用户名: 密码: 验证码:
基于QoE的无线资源管理算法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着无线通信系统的蓬勃发展和智能化终端的不断创新,移动互联网业务发展迅速,给无线通信网络的设计和实现提出了新的要求。长期以来,网络优化一般以提高服务质量(Quality of Service, QoS)为目标,但是QoS作为描述网络性能的客观指标并不能直接体现用户对业务的感受,并且严格的QoS要求使网络的服务能力受到一定的限制。用户体验质量(Quality of Experience, QoE)这一概念的引入,将传统基于通信系统客观指标的设计理念拓展到关注主观用户体验的方向上。根据国际电信联盟的定义,QoE可以理解为“决定用户满意程度的服务性能的综合效果。”另外,QoE作为一种业务质量评价指标,不仅能够统一评价业务中的多种QoS指标对用户体验的影响,还能够统一评价不同类型业务的主观使用体验,是一种适用于多业务无线网络的优化指标。而未来的无线通信系统应能实现更高的资源利用效率,并进一步提升用户使用业务的满意程度,无线资源管理是达到这一目标的重要机制。在无线资源管理算法中引入QoE还能提供给不同业务不同用户适度的服务,而不是单纯追求QoS客观指标的提升,从而进一步提高系统的资源利用率。因此,探索基于用户QoE的无线资源管理算法,具有重要的研究意义和应用价值。
     基于未来无线通信网络的发展趋势,本文重点研究网络接入选择、接入控制、资源分配、动态资源调度等,旨在从多方面探讨基于QoE的资源管理机制。本文主要内容和创新性工作包括:
     1)基于未来无线通信网络的异构化特征,提出一种基于QoE的高能效网络接入选择算法,该算法采用进化博弈理论建模用户网络选择策略的动态过程,决策因素综合考虑用户QoE模型,网络能耗模型的差异及网络负载状况等,是一种兼顾用户与网络利益的分布式网络接入选择算法。由于在影响用户决策的收益函数中引入QoE和能耗,接入用户经过自发的学习和模仿,不断更新网络接入策略,趋于选择能够提升QoE且能耗较低的网络进行接入,从而缓解了负载过重的网络压力。在一定程度上增加了高能效网络被选择接入的机会,最后收敛到进化博弈均衡点,达到收益均等的负载均衡状态。该算法使得用户优先接入高能效的网络,能够有效降低网络能耗。
     2)针对用户在接入过程中影响QoE的因素呈现多维化特征,包括网络吞吐量、接入时延、丢包率、用户(业务)优先级等,提出了一种基于QoE的接入控制机制。在该机制中针对多优先级信道接入特性设计了一种新型三维马尔科夫链分析方法,刻画了用户的退避接入行为。推导出用户在各个接入状态下的稳态概率,并分析了饱和及非饱和网络负载状态下的用户接入QoS性能。并基于该分析模型,提出一种基于竞争窗动态调整的接入控制算法。该算法突破了固定竞争窗的限制,利用分析模型实时预测当前负载状态下用户可获得的QoE,并遵循QoE最大化原则动态优化各优先级的竞争窗长度,达到了提升网络的业务承载能力并增强用户QoE的目的。
     3)无线资源是业务传输的载体,针对如何在多种传输方式下协调羿构无线资源的问题,研究蜂窝系统中短距通信补充部署场景中的资源分配问题,并利用不同传输方式下的业务类型、业务分布特征及长期信道特性,提出一种QoE最大化的资源分配算法,相比传统资源分配算法,能够显著提升用户的平均QoE。
     4)由于用户移动性对系统性能有着重要的影响,研究存在群组移动性的多业务资源分配问题,并提出基于动态子信道关闭技术的资源分配算法,包括最大化系统QoE的高能效资源分配及基于QoE保证的最小化能耗资源分配。该算法通过白适应地关闭一定数量的子信道以抵抗高移动性无线环境下载波间干扰的影响,从而在一定程度上改善信道质量,同时由于子信道的减少能够线性降低发射功率的消耗。所提算法对各群组间的带宽资源分配及群组内子信道关闭数量进行联合优化,并证明该资源分配问题为任意有限区间内存在唯一最优值的拟凹(quasi-concave)问题,通过贪婪算法对该问题进行求解,仿真证明所得到的分配结果能够有效提升用户QoE和网络能效。
     5)为了通过资源调度算法提升用户QoE,首先分析了能够最大化QoE的资源调度问题,接着将比例公平思想引入基于QoE的多业务资源调度中,提出了基于QoE的比例公平调度问题。利用整数规划建模以上两种问题,并通过整数变量的松弛转化,分别提出了最大化QoE的资源调度算法及基于QoE的比例公平算法。对比传统的资源调度算法,前者能够显著提升多用户系统的整体QoE,但公平性较差;后者不仅能够获得较优的QoE性能,同时也提高了小区边缘用户被调度的机会,从而取得了系统整体QoE与用户公平性的折中。
With the rapid development of wireless communication systems and smart equipment, mobile internet services grows explosively, which brings in new demands for the design and implementation of communication networks. The previous target of enhancing Quality of Services (QoS) that is an objective indicator in wireless networks optimization could hardly convey the subjective experience of the end users to the current services, and may constrain the service capacity instead as a result of its strict QoS requirements. Quality of experience (QoE) expends the objective technical indicators in a traditional way into a brand-new horizon of users'subjective perception of services. QoE is defined by International Telecommunication Union as "a measure of the overall acceptability of an application or service, as perceived subjectively by the end-user." Moreover, as a uniform quality indicator in multi-services networks, QoE is able to unify many QoS indicators in a single service and also several kinds of different services impacting on user perception. Future wireless telecommunication systems should support more efficient resource utilization and higher users'satisfaction level. Radio resource management is an important approach to achieve this goal. Therefore, the exploration of QoE-based radio resource management is a significant issue for both research and application.
     According to the above demands of future wireless communication systems, this dissertation investigates on several radio resource management algorithms from the perspective of QoE including network selection, access control, resource management and dynamic resource scheduling joint. The main contents and contributions of this dissertation are presented as follows:
     Regarding with the heterogeneous characteristic of the future wireless communication networks, an energy efficient network selection multi-services resource allocation problem with group mobility is mainly discussed, and energy efficient resource allocation schemes in combination with adaptive sub-channels blackout are developed, including maximizing QoE algorithm and minimizing energy consumption algorithm with QoE guarantee. The two algorithms utilize sub-channels blackout to mitigate the inter-carrier interference in high mobility environment by turning off certain sub-channels when transmitting signals, so that channel quality is improved, a good balance can also be achieved between reduced transmit data rate and increased carrier to interference ratio, and energy can be saved linearly as a result of less active sub-channel. The proposed resource allocation algorithms consisting of inter-group resource allocation and inner-group sub-channels blackout. We also prove that under sub-channels blackout, the achieved throughput and perceptual QoE are quasi-concave in energy saving percentage, which can be figured out by greedy algorithm. Numerical results confirm the theoretical findings and demonstrate the promising energy-saving capability with satisfying QoE of the proposed resource allocation algorithms.
     Resource scheduling problem with maximizing QoE is first addressed. Then the proportional fair (PF) principle was adopted in QoE-based multi-services resource scheduling, termed as QoE-aware PF scheduling problem. Two integer programming problems are formed and then max-QoE scheduling algorithm and the QoE-aware PF scheduling algorithm are derived by solving the relaxed problems. Simulation results show that the proposed max-QoE can significantly enhance perceptive QoE but with unsatisfactory user fairness. QoE-aware PF scheduling algorithm performs well in terms of user QoE, and also increases the probability to be scheduled for cell-edge users, which results in a good balance between the overall QoE and fairness.
引文
[1]吴伟陵,牛凯,移动通信原理,电子工业出版社,北京,2005年1月.
    [2]ITU Recommendation M.1645, "Framework and overall objectives of the future development of IMT-2000 and systems beyond IMT-2000".
    [3]蒋青,现代通信技术基础,高等教育出版社,北京,2008年02月.
    [4]林闯,胡杰,孔祥震,用户体验质量(QoE)的模型与评价方法综述,计算机学报,第35卷,第1期,2012年1月,1-15.
    [5]中国互联网络信息中心,第28次中国互联网络发展状况统计报告,2011,www.aliresearch.com/report/else/19137/attachment/cnnic-28th/
    [6]ITU-T Rec. E.800, Terms and Definitions Related to Quality of Service and Network Performance Including Dependability, Aug.1993.
    [7]M. Siller and J. Woods, "QoE improvement of multimedia transmission," in Proc. IADIS International Conference,2003, pp.821-825.
    [8]ITU, "Definition of Quality of Experience (QoE)," Reference:TD 109rev2 (PLEN/12), ITU, Jan.2007.
    [9]Nokia, "Quality of Experience (QoE) of mobile services:Can it be measured and improved?" White Paper, Finland,2004.
    [10]R. Jain, "Quality of Experience," IEEE Computer Society Magazine, vol.11, no.1,2004, pp.95-95.
    [11]P. Brooks and B. Hestnes, "User measures of quality of experience:Why being objective and quantitative is important," IEEE Network, vol.24, no.2, 2010, pp.8-13.
    [12]S. S. Stevens and J. Volkmann, "The relation of pitch to frequency:A revised scale," The American Journal of Phychology,1940, vol.53, no.3,1940, pp. 329-353.
    [13]V. Menkovski and A. C. Sanchez, "Predicting quality of experience in mulitimedia streaming," in Proc. MoMM'09,2009, pp.52-59.
    [14]ITU, "Subjective video quality assessment methods for multimedia applications," Rec. ITU-T P.910, Sept.1999.
    [15]K. Chen, C. Wu, Y. Chang, et al., "A crowd sourceable QoE evaluation framework for multimedia content," in Proc.17th ACM International Conference on Multimedia,2009, pp.491-500.
    [16]K. Mitra, "A decision-theoretic approach for quality-of-experience measurement and predictionMultimedia and Expo (ICME)," IEEE International Conference on Multimedia and Expo (ICME'09),2009, pp.1-5.
    [17]C. L. Hwang and K. P. Yoon, Multiple attribute decision-making:methods and applications, Springer-Verlag,1981.
    [18]F. Liu, W. Xiang, Y. Zhang, et al. "A novel QoE-based carrier scheduling scheme in LTE-Advanced networks with multi-service," in Proc. IEEE VTC 2012 Fall, Quebec, Canada, Sept.2012, pp.1-5.
    [19]Y. Zhang, H. Long, Y. Peng, et al., "User-oriented energy-and spectral-efficiency tradeoff for wireless networks," KSII Trans. Internet and Information Systems, vol.7, no.2, Feb.2013, pp.216-233.
    [20]郑侃,张月莹,王文博,浅析无线网络的用户体验质量建模及性能优化,信息通信技术,第3期,2012年6月,62-66.
    [21]A. C. Sanchez and C. C. Caballero, "End-to-end quality of service monitoring in convergent IPTV platforms," International Conference on Next Generation Mobile Applications, Services and Technologies,2009, pp.303-308.
    [22]ITU-T Rec. P.910, Subjective video quality assessment methods for multimedia applications, Geneva,1999.
    [23]H. R. Wu, T. Ferguson, and B. Qiu, "Digital video quality evaluation using quantitative quality metrics," in proc. Int. Conf. Signal Processing, Beijing, China, Oct.1998. pp.1-5.
    [24]J. Klaue, B. Tathke, and A. Wolosz, "Evalvid-a framework for video transmission and quality evaluation." in proc. Int. Conf. on Modelling Techniques and Tools for Computer Performance Evaluation, Urbana, IL, USA,2003, pp. 255-272.
    [25]C. Lin, J. Hu, and X. Kong, "Survey on models and evaluation of quality of experience," Chinese Journal of Computers, vol.35, no.1, Jan.2012.
    [26]G. Rubino, "Quantifying the quality of audio and video transmissions over the Internet:the PSQA approach," Design and Operations of Communication Networks, Imperial College Press,2005.
    [27]Cisco Systems, "Voice Over IP-Per Call Bandwidth Consumption," available www.cisco.com
    [28]P. Reichl, S. Egger, R. Schatz, et al. "The logarithmic nature of QoE and the role of the Weber-Fechner Law in QoE assessment," IEEE ICC' 10. Cape Town, South Africa,2010, pp.1-5.
    [29]刘飞,多业务无线网络性能优化与分析,硕士学位论文,北京邮电大学,2013.
    [30]M. Xiao, N. B. Shroff, and K. P. Chong, "A utility-based power-control scheme in wireless cellular systems," IEEE Trans. Networking, vol.11, no.2, 2003, pp.210-221.
    [31]W. Jang, R. Mazumdar, and N. Shroff, "Non-convex optimization and rate control for multi-class services in the internet," IEEE/ACM Trans. Networking, 2005, vol.13, no.4, pp.827-840.
    [32]W. Wu, Y. Zhang, Y. Zhang, et al., "QoE-aware proportional fair scheduling for multiuser multiservice wireless networks," Journal of China Communications, vol.9, no.9, pp.52-60, Sept.2012.
    [33]S. Thakolsri, S. Khan, E. Steinbach, et al., "QoE-driven cross-layer optimization for high speed downlink packet access," IEEE Journal of Commun., vol.4, no.8,2009, pp.669-680.
    [34]S. Khan, S. Duhovnikov, E. Steinbach, et al., "MOS-Based multiuser multiapplication cross-layer optimization for mobile multimedia communication," Advances in Multimedia, vol.2007, Apr.2007.
    [35]I. Joe, W. T. Kim, and S. Hong, "A network selection algorithm considering power consumption in hybrid wireless networks," IEICE Trans. Commun., vol. E91-B, no.1, Jan.2008, pp.314-317.
    [36]P. Pawar, K. Wac, B. J. van Beijnum, et al., "Context-aware middleware architecture for vertical handover support to multi-homed nomadic mobile services," in Proc. ACM Symposium on Applied Computing, Fortaleza, Ceara, Brazil,2008, pp.481-488.
    [37]M. Kassar, B. Kervella, and G. Pujolle, "An overview of vertical handover decision strategies in heterogeneous wireless networks," Elsevier Computer Communications, vol.31, no.10, June 2008, pp.2607-2620.
    [38]O. E. Falowo, S. Zeadally, and H. A. Chan, "Dynamic pricing for load-balancing in user-centric joint call admission control of next-generation wireless networks," International Journal of Commun. Systems, vol.23,2010, pp. 335-368.
    [39]R. Trestian, O. Ormond, and G.-M. Muntean, "Reputation-based network selection mechanism using game theory," Elsevier Physical Communication, vol. 2011, no.4, pp.156-171.
    [40]W. Shen and Q. Zeng, "Cost-function-based network selection strategy integrated wireless and mobile networks," IEEE Trans. Vehicular Technology, vol. 57, no.6, Nov.2008, pp.3778-3788.
    [41]I. Kanno, K. Yamazaki, Y. Ikeda, et al., "Adaptive energy centric Radio Access Selection for vertical handover in heterogeneous networks," in proc. IEEE WCNC'10,2010,pp.1-5.
    [42]J. Zander, "Distributed co-channel interference control in cellular radio systems," IEEE Trans. Veh. Technol., vol.41, Aug.1992, pp.305-311.
    [43]G. Foschini and Z. Miljanic, "A simple distributed autonomous power control algorithm and its convergence," IEEE Trans. Vehicular Technology, vol. 42, no.4, pp.641-646, Nov.1993.
    [44]R. D. Yates, "A framework for uplink power control in cellular radio systems," IEEE Journal on Selected Areas in Communications, vol.13, no.7, 1995, pp.1341-1347.
    [45]M. Dinitz, "Distributed algorithms for approximating wireless network capacity," in Proc. IEEE International Conf. Comput. Commun.,2010, pp.1-9.
    [46]M. Rasti and A.R. Sharafat, "Distributed uplink power control with soft removal for wireless networks," IEEE Trans. Commun., vol.59, no.3, Mar.2011, 833-843.
    [47]P. Zhou, Y. Chang, and J. A. Copeland, "Reinforcement learning for repeated power control game in cognitive radio networks," IEEE Journal on Selected Areas in Communications, vol.30, no.1, Jan.2012, pp.54-69.
    [48]X. Zhang, M. Haenggi, "Random Power Control in Poisson Networks," IEEE Trans. Commun., vol.60, no.9, Sept.2012, pp.2602-2611.
    [49]A. Esmailpour and N. Nasser, "Dynamic QoS-based bandwidth allocation framework for broadband wireless networks," IEEE Trans. Vehicular Technology, vol.60, no.6, Jul.2011, pp.641-646.
    [50]Y. Zhou, Y. Li, G. Sun, et al., "Game theory based bandwidth allocation scheme for network virtualization", in Proc. IEEE Globecom'10, Dec.2010, pp. 1-5.
    [51]J. Tang, R. Hincapie, G. Xue, et al., "Fair bandwidth allocation in wireless mesh networks with cognitive radios," IEEE Trans. Vehicular Technology, vol.59, no.3, Mar.2010, pp.1487-1496.
    [52]T. Cheocherngngarn, J. Andrian, Z. Yang, et al., "Queue-length proportional and max-min fair bandwidth allocation for best effort flows", in Proc. IEEE Globecom'11, Dec.2011, pp.1-5.
    [53]K. Wongthavarawat and A. Ganz, "Packet scheduling for QoS support in IEEE 802.16 broadband wireless access systems," International Journal of Commun. Systems, vol.16, no.1, Feb.2003, pp.81-96,
    [54]S. Pizzi, A. Molinaro, and A. Iera, "On the performance of compensation based and greedy scheduling for the IEEE 802.16 standard," in Proc. IEEE ICC'09, Dresden, Germany, Jun.2009, pp.5218-5223.
    [55]T. Elbatt and A.Ephremides, "Joint scheduling and power control for wireless ad hoc networks," IEEE Trans. Wireless Commun. vol.3, no.1, pp.74-85, Jan. 2004.
    [56]S.-R Yang, C.-C Kao, W.-C Kan, et al., "Handoff minimization through a relay station grouping algorithm with efficient radio-resource scheduling policies for IEEE 802.16j multihop relay networks," IEEE Trans. Vehicular Technology, vol.59, no.5, May 2010, pp.2185-2197.
    [57]B. Wang, D. Zhao, and J. Cai, "Joint connection admission control and packet scheduling in a cognitive radio network with spectrum underlay," IEEE Trans. Wireless Commun. vol.10, no.11, Nov.2011, pp.3852-3863.
    [58]S. Tasaka and N. Misaki, "Maximizing QoE of interactive services with audio-video transmission over bandwidth guaranteed IP networks," IEEE Globecom'09, Dec.2009, pp.1-7.
    [59]S. Tasaka and A. Hirashima, "Methods of selecting threshold for the QoE-based video output scheme SCS," IEEE Globecom'09, Dec.2010, pp.1-6.
    [60]H. Hu, X. Zhu, Y. Wang, et al., "QoE-based multi-stream scalable video adaptation over wireless networks with proxy," in proc. IEEE ICC'12, June 2012, pp.7088-7092.
    [61]S. Singh, J. G. Andrews, and G. D. Veciana, "Interference Shaping for improved quality of experience for real-time video streaming," IEEE Journal on Selected Areas in Communications, vol.30, no.7, Aug.2012, pp.1259-1269.
    [62]Z. Jiang, Y. Ge, and Y. Li, "Max-utility wireless resource management for best-effort traffic," IEEE Trans. Wireless Commun., vol.4, no.1, Jan.2005, pp. 100-111.
    [63]A. Rezaee, F. D. Calmon, L. M. Zeger, et al., "Speeding multicast by acknowledgment reduction technique (SMART) enabling robustness of QoE to the number of users," IEEE Journal on Selected Areas in Communications, vol. 30, no.7, Aug.2012, pp.1270-1280.
    [64]R. Matos, N. Coutinho, C. Marques, et al. "Quality of experience-based Routing in multi-service wireless mesh networks," in proc. IEEE ICC 12, June 2012,pp.7060-7065.
    [65]O. Markaki, D. Charilas, and D. Nikitopoulos, "Enhanced QoE in next generation networks through network selection mechanisms," IEEE PIMRC'07, Apr.2007, pp.1-6.
    [66]K. Piamrat, A. Ksentini, C. Viho, et al., "QoE-based network selection for multimedia users in IEEE 802.11 wireless networks," IEEE Local Computer Networks, Oct.2008, pp.338-394.
    [67]K. Piamrat, A. Ksentini, C. Viho, et al., "QoE-aware admission control for multimedia applications in IEEE 802.11 wireless networks," IEEE VTC'08 Fall, 2008, pp.1-5.
    [68]A. Saul and G. Auer, "Multiuser resource allocation maximizing the perceived quality," EURASIP Journal on Wireless Communications and Networking, vol.2009, pp.1-15.
    [69]X. Sun and K. Piamrat, "QoE-based dynamic resource allocation for multimedia traffic in IEEE 802.11 wireless networks," IEEE ICME'11, July 2011, pp.1-6.
    [70]C. Sacchi, F. Granelli, and C. Schlegel, "A QoE-oriented strategy for OFDMA radio resource allocation based on Min-MOS maximization," IEEE Communications Letters, vol.15, no.5, May 2011, pp.494-496.
    [71]S. Thakolsri, W. Kellerer, and E. Steinbach, "QoE-based cross-layer optimization of wireless video with unperceivable temporal video quality fluctuation," IEEE ICC 11,2011, pp.1-5.
    [72]K. Piamrat, K. D. Singh, A. Ksentini, et al., "QoE-aware scheduling for video-streaming in high speed downlink packet access, IEEE WCNC'10,2010, pp.1-5.
    [73]R. Stankiewicz and A. Jajszczyk, "A survey of QoE assurance in converged networks," Computer Networks, vol.55,2011, pp.1459-1473.
    [74]S. Khan, Y. Peng, and E. Steinbach, et al. "Application-driven cross-layer optimization for video streaming over wirless networks," IEEE Communications Magazine, vol.44, no.1, Jan.2006, pp.122-130.
    [75]D. Jurca, W. Kellerer, E. Steinbach, et al., "Joint network and rate allocation for simultaneous wireless applications, in proc. IEEE ISM'07,2007, pp. 229-236.
    [76]P. Ameigeiras, J. J. Ramos-Munoz, J. N. Ortiz, et al., "QoE oriented cross-layer design of a resource allocation algorithm in beyond 3G systems," Computer Communications, vol.33, no.2010, Oct.,2010, pp.571-582.
    [77]S. Thakolsri, W. Kellerer, and E. Steinbach, "Application-driven cross layer optimization for wireless networks using MOS-based utility functions," in proc. IEEE Communications and Networking in China, Aug.2009. pp.1-5.
    [78]P. Goudarzi and M. R. N. Ranjbar, "Bandwidth allocation for video transmission with differentiated quality of experience over wireless networks," Computers and Electrical Engineering, vol.37,2011, pp.75-90.
    [79]E. Mayr, "Populations, species, and evolution," Harvard Univ. Press,1970.
    [80]张良桥,进化稳定均衡与纳什均衡,兼谈进化博弈理论的发展,经济科学,2001年第3期,103-111.
    [81]谢识予,有限理性条件下的进化博弈理论,上海财经大学学报,第3卷,第5期,2001年10月,3-9.
    [82]P. D. Taylor and L. B. Jonker, "Evolutionarily stable strategy and game dynamics," Mathematical Biosciences. vol.40, no.1-2, July 1978, pp.145-156.
    [83]M. Smith, J. and G. R. Price, "The logic of animal conflicts," Nature, vol. 246, no.5427, Nov.1973, pp.15-18.
    [84]J. Hofbauer and K. Sigmund, "Evolutionary game dynamics," Bulletin of the Amarican Mathematical Society, vol.40, no.4, Jul.2003, pp.479-519.
    [85]E. Altman, R. ElAzouzi, Y. Hayel, et al., "An Evolutionary Game approach for the design of congestion control protocols in wireless networks," in proc. IEEE WiOPT'08, Apr.2008, pp.547-552.
    [86]D. Niyato and E. Hossain, "Dynamics of network selection in heterogeneous wireless networks:an evolutionary game approach," IEEE Trans. Vehicular Technology, vol.58, no.4, May 2009, pp.2008-2017.
    [87]K. Zhu, D. Niyato, and P. Wang, "Network selection in heterogeneous wireless networks:evolution with incomplete information," in proc. IEEE WCNC'10, Apr.2010, pp.1-6.
    [88]M. A. Khan, H. Tembine, and A. V. Vasilakos, "Evolutionary coalitional games:design and challenges in wireless networks," IEEE Wireless Commun., vol.19, no.2, Apr.2012, pp.50-56.
    [89]孙卓,异构无线网络中的接入选择机制研究,博士学位论文,北京邮电大学,2007.
    [90]S. Wu, Y. Chuang, and Z. Tsai, "A study of dynamic network selection for HSPA dual-network users," in Proc. IEEE ICOIN'11, Jan.2011, pp.329-334.
    [91]O. Ormond, J. Murphy, and G. M. Muntean, "Utility-based intelligent network selection in beyond 3G systems," in Proc. IEEE ICC'06, vol.4, June. 2006, pp.1831-1836.
    [92]C. Chang, T. Tsai, and Y. Chen, "Utility and game-theory based network selection scheme in heterogeneous wireless networks," in Proc. IEEE WCNC'06, Apr.2006, pp.1-5.
    [93]R. Trestian and O. Ormond, "Reputation-base network selection mechanism using game theory," Physical Communication, vol.4, no.3, Jul.2011, pp. 156-171.
    [94]A. K. Somani and R. Gupta, "Network selection using fuzzy logic," in Proc. IEEE BroadNets'05,vol.2, Oct.2005, pp.876-885.
    [95]K. Radhika and A. V. G. Reddy, "Network selection in heterogeneous wireless networks based on fuzzy multiple criteria decision making," in Proc. IEEE ICECT'11, vol.6, Oct.2011, pp.136-139.
    [96]I. Chamodrakas and D. Martakos, "A utility-based fuzzy TOPSIS method for energy efficient network selection in heterogeneous wireless networks," Applied Soft Computing, vol.11, no.4, Jun.2011, pp.3734-3743.
    [97]O. Markaki, D. Charilas, D. Nikitopoulos, "Enhancing quality of experience in next generation networks through network selection mechanisms," in Proc. IEEE PIMRC'07, Oct.2007, pp.1-5.
    [98]Q. Song and A. Jamalipour, "Network selection in an integrated Wireless LAN and UMTS environment using mathematical modeling and computing techniques," IEEE Wireless Commun. Magazine, vol.12, no.3, Jun.2005, pp. 42-48.
    [99]S. Yaipairoj and F. C. Harmantzis, "Auction-based congestion pricingfor wireless data services," in Proc. IEEE ICC'06, Jun.2006, vol.3, pp.1059-1064.
    [100]I. Kanno, K. Yamazaki, Y. Ikeda, et al., "Adaptive energy centric radio access selection for vertical handover in heterogeneous networks," in Proc. IEEE WCNC'10,Apr.2010,pp.1-5.
    [101]柳宁,李俊峰,王天舒,用胞映射计算被动行走模型不动点的吸引盆,工程力学,第25卷第10期,2008年,218-223.
    [102]IEEE Std.802.11, "Wireless LAN Medium Access Control (MAC) and physical Layer (PHY) specifications," 2007.
    [103]IEEE Std.802.11e, "Wireless LAN Medium Access Control (MAC) and physical Layer (PHY) specifications Amendment 8:Medium Access Control (MAC) Quality of Service Enhancements," 2005.
    [104]T. Nilsson and J. Farooq, "A novel MAC scheme for solving the QoS parameter adjustment problem in IEEE 802.11e EDCA," in Proc. IEEE WOWMOM'08, Jun.2008, pp.1-9.
    [105]D. Jung, J. Hwang, H. Lim, et al., "Adaptive contention control for improving end-to-end throughput performance of multihop wireless networks," IEEE Trans, on Wireless Commun., vol.9, no.2, Feb.2010, pp.696-705.
    [106]Y. W. Lan., J. H. Yeh, and J. C. Chen, "Performance enhancement of IEEE 802.11e EDCA by contention adaption," in Proc. IEEE VTC'05, vol.3, May 2005, pp.2096-2100.
    [107]G. Bianchi, "Performance analysis of the IEEE 802.11 distributed coordination function," IEEE Journal on Selected Areas Commun., vol.18, no.3, May 2000, pp.535-547.
    [108]C. L. Huang and W. Liao, "Troughput and delay performance of IEEE 802.11e Enhanced Distributed Channle Access (EDCA) under saturation condition," IEEE Trans. Wireless Commun., vol.6, no.1, Jan.2007, pp.136-145.
    [109]F. Peng, B. Peng, and D. Qian, "Performance analysis of IEEE 802.11e enhanced distributed channel access," IET Commun., vol.4, no.6, Apr.2010, pp. 728-738.
    [110]J. Hu, G. Min, M. E. Woodward et al., "A comprehensive analytical model for IEEE 802.11e QoS differentiation schemes under unsaturated traffic loads," in Proc. IEEE ICC'08, May 2008, pp.241-245.
    [1111]X. Bai, Y. M. Mao, and J. Xie, "Performance investigation of IEEE802.11e EDCA under non-saturation condition based on the M/G/1/K model," in Proc. IEEE ICIEA'07, May 2007, pp.298-304.
    [112]X. Ling, K. Liu, Y. Cheng, et al., "A novel performance model for distributed prioritized MAC protocols," in Proc. IEEE Globecom'07, Washington, DC, America, Nov.2007, pp.4692-4696.
    [113]L. Sheng, L. Wei, H. Wei, et al., "Performance analysis and enhancement for priority based IEEE 802.11 network," in Proc. IEEE ICC'06, Istanbul, Turkey, June,2006, pp.4768-4773.
    [114]A. Khan, L. Sun, E. Ifeachor, et al., "Video quality prediction model for H.264 video over UMTS networks and their application in mobile video streaming," in Proc. IEEE ICC 10, May 2010, pp.1-5.
    [115]C. Yonghoon, H. Kim, and S. W. Han, "Joint resource allocation for parallel multi-radio access in heterogeneous wireless networks," IEEE Trans. Wireless Commun., vol.9, no.11, Nov.2010, pp.3324-3329.
    [116]C. Liu, A. Schmeink, and R. Mathar, "Dual optimal resource allocation for heterogeneous transmission in OFDM A systems," in Proc. IEEE Globecom'09, Hawaii, America, Nov.2009, pp.1-6.
    [117]J. Sheu, C. Kao, S. Yang, et al., "A resource allocation scheme for scalable video multicast in WiMAX relay networks," IEEE Trans. Mobile Computing, vol.10, no.12, Dec.2011, pp.1-30.
    [118]彭木根,王文博,异构无线通信系统的协同中继选择,北京邮电大学学报,第31卷第5期,82-87.
    [119]M. Gong, C. Zhang, J. Lu et al., "Dynamic resource allocation in high speed mobile OFDMA system," in Proc. IEEE ICC'08, Beijing, China, May. 2008, pp.3335-3339.
    [120]Tiejun Wang, J. G. Proakis, E. Masry et al., "Performance degradation of OFDM systems due to doppler spreading," IEEE Trans. Wireless Commun., vol. 5, no.6, Jun.2006, pp.1422-1432.
    [121]A. Seyedi and G. J. Saulnier, "General self-cancellation scheme for mitigation of ICI in OFDM systems," in Proc. IEEE ICC'04, Paris, France, Jun., 2004, pp.2653-2657.
    [122]S. Tseng and Y. Huang, "A novel ICI self-cancellation scheme for OFDM systems," International Journal of Commun. Syst, Nov.2011, vol.24, no. 11, pp.1240-1245.
    [123]R. Song, X. Guo, and S. H. Leung, "Optimum second order polynomial nyquist windows for reduction of ICI in OFDM systems," Wireless Personal Commun., vol.65, no.2, Jun.2012, pp.455-467.
    [124]C. Hsu and W. Wu, "Low-Complexity ICI mitigation methods for high-mobility SISO/MIMO-OFDM systems," IEEE Trans. Vehicular Technology, vol.58, no.6, Jul.2009, pp.2755-2768.
    [125]H. G. Yeh, Y. K. Chang, and Babak Hassibi, "A scheme for cancelling intercarrier interference using conjugate transmission in multicarrier communication systems," IEEE Trans. Wireless Commun., vol.6, no.1, Jan. 2007, pp.3-7.
    [126]C. Wang and Y. Huang, "Intercarrier interference cancellation using general phase rotated conjugate transmission for OFDM systems," Tran. Commun., vol.58, no.3, Mar.2010, pp.812-819.
    [127]E. Oh, B. Krishnamachari, X. Liu, et al., "Toward dynamic energy efficient operation of cellular network infrastructure," IEEE Commun. Magzine, vol.49, no.6, Jun.2011, pp.56-61.
    [128]B. Song, S. Das, F. Akashi, et al., "Network scaling for achieving energy efficient cellular networks-a quantitative analysis," in Proc. IEEE VTC'11 Fall, San Francisco, USA, Sep.2011, pp.1-5.
    [129]D. Zhang, P. Fan, and Z. Cao, "Novel narrowband interference canceller for OFDM systems," in Proc. IEEE WCNC'04, Atlanta, Georgia, USA, Mar., 2004, pp.1-5.
    [130]B. P. Bertsekas, Nonlinear Programming, Belmont:Athena Scientific, 1999.
    [131]Q. Liu, S. Zhou, and G. B. Giannakis, "Cross-Layer combining of adaptive modulation and coding with truncated ARQ over wireless links," IEEE Trans. Wireless Commun., vol.3, no.5, Sep.2004, pp.1746-1755.
    [132]P. K. Sundaram, A First Cource in Optimization, Cambridge University Press,1996.
    [133]N. Xiong, M. Cao, A.V. Vasilakos, et al., "An energy-effcient scheme in next-generation sensor networks," International Journal of Commun. Syst., vol. 23, no.9, Dec.2010, pp.1189-1200.
    [134]朱新宁,宽带无线网络无线资源管理关键技术研究,博士学位论文,北京邮电大学,2010.
    [135]M. Rabzadeh, W. Ajib, "Packet scheduling and fairness for multiuser MIMO systems, IEEE Trans. Vehicular Technology, vol.59, no.3, Mar.2010, pp. 1330-1340.
    [136]Z. Kong, Y. Kwok, J. Wang, "A low-complexity QoS-aware proportional fair multicarrier scheduling algorithm for OFDM Systems, IEEE Trans. Vehicular Technology, vol.58, no.5, May 2009, pp.2225-2235.
    [137]M. Andrews, K. Kumaran, K. Ramanan, et al., "CDMA data QoS scheduling on the forward link with variable channel conditions," Bell Labs Technical Memorandum, Apr.2000.
    [138]M. Andrews, K. Kumaran, K. Ramanan, et al., "Providing quality of service over a shared wireless link," IEEE Commun. Mag., vol.39, Feb.2001, pp. 150-153.
    [139]L. Tassiulas and A. Ephremides, "Stability properties of constrained queueing systems and scheduling policies for maximum throughput in multihop radio networks," IEEE Trans. Autom. Control, vol.37, no.12, Dec.1992, pp. 1936-1948.
    [140]X. Liu, E.K.P. Chong, and N. B. Shroff, "A framework for opportunistic scheduling in wireless networks," Computer Networks, vol.41, no.4, Mar.2003, pp.451-474.
    [141]F. Kelly, A. Maulloo, and D. Tan, "Rate control in communication networks:shadow prices, proportional fairness and stability," Journal of the Operational Research Society, vol.49,1998, pp.237-252.
    [142]H. Kim, Y. Han, "A proportional fair scheduling for multicarrier transmission systems," IEEE Communications Letters, vol.9, no.3, Mar.2005, pp.210-212.
    [143]L. Chen, B. Wang, L. Chen, et al. "Utility-based resource allocation for mixed traffic in wireless networks," in Proc. IEEE INFOCOM WKSHPS'11, Shanghai, China, April,2011, pp.91-96.
    [144]ITU-T Rec. P.862, PESQ:an objective method for end-to-end speech quality assessment of narrow-band telephone networks and speech codecs,2001.
    [145]ITU-T Rec. G.107, The E-model, a computational model for use in transmission planning,2000.
    [146]F. Poppe, D. Vleeschauwer, and G. Petit, "Choosing the UMTS air interface parameters, the voice packet size and the dejittering delay for a voice-over-IP call between a UMTS and a PSTN party," in Proc. IEEE INFOCOM'01, vol.2, April 2001, Anchorage, AK, USA, pp.805-814.
    [147]J. Fajardo, F. Liberal, and N. Bilbao, "Study of the impact of UMTS best effort parameters on QoE of VoIP services," in proc. IEEE ICAS'09, April,2009, Valencia, Spain, pp.1-5.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700