用户名: 密码: 验证码:
基于Stewart平台的六维加速度传感器研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
类人机器人灵巧手在抓取物体的过程中,手抓的惯性力会影响抓取的鲁棒性,惯性导航系统中需要测量空间加速度经过积分计算获得载体的位置和姿态,武器制导、汽车碰撞、医学和体育等领域也都对六维加速度传感器有着迫切的需求。但是沿x、y、z正交分解布置敏感元件的传统方法很难构造能同时测量三维线加速度和三维角加速度的弹性元件结构,并联机构的发展和Stewart平台的结构特点为该课题的研究提供了新的思路。论文中采用基于Stewart平台的柔性并联机构作为弹性元件对六维加速度传感器从基础理论、关键技术、标定和实验等方面进行研究,解决并联机构刚度大导致传感器信噪比低不能用于小量程传感器弹性元件、传感器弹性元件理论简化模型实体化后带来的结构误差影响传感器测量精度等关键科学问题,为六维加速度传感器的研究提供理论依据和实验指导。主要研究了以下内容:
     (1)在定义了六维加速度传感器系统静态模型的基础上,应用空间模型理论建立了传感器的静态数学模型,推导了无量纲尺寸参数的三维空间和二维平面的模型转换方程,依据矢量积法和并联机构理论推导了同机构尺寸参数相关的加速度雅可比矩阵。
     (2)提出把影响传感器测量精度的基本特性误差和影响误差与传感器的加速度雅可比矩阵和弹性连接杆的输出应变矩阵相关联,全面研究误差对传感器测量精度的影响规律。分析了影响传感器信噪比的因素,全面定义了传感器的静态特性和动态特性性能指标,尤其是传感器的各向同性和灵敏度特性性能指标。
     (3)基于各向同性和灵敏度特性性能指标的定义,绘制了各性能指标同理论模型参数之间关系的性能图谱,通过建立各性能指标的单目标和多目标优化函数对理论模型参数进行了尺寸优化研究,并将优化结果与其它优化方法的结果进行了全面对比。
     (4)针对弹性元件理论简化模型实体化后带来的结构误差对传感器测量精度的影响问题和目前柔性并联机构建模方法存在的局限性,提出应用有限元法研究了弹性元件实体化模型参数的刚度对传感器测量精度和动态特性的影响问题,鉴于刚度对二者的影响存在矛盾,提出应用正交试验和极差分析法对实体化模型参数的尺寸进行了优化研究。
     (5)针对并联机构刚度大导致传感器信噪比低影响传感器测量精度的问题,提出了应用应力集中系数法研究弹性元件结构的研究方法,定义了适合弹性元件结构研究的应力集中系数,应用穆斯海里什维里算法研究了引入应力集中的弹性连接杆结构的数学模型。在应力集中系数法研究的基础上,提出了一种双悬臂梁S型的弹性连接杆结构,建立了其受力情况的力学模型,并应用有限元法对其力学模型进行了分析。
     (6)从理论上分析了基于Stewart平台的六维加速度传感器耦合误差产生的原因,并对解耦的方法进行了研究。基于论文中提出的理论设计、加工了传感器弹性元件,搭建了传感器的测量系统进行标定试验和测量精度验证,并对六维加速度传感器的动态特性进行了研究。
In the course of grasping objects by the dexterous hands of humanoid robot, the inertial force caused by the spacial acceleration imposed on the hands will affect the grasping robustness. The spacial acceleration need to be measured so as to calculate the position and attitude of the carrier with the method of integration the spacial acceleration in inertial navigation systems. And there is an urgent need of six-axis accelerometers in the other fields such as weapons guidance, car collision and sports. Nevertheless, it is difficult to fabricate the elastic element to simultaneously sense the three linear accelerations and three angular accelerations with the method of placing the sensing elements along the x, y, and z-orthogonal decomposition. With the development of parallel mechanism, the structural features of Stewart platform provide a new approach to study on a six-axis accelerometer. Using the compliant mechanism based on Stewart plarform as elasitc element,This paper studied a six-axis accelerometer on the theory and calibration experiment in order to solve the key science questions such as parallel mechanism not used as the elastic element of sensor with small range because of high rigidity causing low singal to noise(S/N) and the structural errors by the solid model instead of the simplified theoretical model affecting sensor measurement accuracy, and provide a theoretical basis and experimental guidance for study on the six-axis accelerometer. Research the following:
     (l)Based on the definition of the static model for the six-axis accelerometer, the mathematic static model of sensor war established with the method of the physical model of solution space and changed3D nondimensional parameters into2D by the conversion formulas. According to the method of vector product and theory of parallel mechanism, acceleration Jacobian matrix was detailedly deduced and expressed by the nondimensional parameters.
     (2)Based on deviding the errors affecting measurement accuracy into basic errors associated with the acceleration Jacobian matrix and impact errors associated with the output strain matrix of the elastic leg, this paper analyzed the impact law caused by the errors affecting measurement accuracy and factors affecting S/N of sensor. And then, the sensor performance indexes were difined such as the static and dynamic characteristics, especially in isotropy and sensitivity characteristics expressed by nondimensional parameters of simplified theoretical model.
     (3)The performance atlases were drawn and used to express the relationship among all kinds of indexes to theoretical parameters based on the definition of isotropy and sensitivity characteristics. Then, the single-objective optimization functions and multi-objective optimization functions were constructed so as to optimize the theoretical parameters, and the results were compared with those obtained by other optimization methods.
     (4)In order to solve the questions such as the structural errors by the solid model instead of the simplified theoretical model affecting sensor measurement accuracy and he limitations of modeling methods for compliant parallel mechanism, the finite element method of numerical solution was utilized to study the structural rigidy affecting measurement accuracy and dynamic characteristics of the sensor. Taking the contradictions bring by structural rigidy affecting measurement accuracy and dynamic characteristics into account, this paper presented to optimize the solid model parameters by orthogonal test and extreme difference analysis.
     (5)So as to solve the questions such that parallel mechanism not used as the elastic element of sensor with small range because of high rigidity causing low singal to noise(S/N), the method of stress concentration factor was applied to study the elastic element structure based on the redefinition stress concentration factor in order to establish the mathematic model for he elastic element structure with the method of Muskhelishvili. According to the method of stress concentration factor, this paper presented a structure of elastic element with double cantilever beam, constructed force model and calculated by the finite element method.
     (6)Based on the anslysis mechanism of coupling errors for the six-axis acclelerometer with Stewart platform, this paper studied the decoupling method, designed the measuring system for sensor based on the prototype processed, calibrated the measurement accuracy by calibration experiment and,finally, silmulated dynamic characteristics.
引文
[1]张玉茹,李继婷,李剑锋.机器人灵巧手[M]:建模、规划与仿真.北京:机械工业出版社,2007
    [2]Akio Namiki, Yoshiro Imai, and Masatoshi Ishikawa. Development of a High-speed Multifingered Hand System and Its Application to Catching [C]. Proceedings of the 2003 IEEE/RSJ Intl. Conference on Intelligent Robots and Systems, Las Vegas, October 2003:2666-2671
    [3]Jan Steffen, Robert Haschke and Helge Ritter. Experience-based and Tactile-driven Dynamic Grasp Control[C]. Proceedings of the 2007 IEEE/RSJ International Conference on Intelligent Robotics and Systems, San Diego, October 2007:2938-2943
    [4]S.Butefish, S.Btittgenbach, G.Schanzer and U.Schneider. Micromechanical Sensors for the Inertial Measurement Unit of a Satellite Navigation System[C]. In Proe. Ninth IF AC Symp.Centr. Transport. Syst. Braunschweig,2000,(6):14-20
    [5]S.Butefish, A.Schoft and S.Buttgenbach, Three-axes Monolithic Silicon Low-g Accelerometer[J]. Journal of Microelectromechanical Systems.2000,9(4):551-556
    [6]H.K.Xie, Gary K.Fedder, Z.Y.Pan and W.Frey. Design and Fabrication of An Integrated CMOS-MEMS 3-Axis Acceleromete[C]r. Nanotechnology Conference and Trade Show,2003,1:292-295
    [7]Yuji Ohgi. Microcomputer-based Acceleration Sensor Device for Sports Biomechanics-stroke Evaluation by Using Swimmer's Wrist Acceleration[C]. Sensors, Proceedings of IEEE,2002,1:699-704
    [8]狄凤岗,许建辉,王琨.SW-Ⅰ型三维加速度传感器的研制[J].西安体育学院学报,1995,12(3):78-96
    [9]K.Okada. Tri-Axial Piezoelectric Accelerometer[C]. Pro. Proceedings of the 1995 8th International Conference on Solid-State Sensors and Actuators, Stockholm. Sweden, 1995:566-569
    [10]K.Kwon, S.Park. Three Axis Piezoresistive Accelerometer Using Polysilicon Layer[C]. Proceedings of the 1997 International Conference on Solid-State Sensors and Actuators, Chicago,1997:1221-1224
    [11]J.H.Sim, D.K.Kim, Y.H.Bae et al. Six-beam Piezoresistive Accelerometer with Self-cancelling Cross-axis Sensitivity[J]. Electronics Letters,1998,34(5):497-499
    [12]H.Ahmad, A.J.Al-Khalili, L.Landsberger et al. A 2D Micromachined Accelerometer[C]. Proceedings of the 1996 3rd IEEE International Conference on Electronics, Circuits, and Systems, Greece,1996:908-911
    [13]J.Chae, H.Kulab, K.Najafi. A Monolithic Three-axis Silicon Capacitive Accelerometer with Micro-g Resolution[C]. Proceedings.of the 12th International Conference on Solid-State, Actuators and Microsystems, Boston,2003:81-84
    [14]O.Tabata, T.Yamamoto.2-Axis Detection Resonant Accelerometer Based on Rigidity Change[C]. Proceedings of the 1998 Conference on Micromachined Devices and Components Ⅳ, Santa Clara,USA,1998:210-216
    [15]C.Di Natale, F.Davide, A.D.Amico, et al. Multicomponent Analysis of a Tri-axial Accelerometer Based on Surface Acoustic Wave Sensors[C]. Proceedings of the 1994 IEEE Ultrasonics Symposium,Cannes,Fr.,1994:495-498
    [16]W.M.Qu, C.Wenzel, G.Gerlach. Fabrication of a 3D Differential-capacitive Accelerometer Sensor by UV-LIGA[J]. Sensors and Actuators. Physical,1999, 77(1):14-20
    [17]H.Takao, H.Fukumoto, M.Ishida. A CMOS Integrated Three-axis Accelerometer Fabricated with Commercial Submicrometer CMOS Technology and Bulk-Micromaching[J]. IEEE Transactions on Electron Devices,2001, 48(9):1961-1968
    [18]格雷戈里,T.A.科瓦奇,著,张文栋,译.微传感器与微执行器全书[M].北京:科学出版社,2003:165-175
    [19]J.Tieman, J.Schrnalzel, R.Krchnavek. Design of a MEMS-based,3-axis Accelereometer Smart Sensor[C]. Sensors for Industry Conference,2002.2nd ISA/IEEE,2002:19-23
    [20]Th.Velten, C.Y.he, E.Obermeier. Dynamic Behavior of A New Two-Axis Accelerometer[C] Proceedings of the 1997 International Conference on Solid-State and Actuators, Chicago,1997:1217-1220
    [21]H.Takao, Y.Matsumoto, M.Ishida. A Momolithically Integrated Three Axial Accelerometer Using Stress Sensitive CMOS Differential Amplifiers [C]. Proceedings of Transducers'97, the 1997 International Conference on Solid-State Sensors and Actuators, Chicago,1997:1173-1176
    [22]T.Mineta, S.Kobayashi et al. Three-Axis Capacitive Accelerometer with Uniform Axial Sensitivities[C]. Proceedongs of the 8th International Conference on Solid-State and Actuators, Stockholm.Sweden,1995:554-557
    [23]黄朋生,任天令,楼其伟等.三维压电加速度传感器的设计[J].压电与声光,2003, 25(5):379-381
    [24]张新,费业泰.应变式全剪切三维加速度传感器的设计[J].中国机械工程,2007,18(10):1157-1160
    [25]张新,费业泰.应变式三维加速度传感器的设计[J].仪器仪表学报,2006,27(6)增刊:1601-1602
    [26]曹新平,张大成,黄如,张兴,王阳元.一种大厚度的三轴差分电容式硅微加速度计[J].仪器仪表学报,2002,23(6):572-575
    [27]孙宝元,牛志明,韩庚琳.三维组合压阻式低频加速度传感器的研制与标定[J].大连理工大学学报,1992,32(5):545-549
    [28]刘宗林,李圣怡,吴学忠.新型三轴微加速度计设计[J].传感技术学报,2004,(3):488-504
    [29]王涛.三轴硅微加速度计的集成设计与实现[硕士学位论文].西安:西北工业大学,2006.
    [30]孟美玉,刘俊,石云波.三轴压阻微加速度计的结构力学分析[J].中国惯性技术学报,2007,15(3):355-358
    [31]H.A.Chan, H.J.Paik, M.V.Moody, J.W.Parke. Superconducting Technology for Gravity Survey and Inertial Navigation[J]. IEEE Transactions on Magnetics,1985, 21(2):411-414
    [32]B.Bachrach, E.R.Canaban, W.S.Levinet. Diagonalizing Controller for A Superconducting Six-axis Accelerometer[C]. Proceedongs. of the 29th Conference on Decision and Control, Honoludu, Hawall,1990:2785-2793
    [33]E.R.Canavan, H.J.Park, J.W.Parke. A Superconducting Six-axis Accelerometer[J]. IEEE Transaction on Magnetics,1991,27(2):3253-3256
    [34]Ranjith Amarasinghe, Dzung Viet Dao, Toshiyuki Toriyama, et al. Development of Miniaturized 6-axis Accelerometer Utilizing Piezoresistive Sensing Elements [J]. Sensors and Actuators A:Physical,2007,134(2):310-320
    [35]戈瑜,吴仲城,葛运建等.一种双E型圆膜片十字梁结构的六轴加速度传感器[P].中国发明专利.专利号:ZL02137897.5
    [36]Ming Meng, Zhongcheng Wu, Yong Yu et al. Design and Characterization of a Six-axis Accelerometer[C]. Proceedings of the 2005 IEEE International Conference on Robotics and Automation,Barcelona,2005:2356-2361
    [37]吴仲城,孟明,申飞等.一体化结构六维加速度传感器设计[J].仪器仪表学报,2004,25(4):302-303
    [38]钱朋安,葛运建,吴仲城.六维加速度的测量研究[J].电子测量与仪器学报,2005,19(2):11-14
    [39]钱朋安.六轴加速度传感器静、动态特性若干问题的研究[博士学位论文].合肥:中国科学技术大学,2005
    [40]王代华,侯向红,袁刚.一种六轴加速度传感器的敏感元件的布局结构[P].中国发明专利.专利号:ZL200610095028.3
    [41]袁刚,王代华.一种压电式六维加速度传感器的快速原型及其特性[J].仪器仪表学报,2011,32(2):356-362
    [42]袁刚,王代华.一种压电式六维加速度传感器的校准方法研究[J].仪器仪表学报,2011,32(8):1681-1689
    [43]袁刚.六维加速度传感器的原理、系统及特性研究[博士学位论文].重庆:重庆大学,2010
    [44]王代华,袁刚.基于九加速度敏感单元的六轴加速度传感器的布局方法[P].中国发明专利.专利号:ZL200810237023.9
    [45]薛大同.静电悬浮加速度计的地面重力倾角标定方法.宇航学报[J],2011,32(3):688-696
    [46]A.Cauchy. Deuxieme Memoire Sur les Polygons et les Polyedres[J]. Journal de I'Ecole Polytechnique,1813, (5):87-88
    [47]V.E.Gough, S.G.Whitehall. Universal Tyre Test Machine[C]. FISITA Ninth International Technical Congress,1962:117-13
    [48]D.Stewart. A Platform with Six Degrees of Freedom[J]. IMechE,1965, 180(15):371-386
    [49]K.H.Hunt. Kinematic Geometry of Mcchanisms. Oxford Claredon Press[M], 1978:268-270
    [50]H.MacCallion, D.T.Pham. The Analysis of A 6-DOF Work Station for Mechanized Assenbly[C]. Proc.3rd Congress on TMM., Montreal, Canada,1979:611-616
    [51]熊有伦,丁汉,刘恩沧.机器人学[M].北京:机械工业出版社,1993
    [52]黄真,孔令富,方跃法.并联机器人机构学理论及控制[M].北京:机械工业出版社,1997
    [53]K.H.Hunt. Structural Kinematics of In-Parallel-Actuated Robot-Arms[J]. J. of Mech. Trans.and Aut. In Des.,1983,105:705-712
    [54]E.F.Fitcher. Kinematics of a Parallel Connection Manipulator[C]. In ASME Design Engineering Technology Conf., Canbridge(MA), U.K.,1984:1-8
    [55]C.M.Gosselin, E.S.Pierre. Development and Experiment of a Fast 3-DOF Camera-Orientating Device[C]. International Journal of Robotics Research,1997, 16(5):619-630
    [56]S.V.Screenivasan, K.J.Waldron. Closed-Form Direct Displacement Analysis of a 6-6 Stewart Platform[J]. Mech.Thory,1994,29(6):855-864
    [57]C.M.Gosselin, Determination of the Workspace of 6-DOF Parallel Manipulators[J]. Journal of Mechanical Design,1990,112(3):331-336
    [58]C.Luh, F.A.Adkins, E.J.Haug. Working Capability Analysis of Stewart Platforms[J]. Journal of Mechanical Design, Transactions of the ASME,1996,118(2):220-227
    [59]F.A.Adkins, E.J.Haug. Operational Envelop of a Spatial Stewart Platform[J]. Journal of Mechanical Design, Transactions of the ASME,1996,118(2):228-234
    [60]C.Li, T.Wang, C.Chen. On the Numerical Analysis of General Parallel Robotics Manipulators[J]. IEEE Transactions on Robotics and Automation,1993,9(3):272-285
    [61]Z.Ji, Analysis of Design Parameters in Platform Manipulators[J]. Transactions on Robotics and Automation,1998,14(2):259-265
    [62]Z.P.Sika, K.V.Stejskal.An Investigation of Properties of the Forward Displacement Analysis of the Generalized Stewart Platform by Means of General Optimization Methods[J]. Mechanism and Machine Theory,1998,33(3):245-253
    [63]Salisbury J K, Craig J J. Articulated Hands:Force Control and Kinematic Issues[J]. International Journal of Robot,1982,1(1):4-17
    [64]J.Angles, A-A.Rojas. Manipulator Inverse Kinematics Via Condition Number Minimization and Condituation[J]. International Journal of Robotics and Automation, 1987,2(2):61-69
    [65]J.Yoshikawa, Manipulability of Robotics Mechanisms[J]. International Journal of Robotics Research,1987,4(2):3-9
    [66]K.C.Gupta, B.Roth. Design Consideration for Manipulator Workspace[J]. ASME Journal of Mechanical Design,1982,104(4):704-712
    [67]Ji-Hou Yang, The Space Model and Dimensional Types of The Four-bar Mechanisms[J]. M.M.T,1987,22(1):71-76
    [68]D.R.Kerr. Analysis, Properties and Design of a Stewart-Platform Transducer [J]. J.Mech. Transm. Autom.Design.1989,1(11):25-28
    [69]J.S.Dai, D.R.Kerr. A Six-component Contact Force Measurement Device Based on the Stewart Platform[J]. Proc Instn Mech Engrs,C 214,2000:687-697
    [70]C.C.Nguyen, S.S.Antrazi, Z.L.Zhou et al. Analysis and Experimentation of a Stewart Platform-based Force/Torque Sensor[J]. International Journal of Robotics and Automation.1992,7(3):133-140
    [71]A. Romiti, M. Sorli. Force and Moment Measurement on a Robotic Assembly Hand[J], Sensors and Actuators A,1992,32(1-3):531-538
    [72]C.Ferraresi, S.Pastorelli, M.Sorli, N Zhmud. State and Dynamic Behavior of a High Stiffness Stewart Platform-based Force/Torque Sensor[J]. Journal of Robotic Systems.1995,12(12):883-893
    [73]M. Sorli and N. Zhmud. Investigation of Force and Moment measurement system for a Robotic Assembly Hand[J], Sensors and Actuators A,1993,37-38(6-8):651-657
    [74]M.Sorli, S.Pastorelli. Six-axis Reticulated Structure Force/Torque Sensor with Adaptable Performances [J]. Mechatronics,1995,5(5):585-601
    [75]Chul-Goo Kang. Closed-form Force Sensing of a 6-axis Force Transducer Based on the Stewart Platform[J], Sensors and Actuators, A 90,2001:31-37
    [76]T.A.Dwarakanath, Bhaskar Dasgupta, T.S. Mruthyunjaya. Design and Development of a Stewart Platform Based Force-torque Sensor[J]. Mechatronics,2001, (11):793-809
    [77]T.A. Dwarakanath, D. Venkatesh. Simply Supported,'Joint less'Parallel Mechanism based Force-torque Sensor[J]. Mechatronics,2006, (16):565-575
    [78]R. Ranganath, P.S. Nair, T.S. Mruthyunjaya, A. Ghosal. A force-torque sensor based on a Stewart platform in a near-singular configuration[J]. Mechanism and Machine Theory,2004,39(9):971-99
    [79]Ulrich Seibold, Bernhard Kubler and Gerd Hirzinger. Prototype of Instrument for Minimally Invasive Surgery with 6-Axis Force Sensing Capability[C]. Proceedings of the 2005 IEEE International Conference on Robotics and Automation, Barcelona, Spain,2005:496-501
    [80]陈滨.机器人手腕测力装置[J].机械工程学报,1988,24(2):83-87
    [81]熊有伦.机器人力传感器的各向同性[J].自动化学报,1996,22(1):10-18
    [82]F. Gao, Y. Zhang, X.C. Zhao, W.Z. Guo. The Design and Applications of F/T Sensor based on Stewart Platform[C]. The 12th IFToMM World Congress, Besancon, France, June,2007
    [83]Jin Zhenlin, Gao Feng, Zhang Xiaohui. Design and Analysis of a Novel Isotropic Six-component Force/Torque Sensor[J]. Sensors and Actuators A,2003, (109):17-20
    [84]高峰,王洪瑞,金振林.一种具有弹性铰链的六维力与力矩传感器[P].中国专利:ZL99102421.4
    [85]赵现朝.Stewart结构六维力传感器设计理论与应用研究[博士学位论文].秦皇岛:燕山大学,2002
    [86]高峰,金振林,刘辛军,赵现朝.并联解耦结构六维力与力矩传感器[P].中国专利:ZL99119320.2
    [87]Yulei Hou, Daxing Zeng, Jiantao Yao, et al. Optimal Design of a Hyperstatic Stewart Platform-based Force/Torque Sensor with Genetic Algorithms[J].Mechatronics, 2009, (19):199-204
    [88]Jiantao Yao, Yulei Hou, Hang Wang, et al. Spatially Isotropic Configuration of Stewart Platform-based Force Sensor[J]. Mechanism and Machine Theory,2011, (46):142-155
    [89]赵铁石.并联6-UPUR六维测力平台[P].中国专利:ZL200610012602
    [90]王洪光,赵明扬,房立金,等.一种结构六维力/力矩传感器参数辨识研究[J].机器人,2008,30(6):548-553
    [91]姚裕,吴洪涛,张召明.基于Stewart平台的六维力传感器在风洞天平中应用[J].淮海工学院学报,2002,11(4):12-14
    [92]姚裕,吴洪涛,张召明.基于Kane方法的Stewart传感器动力学及固有频率分析[J].动力学与控制学报,2004,2(2):84-87
    [93]王宣银,尹瑞多.基于Stewart机构的六维力/力矩传感器[J].机械工程学报,2008,44(12):118-130
    [94]赵克定,杨灏泉,吴盛林,等.基于Stewart平台六维力/力矩传感器各向同性的解析研究[J].航空学报,2002,23(3):241-244
    [95]张景柱,徐诚,郭凯.基于Stewart构型的六维力/力矩传感器刚柔度性能研究[J].机械设计,2007,24(7):6-7,16
    [96]张景柱,徐诚,郭凯.基于灵敏度指标的Stewart型六维力传感器[J].南京理工大学学报(自然科学版),2008,32(2):135-139
    [97]Her I. Methodology for Compliant Mechanism Design[D]. [PH.D. Dissertation]. Michigan:Purdue University,1986
    [98]Paros J, Weisbord L. How to Design Flexure Hinges[J]. Machine Design, 1965,37(27):151-156
    [99]HO WELL L L, MIDHA A. Parametric Deflection Approximations for End-loaded, Large-deflection Beams in compliant Mechanisms [J]. Journal of Mechanical Design, 1995,117(1):156-165
    [100]于靖军,毕树生,宗光华等.基于伪刚体模型法的全柔性机构位置分析[J].机械工程学报,2002,38(2):75-78
    [101]于靖军,毕树生,宗光华.空间全柔性机构位置分析的刚度矩阵法[J].北京航空航天大学学报,2002,28(3):323-326
    [102]Bi Shusheng, Zhao Shanshan, Zhu Xiaofeng. Dimensionless Design Graphs for Three Types of Annulus-shaped Flexure Hinges[J]. Precision Engineering, 2010,34:659-666
    [103]孙立宁,董为,杜志江.基于大行程柔性铰链的并联机器人刚度分析[J].机械工程学 报,2005,41(8):90-95
    [104]董为.基于大行程柔性铰链的6自由度并联机器人系统的研究[博士学位论文].哈尔滨:哈尔滨工业大学,2007
    [105]Wei Dong, Lining Sun, Zhijiang Du. Stiffness Research on a High-precision, Large-workspace Parallel Mechanism with Compliant Joints [J]. Precision Engineering,2008,32:222-231
    [106]W. Dong, L.N. Sun, Z.J. Du. Design of a Precision Compliant Parallel Positioner Driven by Dual Piezoelectric Actuators[J]. Sensor and Actuators A:Physical,2007, 135:250-256
    [107]Yuen Kuan Yong,Tien-Fu Lu. The Effect of the Accuracies of Flexure Hinge Equations on the Output Compliances of Planar Micro-motion Stages[J]. Mechanism and Machine Theory,2008,43:347-363
    [108]贾明,毕树生,于靖军,等.大变形柔性铰链的静刚度分析及应用[J].北京航空航天大学学报,2005,31(7):704-743
    [109]张景柱,徐诚,赵彦峻.新型柔性铰链的柔度计算[J].工程力学,2008,25(11):27-32
    [110]于靖军,裴旭,毕树生,等.柔性铰链机构设计方法的研究进展[J].机械工程学报,2010,46(13):3-13
    [111]Zhen Gao, Dan Zhang. Design, Analysis and Fabrication of a Multidimensional Acceleration Sensor Based on Fully Decoupled Compliant Parallel Mechanism[J]. Sensors and Actuators A:Physical,2010,163:418-427
    [112]尤晶晶,李成刚,胡家奇.六维加速度传感器结构参数对其灵敏度的影响[J].压电与声光,2010,32(6):995-998
    [113]李成刚,尤晶晶,吴洪涛.并联式六维加速度传感器动力学模型研究[J].压电与声光,2011,33(6):898-900,905
    [114]高峰,金振林,赵现朝,李金良.十二维力/加速度机器人腕传感器[P].中国发明专利.专利号:ZL02122567.2
    [115]许益明,赵现朝,高峰等.一种新型六维加速度传感器的结构设计与分析[J].机械设计与研究,2009,25(1):48-52
    [116]李金良,王正伟,栗宁,王翔.杆—梁结构六维加速度传感器[P].中国专利,申请号:CN201010236989.8
    [117]李金良,王正伟,丁冬生,等.测力单元组合式六维加速度传感器[P].中国专利:ZL201020271603.2
    [118]赵延治,赵铁石,温锐,等.并联结构六维力传感器性能分析与优化设计[J]中国机械工程,2006,17(增刊):299-302
    [119]T.H.Davies, J.E.Baker. A Finite 3-Dimensional Atlases of 4-Bar Linkages[J]. Mechanism and Machine Theory,1979,14
    [120]杨基厚,高峰.四杆机构的空间模型和性能图谱[M].北京:机械工业出版社,1989:1-5
    [121]Ji-Hou Yang, The Space Model and Dimensional Types of The Four-bar Mechanisms[J]. M.M.T,1987,22(1):71-76
    [122]杨基厚.铰链四杆机构空间模型和尺寸型[J].机械工程学报,1979,(2):17-20
    [123]Feng Gao et al. Distribution of Some Properties in a Physical Model of the Solution Space of 2-DOF Parallel Planar Mampulators[J]. Mechanism and Machine Theory, 1995,30(6):811-817
    [124]Feng Gao,X.Q.Zhang. A Physical Model of the Solution Space and the Atlases of the Reachable Workspaces for 2-DOF Parallel Plane Wrists[J]. Mechanism and Machine Theory,1996,31(2):173-184
    [125]Feng Gao, F. Guy, W.A.Gruver. Criteria Based Analysis and Design of Three-degree-of freedom Plane Robotic Wrists[C]. Proceedings of the International Conference on Robotics and Automating New Mexico,1997:468-473
    [126]熊有伦,尹周平,熊蔡华,等.机器人操作[M].武汉:湖北科学技术出版社,2002:31-33100-103
    [127]J.M.Seling.著,杨向东.译.机器人学的几何基础[M].北京:清华大学出版社,2008
    [128]D.E.Whitney. Mathematics of Coordinated Control of Prosthetic Arms and Manipulators[J]. ASME J. Dynamic Systems Measurement and Control,1972,122: 306-309
    [129]张洪润,张亚凡.传感技术与实验[M].北京:清华大学出版社,2005
    [130](美)理查德.摩雷,(中)李泽香,(美)夏恩卡.萨思特里.机器人操作数的数学导论[M].北京:机械工业出版社,1998
    [131]Uchiyama M, Nakamura Y. Hakomori K. Evaluation of Robot Force Sensor Structure Using Singular Value Decomposition[J]. Journal of the Robotics Society of Japan,1987,5(1):4-10
    [132]Uchiyama M, Bayo E, Palma-Villalon E. A Systematic Design Procedure to Minimize a Performance Index for Robot Force Sensors. Trans [J]. ASME, Journal of Dynamic Systems, Measurement, and control,1991,113:194-388
    [133]黄田,汪劲松.Stewart并联机器人局部灵活度与各向同性条件解析[J].机械工程学报,1999,35(5):41-46
    [134]Hongrui Wang, Feng Gao, Zhen Huang. Design of 6-axis Force/Torque Sensor Based on Stewart Platform Related to Isotropy[J]. Chinese Journal of Mechanical Engineering (English Edition),1998,11(3):217-222
    [135]金振林.新型六自由度正交并联机器人设计理论与应用技术研究[博士学位论文].秦皇岛:燕山大学,2001
    [136]赵延治.大量程柔性铰并联六维力传感器基础理论与系统研制[博士学位论文].秦皇岛:燕山大学,2009
    [137]姚建涛.大量程并联式六维力传感器基础理论与实验研究[博士学位论文].秦皇岛:燕山大学,2010
    [138]A. Hara, K. Sugimoto. Synthesis of Parallel Micromanipulators[J]. Journal of Mechanisms, Transmissions, and Automation in Design,1989,111:34-39
    [139]M. Taniguchi, M. Ikrda, A. Inagaki and R. Funatsu. Ultra Precision Wafer Positioning by Six-axis Micro-motion Mechanism[J]. Intenrational Journal Japan Social Precision Engineering,1992,26(1):35-40
    [140]JIN Zhenlin, GAO Feng. Optimal Design of a 6-axis Force Transducer Based on Stewart Platform Related to Sensitivity Isotropy[J]. Chinese Journal of Mechanical Engineering,2003,16(2)146-148
    [141]侯雨雷.超静定并联式六维力与力矩传感器基础理论与实验研究[博士学位论文].秦皇岛:燕山大学,2007
    [142]贾振元,褚宏飞,刘巍,等.基于Stewart结构六维大力传感器的性能分析及结构优化.仪器仪表学报,2010,31(2):341-346
    [143]姚建涛,侯雨雷,毛海峡,等.Stewart结构六维力传感器各向同性的解析分析与优化设计[J].机械工程学报,2009,45(12):22-28
    [144]Y. Tian, B. Shirinzadeh, D. Zhang, et al. Three Flexure Hinges for Compliant Mechanism Designs Based on Dimensionless Graph Analysis[J]. Precision Engineering,2010,34:92-100
    [145]于靖军.全柔性机器人机构分析及设计方法研究[博士学位论文].北京:北京航空航天大学,2002
    [146]Jun Hyung Kim, Soo Hyun Kim, Yoon Keun Kwak. Development and Optimization of 3-D Bridge-type Hinge Mechanisms[J]. Sensors and Actuators A. Physical,2004, 116:530-538
    [147]Hong-Wen Ma, Shao-Ming Yao, Li-Quan Wang, Zhi Zhong. Analysis of the Displacement Amplification Ratio of Bridge-type Flexure Hinge [J]. Sensors and Actuators A. Physical,2006,132:730-736
    [148]S.T. Smith, D.G.Chetwynd. Foundations of Ultraprecision Mechanism Design[M].Gordon and Breach, Science Publishers,1992
    [149]Ho well L L, Midha A. A Generalized Loop-closure Theory for the Analysis and Synthesis of Compliant Mechanism[J]. Machine Elements and Machine Dynamics, ASME,1994,71:491-500
    [150]Midha A, Howell L L, Norton T W. Limit Position of Compliant Mechanisms Using the Pseudo-rigid-body Model Concept[J]. Mechanism and Machine Theory,2000,35: 99-115
    [151]侯化国,王玉民.正交试验法[M].长春:吉林人民出版社,1985
    [152]张新.应变式三维加速度传感器设计及相关理论研究[博士学位论文].合肥:合肥工业大学,2008:22-25
    [153]http://www.doc88.com/p-94159014187.html
    [154]http://www.docin.com/p-82094274.html.
    [155]徐仲安,王天保,李常英等.正交试验设计法简介[J].科技情报开发与经济,2002,12(5):148-145
    [156]张洪润,张亚凡.传感技术与应用教程[M].北京:清华大学出版社,2005
    [157]http://www.csmnt.org.cn/bbs/dispbbs.asp?boardid=15&Id=32
    [158]西田正孝著,李安定,郭廷玮,等译.应力集中[M].北京:机械工业出版社,1986
    [159]诺埃伯,著,赵旭生,译.应力集中[M].北京:科学出版社,1958
    [160]穆斯海里什维里,著,赵惠元,译.数学弹性力学的几个基本问题[M].北京:科学出版社,1958
    [161]Kolosov G.V. Application of Complex Variables in the Theory of Elasticity (in Russian) [M]. Moscow-Leningrand,1935
    [162]Muskhelishvili N.I. Some Basic Problems of the Mathematical Theory of Elasticity [M]. Netherlands:Noordholf,1953
    [163]Г.H.萨文,著,卢鼎霍,译.孔附近的应力集中[M].北京:科学出版社,1958
    [164]E. Sternberg, M.A. Sadowsky. Three-dimensional Solution for the Stress Concentration around a Circular Hole in a Plate of Arbitrary Thickness[J]. Journal of Applied Mechanics,1949:27-36
    [165]M.A. Sadowsky, E. Sternberg. Stress Concentration around a Triaxial Ellipsoidal Cavity[J]. Journal of Applied Mechanics,1949,(6):149-157
    [166]Zheng Yang, Chang-Boo Kim, Chongdu Cho, et al..The Concentration of Stress and Strain in Finite Thickness Elastic Plate Containing a Circular Hole[J]. International Journal of Solids and Structures,2008,(45):713-731
    [167]T.A.Dwarakanath, Bhaskar Dasgupta, T.S. Mruthyunjaya. Design and Development of a Stewart Platform Based Force-torque Sensor[J]. Mechatronics,2001,(11): 793-809
    [168]T.A.Dwarakanath, Gaurav Bhutani. Beam Type Hexapod Structure Based Six Component Force-torque Sensor[J]. Mechatronics,2011,(21):1279-1287
    [169]Bernhard Riemann. Grundlagen fur eine allgemeine Theorie der Functionen einer veranderlichen complexen Grosse [Dissertation]. Gottingen:University of Gottingen, 1851 Bernhard Riemann. Foundations of a General Theory of Functions of one Complex Variable[Dissertation]. Goettingen:University of Goettingen,1851
    [170]http://166.111.121.20:9080/mathdl/mathsdict/0873.htm
    [171]刘建亚,吴臻.复变函数与积分变换(第二版)[M].北京:高等教育出版社,2011
    [172]刘士光,张涛.弹塑性力学基础理论[M].武汉:华中科技大学出版社,2008
    [173]李允明,C.S.George Lee.机器人腕部力传感器的标定[J].中国纺织大学学报,12(2):33-42
    [174]金问林.减小应变式多维力传感器测量误差的一种方法[J].计量学报,1993.14(1):57-61
    [175]张为公.一种六维力传感器的新型布片和解耦方法[J].南京航空航天大学学报,1999,31(2):219-222
    [176]张景柱,郭凯,徐诚.六维力传感器静态解耦算法应用研究[J].传感器与微系统,2007,26(12):58-62
    [177]王国泰,易秀芳,王理丽.六维力传感器发展中的几个问题[J].机器人,1997,19(6):474-478
    [178]王国泰,葛运建.六维力传感器发展的若干问题[J].智能机器人传感技术实验室学术论文年报,1994,2
    [179]宋国民,翟羽健.基于查询表的多维传感器解耦算法研究[J].自动化仪表,2001,22(2):7-9
    [180]宋国民,翟羽健,周晓晶.基于模糊推理的多维传感器解耦算法研究[J].工业仪表与自动化装置,2001,(1):3-5
    [181]姜力,刘宏,蔡鹤皋.多维力/力矩传感器静态解耦的研究[J].仪器仪表学报,2004,25(3):284-287
    [182]姜力,刘宏,蔡鹤皋,高晓辉.基于神经网络的多维力传感器静态解耦的研究[J].中国机械工程,2002,13(24):2100-2104
    [183]刘钦圣.最小二乘问题计算方法[M].北京:北京工业大学出版社,1989
    [184]许德章,吴仲城,葛运建等.机器人六维腕力传感器耦合矩阵的确定与摄动分析[J].仪器仪表学报,2005,26(1):75-81
    [185]陈雄标,袁哲俊,姚英学.机器人用六维腕力传感器标定研究[J].机器人,1997,19(1):7-12

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700