用户名: 密码: 验证码:
短距离无线光通信若干关键技术的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
无线光通信是近年来兴起的光通信与无线通信交叉的前沿技术;既具有无线通信的灵活性,又在理论上保留了光载波的大带宽潜力;同时没有射频辐射,不需敷设光纤;可应用于日常通信而缓解日益紧张的频谱短缺问题,还可应用于特殊场合满足特种通信需求;因此具有重要的研究价值与广泛的应用前景。
     无线光通信这种新兴技术仍处于起步与发展阶段,尚有一些关键问题有待解决。由于大气信道具有随机性,给光信号传输带来了不确定因素,所以需要结合多种通信技术才能保证无线光通信系统的可靠性、灵活性和实用性。深入研究大气光信道的特性,提升无线光通信系统的性能,兼顾无线光在通信、照明、定位等各方面的综合需求,这些一直都是无线光通信的难点或热点,对未来该技术的实际应用与发展具有重要意义。
     论文以国家自然科学基金项目和国家863计划课题为依托,围绕非视距紫外光通信和室内可见光通信的关键问题与技术难题展开应用基础研究,主要创新工作如下:
     第一,针对现有模型很少考虑天气状况对大气信道影响的问题,建立了含有天气参数的紫外信道模型,分析了不同天气对紫外光大气传输特性的影响,并通过实验在一定程度上验证了信道模型的准确性。
     第二,目前紫外通信系统性能分析理论模型的研究还很少并存在不足,还没有基于统计模拟方法的系统性能模型,针对这一问题,建立了结合统计模拟方法、实测信道损耗和实测噪声数据的紫外通信系统性能分析模型,仿真分析了系统在不同的通信距离、收发仰角、背景噪声和调制方式下的误码特性,给出了非视距紫外通信系统的设计建议。
     第三,为了提升系统性能,提出并实现了一种紫外通信系统的滑动均值滤波方案,实测结果表明,该方案可以有效提高接收信噪比进而使系统误码率降低约2个数量级。
     第四,针对紫外光非视距通信中的信道干扰问题,提出并实现了紫外扩频通信方案,以及扩频码的相位同步方案。实测结果表明该方案具有很强的抗噪能力,在OOK系统误码率为2×10-2的情况下,采用扩频技术后可实现误码率小于2.5×100-7的紫外非视距通信。
     第五,针对大型建筑物内精确定位困难的问题,提出了一种基于双音多频的可见光室内定位系统方案及算法,以便在不影响室内照明和通信的前提下提供精确定位功能,仿真结果表明该方案在接收信噪比为15dB时的平均定位误差小于6mm,精确度远高于绝大多数基于射频的室内定位系统。
The optical wireless communications (OWC) is a cutting-edge technology that combines both wireless communication and optical communication. As OWC provides most of the inherent advantages of optical fiber communications while leveraging the flexibility of the RF wireless, it is rapidly becoming a potential solution to the global wireless spectrum shortage. Therefore, this technology has important implications for this emerging field and broad application prospects.
     Currently, OWC is still in its infancy stage with many technical constraints and challenges to be solved. The major drawback is that the substantial path losses and high shot noise from ambient light will bring uncertainty to the optical transmission, which requires the marriage of many techniques to ensure the reliability, flexibility and practicality of the OWC system.
     The study if this dissertation is supported by the National Natural Science Foundation of China (NSFC) and the National High-tech Research and Development Program (863Program), addressing key techniques regarding non-line of sight (NLOS) ultraviolet (UV) communication and indoor visible light communication (VLC). Special attention has been paid to the following three areas:further study on optical channel characteristics, performance improvement of the OWC system and the combination of lighting, communication and positioning, which are also the focus of this dissertation.
     The main innovative ideas are summarized as follows:
     Firstly, since few studies have been reported on atmospheric weather-dependent effects on UV channel modeling, a UV channel model which incorporates the impact of various weather conditions is built and validated according to extensive measurements.
     Secondly, few researches are conducted to investigate UV communication system using statistical simulation method. A performance study of short-range NLOS UV communication system based on a Monte Carlo system-level model is presented, in which the channel parameters, such as the path loss and the background noise, are experimentally measured using an outdoor UV communication test-bed. The system trade-offs among the distance, the link geometry, the noise level, the bit error rate (BER) and4modulation formats are simulated, and the results may provide guidelines to the system design.
     Thirdly, a moving average filter based method for UV communication is proposed and realized so as to improve the system performance. Experimental results show that the proposed method is able to improve the received signal-to-noise ratio (SNR) and correspondingly reduce BER by approximately two orders of magnitude.
     Fourthly, to suppress the damage from the interference, an OWC scheme based on direct sequence spread spectrum (DSSS) is proposed and realized. Experimental results show that the proposed scheme has a great capability to reduce interference. With the help of DSSS, the BER of the UV communication system can be reduced from2x10-2to less than2.5x10-7.
     Lastly, addressing the problem of high resolution indoor positioning in large buildings, a dual-tone multi-frequency (DTMF) based indoor positioning algorithm and a VLC based indoor positioning system are proposed, which can provide good positioning accuracy without interfering with the lighting and communicating function. Simulation results show that this method reduces positioning error to less than6mm (SNR=15dB), while in contrast, the state-of-the-art microwave indoor positioning can only reduce the error to tens of centimeters.
引文
[11 Hranilovic, S. Wireless Optical Communication Systems,2005
    [2]Kedar, D., Arnon, S. Urban optical wireless communication networks:The main challenges and possible solutions. Ieee Communications Magazine.2004,42 (Compendex):S2-S7
    [3]Cbrien, D. C., Faulkner, G E., Jim, K., et al. High-speed integrated transceivers for optical wireless. IEEE Communications Magazine.2003,41 (Compendex):58-63
    [4]柯熙政,席晓莉.无线激光通信概论.北京邮电大学出版社.2004
    [5]Elgala, H., Mesleh, R., Haas, H. Indoor optical wireless communication:Potential and state-of-the-art. IEEE Communications Magazine.2011,49 (9):56-62
    [6]Kahn, J. M., Barry, J. R. Wireless infrared communications. PROCEEDINGS OF THE IEEE.1997, 85 (Compendex):265-298
    [7]Singh, C., John, J., Y.N.Singh, et al. A Review on Indoor Optical Wireless Systems. In:IETE Technical Review,2002:3-17
    [8]Trakhovsky, E., Ben-Shalom, A., Oppenheim, U. P., et al. Contribution of oxygen to attenuation in the solar blind UV spectral region. Appl. Opt.1989,28 (8):1588-1591
    [9]Hanson, M. Atmospheric Modeling Using MODTRAN 2003
    [10]Reilly, D. M. Atmospheric optical communications in the middle ultraviolet:Massachusetts Institute of Technology.1976
    [11]Junge, D., Ca, N. P. S. M. Non-line-of-sight electro-optic laser communications in the middle ultraviolet:Naval Postgraduate School.1977
    [12]Adee, S. Ultraviolet radios beam to life. IEEE Spectrum.2009,46 (5):18
    [13]Kedar, D. Multiaccess interference in a non-line-of-sight ultraviolet optical wireless sensor network. Applied Optics.2007.46 (23):5895-5901
    [14]Charles. B., Hughes, B.. Erickson. A., et al. Ultraviolet laser-based communication system for short-range tactical applications. In:Visible and UV Lasers Los Angeles, CA, USA:SPIE,1994: 79-86
    [151 Shute, R. D. Electrodeless Ultraviolet Communications-System. Ieee Aerospace and Electronic Systems Magazine.1995,10 (11):2-7
    [161 Kavehrad, M. Sustainable energy-efficient wireless applications using light. IEEE Communications Magazine.2010,48 (12):66-73
    [17]Yun. G, Kavehrad, M. Indoor infrared wireless communications using spot diffusing and fly-eye receivers. Canadian Journal of Electrical and Computer Engineering.1993,18(4):151-157
    [181 Kavehrad, M. Broadband room service by light. Scientific American. 2007,297 (1):82-87
    [191 Bouchet, O., Porcon, P., Walewski, J. W., et al. Wireless Optical Network for a Home Network. Free-Space Laser Communications X.2010,7814:781406
    [201 Kavehrad, M., Hajjarian, Z., Enteshari, A. Energy-efficient broadband data communications using white LEDs on aircraft powerlines. In:Integrated Communications, Navigation and Surveillance Conference,2008. ICNS 2008,2008:1-8
    [211 Khalid, A. M., Cossu, G., Corsini, R., et al.1-Gb/s Transmission Over a Phosphorescent White LED by Using Rate-Adaptive Discrete Multitone Modulation. Photonics Journal, IEEE.2012,4 (5): 1465-1473
    [22]Cossu, G, Khalid, A. M., Choudhury, P., et al.3.4 Gbit/s visible optical wireless transmission based on RGB LED. Optics Express.2012,20 (26):B501-B506
    [23]Rockwood, R. S., Sawyer, R. A. THE ULTRAVIOLET TRANSMISSION COEFFICIENT OF THE EARTH'S ATMOSPHERE. J. Opt. Soc. Am.1932,22 (10):513-523
    [241 Harvey, G L. A survey of ultraviolet communication systems Washington D.C.:Naval Research Laboratory Technical Report,1964
    [25]Sunstein. D. E. A scatter communications link at ultraviolet frequencies:Massachusetts Institute of Technology.1968
    [26]Shettle, E. P.. Green. A. E. S. Multiple Scattering Calculation of the Middle Ultraviolet Reaching the Ground. Appl. Opt.1974,13 (7):1567-1581
    [27]Luettgen, M. R... Shapiro. J. H.. Reilly. D. M. Non-line-of-sight single-scatter propagation model. J. Opt. Soc. Am. A.1991.8 (12):1964-1972
    [28]Shaw, G A., Siegel. A. M., Model,J. Extending the range and performance of non-line-of-sight ultraviolet communication links. In:Unattended Ground, Sea, and Air Sensor Technologies and Applications VIII Orlando (Kissimmee). FL. USA:SPIE,2006:62310C-62312
    [29]Chen, G, Abou-Galala. F., Xu. Z. Y. et al. Experimental evaluation of LED-based solar blind NLOS communication links. Optics Express.2008.16(19):15059-15068
    [30]Xu, Z. Y. Ding, H. P., Sadler, B. M., et al. Analytical performance studv of solar blind non-line-of-sight ultraviolet short-range communication links. Optics Letters.2008.33 (16): 1860-1862
    [31]Chen, G, Xu, Z.. Sadler, B. M. Experimental demonstration of ultraviolet pulse broadening in short-range non-line-of-sight communication channels. Opt. Express.2010,18 (10):10500-10509
    [32]Wang, L., Xu, Z.. Sadler. B. M. Non-line-of-sight ultraviolet link loss in noncoplanar geometry. Opt Lett.2010,35 (8):1263-1265
    [33]Drost, R. J., Moore, T. J., Sadler, B. M. Monte-Carlo-based multiple-scattering channel modeling for non-line-of-sight ultraviolet communications. In:Atmospheric Propagation VIII, April 26,2011 April 27,2011 Orlando. FL. United states:SPIE,2011:The Society of Photo-Optical Instrumentation Engineers (SPIE)
    [34]Wraback, M. Semiconductor ultraviolet emitters and detectors with potential for wireless communications. In:2012 IEEE Photonics Society Summer Topical Meeting Series. PSST 2012. July 9.2012-July 11.2012 Seattle. WA. United states:IEEE Computer Society.2012:134-135
    [35]Noshad. M.. Brandt-Pearce. M.. Brown. C. L. NLOS UV communication systems using spectral amplitude coding. In:2011 IEEE GLOBECOM Workshops. GC Wkshps 2011. December 5.2011 December 9.2011 Houston. TX. United states:IEEE Computer Society.2011:843-848
    [36]Noshad. M.. Brandt-Pearce. M.. Wilson S. NLOS UV Communications Using M-arv Spectral-Amplitude-Coding. Communications. IEEE Transactions on.2013. PP (99):1-10
    [37]Elshimy. M. A.. Hranilovic. S. Non-line-of-sight single-scatter propagation model for noncoplanar geometries. Journal of the Optical Society of America a-Optics Image Science and Vision.2011.28 (3):420-428
    [38]Elshimy. M. A.. Hranilovic. S.. Ieee. Information Rates of Solar Blind Non-Line-of-Sight Ultra-Violet Channels with Binary-Input. In:2012 Ieee International Conference on Communications.2012: 2531-2535
    [39]Vavoulas. A.. Sandalidis. H.. Varoutas. D. Connectivity Issues for Ultraviolet UV-C Networks. Journal of Optical Communications and Networking.2011,3 (3):199-205
    [40]Vavoulas, A., Sandalidis, H. G., Varoutas. D. Node Isolation Probability for Serial Ultraviolet UV-C Multi-hop Networks. Journal of Optical Communications and Networking.2011.3 (9):750-757
    [41]SETi Products Overview. http://www.s-et.com/roducts.html,2013
    [42]Nichia Corporation. Development of Ultraviolet (365nm) 100mW LED. http://www.nichia.co.jp/cn/about_nichia/2002/2002_010801.html.2002
    [43]Hirayama, H.. Yatabe, T.. Noguchi. N.. et al. Development of 230-270 nm AlGaN-Based Deep UV LEDs. IEEJ Transactions on Electronics. Information and Systems.2008,128:748-756
    [44]Hamamatsu Photonics PMT. http://www.hamamatsu.com/us/cn/product/category/3100/3001/index.html.2013
    [45]金伟其,何玉青.大气紫外传输特性的计算机模拟分析.光学技术.2000.26(4):304-307
    [46 ]蓝天.倪国强.紫外通信的大气传输特性模拟研究.北京理工大学学报.2003,23(4):419-423
    [47]Tang, Y. Ni, G. Q., Wu, Z. L., et al. Research on channel character of solar blind U V communication. Advanced Materials and Devices for Sensing and Imaging Iii.2008.6829:82907-82907
    148]郭文记,闫吉庆,唐义,等.一种低重频高码率紫外光通信方法和系统.光学技术.2012,38(02):240-243
    [49]贾红辉.杨俊才,沈志.等.紫外光信息传输中调制技术的研究.仪器仪表学报.2003(S2):44-5
    [50]贾红辉,常胜利.兰勇,等大气光通讯中基于蒙特卡罗方法非视线光传输模型.光电子.激光.2007(06)
    [51]Yin. H., Jia, H., Zhang. H.. et al. Vectorized polarization-sensitive model of non-line-of-sight multiple-scatter propagation. Journal of the Optical Society of America A:Optics and Image Science, and Vision.2011.28 (10):2082-2085
    [52]Zhang. H., Yin. H., Jia. H., et al. Characteristics of non-line-of-sight polarization ultraviolet communication channels. Applied Optics.2012.51 (35):8366-8372
    [53]Zhang. H., Yin. H., Jia. H., et al. Study of effects of obstacle on non-line-of-sight ultraviolet communication links. Optics Express.2011.19 (22):21216-21226
    [54]肖沙里.徐智敏.刘宇,等日盲紫外光通信硬件设计.光通信技术.2006,30(10):44-6
    [55]何攀,李晓毅,侯倩,等.基于FPGA的PPM调制解调系统设计.现代电子技术.2010(09):52-54
    [56]邹宇.肖沙里,李冠华,等基于LED的紫外无线光通信系统研究.光电子技术.2012,v.32(03):145-149
    [57]Feng. T., Xiong. F. Ye. Q.. et al. Non-line-of-sight optical scattering communication based on solar-blind ultraviolet light-art. no.67833X. Optical Transmission. Switching, and Subsystems V. Pts 1 and 2.2007.6783:X7833-2220
    [58]Luo. C., Li. J. Y. Adaptive Signal Detection in Wireless Ultraviolet and Infrared Communications. Proceedings of Annual Conference of China Institute of Communications.2010:363-368
    [59]刘润彬,李霁野.新型紫外光非视距通信系统信道估计的研究.光通信研究.2011(01):31-33
    [60]陈晓华,汪井源.日盲紫外光高速通信机国产化研究.东南大学学报:自然科学版.2008,38(A01):226-230
    [61]徐智勇,沈连丰,汪井源,等.无线光通信中紫外散射传播特性的研究.光通信技术.2009(11):56-59
    [62]Song. C., Xu. Z.. Wang. J., ct al. Channel transmission characteristics of long-range non-line-of-sight optical scattering communication. In:2012 International Conference on Microwave and Millimeter Wave Technology. ICMMT 2012. May 5.2012-May 8.2012 Shenzhen. China:IEEE Computer Society.2012:1426-1429
    [63]Deng. Z.. Zhao. M. Analyze and design receiving system of uv communication. In:IET International Conference on Communication Technology and Application. ICCTA 2011. October 14.2011 October 16.2011 Beijing. China:Institution of Engineering and Technology,2012:76-80
    [64]Han. D.. Liu. Y.. Zhang. K., et al. Theoretical and experimental research on diversity reception technology in NLOS UV communication system. Optics Express.2012,20 (14):15833-15842
    [65]Luo. P., Zhang. M.. Han. D.. et al. Performance analysis of short-range NLOS UV communication system using Monte Carlo simulation based on measured channel parameters. Opt. Express.2012.20 (21):23489-23501
    [66]Zuo. Y.. Xiao, H. F.. Wu. J., et al. A single-scatter path loss model for non-line-of-sight ultraviolet channels. Optics Express.2012.20 (9)
    [67]赵太飞.冯艳玲,柯熙政.等.“日盲”紫外光通信网络中节点覆盖范围研究.光学学报.2010.30(08):2229-2235
    [68]何华.柯熙政.紫外光通信中的Mie散射机制.应用科学学报.2012(03):245-250
    [69]赵太飞.王小瑞,柯熙政.无线紫外光散射通信中多信道接入技术研究.光学学报.2012(03):22-29
    [70]Pang, G., Ho, K.-L., Kwan, T., et al. Visible light communication for audio systems. IEEE Transactions on Consumer Electronics.1999.45 (4):1112-1118
    [71]Tanaka, Y., Haruyama.S., Nakagawa. M. Wireless optical transmissions with white colored LED for wireless home links. In:Personal. Indoor and Mobile Radio Communications.2000. PIMRC 2000. The 11th IEEE International Symposium on,2000:1325-1329 vol.1322
    [72]Tanaka. Y. Komine. T.. Haruyama, S., et al. Indoor visible communication utilizing plural white LEDs as lighting. In:Personal. Indoor and Mobile Radio Communications,200112th IEEE International Symposium on, 2001:F-81-F-85 vol.82
    [73]Komine, T., Nakagawa, M. Integrated system of white LED visible-light communication and power-line communication. In:Personal, Indoor and Mobile Radio Communications,2002. The 13 th IEEE International Symposium on. 2002:1762-1766 vol.1764
    [74]Fan, K., Komine, T., Tanaka, Y, et al. The effect of reflection on indoor visible-light communication system utilizing white LEDs. In:Wireless Personal Multimedia Communications,2002. The 5th International Symposium on,2002:611-615 vol.612
    [75]Nakagawa Laboratories, Inc. http://www.naka-lab.jp/index_e.html.2013
    [76]OMEGA project. Gigabit speed in all rooms without cable clutter. http://www.ict-omega.eu/news/view/article/neue-news.html.2008
    [77]Javaudin, J. P., Bellec, M., Varoutas, D., et al. OMEGA ICT project:Towards convergent Gigabit Home Networks. New York:Ieee.2008
    [78]Le Minh, H., O'brien, D., Faulkner, G, et al.80 Mbit/s Visible Light Communications using pre-equalized white LED. In:2008 34th European Conference on Optical Communication, ECOC 2008, September 21,2008-September 25,2008 Brussels, Belgium:Institute of Electrical and Electronics Engineers Inc.,2008
    [79]Bouchet, O., Porcon, P., Wolf, M., et al. Visible-light communication system enabling 73 Mb/s data streaming. In:GLOBECOM Workshops (GC Wkshps),2010 IEEE,2010:1042-1046
    [80]Langer, K. D., Fernandez Del Rosal, L., Kottke, C., et al. Implementation of a 84 Mbit/s visible-light link based on discrete-multitone modulation and LED room lighting. In:20107th International Symposium on Communication Systems, Networks and Digital Signal Processing, CSNDSP 2010, July 21,2010-July 23,2010 Newcastle upon Tyne, United kingdom:IEEE Computer Society,2010: 528-531
    [81]Vucic, J., Kottke, C., Nerreter, S., et al.513 Mbit/s Visible Light Communications Link Based on DMT-Modulation of a White LED. Lightwave Technology, Journal of.2010,28 (24):3512-3518
    [82]Vucic, J., Kottke, C., Habel, K., et al.803 Mbit/s Visible Light WDM Link based on DMT Modulation of a Single RGB LED Luminary. In:Optical Fiber Communication (OFC), collocated National Fiber Optic Engineers Conference,2011 Conference on (OFC/NFOEC),2011:1-3
    [83]VLCC. Visible Light Communications Standard. http://www.jeita.or.jp/cgi-bin/standard e/list.cgi?cateid=1&subcateid=50,2013
    [84]System, L. LVX System 2013
    [851 ByteLight. http://www.bytelight.com/,2013
    [86]CASIO. PicapiCamera. http://www.casio-isc.coin/en/,2013
    [87]Outstanding Technology, http://visilink.com/,2013
    [88]胡国永,陈长缨,陈振强.白光LED照明光源用作室内无线通信研究.光通信技术.2006(07):46-48
    [89]张浩,陈长缨,可见光通信信道障碍成因分析及解决方案.光通信技术.2012(09):57-60
    [90]丁德强,柯熙政.可见光通信及其关键技术研究.半导体光电.2006(02):114-117
    [91]丁德强,柯熙政,李建勋.室内可见光通信多阵元发射天线优化设计.应用科学学报.2011(03):238-242
    [921 Zhang, X., Cui, K., Yao, M., et al. Experimental characterization of indoor visible light communication channels. In:20128th International Symposium on Communication Systems, Networks and Digital Signal Processing, CSNDSP 2012, July 18,2012-July 20,2012 Poznan, Poland:IEEE Computer Society,2012
    [93]娄鹏华,张洪明,郎凯,等.基于室内可见光照明的位置服务系统.光电子.激光.2012(12):2298-2303
    [94]Lou, P., Zhang, H., Zhang, X., et al. Fundamental analysis for indoor visible light positioning system. In:Communications in China Workshops (ICCC),20121st IEEE International Conference on,2012: 59-63
    [95]国家973计划项目“宽光谱信号无线传输理论与方法研究”召开启动会.http://www.tsinghua.edu.cn/publish/ee/3732/2013/20130227084747073277225/201302270847470732 77225.html,2013
    [96]臧景峰,朴燕,宋正勋,等.基于白光LED照明光源的室内VLC系统.发光学报.2009(06):877-881
    [97]张华,宋正勋,刘冬彦,等.基于自适应OFDM的可见光通信系统分析.长春理工大学学报(自然科学版).2010(01):70-73
    [98]Wu, Y, Yang, A., Feng, L., et al. Modulation based cells distribution for visible light communication. Optics Express.2012.20 (22):24196-24208
    [99]Yang. A., Li. X., Jiang. T. Enhancement of LED indoor communications using OPPM-PWM modulation and grouped bit-flipping decoding. Optics Express.2012.20 (9):10170-10179
    [1001 Wu Y. Yang. A., Feng. L., et al. Efficient transmission based on RGB LED lamp for indoor visible light communication. Chin. Opt. Lett.2013.11 (3):030601
    [101]Zhang. M. L., Zhang. Y. G., Yuan. X. G. et al. Mathematic models for a ray tracing method and its applications in wireless optical communications. Optics Express.2010,18 (17):18431-18437
    [102]Ding. J.. Huang. Z.. Ji. Y. Indoor white light wireless data transmission based on new generation environment-friendly solid state lighting. In:2010 IEEE International Conference on Wireless Communications. Networking and Information Security. WCN1S 2010, June 25.2010-June 27.2010 Beijing. China:IEEE Computer Society.2010:87-91
    [103]Huang. Z.. Ji. Y. Efficient user access and lamp selection in LED-based visible light communication network. Chinese Optics Letters.2012.10 (5)
    [104]Xiang. Y. Zhang. M.. Tang. X.. et al. A post-processing channel estimation method for DCO-OFDM visible light communication. In:20128th International Symposium on Communication Systems. Networks and Digital Signal Processing, CSNDSP 2012. July 18,2012-July 20,2012 Poznan, Poland:IEEE Computer Society,2012
    [105]朱琳,刘博,杨宇,等.一种基于半导体照明的无线通信系统.高技术通讯.2010(08):863-867
    [106]杨宇.张建昆,刘博,等.LED非线性对基于正交频分复用可见光通信系统的影响.中国激光.2011(08):178-183
    [107]张建昆.杨宇,刘博,等.基于可见光和电力线载波的家庭网络设计.激光与光电子学进展.2011(10):73-77
    [108]Rcilly. D. M. Warde, C. Temporal characteristics of single-scatter radiation. J. Opt. Soc. Am.1979,69 (3):464-470
    [109]Monte Carlo method. https://en.wikipedia.org/wiki/Monte Carlo method 2013
    [110]徐钟济.蒙特卡罗方法.上海科学技术出版社.1985
    [111]贾红辉.常胜利.杨建坤,等.非视线紫外通信大气传输特性的蒙特卡罗模拟.光子学报.2007,36(5):955-960
    [112]Wang. L.. Jacques. S. L.. Zheng. L. MCML-Monte Carlo modeling of light transport in multi-layered tissues. Computer Methods and Programs in Biomedicine.1995.47(2):131-146
    [113]Prahl. S.. Keijzer. M.. Jacques. S.. et al. A Monte Carlo model of light propagation in tissue. In:SPIE Proceedings of Dosimetry of Laser Radiation in Medicine and Biology:Citeseer.1989:102-111
    [114]吴北婴.大气辐射传输实用算法.气象出版社.1998
    [115]龚俊.蓝天,刘杰,等LOWTRAN与MODTRAN模型关于大气紫外传输的模拟计算2005
    [116]何新,杨俊才.贾红辉.等.天气对光散射传输影响的仿真分析.光学技术.2009,35(1):56-59
    [117]Cam S. B. The Aerosol Models'in MODTRAN:Incorporating Selected Measurements From Northern Australia.2005
    [118]Lu. B., Wu. Z., Tang. S., et al. Study on phase function in Monte Carlo transmission characteristics of poly-disperse aerosol. Optical Engineering.2011.50 (1)
    [119]Ding. H.. Chen. G, Majumdar, A. K.. et al. Non-line-of-sight ultraviolet communication channel characterization:modeling and validation. In:Free-Space Laser Communications IX San Diego, CA, USA:SPIE,2009:746401-74647
    [120]Ding. H., Chen. G., Majumdar, A. K., et al. Modeling of non-line-of-sight ultraviolet scattering channels for communication. Selected Areas in Communications, IEEE Journal on.2009,27 (9): 1535-1544
    [121]Xiao. H. F.. Zuo. Y. Wu. J.. et al. Non-line-of-sight ultraviolet single-scatter propagation model. Optics Express.2011.19(18):17864-17875
    [122]Rappaport. T. S. Wireless communications:principles and practice. Publishing House of Electronics Industry.2004
    [123]Jeruchim, M. C., Balaban. P.. Shanmugan. K. S. Simulation of communication systems:modeling, methodology and techniques. Springer.2000
    [124]Luo, P.. Zhang. M., Liu, Y., et al. A moving average filter based method of performance improvement for ultraviolet communication system. In:Communication Systems, Networks & Digital Signal Processing (CSNDSP).20128th International Symposium on. 2012:1-4
    [125]Turin. G. An introduction to matched filters. Information Theory, IRE Transactions on. 1960,6 (3): 311-329
    [1261 Charan Langton. Linear Time Invariant systems and Matched filtering. http://complexoreal.com/wp-contet/uploads/2013/01/mft.pdf,2013
    [127]He. Q., Xu. Z., Sadler. B. M. Performance of short-range non-line-of-sight LED-based ultraviolet communication receivers. Opt. Express.2010,18 (12):12226-12238
    [128]Mahdiraji. G. A., Zahedi. E.. Ieee. Comparison of selected digital modulation schemes (OOK. PPM and DPIM) for wireless optical communications. In:4th Student Conference on Research and Development Shah Alam, MALAYSIA:Ieee,2006:5-10
    [129]Ghassemlooy. Z.. Hayes. A. R., Seed, N. L., et al. Digital pulse interval modulation for optical communications. Ieee Communications Magazine.1998,36 (12):95-99
    [130]Kaluarachchi. E. D., Ghassemlooy, Z. Digital Pulse Interval Modulation:Spectral Behaviour.1997
    [131]Jinlong. Z. Modulation analysis for outdoors applications of optical wireless communications. In: Communication Technology Proceedings,2000. WCC-ICCT 2000. International Conference on, 2000:1483-1487 vol.1482
    [132]Chen. G, Xu. Z. Y, Ding, H. P., et al. Path loss modeling and performance trade-off study for short-range non-line-of-sight ultraviolet communications. Optics Express.2009,17 (5):3929-3940
    [133]Li. C., Zhang, M.. Chen, X.. et al. Experimental performance evaluation of mobile sensor and communication system based on ultraviolet. In:Control and Decision Conference (CCDC),201224th Chinese,2012:218-220
    [134]Shaw. G A., Siegel. A. M., Model, J. Ultraviolet comm links for distributed sensor networks.2005 Digest of the LEOS Summer Topical Meetings.2005:39-40
    [135]Drost. R.J., Moore. T. J.. Sadler. B. M. UV communications channel modeling incorporating multiple scattering interactions. Journal of the Optical Society of America A:Optics and Image Science, and Vision.2011.28 (Compendex):686-695
    [136]韩大海,罗鹏飞,张民.等.基于扩频通信和滑动均值滤波的紫外光通信方法 中国.发明专利申请公布.2001210246745.7.2012.11.28
    [137]张民,焦璐,韩大海.等.全数字扩频通信系统中接收端的同步时钟提取方法.中国.发明专利申请公布.201210265228.4.20012.11.28
    [138]陆秋捷Agilent 9000系列示波器的平均速度与高分辨率采样模式.2011
    [139]Smith. S. W. The Scientist and Engineer's Guide to Digital Signal Processing Second Edition San Diego. California:California Technical Publishing.1999:277-284
    [140]Tranter. W. H.. Shamnugan. K. S.. Rappaport. T. S.. et al. Principles of Communication Systems Simulation with Wireless Applications Upper Saddle River. New Jersey 07458:Prentice Hall,2004: 258-269
    [141]Djahani. P., Kahn, J. M. Analysis of infrared wireless links employing multibeam transmitters and imaging diversity receivers. Communications, IEEE Transactions on.2000.48 (12):2077-2088
    [142]张会生.现代通信系统原理.高等教育出版社.2004
    [143]于江,王春岭,沈刘平,等.扩频通信技术原理及其应用.中国无线电.2010(03):44-7
    [144]纪国强,潘枫春,黄冬,等.扩频通信技术浅谈.电信快报.2005(04):43-46
    [145]Fakatselis. J. Processing gain in spread spectrum signals. Harris Semiconductor application note.1998
    [146]Strom. E.. Ottosson. T.. Svensson, A. An introduction to spread spectrum systems. Chalmers University of Technology. Goteborg. Sweden.2002
    [147]Flikkema. P. G Spread-spectram techniques for wireless communication. IEEE Signal Processing Magazine.1997.14 (3):26-28
    [148]Schilling. D. L.. Milsteia L. B.. Pickholtz. R. L.. et al. Spread spectrum for commercial communications. IEEE Communications Magazine.1991.29 (4):66-79
    [149]Ghaffari. B. M.. Matinfar. M. D.. Salehi. J. A. Wireless optical CDMA LAN:digital implementation analysis. Selected Areas in Communications. IEEE Journal on.2009,27 (9):1676-1686
    [150]Wong. K. K.. O'farrell, T. Spread spectrum techniques for indoor wireless IR communications. IEEE Wireless Communications.2003,10 (2):54-63
    [151]Kilgus. C. C. Pseudonoise Code Acquisition Using Majority Logic Decoding. Communications, IEEE Transactions on.1973.21 (6):772-774
    [152]Lee. J. H., Song. I.. Park. S. R., et al. Rapid acquisition of PN sequences with a new decision logic. Vehicular Technology. IEEE Transactions on.2004.53 (1):49-60
    [153]赵春晖,苗玉梅.付兴滨.直序扩频系统的PN码同步方法研究.应用科技.2001(07):9-11
    [154]赵树杰,赵建勋.信号检测与估计理论.清华大学出版社有限公司.2005
    [155]Ych. C. H., Liu. Y. F. Chow. C. W.. et al. Investigation of 4-ASK modulation with digital filtering to increase 20 times of direct modulation speed of white-light LED visible light communication system. Optics Express.2012.20(15):16218-16223
    [156]Azhar. A. H., Tran. T.-A., O'brien. D. A gigabit/s indoor wireless transmission using MIMO-OFDM visible-light communications. IEEE Photonics Technology Letters.2013.25 (2):171-174
    [157) Liu. Y. F., Yeh. C. H., Chow, C. W.. et al. Demonstration of bi-directional LED visible light communication using TDD traffic with mitigation of reflection interference. Optics Express.2012.20 (21):23019-23024
    [158]Mckendry. J. J. D.. Massoubre. D.. Zhang. S.. et al. Visible-Light Communications Using a CMOS-Controlled Micro-Light-Emitting-Diode Array. Lightwave Technology. Journal of.2012.30 (1):61-67
    [159]Cui. K. Y. Chen. G., Xu. Z. G. et al. Traffic light to vehicle visible light communication channel characterization. Applied Optics.2012,51 (27):6594-6605
    [160]Zhou. Z.. Kavehrad. M., Deng, P. Indoor positioning algorithm using light-emitting diode visible light communications. Optical Engineering.2012,51 (8):085009
    [161]Liu, H.. Darabi. H., Banerjee, P., et al. Survey of wireless indoor positioning techniques and systems. Systems. Man. and Cybernetics, Part C:Applications and Reviews, IEEE Transactions on.2007.37 (6):1067-1080
    [162]Locata FAQs. http://locata.com/lechnology/faqs/.2013
    [163]Williams. S. D.. Bock. Y. Fang. P.. et al. Error analysis of continuous GPS position time series. Journal of Geophysical Research:Solid Earth (1978-2012).2004.109 (B3)
    [164]Randell. C., Muller. H. Low cost indoor positioning system. In:Ubicomp 2001:Ubiquitous Computing:Springer.2001:42-48
    [165]Yang. S.-H., Kim. D.-R.. Kim. H.-S.. et al. Indoor positioning system based on visible light using location code. In:2012 4th International Conference on Communications and Electronics. ICCE 2012. August 1.2012-August 3.2012 Hue Royal City. Viet nam:IEEE Computer Society.2012:360-363
    [166]Aitenbichler. E., Muhlhauser. M. An IR local positioning system for smart items and devices. In: Distributed Computing Systems Workshops,2003. Proceedings,23rd International Conference on: IEEE.2003:334-339
    [167]Tekinay. S., Chao. E.. Richton. R. Performance benchmarking for wireless location systems. Communications Magazine. IEEE.1998,36 (4):72-76
    [168]Felder, M. D., Mason. J. C., Evans. B. L. Efficient dual-tone multifrequency detection using the nonuniform discrete Fourier transform. Signal Processing Letters. IEEE.1998,5 (7):160-163
    [169]Edwards. K.. Quinn, K.. Dalziel. P.. et al. Evaluating commercial speech recognition and DTMF technology for automated telephone banking services. In:Advances in Interactive Voice Technologies for Telecommunication Services (Digest No:1997/147), IEE Colloquium on:IET,1997:4/1-4/6
    [170]Wikipedia. Dual-tone multi-frequency signaling. http://en.wikipedia.org/wiki/Dtmf,2013
    [171]Wikipedia. Goertzel algorithm. http://en.wikipedia.org/wiki/Goertzel_algorithm,2013
    [172]Yahyavi. M.. Ghajarzadeh. A.. Nezhad, M. H. An improvement of MIPS rate in detection of DTMF signals of 64 subscribers using GOERTZEL's algorithm. In:Signal Processing and its Applications (CSPA).2011 IEEE 7th International Colloquium on:IEEE.2011:132-136
    [173]Komine. T., Nakagawa. M. Integrated system of white LED visible-light communication and power-line communication. Consumer Electronics. IEEE Transactions on. 2003.49 (1):71-79
    [174]Schoukens. J.. Renneboog. J. Modeling the noise influence on the Fourier coefficients after a discrete Fourier transform. IEEE transactions on instrumentation and measurement.1986.35 (3):278-286

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700