419–425
    29. Ding F, Chen T. Identifcation of dual-rate systems based on fnite impulse response models[J]. International Journal of Adaptive Control and Signal Processing,2004,18(7):589–598
    30.李幼凤,苏宏业,褚健.工业过程的子空间模型辨识[J].控制理论与应用,2007,24(5):803–806
    31. Ding F, Chen T. Hierarchical identifcation of lifted state-space models for general dual-ratesystems [J]. IEEE Transactions on Circuits and Systems I: Regular Papers,2005,52(6):1179–1187
    32. Li D, Shah SL, Chen T. Identifcation of fast-rate models from multirate data [J]. Interna-tional Journal of Control,2001,74(7):680–689
    33. Ding F, Liu XP, Shi Y. Convergence analysis of estimation algorithms for dual-rate stochasticsystems [J]. Applied Mathematics and Computation,2006,176(1):245–261
    34. Ding F, Liu XP, Yang H. Parameter identifcation and intersample output estimation fordual-rate systems [J]. IEEE Transactions on Systems, Man and Cybernetics, Part A: Systemsand Humans,2008,38(4):966–975
    35. Ding J, Shi Y, Wang H, Ding F. A modifed stochastic gradient based parameter estimationalgorithm for dual-rate sampled-data systems [J]. Digital Signal Processing,2010,20(4):1238–1247
    36. Ding J, Ding F, Liu XP, Liu G. Hierarchical least squares identifcation for linear SISOsystems with dual-rate sampled-data [J]. IEEE Transactions on Automatic Control,2011,56(11):2677–2683
    37. Lin B, Recke B, Schmidt T, Knudsen J, J rgensen S. Data-driven soft sensor design withmultiple-rate sampled data: A comparative study [J]. Industrial&Engineering ChemistryResearch,2009,48(11):5379–5387
    38. Imtiaz S, Shah S. Treatment of missing values in process data analysis [J]. The CanadianJournal of Chemical Engineering,2008,86(5):838–858
    39.吕立华,宋执环,李平.一种基于小波多分辨分析的多率采样系统辨识方法[J].控制理论与应用,2002,9(2):225–228
    40. Ding F, Chen T. Combined parameter and output estimation of dual-rate systems using anauxiliary model [J]. Automatica,2004,40(10):1739–1748
    41. Aldroubi A, Gro¨chenig K. Nonuniform sampling and reconstruction in shift-invariant spaces[J]. SIAM Review,2001,43(4):585–620
    42.蔡菲娜,张建奇.基于非均匀同步采样的周期信号重构[J].浙江工业大学学报,2005,33(4):403–406
    43. Ding F, Qiu L, Chen T. Reconstruction of continuous-time systems from their non-uniformlysampled discrete-time systems [J]. Automatica,2009,45(2):324–332
    44.谢莉,丁锋.非均匀采样数据系统的一种辨识方法[J].控制工程,2008,15(4):402–404
    45.蒋红霞,王金海,丁锋.一类非均匀采样系统最小二乘迭代辨识[J].系统工程与电子技术,2008,30(8):1535–1539
    46. Xie L, Yang HZ. Gradient-based iterative identifcation for nonuniform sampling outputerror systems [J]. Journal of Vibration and Control,2011,17(3):471–478
    47. Tarczynski A, Kiss T, Tersztyanszki G, Delaitre T, Qu D, Winter S. Application of gridcomputing for designing a class of optimal periodic nonuniform sampling sequences [J].Future Generation Computer Systems,2008,24(7):763–773
    48. Ni B, Xiao D. Optimal nonuniform sampling for system identifcation on sparsely sampleddata [J]. Chinese Journal of Electronics,2012,21(2):292–298
    49. Sheng J, Chen T, Shah SL. Generalized predictive control for non-uniformly sampled systems[J]. Journal of Process Control,2002,12(8):875–885
    50. Albertos P, Salt J. Non-uniform sampled-data control of MIMO systems [J]. Annual Reviewsin Control,2011,35(1):65–76
    51. Li W, Shah SL, Xiao D. Kalman flters in non-uniformly sampled multirate systems: forFDI and beyond [J]. Automatica,2008,44(1):199–208
    52.张宁,丁锋,朱大奇.非均匀采样数据系统的故障检测[J].计算机测量与控制,2008,16(6):774–776
    53.丁洁,谢莉,丁锋.非均匀采样系统多新息随机梯度辨识性能分析[J].控制与决策,2011,26(9):1338–1342
    54. Liu YJ, Ding F, Shi Y. Least squares estimation for a class of non-uniformly sampled systemsbased on the hierarchical identifcation principle [J]. Circuits Systems and Signal Processing,2012,31(6):1985–2000
    55.谢莉,刘艳君.非均匀采样数据系统AM-MI-GESG算法[J].仪器仪表学报,2009,30(6s)
    56. Xie L, Yang H, Ding F. Recursive least squares parameter estimation for non-uniformlysampled systems based on the data fltering [J]. Mathematical and Computer Modelling,2011,54(1-2):315–324
    57. Raghavan H, Tangirala AK, Gopaluni RB, Shah SL. Identifcation of chemical processeswith irregular output sampling [J]. Control Engineering Practice,2006,14(5):467–480
    58. Gopaluni RB. A particle flter approach to identifcation of nonlinear processes under missingobservations [J]. The Canadian Journal of Chemical Engineering,2008,86(6):1081–1092
    59. Gopaluni RB. Nonlinear system identifcation under missing observations: The case of un-known model structure [J]. Journal of Process Control,2010,20(3):314–324
    60. Tulsyan A, Huang B, Gopaluni RB, Fraser FJ. On simultaneous on-line state and parameterestimation in non-linear state-space models [J]. Journal of Process Control,2013,23(4):516–526
    61. Ding F, Liu G, Liu XP. Parameter estimation with scarce measurements [J]. Automatica,2011,47(8):1646–1655
    62.倪博溢,萧德云.非均匀采样系统的一种递推辨识方法[J].自动化学报,2009,35(12):1520–1527
    63.李大海,李天石.非均匀采样系统的支持向量回归建模与控制[J].西安交通大学学报,2011,45(3):65–69
    64.王志中,张钟俊.非均匀采样系统的建模方法[J].控制理论与应用,1985,2(4):34–43
    65.刘艳君,丁锋.非均匀周期采样系统的递阶最小二乘辨识方法[J].控制与决策,2011,26(3):453–456
    66. Xie L, Liu YJ, Yang HZ, Ding F. Modelling and identifcation for non-uniformly periodicallysampled-data systems [J]. IET Control Theory&Applications,2010,4(5):784–794
    67. Chen JM, Chen BS. System parameter estimation with input/output noisy data and missingmeasurements [J]. IEEE Transactions on Signal Processing,2000,48(6):1548–1558
    68.赵建华. DCS及其在石油化工工业中的应用[J].化工自动化及仪表,1992,19(1):7–10
    69.于静江,周春晖.过程控制中的软测量技术[J].控制理论与应用,1996,13(2):137–144
    70.徐喆,柴天佑,王伟.推理控制综述[J].信息与控制,1998,27(3):206–214
    71.俞金寿.软测量技术及其应用[J].自动化仪表,2008,29(1):1–7
    72. Zamprogna E, Barolo M, Seborg DE. Optimal selection of soft sensor inputs for batchdistillation columns using principal component analysis [J]. Journal of process control,2005,15(1):39–52
    73. Pannocchia G, Brambilla A. How auxiliary variables and plant data collection afect closed-loop performance of inferential control [J]. Journal of Process Control,2007,17(8):653–663
    74.孙欣,王金春,何声亮.过程软测量[J].自动化仪表,1995,16(8):1–5
    75. Bai S, Thibault J, McLean DD. Dynamic data reconciliation: Alternative to Kalman flter[J]. Journal of Process Control,2006,16(5):485–498
    76. Qiao J, Chai T. Soft measurement model and its application in raw meal calcination process[J]. Journal of Process Control,2012,22(1):344–351
    77. Kadlec P, Gabrys B, Strandt S. Data-driven soft sensors in the process industry [J]. Com-puters&Chemical Engineering,2009,33(4):795–814
    78. Kano M, Nakagawa Y. Data-based process monitoring, process control, and quality improve-ment: Recent developments and applications in steel industry [J]. Computers&ChemicalEngineering,2008,32(1):12–24
    79. Napoli G, Xibilia M. Soft sensor design for a Topping process in the case of small datasets[J]. Computers and Chemical Engineering,2011,35(11):2447–2456
    80. Kristensen N, Madsen H, J rgensen S. Parameter estimation in stochastic grey-box models[J]. Automatica,2004,40(2):225–237
    81. Liu J, Srinivasan R, SelvaGuru P. Practical challenges in developing data-driven soft sensorsfor quality prediction [J]. Computer Aided Chemical Engineering,2008,25:961–966
    82.傅永峰,陈祥华,徐欧官.一种基于混合建模技术的MIMO软测量建模方法[J].化工自动化及仪表,2010,37(9):37–41
    83. Damour C, Benne M, Grondin-Perez B, Chabriat J. Soft-sensor for industrial sugar crys-tallization: On-line mass of crystals, concentration and purity measurement [J]. ControlEngineering Practice,2010,18(8):839–844
    84. Mahalec V, Sanchez Y. Inferential monitoring and optimization of crude separation unitsvia hybrid models [J]. Computers&Chemical Engineering,2012,45(12):15–26
    85. Kadlec P, Grbi′c R, Gabrys B. Review of adaptation mechanisms for data-driven soft sensors[J]. Computers&chemical engineering,2011,35(1):1–24
    86. Mu S, Zeng Y, Liu R, Wu P, Su H, Chu J. Online dual updating with recursive PLS modeland its application in predicting crystal size of purifed terephthalic acid (PTA) process [J].Journal of Process Control,2006,16(6):557–566
    87.李启福,王雅琳,曹泊,桂卫华.基于滑窗B样条偏最小二乘的浮选过程质量指标软测量[J].中国科技论文,2012,7(4):294–301
    88. Kano M, Miyazaki K, Hasebe S, Hashimoto I. Inferential control system of distillationcompositions using dynamic partial least squares regression [J]. Journal of process control,2000,10(2-3):157–166
    89. Kano M, Showchaiya N, Hasebe S, Hashimoto I. Inferential control of distillation composi-tions: Selection of model and control confguration [J]. Control Engineering Practice,2003,11(8):927–933
    90. Kumar MVP, Kaistha N. Temperature based inferential control of a methyl acetate reactivedistillation column [J]. Chemical Engineering Research and Design,2007,85(9):1268–1280
    91. Rossiter J, Sheng J, Chen T, Shah S. Interpretations of and options in dual-rate predictivecontrol [J]. Journal of Process Control,2005,15(2):135–148
    92. Li D, Shah SL, Chen T. Analysis of dual-rate inferential control systems [J]. Automatica,2002,38(6):1053–1059
    93. Li D, Shah S, Chen T, Qi K. Application of dual-rate modeling to CCR octane qualityinferential control [J]. IEEE Transactions on Control Systems Technology,2003,11(1):43–51
    94. Ding F, Chen T. A gradient based adaptive control algorithm for dual-rate systems [J].Asian Journal of Control,2006,8(4):314–323
    95. Ding F, Chen T, Iwai Z. Adaptive digital control of Hammerstein nonlinear systems withlimited output sampling [J]. SIAM Journal on Control and Optimization,2007,45(6):2257–2276
    96. Liu Y, Xie L, Ding F. An auxiliary model based on a recursive least-squares parameterestimation algorithm for non-uniformly sampled multirate systems [J]. Proceedings of theInstitution of Mechanical Engineers, Part I: Journal of Systems and Control Engineering,2009,223(4):445–454
    97. Ding F, Chen T. Hierarchical gradient-based identifcation of multivariable discrete-timesystems [J]. Automatica,2005,41(2):315–325
    98. Wang D, Ding F. Input–output data fltering based recursive least squares identifcation forCARARMA systems [J]. Digital Signal Processing,2010,20(4):991–999
    99. Goodwin G, Sin K, Adaptive Filtering Prediction and Control [M]. Prentice-Hall, EnglewoodClifs, NJ,1984
    100. Ljung L, System Identifcation: Theory for the User (2nd Edition)[M]. Prentice-Hall,Englewood Clifs, NJ,1999
    101. Ding F, Chen T. Performance analysis of multi-innovation gradient type identifcationmethods [J]. Automatica,2007,43(1):1–14
    102. Ding F, Liu XP, Liu G. Auxiliary model based multi-innovation extended stochastic gradi-ent parameter estimation with colored measurement noises. Signal Processing,2009,89(10):1883–1890
    103. Ahmed S, Huang B, Shah S, Process parameter and delay estimation from non-uniformlysampled data, chapter11[M]. Springer Verlag,2008
    104. Deng J, Huang B. Identifcation of nonlinear parameter varying systems with missingoutput data [J]. AIChE Journal,2012,58(11):3454–3467
    105. Dempster AP, Laird NM, Rubin DB. Maximum likelihood from incomplete data via theEM algorithm [J]. Journal of the Royal Statistical Society, Series B,1977,39(1):1–38
    106. Jin X, Wang S, Huang B, Forbes F. Multiple model based LPV soft sensor developmentwith irregular/missing process output measurement [J]. Control Engineering Practice,2012,20(2):165–172
    107. Wu C. On the convergence properties of the EM algorithm [J]. The Annals of Statistics,1983,11(1):95–103
    108. Thornhill NF, Patwardhan SC, Shah SL. A continuous stirred tank heater simulation modelwith applications [J]. Journal of Process Control,2008,18(3):347–360
    109. Khatibisepehr S, Huang B. Dealing with irregular data in soft sensors: Bayesian methodand comparative study [J]. Industrial&Engineering Chemistry Research,2008,47(22):8713–8723
    110.胡俊达.一种新型的自适应推理控制恒压恒频交流电源的研究[J].中国电机工程学报,2004,1:38–41
    111. Zhu Y, Telkamp H, Wang J, Fu Q. System identifcation using slow and irregular outputsamples [J]. Journal of Process Control,2009,19(1):58–67
    112. Ding F, Ding J. Least squares parameter estimation for systems with irregularly missingdata [J]. International Journal of Adaptive Control and Signal Processing,2010,24(7):540–553
    113. Acosta E. Technology update: Achieving sustainable, optimal SAGD operations [J]. Jour-nal of Petroleum Technology,2010,62(11):24–28
    114. Khatibisepehr S, Huang B, Xu F, Espejo A. A bayesian approach to design of adaptivemulti-model inferential sensors with application in oil sand industry [J]. Journal of ProcessControl,2012,22(10):1913–1929
    115. Zhao Y, Huang B, Su H, Chu J. Prediction error method for identifcation of LPV models[J]. Journal of Process Control,2012,22(1):180–193
    116. Liu H, Shah S, Jiang W. On-line outlier detection and data cleaning [J]. Computers&Chemical Engineering,2004,28(9):1635–1647

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700