用户名: 密码: 验证码:
特种通信应用环境的天线技术及小型化滤波器研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
特种通信,它与商业通信迥然不同,具有极其突出的特点:(1)源发射功率高,功耗过大,是商业通信的功率/功耗的数十或百倍;(2)信号衰减过快,且常常出现较长时间的通信中断;(3)通信目标一方或双方以超音速运行;(4)通信距离遥远,长达几千甚至几万公里;(5)信号处理、提取技术极其复杂。那么,具备特种通信特点之一的传播环境,称之为特种通信应用环境。作为特种通信的关键技术如特种通信应用环境的信号源的选择、特种通信应用环境的信息传输质量改善、小型化滤波器的设计与优化等都是特种通信技术必不可少的研究内容。本文主要针对特种通信应用环境的天线技术及小型化滤波器的关键件技术作了较为深入的研究。论文以电磁场与电磁波的基本理论与有限元法为基础,研究分析了特种通信应用环境的天线的近场传播及其超高斯波束的可调增益,特种通信应用环境中微带天线的传输性能及小型化滤波器的结构设计与优化。
     首先,提出了超高斯分布作为特种通信应用环境的天线的信号源波束分布。结合菲涅尔——惠更斯原理,研究分析了不同阶数的超高斯波源分布在聚焦与非聚焦条件下的近场幅射与近场增益特性,并得到了其近场增益的闭式解。研究分析了圆口径天线半径与超高斯波源半径的比例关系对口径天线效率、近场增益、幅射特性等造成的影响。仿真分析结果表明,在特种通信应用环境中,超高斯波束的抗衰减能力远优于高斯分布的波源,通过切换不同波束,能实现天线的增益可调。
     其次,提出了各向异性介质片与等离子云环境作为特种通信应用环境的微带贴片天线的谐振点动态可调的原理与方法。采用位移算子有限差分方法(SO-FDTD),分析了特种通信应用环境中各参量对微带天线的阻抗、谐振频率及回波损耗等参量的重要影响,并具体分析了特种通信应用环境变化对天线增益所造成的影响,仿真结果表明:各向异性介质片的介电常数的变化与等离子云频率对天线的谐振点产生的作用互补。根据等离云频率,如果选择各向异性介质的合适的介电常数,能够实现在特种通信应用环境的天线的谐振点动态可调。
     最后,提出了应用互补圆形切口环(CSRR)微扰结构在圆形或方形贴片的双模带通滤波器的设计方法,并给出了具体设计参量,适当调整CSRR结构的位置,它能起到一个模式分离器的作用,将简并模的两种谐振模场分离开来。而且,该结构有助于改善通带性能,提高频选特性,微调滤波器的中心频率。另一方面,馈线两带的刻痕宽度与长度的选择有助于调较大幅度地整滤波器的中心频率,这一特点在特种通信应用环境中有着广泛的应用。此外,该类滤波器具有体积小,结构紧凑、易与其它元器件集成等优点。
Special communication, widely different from business communication, highlight following characteristics:(1) higher transmitting power or larger power consumption, is tens or hundreds of that of business communication;(2) faster signal fading, and often last a longer time communication breakdown;(3) one or two of parties moving at a supersonic speed;(4) long distance com-munication, up to several thousand even tens of thousands of kilometres;(5) complicated technology of signal processing and extraction. Then, propagating environment equipped with one of communication characteristics above is so-called special communicaiton application environment. It's necessary to think over the critical tech of special communication such as selecting signal source of special communication application environments, improving special propa-gation environment to communication signals as much as possible and how to design and optimize miniaturization filters in special communication system. This article make a more thorough research mainly aiming at the antenna tech-nology of special communication application environments and critical tech of small-size filters. On the basis of EM theory and finite element method, the near field gain of special communication antenna and tunable gain of super-Gaussian beam, propagating properties of EM wave from microstrip antenna through special communication application environments, and the design and optimization of small-size filters are analyzed.
     Above all, the super-Gaussian distribution as a signal source of circular aperture antenna in special communication application environments is pro-posed. Combining with Huygens-Fresnel principle, the properties of radiation and gain in near field for different orders super-Gaussian beam distribution are discussed, and a closed-form solution is obtained, under the conditions of focusing and unfocusing. Moreover, the effects of different proportion of an- tenna radius and super-Gaussian beams on aperture efficiency, near field gains and radiation properties are analyzed, under the focusing cases. Simulation re-sults show the abilities of anti-fading from super-Gaussian beams are superior to those of Gaussian beams, so if switching to different order beams, the gains of antenna can be tune.
     Secondly, the principle and method on how to tune the resonant frequen-cy of microstrip antenna is proposed in special communication application environment——an anisotropic dielectric slab and a layer plasma. Depend-ing on SO-FDTD method, the impedance, the resonating frequency and the return loss of EM wave in special communication application environments are discussed, simulation results show the effect of dielectric constant of an anisotropic slab on antenna resonant frequency is counter to that of plasma fre-quency. So if selecting proper dielectric constant of an anisotropic slab resting on plasma frequency, the gains of antennas can be tuned in special communi-cation application environments.
     Lastly, the complement split ring resonator (CSRR) applying in dual mode filters on the circular or square patch are proposed, specific parameters are giv-en. Adjusting proper placement of CSRR structure, it can act as a splitter of modes, and sperate from two different resonant frequent modes. So, CSRR will help to improve bandpass performance, enhance abilities of frequency se-lecting and fine-tuning central frequency. On the other hand, selecting proper width and length lying in two sides of the feeding lines will substantially adjust central frequency of filters, it has a broad application in special communica-tion application environments. In addition, this kind of filter has a small size, compact and can be easily integrated with other elements.
引文
[1]杨建宏,牛忠霞,周东方等.大气击穿对高功率微波天线的影响[J].强激光与粒子束,2005,17:1223-1229.
    [2]M, Anderson D, Lisak M, et al. Breakdown induced distortion of high power microwave pulses in air [J]. Phys Fluids B,1991,12:3528-3531.
    [3]段耀勇,陈雨生.高功率微波脉冲大气击穿及其对能量传输的影响[J].微波学报,2000,3:260-264.
    [4]杨一明,袁成卫,钱宝良.喇叭有效口径渐变法测量高功率微波天线近场气体击穿[J].强激光与粒子束,2011,23:2698-2702.
    [5]邓扬建,林为干,赵愉深.聚焦口径轴向电磁能的研究[J].电子科技大学学报,1994,6:595-601.
    [6]高本庆,吴冠南.圆形阵天线近场、远场的简便计算方法[J].北京理工大学学报,2004,24:735-740.
    [7]田春明,王建国,陈雨生,et al.基于TEM喇叭的辐射波模拟器天线的近场特性[J].强激光粒子束,2004,16:641-646.
    [8]曹祥玉,高军,梁昌洪,et al.同轴双环多模喇叭收、发天线近场耦合特性分析[J].西安电子科技大学学报,2001,28:672-676.
    [9]李勇,张士选,张福顺等.高交叉极化鉴别度天线的近场测量[J].西安电子科技大学学报,2000,27:223-228.
    [10]曹金坤,周东方,牛忠霞等.重复频率高功率微波脉冲的大气击穿[J].强激光与粒子束,2006,1:115-118.
    [11]侯德亭,邹伟,周东方等.高功率微波在低电离层中传输特性分析[J].强激光与粒子束,2005,8:1239-1242.
    [12]余川,陈鑫,薛长江,et al.高斯分巾圆口径天线辐射近场分析[J].强激光与粒子束,2010,22:1315-1318.
    [13]Kizer G. Microwave antenna near field power estimation [C]. In 2010 Proceedings of the Fourth European Conference on Antennas and Propagation (EuCAP),2010:1-5.
    [14]Sten J C-E, Hujanen A. Aspects on the phase delay and phase velocity in the electromagnetic near-field [J]. Progress In Electromagnetics Research,2006,56:67-80.
    [15]Laybros S, Combes P F, Mametsa H J. The "very-near-field" region of equiphase radiating apertures [J]. IEEE antennas and propagation, magzine,2005,47:50-66.
    [16]高初,李刚.圆口径正馈抛物面天线的近场分析[J].电波科学学报,2009,24:467-471.
    [17]Singh K. Antenna near field intensity prediction [C]. In Proceedings of the International Conference on E—lectromagnetie Interference and Compatibility,1999:109-114.
    [18]Kim J J, Kesler 0 B. Performance analysis of radar antenna systems [J]. IEEE AES Systems Mag-azine,1999,6:38-42.
    [19]Narasimhan M S, R. Govind K. Front-to-back ratio of paraboloidal reflectors [J]. IEEE Trans. on Antennas and Propagation,1991,7:877-882.
    [20]Shafai L, KishkKISHK A A, Sebak A. Near field focusing of apertures and reflector antennas [C]. In Conference on Communications, Power and Computing Proceedings,1997:246-251.
    [21]Infante L, MACIS. Near-field Line-integral representation of the kirchhoff-type aperture radiation for a parabolic reflector [J]. IEEE Antennas and Wireless Propagation Letters,2003,2:273-276.
    [22]Sarkar T K, Taaghol A. Near-field to near or far-field transformation for arbitrary near-field geometry utilizing an equivalent electric current and MoM [J]. IEEE Trans, on Antennas and Propagation,1999, 3:566-573.
    [23]黄吉金,珊,剑.未来战场的革命性非致命武器-主动拒止系统浅析[J].微波学报,2010,S1:717-720.
    [24]Keidar M, Kim M, Boyd I D. Electromagnetic Reduction of Plasma Density During Atmospheric Reentry and Hypersonic Flights [J]. Journal of Spacecraft and Rockets,2008,45:445-453.
    [25]Hodara H. The Use of Magnetic Fields in the Elimination of the Reentry Radio Blackout [J]. Pro-ceedings of the IRE,1961,49:1825-1830.
    [26]Kim M, Keidar M, Boyd I D. Analysis of an Electromagnetic Mitigation Scheme for Reentry Telemetry Through Plasma [J]. Journal of Spacecraft and Rockets,2008,45:1223-1229.
    [27]Government Printing Office, Washington, D.C. "Columbia Accident Investigation Board Report" ,2003.
    [28]Rybak J P, Churchill R J. A Progress in Reentry Communications [J]. IEEE Transactions on Aerospace and Electronic Systems,1971,7:879-894.
    [29]Hartunian, Stewart R A, Curtiss G E, et al. Implications and Mitigation of Radio Frequency Blackout During Reentry of Reusable Launch Vehicles [J]. AIAA paper,2007,7:2007-6633.
    [30]Hartunian R A, Stewart G E, Fergason S D, et al. Causes and Mitigation of Radio Frequency (RF) Blackout During Reentry of Reusable Launch Vehicles [C]. In The Aerospace Corp., Rept. ATR-2007,2007:5309-1.
    [31]Starkey R, Lewis R, Jones C. ElectromagneticWave/Magnetoactive Plasma Sheath Interaction for Hypersonic Vehicle Telemetry Blackout Analysis [C]. In 34th AIAA Plasma dynamics and Lasers Conference,2003:2003-4167.
    [32]Kim M, Boyd ID. Modeling of Electromagnetic Manipulation of Plasmas for Communication Dur-ing Reentry Flight [J]. Journal of spacecraft and rockets,2010,47:29-35.
    [33]李建喷,吕娜,张冲.高超音速飞行器“黑障”解决方法[J].火力指挥与控制,2012,32155-160.
    [34]于哲峰,刘佳琪,任爱民等.磁窗天线增强等离子体鞘套透波特性研究[J].宇航学报,2011,32:1564-1569.
    [35]Rajkumar D, Rajarshi B, Niladri R. Reduction of attenuation of e.m wave inside plasma formed during supersonic or hypersonic re-entry of missile like flight vehicles by the application of D.C magnetic field-A technique for mitigation of RF Blackout [C]. In 2011 IEEE Applied Electromag-netics Conference (AEMC),2011:1-4.
    [36]Schweigert I V. Simulation of the Influence High Frequency (2 MHz) Capacitive Gas Discharge and Magnetic Field on the Plasma Sheath near a Surface in Hypersonic Gas Flow [J]. Journal of Experimental and Theoretical Physics,2012,115:350-355.
    [37]Shi L, Guo B L, Liu Y M, et al. Characteristic of plasma sheath channel and its effect on communi-cation [J]. Progress In Electromagnetics Research,2012,123:321-336.
    [38]Sullivan D M. Electromagnetic simulation using the FDTD method [M]. New York:IEEE Press, 2000.
    [39]夏新仁,尹成友,王光明.各向异性磁化等离子体的ZT-FDTD算法[J].微波学报,2009,25:20-25.
    [40]Sullivan D M. Z transform theory and the FDTD method [J]. IEEE Trans. on Antennas and propaga., 1996,44:28-34.
    [41]Luebbers R J, Hunsberger F. Kunz K S. A frequency-dependent finite-difference time-domain for-mulation for transient propagation in plasma [J]. IEEE Trans. Antennas Propag.,1991,1:29-34.
    [42]Luebbers R, Hunsberger F P, Kunz K S, et al. A frequency-dependent finite-difference time-domain formulation for dispersive materials [J]. IEEE Trans. Electromagn. Compat.,1990,32:222-227.
    [43]Xu L, Yuan N-C. JEC-FDTD for 2-D conducting cylinder coated by anisotropic magnetized plasma [J]. IEEE Microwave and Wireless Components Letters,2005,15:892-894.
    [44]Li X-S, Hu B-J. FDTD Analysis of a Magneto-Plasma Antenna With Uniform or Nonuniform Dis-tribution [J]. IEEE Microwave and Wireless Components Letters,2010,9:175-178.
    [45]Liu S, Zhong S, Liu S. FDTD Analysis of a Magneto-Plasma Antenna With Uniform or Nonuniform Distribution [J]. Journal of Systems Engineering and Electronics,2006,17:290-295.
    [46]Qian Z H, Chen R S. Fdtd analysis of microstrip patch antenna covered by plasma sheath [J]. PIER, 2005,52:173-183.
    [47]Liu J-F, Xi X-L, Wan G-B, et al. Simulation of Electromagnetic Wave Propagation Through Plas-ma Sheath Using the Moving-Window Finite-Difference Time-Domain Method [J]. IEEE Trans. on plasma science,2011,39:852-855.
    [48]Makimoto M, Yamashita S. Microwave Resonators and filters for Wireless communication [M]. New York:Springer-Verlag,2001.
    [49]Richtmeyer R. The Theory of Wave Filters with Applications (German) [J]. Elekrot,1915,3:315-332.
    [50]Matthaei G, Young L, Jones E. Microwave Filters, ImpedanceMatching Networks, and Coupling Structures [M]. Massachusetts:Artech House,1980.
    [51]Richtmeyer R D. Dielectric resonators [J]. J. Appl. Phys,1939,10:391-398.
    [52]Tsuzuki G, Suzuki M, Sakakibara N. Superconducting filter for IMT-2000 band [C]. In 2000 IEEE MTT-S International Microwave Symposium Digest,2000:669-672.
    [53]Lancaster M J. Passive Microwave Device Applications of High-temperature Superconductors [M]. Cambridge:Cambridge University Press,1997.
    [54]Shen Z-Y. High-temperature Superconducting Microwave Circuits [M]. Norwood:Artech House, 1994.
    [55]Braginski A I. Superconducting electronics coming to market [J]. IEEE Trans, on Applied Super-conductivity,1999,3:2825-2836.
    [56]Garvin G W, Munson R E, Ostwald L T, et al. Narrow-band superconducting hybrid filter for 100kW transmitter of X-band radar application [C]. In 2011 IEEE MTT-S International Microwave Sympo-sium Digest (MTT),2011:1-4.
    [57]Ying Z, Wei B, et al. An Ultra-Low Loss 2 B Reconfigurable Superconducting Filter at P-Band [J]. IEEE Microwave and Wireless Components Letters,2013,23:19-21.
    [58]Willemsen B. HTS filter subsystems for wireless telecommunications [J]. IEEE Transactions on Applied Superconductivity,2001,11:60-67.
    [59]Zhang Q, Li C, Wang Y, et al. A HTS Bandpass Filter for a Meteorological Radar System and Its Field Tests [J]. IEEE Transactions on Applied Superconductivity,2007,17:922-925.
    [60]Sekiya N, Matsuura H, Akiya M, et al. Novel HTS Double-Strip Resonator for High Power Appli-cation [J]. IEEE Transactions on Applied Superconductivity,2013,23:1500904.
    [61]Courreges S, Li Y, Zhao Z, et al. A Ka-Band Electronically Tunable Ferroelectric Filter [J]. IEEE Microwave and Wireless Components Letters,2009,19:356-358.
    [62]Patel J S. Electrically tunable ferroelectric liquid-crystal Fabry—Perot filter [J]. Optics Letters, 1992,17:456-458.
    [63]Hu J, Benjamin L, Kwang C, et al. A compact ferroelectric tunable bandpass filter with flexible fre-quency responses [C]. In 2012 IEEE International Conference on Wireless Information Technology and Systems (ICWITS),2012:1-4.
    [64]Shimizu K, Sugiyama T, Samaratunge M N L. Study of Air Pollution Control by Using Micro Plasma Filter [J]. IEEE Transactions on Industry Applications,2008,44:506-511.
    [65]Wu D, Fang N, Sun C, et al. Terahertz plasmonic high pass filter [J]. Applied Physics Letters,2003, 83:201-203.
    [66]Silber L. A 54-58 GHz tunable Ferrite filter [J]. IEEE Transactions on Magnetics.1985,17:1788-1790.
    [67]Yang G-M, Obi O, Wen G, et al. Design of Tunable Bandpass Filters With Ferrite Sandwich Materi-als by Using a Piezoelectric Transducer [J]. IEEE Transactions on Magnetics,2011,47:3732-3735.
    [68]Dussopt L, Rebeiz G. Intermodulation distortion and power handling in RF MEMS switches, var-actors and tunable filters [J]. IEEE Transactions on Microwave Theory and Techniques,2003,51: 1247-1256.
    [69]Entesari K, Rebeiz G. A differential 4-bit 6.5-10-GHz RF MEMS tunable filter [J]. IEEE Transac-tions on Microwave Theory and Techniques,2005,53:1103-1110.
    [70]Zareie H, Rebeiz G. High-Power RF MEMS Switched Capacitors Using a Thick Metal Process [J]. IEEE Transactions on Microwave Theory and Techniques,2013,61:455-463.
    [71]Schindler M, Tajima Y. A novel MMIC active filter with lumped and transversal elements [J]. IEEE Transactions on Microwave Theory and Techniques,1989,37:2148-2153.
    [72]Chao S-F.42 GHz MMIC SPDT bandpass filter-integrated switch using HEMT loaded coupled lines [J]. Electronics Letters,2012,48:505-506.
    [73]Sulaiman A A, Awang Z. Development of LTCC-based super-compact multi-layered CRLH trans-mission lines and broadband applications [C]. In 2004 RFM RF and Microwave Conference,2004: 56-59.
    [74]Yeung L K, Wu K-L. A compact second-order LTCC bandpass filter with two finite transmission zeros [J]. IEEE Transactions on Microwave Theory and Techniques,2003,51:337-341.
    [75]Tsai C-L, Lin Y-S. Analysis and Design of New Single-to-Balanced Multicoupled Line Bandpass Filters Using Low-Temperature Co-Fired Ceramic Technology [J]. IEEE Transactions on Microwave Theory and Techniques,2008,56:2902-2912.
    [76]Horii Y. Development of LTCC-based super-compact multi-layered CRLH transmission lines and broadband applications [C]. In 2012 Asia-Pacific Symposium on Electromagnetic Compatibility (APEMC),2012:149-152.
    [77]Cohn S B. Computer-aided network optimization the state-of-art [C]. In Proceedings of IEEE,1967: 1832-1867.
    [78]Young L. Direct-coupled cavity filters for wide and narrow bandwidths [J]. IEEE Trans, on Mi-crowave Theory and Techniques,1963,11:162-178.
    [79]Levy R. Theory of Direct-coupled cavity filters [J]. IEEE Trans, on Microwave Theory and Tech-niques,1967,15:340-348.
    [80]Scanlan S, Rhodes J. Microwave networks with constant delay [J]. IEEE Trans, on Circuit and Systems,1967,14:280-297.
    [81]HJOrehard. Filter design by iterrated analysis [J]. IEEE Trans, on Circuit and Systems,1985,32: 1089-1096.
    [82]Atia A E, Williams A E, Newcomb R W. Narrow-band multiple-coupled cavity synthesis [J]. IEEE Trans, on Circuit and Systems,1974,21:649-655.
    [83]Cameron R J. Advanced coupling matrix synthesis techniques for microwave filter [J]. IEEE Trans, on Microwave Theory and Techniques,2003,51:1-10.
    [84]Amari S. Synthesis of cross-coupled resonator filters using an analytical gradient-based optimiza-tion technique [J]. IEEE Trans, on Microwave Theory and Techniques,2000,48:1559-1564.
    [85]Amari S, Rosenberg U, Bornemann J. Adaptive synthesis and design of resonator filters with source/load-multi resonator coupling [J]. IEEE Trans. on Microwave Theory and Techniques,2002, 50:1969-1978.
    [86]吴万春,甘本祓.现代微波滤波器的结构与设计[M].北京:科学出版社,1973.
    [87]林为干.微波网络[M].北京:国防工业出版社,1978.
    [88]李嗣范.微波原理与设计[M].北京:人民邮电出版社,1982.
    [89]李奇.无线通信中微带滤波器的研究与设计[D].西安:西安电子科技大学,2011.
    [90]陈付昌.新型平面多频带滤波器研究[D].广州:华南理工大学,2010.
    [91]Mansour R. Filter technologies for wireless base stations [J]. IEEE Microwave Magazine,2004,5: 68-74.
    [92]森荣二(日).LC滤波器设计与制作[M].北京:科学出版社,2006.
    [93]Wong K-Y, Tam W-Y. Analysis of the Frequency Response of SAW Filters Using Finite-Difference Time-Domain Method [J]. IEEE rans. Microwave Theory Tech.,2005,53:3364-3370.
    [94]徐鸿飞,朱成枉,刘坚,et al.同轴腔带通滤波器的一种设计方法[J].微波学报,2004,20:5-8.
    [95]Thomas J B. Cross-coupling in coaxial cavity filters-a tutorial overview [J]. IEEE Trans.on Mi-crowave Theory and Techniques,2003,51:1368-1376.
    [96]Panaitov G I, Ott R, Klein N. Dielectric resonator with discrete electromechanical frequency tuning [J]. IEEE Trans, on Microwave Theory and Techniques,2005,53:1-7.
    [97]Kwok R, Fiedziuszko S. Dual-mode helical resonators [J]. IEEE Trans. on Microwave Theory and Techniques,2000,48:474-477.
    [98]Bernd G, Rudolf R, Alexander S. Signals and Systems [M]. New Jersey:John Wiley & Sons Inc, 2001.
    [99]Gbur G, Visser T D, Wolf E. Anomalous Behavior of Spectra near Phase Singularities of Focused Waves [J]. Phys. Rev. Lett.,2002,88:1-4.
    [100]Jana S, Konar S. Tunable spectral switching in the far field with a chirped cosh-Gaussian pulse [J]. Optics Communication,2006,267:24-31.
    [101]Gbur G, Visser T D, Wolf E. Singular behavior of the spectrum in the neighborhood of focus [J]. J. Opt. Soc. Am. A,2002,19:1694-1700.
    [102]Popescu G, Doariu A. Spectral Anomalies at Wave-Front Dislocations [J]. Phys. Rev. Lett.,2002, 88:1-4.
    [103]Jana S, Konar S. Far-field spectral behaviour and spectral switching of super-Gaussian pulses [J]. Opt. commun.,2008,281:4829-4834.
    [104]Zhang H, Wu G H, Guo H. Spectral anomalies of focused hollow Gaussian beams at the geomet-rical focal plane [J]. Opt. commun.,2008,281:4169-4172.
    [105]Wu G, Lou Q, Zhou J. Analytical vectorial structure of hollow Gaussian beams in the far field [J]. Phys. Rev. Lett.,2002,88:6417-6424.
    [106]Brown W C, Eves E E. Beamed microwave power transmission and its application to space [J]. IEEE Trans, on Microwave Theory and Technique,1992,40:1239-1250.
    [107]Neilson J, Read M, Ives L. Design of a permanent magnet gyrotron for active denial systems [C]. In 34th International Conference Infrared Millimeter Terahertz Waves (IRMMW-THz),2009:1-2.
    [108]Parent A, Morin M, Lavigne P. Propagation of super-Gaussian field distributions [J]. Optical and Quantum electronics,2008,24:1071-1079.
    [109]Grbicand A, Merlin R. Near-Field Focusing Plates and Their Design [J]. IEEE Trans, on Antennas and Propag.,2008,56:3159-3165.
    [110]Choi W, Kim J S, Bae J H, et al. Near-field antenna for a radio frequency identification shelf in the uhf band [J]. IET Microwaves, Antennas and Propagation,2010,4:1538-1542.
    [111]Mote R G, Yu S F, Ng B K, et al. Near-field focusing properties of zone plates in visible regime-New insights [J]. Opt. Express,2008,16:9554-9564.
    [112]Gordon R. Proposal for Superfocusing at Visible Wavelengths Using Radiationless Interference of a Plasmonic Array [J]. Phys. Rev. Lett.,2009,102:1-4.
    [113]Infanteand L, Maci S. Near-field line-integral representation of the Kirchhoff-type aperture radia-tion for a parabolic reflector [J]. IEEE Antennas and Wireless Propagation Letter,2003,2:273-276.
    [114]Singh K. Antenna near field intensity prediction [C]. In Proceeding of the International Conference on Electromagnetic Interference and Compatibility,1999:109-114.
    [115]Taaghol A, Sarkar K. Near-field to near/far-field transformation for arbitrary near-field geometry, utilizing an equivalent magnetic current [J]. IEEE Trans. Electromagnetic Compatibility,1996,38: 536-541.
    [116]Sarka T K, Taaghol A. Near-field to near/far-field transformation for arbitrary near-field geometry utilizing an equivalent electric current and MoM [J]. IEEE Trans. Antennas and Propag.,1992,47: 566-573.
    [117]Padman R, Murphy J A, Hills R. Gaussian mode analysis of Cassegrain antenna efficiency [J]. IEEE Trans. Antennas and Propag.,1987,35:1093-1103.
    [118]Mao H, Zhao D. Different models for a hard-aperture function and corresponding approximate analytical propagation equations of a Gaussian beam through an apertured optical system [J]. J. Opt. Soc. Am. A,2005,22:647-653.
    [119]Deng D M, Guo Q. Elegant Hermite-Laguerre-Gaussian beams [J]. Opt. Lett.,2008,33:1225-1227.
    [120]Ding C, Pan L, Lu B D. Phase singularities and spectral changes of spectrally partially coherent higher-order Bessel-Gauss pulsed beams [J]. J. Opt. Soc. Am. A,2009,26:2654-2661.
    [121]Wei M D. Beam duality with application to generalized Bessel-Gaussian, and Hermite-and Laguerre-Gaussian beams [J]. Opt. Express,2009,17:3690-3697.
    [122]Wei M D. Generation of bottle beam by focusing a super-Gaussian beam using a lens and an axicon [J]. Opt. Commu.,2007,277:19-27.
    [123]Belanger P A, Lachance R L, Pare C. Super-Gaussian output from a CO2 laser by using a graded-phase mirror resonator [J]. Opt. Lett.,1992,17:739-741.
    [124]Neste R V, Pare C, Lachance R L, et al. Graded-phase mirror resonator with a super-Gaussian output in a CW-C02 laser [J]. IEEE Journal of Quatumn Electronics,1994,30:2663-2669.
    [125]Silvestri S D, Laporta P, MAGNI V, et al. Solid-state laser unstable resonators with tapered re-flectivity mirrors:the super-Gaussian approach [J]. IEEE Journal of Quatumn Electronics,1998,24: 1172-1177.
    [126]Silver S. Mircorawave antenna theory and design [M]. New York:McGraw-Hill,1949.
    [127]Milligan T A. Modern antenna design, Second edition [M]. New Jersey:John Wiley & Sons,2005.
    [128]Hodara H. The Use of Magnetic fields in the elimination of the re-entry radio blackout [C]. In Proceedings OF IRE,1961:1825-1830.
    [129]Hu B J, Wang G. Numerical simulation of the fundamental mode of a magnetoplasma rod sur-rounded by a lossless dielectric layer [J]. IEEE Trans. Plasma Sci.,2001,29:1-7.
    [130]Shi L, Liu Y, Guo B, et al. Research on Phase Shift Characteristics of Radio Propagate Through Plasma Sheath [C]. In 2010 9th International Symposium on Antennas Propagation and EM Theory (ISAPE),2010:387-390.
    [131]Zhu X Q, Ge D B, Wu Y. FDTD analysis of radiation from monopole antenna with plasma coating [C]. In 6th International Symposium on Antennas Propagation and EM Theory Proceedings,2003: 42-45.
    [132]Minkwan K, Gulhan A. Plasma manipulation using a MHD-based device for a communication blackout in hypersonic flights [C]. In 2011 5th International Conference on Recent Advances in Space Technologies (RAST),2011:412-417.
    [133]Savino R, Paterna D, et al. Plasma-Radiofrequency Interactions Around Atmospheric Re-Entry Vehicles:Modelling and Arc-Jet Simulation [J]. The Open Aerospace Engineering Journal,2010,3: 76-85.
    [134]Rayner J P, Whichello A P, DCheetham A. Physical characteristics of plasma antennas [J]. IEEE Trans, on Plasma Science,2004,3:269-281.
    [135]Cerri G, De L R, Primiani V M, et al. Measurement of the properties of a plasma column used as a radiated element [J]. IEEE Trans, on IMT,2008,57:242-247.
    [136]Minkwan K, Gulhan A. Two-dimensional Model of an Electromagnetic Layer for the Mitigation of Communications Blackout [C]. In 47th AIAA Aerospace Sciences Meeting including The New Horizons Forum and Aerospace Exposition,2009:092407.
    [137]Xian X R, Yin C Y. Propagation properties of laser plasma channel antenna in finite magnetic field [J]. High Power Laser Particle Beams(in Chinese),2010,22:2115-2118.
    [138]Garvin G W, Munson R E, Ostwald L T, et al. Low profile electrically small missile base mounted microstrip antennas [C]. In Dig. Znt. Symp. Antennas Propagat Soc.,1975:244-247.
    [139]Carver K R, WMink J. Microstrip Antenna Technology [J]. IEEE Trans, on Antennas and Prop., 1981,1:2-24.
    [140]Bahl I J, Bhartia P, Stuchly S S. Design of microstrip antennas covered with a dielectric layer [J]. IEEE Trans, on Antennas and Propa.,1982,2:314-318.
    [141]Kashiwa T, Yoshida N, Fukai I. Time domain analysis of patch antennas in a magnetized plasma by the spatial network method [J]. IEEE Trans, on Antennas and Propa.,1991,2:147-150.
    [142]葛德彪,吴跃丽,朱湘琴.等离子体散射FDTD分析的移位算子方法[J].电波科学学报,2003,18:359-362.
    [143]杨宏伟,袁洪,陈如山,et al.各向异性磁化等离子体的SO-FDTD算法[J].物理学报,2007,25:20-25.
    [144]刘少斌,刘崧,洪伟.色散介质时域有限差分方法[M].北京:科学出版社,2010.
    [145]金兹堡.电磁波在等离子中的传播[M].北京:科学出版社,1978.
    [146]张克潜,李德杰.微波与光电子学中的电磁理论(第二版)[M].北京:电子工业出版社,2002.
    [147]Yuan C X, Zhou Z X, Sun H G. Refection properties of electromagnetic wave in a bounded plasma slab [J]. IEEE Transactions on Plasma Science,2010,38:3348-3355.
    [148]Ma L X, Zhang H, Zhang C X. Analysis on the refection characteristic of electromagnetic wave incidence in closed nonmagnetic plasma [J]. Journal of Electromagnetic Waves and Applications, 2008,22:2285-2296.
    [149]Nishimoto M, Ikuno H. Time-frequency analysis of electromagnetic pulse response from a one-dimensional plasma medium [J]. Journal of Electromagnetic Waves and Applications,2004,18:181-196.
    [150]Chaudhury B, Chaturvedi S. Comparison of wave propagation studies in plasmas using three-dimensional finite-difference time-domain and ray-tracing methods [J]. Physics of Plasmas,2006, 13:123302.
    [151]Yuan C X, Zhou Z, Xiang X L, et al. Propagation of broadband terahertz pulses through a dense-magnetized-collisional-bounded plasma layer [J]. Physics of Plasmas,2010,17:113304.
    [152]Young J L. A Higher Order FDTD Method for EM Propagation in a Collisionless Cold Plasma [J]. IEEE Trans, on Antennas and propaga.,1996,44:1283-1289.
    [153]Ginzburg V L. he Propagation of Electromagnetic Wave in Plasmas [M]. New York:Pergamon, 1970.
    [154]Milligan T A. Modern Antenna Design (2nd ed.) [M]. Wiley and Sons,2005.
    [155]Hsieh L, Chang K. Dual-mode microstrip bandpass filter using circular patch resonators with two transmission zeros [J]. Electron Lett,2000,36:2022-2023.
    [156]Li J, Chen JX, Wang J P. et al. Dual-mode microstrip bandpass filter using circular patch resonators with two transmission zeros [J]. Microwave Opt Technol Lett,2005,46:28-30.
    [157]Sung Y. Compact and low insertion loss dual-mode bandpass filter [J]. Microwave Opt Technol Lett,2008,50:3201-3206.
    [158]Sung Y, Kim B Y, Ahn C S, et al. Compact and low insertion loss dual-mode bandpass filter [J]. Microwave Opt Technol Lett,2004,43:33-34.
    [159]Akgun O, Tezekici B, Gorur A. Reduced-size dual-mode slotted patch resonator for low-loss and narrowband bandpass filter applications [J]. Electron Lett.,2004,40:1275-1277.
    [160]Wheeler H A. Transmission line properties of parallel strips separated by a dielectric sheet [J]. IEEE Trans. MTT,1965,13:172-185.
    [161]Wheeler H A. Transmission line properties of a strip on a dielectric sheet on a plane [J]. IEEE Trans. MTT,1977,25:631-647.
    [162]谢处方,饶克谨.电磁场与电磁波[M].北京:高等教育出版社,2006.
    [163]Pozar D M. Microwave Engineering [M]. New York:Wiley,2004.
    [164]Hong J, Lancaster M. Microstrip filters for RF/microwave application [M]. New York:John Wiley & Sons,2001.
    [165]Pendry J, Holden A, Stewart W, et al. Low frequency plasmons in thin wire structures [J]. J Phys Condens Matter,1998,10:4785-4809.
    [166]Pendry J, Holden A, Robbins D, et al. Magne-tism from conductors and enhanced nonlinear phe-nomena [J]. IEEE Trans Microwave Theory Tech,1999,47:2075-2084.
    [167]Smith D, Padilla W, Vier D, et al. Magne-tism from conductors and enhanced nonlinear phenomena [J]. IEEE Trans Microwave Theory Tech,2000,84:4184-4187.
    [168]Fu S H, Tong C, Li X, et al. Novel dual-mode square patch bandpass filter using slot-type SRR perturbation for mode splitting [J]. Microwave Opt Technol Lett,2011,53:1703-1706.
    [169]Martel J, Bonache J, e's R M, et al. Design of wide-band semi-lumped bandpass filters using open split ring resonators [J]. IEEE Trans Microwave Theory Tech,2007,17:28-30.
    [170]Tseng J, Chang W. Planar rectangular split ring shape band-pass structures [J]. Microwave Opt Technol Lett,2007,49:2520-2523.
    [171]Bonache J, Gil I, Garcia-Garcia J, et al. Novel microstrip bandpass filters based on complementary split-ring resonators [J]. IEEE Trans Microwave Theory Tech,2006,54:265-271.
    [172]Baena J D, Bonache J, Martin F, et al. Equivalent-Circuit Models for Split-Ring Resonators and Complementary Split-Ring Resonators Coupled to Planar Transmission Lines [J]. IEEE Trans. Mi-crowave Theory Tech,2005,53:1451-1461.
    [173]Li C, Liu K Y, Li F. Design of microstrip highpass filters with complementary split ring resonators [J]. Electronics lett.,2007,43:35-36.
    [174]Hu X, Zhang Q, Lin Z, et al. Equivalent circuit of complement split-ring resonator loaded trans-mission line [J]. Microwave and Optical Technology Lett.,2009,51:2432-2434.
    [175]Kim K-T, Ko J-H, Choi K, et al. Optimum Design of Wideband Bandpass Filter With CSRR-Loaded Transmission Line Using Evolution Strategy [J]. IEEE Transactions on Magnetics,2012,48: 811-814.
    [176]Wu G L, Mu W, Dai X W, et al. Design of novel dual-band bandpass filter with microstrip meander-loop resonator and CSRR DGS [J]. Progress in Electromagnetic Research,2008,78:17-24.
    [177]梁昆淼.数学物理方法(第四版)[M].北京:高等教育出版社,2010.
    [178]喇东升.无线通信设备中微带滤波器的结构和性能研究[D].北京:北京邮电大学,2011.
    [179]钱伟长.变分法及有限元(上册)[M].北京:科学出版社,1980.
    [180]盛剑霓.工程电磁场数值分析[M].西安:西安交大出版社,1989.
    [181]吕英华.计算电磁学的数值方法[M].北京:清华大学出版社,2006.
    [182]曾余庆.电磁场的有限单元法[M].西安:西安交大出版社,1991.
    [183]谢拥军Ansoft HFSS基础及应用[M].西安:西安电子科技大学出版社,2007.
    [184]Martel J, Marques R, Falcone F, et al. A new LC series element for compact bandpass filter design [J]. IEEE Microwave Wireless Compon Lett,2004,14:210-221.
    [185]Frickey D A. Conversions between S, Z, Y, H, ABCD, and T parameters which are valid for com-plex source and load impedances [J]. IEEE Trans Microwave Theory Tech,1994,42:205-211.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700