用户名: 密码: 验证码:
当归芍药散对牙移动导致大鼠疼痛和空间学习记忆改变的作用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
临床正畸过程口颌面区域痛疼引起的不适是正畸医生最常见问题之一,疼痛在正畸弓丝初次加力后随即出现,疼痛加力后持续约3-5天后逐渐缓解,正畸牙移动后疼痛发生率达91%。
     既往研究表明,牙齿移动是由正畸矫治力累及牙周组织所致炎性疼痛且与SP, CGRP,EAAs等炎性因子,神经递质等密切相关,但是牙移动所致疼痛发生机制并不是很清楚。c-fos是一种重要的早期即刻表达癌基因,被称为第三信使,它能通过调节神经细胞膜上受体与核内的相应靶基因相联系来参与疼痛病理过程,动物实验表明牙齿移动后c-fos参与了中枢神经系统(CNS)神经元的可塑性变化,大量的实验证据证明胶质细胞(星形胶质细胞和小胶质细胞)也在CNS病理性疼痛产生与发过程中起重要作用。三叉神经脊束核(Sp)是口颌面部伤害性刺激向中枢传导的重要门户,而三叉神经脊束核尾侧亚核(SpVc)是口颌面部参与伤害性刺激传导的重要部位,因此,我们以实验性牙移动为模型,检测大鼠SpVc神经元可塑性变化和胶质细胞形态学改变,进一步了解神经元和胶质细胞的相互作用,有助于阐明正畸疼痛的发病机制。
     另外,痛的感觉分辨成分和痛的情绪体验成分两重含义说明了痛觉的多维性和复杂性,相关文献表明,在疼痛发生进程中,伴随有厌恶、焦虑等负面情绪的产生,而且疼痛和焦虑应急反应往往具有共病性,患疼痛的病人易患焦虑症,焦虑症患者的慢性疼痛发病率也会显著增加。追述文献得知,焦虑、抑郁等情绪反应等和动物主体空间学习记忆等认知能力密切相关,我们知道海马是学习和记忆过程中的易感脑区,那么,大鼠实验性牙移动是否能够引起其相关学习记忆认知障碍?本实验拟首次通过动物实验,观察初次牙移动过程中疼痛产生是否会引起大鼠焦虑情绪应激变化,这种焦虑状态是否会引起大鼠海马区空间学习、记忆等认知功能的改变?
     传统的中草药当归芍药散(DSS),最早记载于“金匮药略”药典,最新文献指出当归芍药散具有回复大脑多巴胺和增强机体免疫力以及增强认知和抵抗衰老等作用,然而当归芍药散是否有预防治疗正畸牙移动后口颌面部疼痛作用没有文献提及。本实验拟通过建立实验性牙移动模型,观察DSS对大鼠疼痛行为学变化以及在SpVc对胶质细胞,神经元,在海马区对胶质细胞形态表达变化的影响,期待为缓解临床正畸治疗牙移动后引起的疼痛,改善因疼痛可能导致的大鼠急性情绪应激行为,空间学习记忆改变提供动物实验依据。
     第一部分:DSS对实验性牙移动大鼠SpVc内fos, ibal和GFAP的表达变化的影响
     目的:使用实验性牙移动模型,首次采用检测大鼠牙移动后单位时间空口咀嚼和行为学指标,结合荧光免疫组化,west-blot等形态学方法观察SpVc区域c-fos和iba-1, GFAP表达的变化,进一步通过实验前,实验中胃灌服DSS,检测其对牙齿移动过程中疼痛的调节作用。
     方法:使用改良Colin.K法,用镍钛丝60g力交互牵引大鼠上颌前后牙建立大鼠牙移动模型;实验分为空白对照,对照组,牙齿移动组和用药组;分别检测在牙移动后4h,12h,1d,3d,5d,7d时间点大鼠行为学改变,SpVc内fos和iba-1, GFAP形态及蛋白表达的变化,以及用药组实验前5天胃灌注DSS汤剂,150mg/Kg,2/日,和牙移动组对比,检测SpVc上述指标的变化。
     结果:1.大鼠牙移动后4h空口咀嚼时间开始增加,1d达到峰值,随后缓慢下降至7d时间对照组间比较变化不明显,和传统观测直接梳理面部行为学变化趋势一致,DSS处理组和牙移动组比较,大鼠单位空口咀嚼时间和直接擦拭嘴时间改变减少,呈显著性差异。
     2.和对照组比较,牙移动4hSpVc Fos-LI数量明显增加,牙移动侧较对侧间差异明显,Votm区域较对照组增加不明显,牙移动后1dFos-LI数量呈减少趋势;牙齿移动后后4h,SpVc浅层iba-1免疫阳性细胞开始表达,大鼠牙齿移动后1d, iba-1免疫阳性细胞表达明显增加,达峰值。免疫染色加深,胞体变大,形态清晰丰满,并且分布区域向SpVc较深层趋向,3d后SpVc区域iba-1免疫阳性细胞较1d表达有所减弱,7d恢复到正常;牙齿移动后4h,SpVc内GFAP免疫阳性细胞有少量表达,GFAP染色浅,分支少而短,数目较少,牙齿移动后Id,GFAP免疫阳性细胞有少量表达可见GFAP染色加深,3d GFAP染色加深明显,分支增多,数目增加,对侧有少量表达,牙齿移动后7d GFAP染色到达峰值且向SpVc深层移动,在牙移动14d染色减弱,数量减少。
     3.DSS处理组牙齿移动后1d SpVc区域仅有少量Fos-LI表达,和实验组比较有显著差异,Western Blot检测在实验组SpVciba1蛋白总量表达较对照组明显增加,浅染深,胞体较大;DSS处理组牙齿移动后1d SpVc区域仅有少量iba1阳性细胞表达,小胶质细胞表达较少,浅染,胞体较小,与对照组相比无明显统计学差异。
     结论:1.牙齿移动后空口咀嚼时间变化规律能够作为大鼠口颌面部疼痛行为学反应之一,应用到动物牙齿移动后疼痛基础研究中。
     2.大鼠实验性后牙移动后不同时间点可以引起SpVc Fos-LI,相关性表达,和上述行为学变化密切相关。
     3.大鼠实验性牙齿移动引起的局部疼痛激活SpVc小胶质细胞和星型胶质细胞的不同步增殖活化,验证了小胶质细胞的活化出现在炎性疼痛的起始阶段,星型胶质细胞在疼痛的发展和持续阶段有很强的活化反应。
     4.DSS可以通过弱化牙齿移动后大鼠SpVc神经元和胶质细胞的激活反应,起到调节大鼠牙齿移动后自发痛行为作用,为临床治疗正畸牙移动后的疼痛不适提供了动物实验依据。
     第二部分:DSS对实验性牙移动导致大鼠海马空间学习记忆改变的影响
     目的:观察实验性牙移动疼痛不适能否引起大鼠焦虑等急性应激行为的改变,因为情绪应激反应等和动物主体空间学习记忆等认知能力密切相关,进一步通过行为,形态学方法检测牙移动是否能够引起大鼠学习记忆认知障碍,通过和上述实验相同DSS药物干预,了解DSS对实验行后大鼠空间学习记忆的影响。
     方法:使用上述相同方法建立大鼠牙移动模型;实验分为对照组,牙齿移动组和DSS用药组;使用旷场实验,高架十字迷宫分别检测在牙移动后4h,12h,1,3,5,7d时间点大鼠焦虑情绪行为学改变;使用Morris水迷宫检测大鼠牙移动后和空间学习记忆行为学改变;检测和牙移动组相比较,DSS组上述行为学变化,同时使用荧光免疫组化,westen-blot和DII方法检测牙移动后7d时间点不同实验组大鼠海马区胶质细胞形态学变化及神经元椎体细胞可塑性改变。
     结果:1.牙齿移动4h后,牙移动组与对照组比较,旷场内移动平均速度、中央活动时间、中央活动路程比率减少,牙齿移动1d上述旷场实验数据值明显达到峰值,牙齿移动7天组,两组上述数值没有明显统计学差异;牙移动4h后,高架十字迷宫实验组开放臂时间百分比减少明显,和对照组相比较,有统计学差异,牙移动1d后,开放臂时间百分比、开放臂次数明显减少,和对照组比较有统计学差异,而后随牙齿移动后时间变化实验组数值逐渐增加,牙齿移动7天组,处理组间上述数值没有明显统计学差异。
     2. Morris水迷宫牙齿移动1d测试结果显示:牙移动组逃避潜伏期较对照组时间变短;牙齿移动后3d对照组,DSS用药组较牙齿移动组逃避潜伏期比较时间明显变短;牙移动5d后测试上述结果组间比较差异最明显。水迷宫第五天空间学习记忆实验结果显示:牙移动实验组大鼠穿越平台次数和平台所在象限tP/tT比值时明显低于实验对照的数值,在DSS用药组和牙移动组上述数值增加明显,差异显著。
     3.在对照组及DSS+牙移动7d中,海马出现少量GFAP阳性星形胶质细胞;牙齿移动7d组大鼠海马GFAP阳性细胞数目明显增加,而牙移动实验前预先灌服DSS组大鼠海马星形胶质细胞的活性明显被抑制;Western-blot检测GFAP含量(荧光强度值)结果显示,与对照组比较,牙移动组GFAP表达明显增强,而DSS用药组GFAP的表达与实验组相比明显减少,DSS用药组与对照组的GFAP比较没有显著性差异。
     4.DiI染色结果提示,牙齿移动组与对照组比较在总的神经树突棘密度上明显降低,具体表现为成熟型树突棘直径变短,密度明显减低,DSS用药组树突棘密度与实验对照组无明显差异,而杆状树突棘密度明显比牙移动组高。
     结论:1.牙移动后因疼痛加重大鼠情绪障碍,导致大鼠急性焦虑应激反应。
     2.牙齿移动后情绪反应进一步引起大鼠学习记忆认知障碍,DSS能够明显改善大鼠因牙齿移动导致的学习记忆能力的弱化。
     3.大鼠牙移动后海马神经元突触可塑性的改变与学习记忆可能存在明显的相互作用关系,而且可能与DSS作用于星形胶质细胞有关。
The pain and discomfort caused byorthodontic treatment have been considered as tough problems in orthodontic practice.Pain is almost inevitable and the most unpleasant reaction for the orthodontic patient. It begins a few hours after the application of an orthodontic force, lasts for3-5days approximately. Pain is a determinating variable of adherence to orthodontic treatment because the idea of having a painful experience discourages many patients from such treatment.
     Previous research demonstrated that orthodontic pain was caused by a process of edema, ischemia, inflammation in periodontal ligament, which may lead to the release of nociceptive mediators such as SP, CGRP resulting in neuronal activation. However, the current available analgesics could not relieve all the orthodontic pain, largely because the underlying mechanisms for orthodontic pain are far from being revealed. Previous experiments shown that tooth movement can stimulated the Fos protein expression in spinal trigeminal subnucleus caudalis (SpVc), one of the important relay nuclei for processing the nocicetptive information from the orofacial region.recently researches shown that glia, including astrocyte and microglia, play an important role in the initial induction and maintenance of chronic pain in the central neural system (CNS).Several inflammation animal model show oro-facial stimulus can Current pain theory has been shifted from a pure neuronal to contribution to neuronal-glia interaction.Can tooth movement stimulate neuronal-glia interaction involving neuron, microglia and astrocytein SpVc? If so, it will provide an new explanation for the orthodontic pain.
     Chronic pain and anxiety are prevalent and frequently co-occur,several studies have assessed the impact of pain on anxiety outcomes, there is substantial literatures on the effects of anxiety and learning and memoryfrom behavioral and pharmacologic perspectives. Our purpose was to examine the association between experimental tooth movement (ETM) and anxiety.if so, can anxiety evoked by ETM functional impair the spacial learning and memory inhippocampusof rat?
     Danggui-Shaoyao-San (DSS) is a traditional herbal medicine. It is first recorded in "JinKuiYaoLue".Recentexperiment evidence showed that DSS possesses antioxidative, cognitive enhancing and antidepressant effects. Further study suggested that the effect of DSS is related with the reversion of brain noradrenaline concentrations under depressive conditions. However, the potential analgesic effect of DSS and its underlying mechanism have not been investigated. One shared effect for first line antidepressant is analgesia for different pain modalities, eg duloxetine is efficacious for both severe depression and pain. Thus we hypothesized that DSS also possesses analgesic effect for orthodontic pain. Since glia system is involved in both depressionand pain, the potential analgesic mechanismsforantidepressant is inhibiting the interaction between neuron and glia. Thus we raised the hypothesis that DSS also possesses analgesic effect for orthodontic pain, and the possible analgesic mechanism for DSS is inhibiting the interaction between neuron and glia in SpVc.
     1. Effects of Danggui-Shaoyao-san on the expression of Fos, iba1and GFAPin SpVc after ETM in rat
     Objective:To observe spatial and temporal distribution of Fos protein and actived glia, including microglia and astrocytein SpVc duing ETM and its underlying neuron-glia interaction mechanisms for DSS's analgesia on orthodontic pain.
     Methods:Rats were randomly divided into naive,sham,ETM, DSS plus ETM (DETM) groups, rats were pregavaged with DSS in the DETM groups. The right upper-first-molar was moved mesially described by Colin K.for rats in ETM and DETM groups, vacuous chewing movements (VCM) were evaluated at4h,12h,1,3,5and7d after operation. Immunofluorescent histochemistry analysis were used to quantify the Iba-1,GFAP and Fos expression levels in SpVc.Based on the behavioral feature and Fos or Iba-1expression data, the Iba-1and Fos expression of west-blot were only investigated at1d after operation in DETM group.
     Results:1.The duration of VCM per unit-time was found significantly increased at4h in ETM group, peaked1d, and then decreased continuously until7d as compared with the sham group. The duration of VCM per unit-time in DETM group was expectedly lower than ETM group. However, a drastic peak increase of Vc Fos expression was observed at4h and gradually decreased after7d; while the increased Iba-1level reached the peak at1d after operation and gradually decreased after7days and GFAP reached the peak at7d after operation and gradually decreased. Furthermore, treatment with DSS significantly attenuated the ETM induced spontaneous pain. In parallel with the behavioral observations, pretreatment with DSS (for5days) significantly attenuated the Fos and Iba-1levels at1d after ETM operation.
     Conclusions:1.change of VCM can be a reliable measure for tooth-movement pain in rats, which could be widely used in investigating the orthodontic pain mechanism.2.0ur data suggested that treatment with DSS has significant analgesic effects for ETM induced pain, which is accompanied with inhibition on both neuronal and microglial activation. The present study offered evidence that the traditional Chinese medicine DSS has analgesic effects via inhibiting microglia and neuronal activation at the primary integration site of orofacial nociceptive information, SpVc.
     2. Effects of Danggui-Shaoyao-san on the influence of spacial learning and memory evocked by experimental tooth movement
     Objective:To investigate methods the relationship betweenpainand anxietyduring ETM in ratscombined methods including behavioral testing, molecular neurobiology and morphology, we investigated the underlying mechanisms of astrocytes invloved in the impairment of learning and memory evoked by ETM, and the effects of DSS on synaptic plasticity in hippocampus and its possible therapeutic mechanisms.
     Methods:The level of anxiety behavior were measured by the open field test and elevated plus maze test;Morris water maze testwas performed to test the change of learn and memory in the ETM rats with or without DSS administration; Iimmunofluorescent histochemistry was used to detect the expressions of astrocytic GFAP in hippocampus; immunofiuorescent Western blot was performed to observe the change of astrocytic GFAP in hippocampus; Dil staining method was performed to test the density of spines with3D analyzing method and detailed changes in hippocampus in the ETM rats with or without DSS administration.
     Results:Parameters related to anxiety were higher in the ETM group compared to the shanm group,Statistically significant differences in anxiety-related behavior between sham and ETM group were found4h after ETM and pain-related behavior was significantly greater in the ETM group than in the shaml group at1d;Parameters related to learning and memory were lower in the ETM group compared to the shamgroup7d after ETM, the DSS significantly increased parameters related to learning and memory in EDTM rats compared to the ETM group; Astrocytic GFAP is significantly upregulated1d after ETM in the hippocampus, the DSS was significantly decreased express of GFAP in EDTM rats compared to the ETM group; The spine density, mean spines area and volume were decreased in ETM group, but the DSS administration could increase the spine density compared to the ETM group.
     Conclusions:The ETMcould increase anxietyin rat that maybeprecede the appearance of periodontal pain in rat;DSS could block ETM-induced decrease of learning and memory behavior. Thedecreased spines density in hippocampus in the ETM rats may be related with the decline of the ability of learn and memory. The ability to change the synaptic plasticity after DSS administration may be correlated with the alleviation of impairment of learn and memory after ETM.
引文
1. Jones M,ChanC. The pain and discomfort experienced duringorthodontic treatment:a randomized controlled clinical trial oftwo initial aligning arch wires. Am J Orthod Dentofacial Orthop1992; 102:373-381.
    2. Furstman L, Bernick S.1972. Clinical considerat ions of tperio-dontium. Am J Orthod 61:138-155.
    3. Kato J, Wakisaka S, Kurisu K.1996. Immunohistoch emical changesin the distribution of nerve fibers in the pe riodontal ligament during an exper imental tooth mov ement of the rat molar. Acta Anat (Basel) 157:53-62.
    4. Giannopou lou C, Dudic A, Kiliaridis S.2006. Pain discomfor t andcrevicular fluid changes induc ed by orthodontic elastic separatorsin children. J Pain 7:367-376.
    5. Vos BP, Strassman AM,Maciewicz RJ. Behavioral evidence of trigeminal neuropathic pain following chronic constriction injury to the rats infraorbital nerve. J Neurosci 1994; 14:2708-2723.9.
    6. Lim EJ, Jeon HJ, Yang GY,et al. Intracisternal administration of mitogen-activated protein kinase inhibitors reduced mechanical allodynia following chronic constriction injury of infraorbital nerve in rats. Prog Neuropsychopharmacol Biol Psychiatry 2007; 31: 1322-1329.
    7. Hartwig AC, Mathias SI, Law AS, et al. Characterization and opioid modulation of inflammatory temporomandibular joint pain in the rat. J Oral Maxillofac Surg.2003 Nov;61 (11):1302-9.
    8. Vos BP, Hans G, Adriaensen H. Behavio ral assessment of fa-cial pain in rats:face grooming patte rns after painful and non-painful sensory disturbances in the territory of the rat's infraor-bital nerve. Pain 1998.76:173-178.
    9. Vaccarino AL, Couret LC Jr.Formalin-induced pain antagonizes the development of opiate dependence in the rat. Neurosci Lett.1993 Oct 29; 161 (2):195-8.
    10. Ong CK, Walsh LJ, Harbmw D, et al. Orthodontic tooth movement in the prednisolone-treated rat. Angle Orthod,2000,70 (2):118-125.
    11. Yang Z, Cao Y, Wang Y, et al.2009. Behavioural responses and expr ession of P2X3 receptor intrigeminal ganglion after exper imental tooth movement in rats.Arch Oral Biol 54:63-70
    12.徐娟,刘洪臣,张晓慧,徐璐璐实验性牙移动三叉神经节内降钙素基因相关肽改变,临床口腔医学杂志2008年7月第24卷第7期2008,vol.24.No.7
    13. Manning BH,. Mao J, Frenk H, et al.Continuous co-administration of dextromethorphan or MK-801 with morphine:attenuation of morphine dependence and naloxone-reversible attenuation of morphine tolerance.Pain.1996 Sep;67 (1):79-88.
    14. Characterization and opioid modulation of inflammatory temporomandibular joint pain in the rat.Hartwig AC, Mathias SI, Law AS, Gebhart GF.J Oral Maxillofac Surg.2003 Nov;61 (11):1302-9.
    15. Bhargava HN.Gen Pharmacol.Attenuation of tolerance to, and physical dependence on, morphine in the rat by inhibition of nitric oxide synthase.1995 Sep;26 (5):1049-53. Erratum in:Gen Pharmacol 1996 Apr;27 (3):557.
    16. ChopraK, Kulkarni.SK,Modulatory.effect of neurosteroids inhaloperidol-induced vacuous chewing movements and related behaviors. Psychopharmacology (Berl).2008 Feb;196 (2):243-54. Epub 2007 Oct 23.
    17. Zhi Yang, Wei Luo, Jingqiu, et al.Development of a behavior modelof pain induced by experimental toothmovement in ratsEur J Oral Sci 2009.
    18. Yu Gao YinZhong Duan.Increased COX 2 in the Trigem inalNucleus C audal is Is Involved inOrofac ial Pain Induc ed by Exper imentalTooth Movement.theanatomical record 293:485-491.
    1. Chattipakorn S, Chattipakorn N, Light AR,et al. Comparison of Fos expression within the ferret's spinal trigeminal nuclear complex evoked by electrical or noxious-thermal pulpal stimulation. J Pain 6:569-580.
    2. Kletsas D, Basdra EK, Papavassiliou AG. J Cell Physiol, Effect of protein kinase inhibitors on the stretch-elicited c-Fos and c-Jun up-regulation in human PDL osteoblast-like cells 2002.190 (3):313-321.
    3. M. Takemura, T. Sugimoto, A. Sakai, Topographic organization of central terminal region of different sensory branches of the rat mandibular nerve, Exp. Neurol.96 (1987) 540-557.
    4. K. Tanne, Expression of c-Fos-like immunoreactive neurons in the supratrigeminal region in the rat following noxious stimulation of the orofacial tissues, Neurosci. Lett.335 (2002) 99-102.
    5. T. Yamashiro, K. Nakagawa, K. Satoh, H. Moriyama, K. Takada, c-fos expression in the trigeminal sensory complex and pontine parabrachialareas following experimental tooth movement, NeuroReport 8 (1997) 2351-2353.
    6.朱东望刘洪臣鄂玲玲米诺环素抑制面部福尔马林炎性疼痛大鼠三叉神经脊束核尾侧亚核c-fos的表达中华老年口腔医学杂志2009年11月第7卷第6期.
    7. Ong CK, Walsh LJ, Harbmw D. et al. Orthodontic tooth-movement in the prednisolone-treated rat. Angle Orthod,2000,70 (2):118-125.
    8. G. Paxinos, C. Watson, The Rat Brain in Stereotoxic Coordinates. Academic Press, New South Wales,1982.
    9. M. Takemura, T. Sugimoto, Y. Shigenaga, Difference in central projection of primary affer ents innervating facial and intraoral structures in the rat, Exp. Neurol. 111(1991) 324-331.
    10. Y. Aihara, T. Maeda, K. Hanada, S. Wakisaka, Effects of morphine onthe distribution of Fos protein in the trigeminal subnucleus caudalisneurons during experimental tooth movement of the rat molar, BrainRes.819 (1999)48-57.
    11. Y. Fujiyoshi, T. Yamashiro, T. Deguchi, T. Sugimoto, T. Takano-Yamamoto, The difference in temporal distribution of c-Fos immu-nor eac tive neur ons bet ween the medul lar y dor sal ho rn and thetrigeminal subnucleus oralis in the rat following experimental toothmovement, Neurosci. Lett.283 (2000) 205-208.
    12. M. Watanabe, E. Tanaka, M. Nishi, T.et al. Tanne, Expression of c-Fos protein in the trigeminalnuclear complex resulted from quantified force application to the ratmolar, J. Oral Rehabil.302003) 1128-1137.
    13. C.M. Magdalena, V.P. Navarro, D.M. Park, M.B. Stuani, M.J. Rocha,c-fos expression in rat brain nuclei following incisor tooth movement.J. Dent. Res.83 (2004) 50-54.
    14. TarekA. Ba, Takashi Yamashiro, Li Zheng, et al.Experimental tooth movement upregulates preproenkephalin mRNA inthe rat trigeminal nucleus caudalis and oralisBrain Research.196-201.
    15. Xiao-Dong Liu, Jing-Jie Wang, Lei Sun, et al.Involvement of medullary dorsal horn glial cell activation inmediation of masseter mechanical allodynia induced byexperimental tooth movementarchives of oral biology 54 (2009) 1143-1150.
    16. Marfurt CF, Rajchert DM (1991). Trigeminal primary afferent projections to "non-trigeminal" areas of the rat central nervous system. J Comp Neurol 303:489-511.
    17. Price DD, McHaffie JG (1988). Effects of heterotopic conditioning stimuli on first and second pain:a psychophysical evaluation in humans. Pain 34:245-252.
    18. L.-A. Wu, J. Huang, W. Wang,et al. Activation of GAbAergic neurons following tooth Pulp stimulationJ Dent Res 89 (5):532-536,2010.
    19. M. Takemura, T. Sugimoto, A. Sakai, Topographic organization ofcentral terminal region of different sensory branches of the ratmandibular nerve, Exp. Neurol.96 (1987) 540-557.
    20. M. Takemura, T. Sugimoto, Y. Shigenaga, Difference in centralpro jection of primary afferents innervating facial and intraoralstructures in the rat, Exp. Neurol. 111(1991) 324-331.
    21. Nash PG, Macefield VG, Klineberg IJ, et al. Differential activation of the human trigeminal nuclear complex by noxious and non-noxious orofacial stimulation. Hum Brain Mapp 2009;30:3772-82.
    22. Sessle BJ. Acute and chronic craniofacial pain:brainstem mechanisms of nociceptive transmission and neuroplasticity, and their clinical correlates. Crit Rev Oral Biol Med 2000;11:57-91.
    23. De Chazeron I, Raboisson P, Dallel R. Organization of diencephalic projections from the spinal trigeminal nucleus oralis:an anterograde tracing study in the rat. Neuroscience 2004;127:921-8.
    24. Guy N, Chalus M, Dallel R, Voisin DL. Both oral and caudal parts of the spinal trigeminal nucleus project to the somatosensory thalamus in the rat. Eur J Neurosci 2005;21:741-54.
    25. Jones EG, Schwark HD, Callahan PA. Extent of the ipsilateral representation in the ventral posterior medial nucleus of the monkey thalamus. Exp Brain Res1986;63:310-20.
    26. P.G. Nash, V.G. Macefield, I.J. Klineberg, et al. HendersonBilateral activation of the trigeminothalamic tract by acute orofacial cutaneous and muscle pain in humans PAIN 151 (2010)384-393.
    1. Kreutzbery GW. Microglia:a sensor for pathological events in the CNS [J]. Trends Neulosci,1996,19:312-318.
    2. Watlcins LR, Milligan ED, Maier SF. Glial Proinffammatorycytokine mediate exaggerated pain states:implications forclinical pain. In:Machelska H, Stein C, editor. Immunemechanisms of pain & analgesia [M]. Austin Tx:Landes Biosciences,2001:199-213.
    3.朱美玲,刘洪臣.三叉神经脊束核在口面痛传导中的作用[J].口腔颌面修复学杂志,2002,3(3):185-187.
    4.贾静,刘洪臣,章捍东等.咬合创伤下大鼠三叉神经脊束核尾侧亚核星形胶质细胞的反应及其与细胞因子的关系[J].中华老年口腔医学杂志,2005,3(3):132-134.
    5.朱东望刘洪臣张勇等.面部皮下福尔马林注射致大鼠三叉神经脊束核尾侧亚核c-fos和GFAP表达的动态变化[J].中华老年口腔医学杂志,2010,10(1):1-4.
    6. Ong CK, Walsh LJ, Harbmw D, et al. Orthodontic tooth movement in the prednisolone-treated rat. Angle Orthod,2000,70 (2):118-125.
    7.钟带星等。生理科学进展,2003,34:353.
    8. Vilhard F.Microglia:Phagocyte and glia cell. Int J biochem Cell boil,2005,37:17-21.
    9. Stoll q Jander S. The role of microglia and macrophages in the pathophysiology of theCNS. Prog Neurobiol,1999,58 (3):233-47.
    10. Nakajima K, Kohsaka S. Microglia:activation and their significance in the centralnervous system. J Biochem (Tokyo),2001,130 (2):169-175.
    11.K. The function of microglia through purinergic receptors:Neuropathic pain andcytokine release. Pharmacol Ther,2006,109 (1-2):210-26.
    12. Trang T, Beggs S, Salter MW. Purinoceptors in microglia and neuropathic pain.Pflugers Arch,2006,452 (5):645-52.
    13. Milligan ED, Zapata V, Chacur M, et al. Evidence that exogenous and endogenous fractalkine can induce spinal nociceptive facilitation in rats. Eur J Neurosci,2004,20 (9) 2294-302.
    14. Jian Liu K, Rosenberg G A. Matrix matalloproteinases andfree radicals in ceredral ischemia [J]. Free Radic Biol Med,2005,39910:71-80.
    15. Watkins LR, Milligan ED, Maier SF, et al. Spinal cord glia:new players in pain[J]. Pain,2001,93:201-205.
    16. Jian Liu K, Rosenberg G A. Matrix matalloproteinases andfree radicals in ceredral ischemia [J]. Free Radic Biol Med,2005,39910:71-80.
    17. Garrison CJ, Dougherty PM, Carlton SM.GFAP expression in lumbar spinal cord of naive and neuropathic rats treated with MK-801. Exp Neurol.1994 Oct;129(2):237-43.
    18.项红兵等。临床麻醉学杂志,2003,19:576.
    19. Colburn RW, DeLeo JA, Rickman AJ,et al. Dissociation of microglial activation and neuropathic pain behaviors following peripheral nerve injury in the rat.J Neuroimmunol. 1997 Nov;79(2):163-75.
    20. Zhang SC, Goetz BD, Duncan D. Suppression of activated microglia promotessurvival and function of transplanted oligodendroglial progenitors. Glia,2003,41 (2):191-8.31.
    21. Owolabi SA, Saab CY. Fractalkine and minocycline alter neuronal activity in thespinal cord dorsal horn. FEBS Lette,2006,580 (18):4306-10.
    22. SalterMW.Cellular neuroplasticity mechanisms mediating pain persistence. J Orofac Pain.2004,18 (4):318-24.
    23. Tsuda M, moue K, Salter MW. Neuropathic pain and spinal microglia:abig problem from molecules in "small" glia. Trends Neurosci.2005,28 (2):101-7.
    24.高蓓,兰莉,饶志仁.脂多糖诱导大鼠延髓神经元FOS小胶质细胞OX42表达水平的变化.第四军医大学学报,2004.25(81)702.
    25. Watkins, L.R. and Maier, S.F. (2003) GLIA:A novel drug discovery target for clinical pain. Nat. Rev. Drug Discov.2,973-985.
    26. McMahon SB, Cafferty WB, Marchand F:Immune and glial cell factors aspain mediators and modulators. Exp Neurol 2005,192:444-462.9.
    27. McMahon SB, Malcangio M:Current challenges in glia-pain biology.Neuron 2009,64:46-54.10.
    28. Mika J:Modulation of microglia can attenuate neuropathic painsymptoms and enhance morphine effectiveness. Pharmacol Rep 2008,60:297-307.13.
    29. Sweitzer SM, Schubert P, DeLeo JA:Propentofylline, a glial modulatingagent, exhibits antiallodynic properties in a rat model of neuropathicpain.J Pharmacol Exp Ther 2001,297:1210-1217.
    30. Clark AK, Gentry C, Bradbury EJ, et al.Role of spinalmicroglia in rat models of peripheral nerve injury and inflammation. EurJ Pain 2007,11:223-230.
    31. Woolf CJ, Salter MW.Neuronal plasticity:increasing the gain in pain.2000,288(5472): 1765-9.
    32. Villa G, Ceruti S, Zanardelli M,et al.Temporomandibular joint inflammation activates glial and immune cells in both the trigeminal ganglia and in the spinal trigeminal nucleus. Mol Pain.2010 Dec 10;6:89.
    1. Kavaliauskiene A, Smailiene D, Buskiene I,et al. Pain and discomfort perception among patients undergoing orthodontic treatment:Results from one month follow-up study. Stomatologija 2012;14:118-125.
    2. Xiaoting L, Yin T, Yangxi C. Interventions for pain during fixed orthodontic appliance therapy. A systematic review. Angle Orthod 2010; 80:925-932.
    3. ones M,ChanC. The pain and discomfort experienced duringorthodontic treatment:a randomized controlled clinical trial oftwo initial aligning arch wires. Am J Orthod Dentofacial Orthop1992;102:373-381.
    4. Zhi Yang, Wei Luo, Jingqiu,et al.Development of a behavior modelof pain induced by experimental toothmovement in ratsEur J Oral Sci 2009.
    5. Yu Gao YinZhong Duan.Increas ed COX 2 in the Trigem inalNucleus C audal is Is Involved inOrofac ial Pain Induc2 ed by Exper imentalTooth Movement theanatomical record 293:485-4912(2010)
    6. Huang Z, Mao QQ, Zhong XM,et al.Mechanistic study on the antidepressant-like effect of danggui-shaoyao-san, a chinese herbal formula.Evid Based Complement Alternat Med 2012;2012:173565.
    7. Shang WW, Qiao SY. Advances on the study of Danggui Shaoyao powder. Zhongguo Zhong Yao Za Zhi2006; 31:630-633.
    8. Lan Z, Liu J, Chen L,et al. Danggui-Shaoyao-San ameliorates cognition deficits and attenuates oxidative stress-related neuronal apoptosis in d-galactose-induced senescent mice.JEthnopharmac 2012;141:386-395.
    9. Xu F, Peng D, Tao C, et al.Anti-depression effects of Danggui-Shaoyao-San, a fixed combination of Traditional Chinese Medicine, on depression model in mice and rats.Phytomedicine2011;18:1130-1136.
    10. Kou J, Zhu D, Yan Y. Neuroprotective effects of the aqueous extract of the Chinese medicine Danggui-Shaoyao-san on aged mice. J Ethnopharmacol 2005; 97:313-318.
    11. Hua YQ, Su SL, Duan JA, et al.Danggui-Shaoyao-San, a traditional Chinese prescription, suppresses PGF2alpha production in endometrial epithelial cells by inhibiting COX-2 expression and activity. Phytomedicine2008; 15:1046-52.
    12. Ong CK, Walsh LJ, Harbrow D, Taverne AA, Symons AL. Orthodontic tooth movement in the prednisolone-treated rat. Angle Orthod 2000; 70:118-125.
    13. Tang, MH, KouJP, Zhu DN,et al. Optimization of extracting technology on Danggui-shaoyao-san by orthogonal design and repeated test. China Journal of Chinese Materia Medica 2000;25:668-671.
    14. Woolf CJ, Salter MW. Neuronal plasticity:increasing the gain in pain. Science, 2000288 (5472):1765-9.Watkins LR, Maier SF. Glia:a novel drug discovery target for clinical pain. Nat RevDrug Discov,2003,2 (12):973-85。
    15.马世平,刘红,曾宇等.不同归芍比的当归芍药散主要成份变化与相关药效的比较研究[[J],江苏医药与临床研究,2006,14 (3)_141-145.Kotani N, Oyama T, Sakai I, et al. Analgesic ei}'ect of a herbal medicine for treatment of primary dysmenorrhea a double-blind study[J]. Am J Chin Med,1997,25 (2):205-212.
    16.曹旦华,高珍,寇俊萍,等.当归芍药散提取物的镇痛活性与化学成分差异分析,中国实验方剂学杂志,2010;16(16).89-93.
    17. Zeng-Yao Hu, Gang Liu, Hui Yuan, et al.Danggui-Shaoyao-San and its active fraction JD-30 improve A-induced spatialrecognition deficits in mice. Journal of Ethnopharmacology 128 (2010)365-372.
    1. Jones M,ChanC. The pain and discomfort experienced during orthodontic treatment:a randomized controlled clinical trial of two initial aligning arch wires. Am J Orthod Dentofacial Orthop 1992;102:373-381.
    2. Oliver RG, Knapman YM. Attitudes to orthodontic treatment.Br J Orthod. 1985;12:179-188.
    3. Demyttenaere, K., Bruffaerts, R., Lee, S., et al. (2007). Mental disorders among persons with chronic back or neck pain:Results from the world mental health surveys. Pain,129 (3),332-342.
    4. Gatchel, R. J., Peng, Y. B., Peters, M. L., et al.The biopsychosocial approach to chronic pain:Scientific advances and future directions. Psychological Bulletin,133 (4), 581-624.
    5. Lei G S, Wang Z J. The personality traits and emotional disturbances of migraine patients J. Clin Rchabil,2002 (14);2112-2113
    6. Mayr M. Hoglor S, GhodinaW. Low back pain and psychiatric disorders Lancet J. 2003.361 (9356):531.
    7. RethelyiJM.Bergharnn.KoPP.MS.Comorbidityof Pain assoeiated Disabilityand symPtoms inconne ction with sociodemographic variables:results from across seetionalepid elniologieal survey in Hungary.pain 200193 (2):115-21.
    8. Fried KH. Emotional stress during retention and its effect on tooth position. Angle Orthod.1976;46:77-85.
    9. Joseph H. Yozgatiana; Jorge L. Zeredob; Hitoshi Hotokezakac;et al.Emotional Stress-and Pain-Related Behaviors Evoked by Experimental Tooth Movement Angle Orthodontist, Vol 78, No 3,2008.
    10. Ong CK, Walsh LJ, Harbmw D, et al. Orthodontic tooth movement in the prednisolone-treated rat. Angle Orthod,2000,70 (2):118-125.
    11. Blokland A, Lieben C, Deutz NE,2002. Anxiogenic and depressive-like effects, but no cognitive deficits, after repeated moderate tryptophan depletion in the rat. J Psychopharmacol 16,39-49.
    12. Komada M, Takao K, Miyakawa T. Elevated plus maze for mice. J Vis Exp.
    13. Roy V, Chapillon P, Jeljeli M, et al.Free versus forced exposure to an elevated plus-maze:evidence for new behavioral interpretations during test and retest. Psychopharmacology (Berl) 203,131-141.
    14. Prut L, Belzung C. The open field as a paradigm to measurethe effects of drugs on anxiety-like behaviors:a review. EurJ Pharmacol.2003;463 (1-3):3-33. pp.1952-1965, 2008.
    15. Zhi Yang, Wei Luo, Jingqiu, et al.Development of a behavior model of pain induced by experimental tooth movement in rats Eur J Oral Sci 2009.
    16. Yu Gao YinZhong Duan.Increas ed COX 2 in the Trigem inal Nucleus C audal is Is Involved in Orofac ial Pain Induc ed by Exper imental Tooth Movement the anatomical record 293:485-491 (2010)
    17. Yamashiro T, Satoh K, Nakagawa K,et al. Expression of Fos in the rat forebrain following experimental tooth movement. J Dent Res.1998;77:1920-1925.12.
    18.徐娟,刘洪臣,张晓慧,等.实验性牙移动三叉神经节内降钙素基因相关肽改变, 临床口腔医学杂志2008年7月第24卷第7期2008,Vol.24.No.7
    19. Yamashiro T, Satoh K, Nakagawa K, et al.Expression of Fos in the rat forebrain followingexperimental tooth movement. J Dent Res.1998;77:1920-1925.
    20. Giannopoulou C, Dudic A, Kiliaridis S. Pain discomfort and crevicular fluid changes induced by orthodontic elastic sep-arators in children. J Pain.2006;7:367-376.
    21. Yamaguchi M, Yoshii M, Kasai K. Relationship between substance P and interleukin-lbeta in gingival crevicular fluid during orthodontic tooth movement in adults. Eur J Orthod.2006;28:241-246.
    22. Erdinc AM, Dincer B. Perception of pain during orthodontic treatment with fixed appliances. Eur J Orthod.2004;26:79-85.
    23. Nakanishi H, Seki Y, Kohno T, et al.Changes in response properties of periodontal mecha-noreceptors after experimental orthodontic tooth movement in rats. Angle Orthod.2004;74:93-992.
    24. Yoshihara T, Matsumoto Y, Ogura T. Occlusal disharmony affects plasma corticosterone and hypothalamic noradren-aline release in rats.J Dent Res. 2001;80:2089-2092.
    25. Gameiro GH, Gameiro PH, Andrade Ada S,et al. Nociception-and anx-iety-like behavior in rats submitted to different periods of restraint stress. Physiol Behav. 2006;87:643-649.
    26. Korszun A. Facial pain, depression and stress-connections and directions. J Oral Pathol Med.2002;31:615-619.
    1. Suzuki T, Amata M,SakaueG,et al. Experimental neuropathy in miceisassociated with delayed behavioral changes related to anxiety anddepression. AnesthAnalg 2007; 104:1570-1577.
    2. Gameiro GH, Gameiro PH, Andrade Ada S, et al.Nociception-and anx-iety-like behavior in rats submitted to different periods of restraint stress. Physiol Behav. 2006;87:643-649.
    3. Castaneda AE, Tuulio-Henriksson A, MarttunenM,et al. A review on cognitive impairments in depr essive and anxi ety disorders with a focus on young adults. J Affect Disord 2008;106:1-27.
    4. DuricV, McCarson KE. Persistentpain produces stress-like alterations in hippocampalneurogenesis and geneexpression. J Pain 2006; 7:544-555.
    5. DuricV, McCarsonKE. Hippocampalneurokini n-1 receptor and brain-derivedneurotrophic factor geneexpressionis decreased in rat models of pain and stress. Neuroscience 2005;133:999-1006.
    6. CK, Walsh LJ, Harbmw D, et al. Orthodontic tooth movement in the prednisolone-treated rat. Angle Orthod,2000,70 (2):118-125.
    7.刘海云,商永华,王群,等.双侧颈总动脉结扎大鼠学习记忆能力的研究[J]实用老年医学2007,21(4):275-276
    8. D Hooge R, De Deyn PP. Applications of the Morris water maze in the study of learning and memory [J].Brain Res Rev,2001,36:60-90.
    9.郑红,王文,刘渝,等.重复Morris水迷宫训练提高大鼠空间学习能力却不影响空间记忆能力[J]神经解剖学杂志,2007,23(6):59.
    10. Paixao S, Klein R. Neuron-astrocyte communication and synaptic plasticity.Curr Opin Neurobiol.2010 Aug;20(4):466-73. doi:10.1016/j.conb.2010.04.008. Epub 2010 May 12.
    11. Liu B, Neufeld AH. Activation of epidermal growth factor receptor causes astrocytes to form cribriform structures. Glia.2004 Apr 15;46(2):153-68.
    12. Fellin T, Gomez-Gonzalo M, Gobbo S, et al.Astrocytic glutamate is not necessary for the generation of epileptiform neuronal activity in hippocampal slices. J Neurosci.2006 Sep 6;26(36):9312-22.
    13. Gordon GR, Iremonger KJ, Kantevari S,et al.Bains JS,2009. Astrocyte-mediated distributed plasticity at hypothalamic glutamate synapses. Neuron 64,391-403.
    14. Ben Achour S, Pont-Lezica L, Bechade C, et al. Is astrocyte calcium signaling relevant for synaptic plasticity? Neuron Glia Biol 1-9.
    15. Takata N, Mishima T, Hisatsune C, et al.Astrocyte calcium signaling transforms cholinergic modulation to cortical plasticity in vivo. J Neurosci 31,18155-18165.
    16. Jung ES, An K, Hong HS, et al.Astrocyte-originated ATP protects Abeta(1-42)-induced impairment of synaptic plasticity. J Neurosci 32,3081-3087.
    17. Yang K, Xie GR, Hu YQ, et al.Association study of astrocyte-derived protein S100B gene polymorphisms with major depressive disorder in Chinese people. Can J Psychiatry 54,312-319.
    18. Barley K, Dracheva S, Byne W,2009. Subcortical oligodendrocyte-and astrocyte-associated gene expression in subjects with schizophrenia, major depression and bipolar disorder. SchizophrRes 112,54-64.
    19. Yang K, Xie GR, Hu YQ, et al. Association study of astrocyte-derived protein S100B gene polymorphisms with major depressive disorder in Chinese people. Can J Psychiatry 54,312-319.
    20. Altshuler LL, Abulseoud OA, Foland-Ross L, et al.Amygdala astrocyte reduction in subjects with major depressive disorder but not bipolar disorder. Bipolar Disord 12,541-549.
    21. Jae Woong Lee, Yong Kyung Lee, Dong Yeon Yuk, et al.Neuro-inflammation induced by lipopolysaccharide causes cognitive impairment through enhancement of beta-amyloid generation.Journal of Neuroinflammation 2008,5:37
    22. Cunningham C, Skelly DT (2012)Non-steroidalanti-inflammatory drugs andcognitive function:are prostaglandins at the heart of cognitive impairment indementia and delirium? J Neuroimmune Pharmacol 7:60-73.
    23. Agostinho P, Cunha RA, Oliveira C (2010) Neuroinflammation, oxidative stressand the pathogenesis of Alzheimer's disease. Curr Pharm Des 16:2766-2778.
    24. Perez JL, Carrero I, Gonzalo P, et al.Soluble oligomeric forms of beta-amyloid (Abeta) peptide stimulate Abetaproduction via astrogliosis in the rat brain. Exp Neurol 223: 410-421.
    25. Verkhratsky A, Olabarria M, Noristani HN, et al.Astrocytes in Alzheimer's disease. Neurotherapeutics 7:399-412.
    26. Garwood CJ, Pooler AM, Atherton J, et al.Astrocytesare important mediators of Abeta-induced neurotoxicity and tau phosphoryla-tion in primary culture. Cell Death Dis 2: e167.
    27. Wang G, Dinkins M, He Q, et al.Astrocytes secreteexosomes enriched with pro-apoptotic ceramide and prostate apoptosis response4 (PAR-4):a potential mechanism of apoptosis induction in Alzheimer's disease(AD). J Biol Chem.
    28. Hei-Jen Huang, Yen-Hsu Chen, Keng-Chen Liang, et al.Exendin-4 Protected against Cognitive Dysfunction in.Hyperglycemic Mice Receiving an IntrahippocampalLipopolysaccharide Injection.July 2012| Volume 7| Issue 7| e39656
    29. Shang WW, Qiao SY. Advances on the study of Danggui Shaoyao powder. Zhongguo Zhong Yao Za Zhi2006; 31:630-633.
    30. Lan Z, Liu J, Chen L, et al.Danggui-Shaoyao-San ameliorates cognition deficits and attenuates oxidative stress-related neuronal apoptosis in d-galactose-induced senescent mice.J Ethnopharmac 2012;141:386-395.
    31. Xu F, Peng D, Tao C, et al.Anti-depression effects of Danggui-Shaoyao-San, a fixed combination of Traditional Chinese Medicine, on depression model in mice and rats.Phytomedicine2011;18:1130-1136.
    32. Kou J, Zhu D, Yan Y. Neuroprotective effects of the aqueous extract of the Chinese medicine Danggui-Shaoyao-san on aged mice. JEthnopharmacol 2005;97:313-318.
    33. Yang Z, Cao Y, Wang Y, Luo W, et al.Behavioural responses and expr ession of P2X3 receptor intrigeminal ganglion after exper imental tooth movement in rats.Arch Oral Biol 54:63-70
    34.徐娟,刘洪臣,张晓慧,等.实验性牙移动三叉神经节内降钙素基因相关肽改变,临床口腔医学杂志2008,24:327-29.
    1. Mantyh PW, Clohisy DR, Koltzenburg M, et al.Molecular mechanisms of cancer pain. Nature Rev Cancer,2002,2:201-209.
    2. 傅开元,领面疼痛的新概念.引自张震康主编,2002-口腔科学新进展.北京:人民卫生出版社,2002:121.
    3. Woolf CJ, Salter MW Neuronal plasticity:increasing the gain in pain.2000,288(5472): 1765-9.
    4. Jones M, ChanC. The pain and discomfort experienced during orthodontic treatment:a randomized controlled clinical trial of two initial aligning arch wires. Am J Orthod Dentofacial Orthop 1992; 102:373-381.
    5. Burstone.CJ:Vistas in orthodontics 1964,1 (1):26-35.
    6. Scott P, Sherriff M,Dibiase AT,et al.Perception of discomfort during initial orthodontic tooth alignment using a self-ligating or conventional bracket system:a randomized clinical trial[J]. Eur J Orthod,2008,30(3):227-232,3-50.
    7. Bondemark L, Fredriksson K, Ilros S. Separation erect and perception of pain and discomfort from types of orthodontic separators. World J Orthod.2004 Summer;5(2):172-6.
    8. Simmons KE, Brandt M. Control of orthodontic pain. J Indiana Dent Assoc.1992 Jul-Aug;71(4):8-10.
    9. Walker JB, Buring SM. Related NSAID impairment of orthodontic tooth movement.Pharmacother.2001,35(1);113-5.
    10. Chumbley AB, Tuncay OC. The effect of indomethacin (anaspirin-like drug) on the rate of orthodontic tooth movement.Am J Orthod 1986;89:312-4.12.
    11. Sandy JR, Harris M. Prostaglandins and tooth movement. EurJ Orthod 1984;6:175-82.
    12. Mengel MK, Jyvasjarvi E, Kniffki KD. Identification and characterization of afferent periodontal A delta fibres in the cat. J Physiol,1993,464:393-405
    13. Hildebrand C, Fried K, Tuisku F, et al. Teeth and tooth nerves. Progress in neurobiology,1995,45:165.
    14.樊成涛.正畸牙移动牙周神经改变及伤害性感受的初步研究.
    15. Chattipakorn S, Chattipakorn N, Light AR, et.al. (2005). Comparison of Fos expression within the ferret's spinal trigeminal nuclear complex evoked by electrical or noxious-thermal pulpal stimulation. J Pain 6:569-580.
    16. Kletsas D, Basdra EK, Papavassiliou AG. J Cell Physiol, Effect of protein kinase inhibitors on the stretch-elicited c-Fos and c-Jun up-regulation in human PDL osteoblast-like cells 2002.190 (3):313-321.
    17. Kletsas D, Basdra EK, Papavassiliou AG.Effect of protein kinase inhibitors on the stretch-elicited c-Fos and c-Jun up-regulation in human PDL osteoblast-like cells.J Cell Physiol.2002 Mar;190(3):313-21.
    18. Treatment of spasticity in multiple sclerosis:comparison of dantrolene sodium and diazepam.Schmidt RT, Lee RH, Spehlmann R.BrainRes,1975,100:235-237.
    19. HargreavesKM, SwiftJQ, RoszkowskMT, et al.PhannaeologyofPeripheral Neuro PePtideand inflaminatory mediator release. Oral SurgOral MedOral Pathol,1994,78:503.
    20. Olgart L, Hokfelt T, Nilsson G,et al.Localization of substance P-like immunoreactivity in nerves in the tooth pulp.Pain.1977 Dec;4(2):153-9.
    21. NieolayOF, DavidovitehZ, ShanfeldJL, et al. Substance PinfluranceactivityinPeriodontal tissues during orthodontie tooth movement.BoneMiner, 1990,11 (1):19-29.
    22.刘可群,邓燕,谈友萍.正畸施力初始(24小时)牙髓中神经肤P物质变化的实验研究。口腔正畸学,1997,152-154.
    23. Kojima T, Yamaguchi M, Kasai K.Substance P stimulates release of RANKL via COX-2 expression in human dental pulp cells.2006,55 (2):78-84.
    24. Vandevska-Radunovic V, Kvinnsland S, Kvinnsland IH.Effect of experimental tooth movement on nerve fibres immunoreactive to calcitonin gene-related peptide, protein gene product 9.5,and blood vessel density and distribution in rats.Eur J Orthod,1997,19(5): 517-529.
    25.徐娟,刘洪臣,袁维秀等.实验性牙齿移动后三叉神经脊束核尾侧亚核CGRP的研 究.口腔修复学杂志.2004 5(2):79-81.
    26. Deguehi, Takeshita N, Balam TA, et al. Galanin-immunoreactive nerve fibers in the periodontal ligament during experimental tooth movement.J Dent Res,2003.82 (9): 677-681.
    27. Garlet TP, Coelho U, Silva JS, et al. Cytokine expression pattern in compression and tension sides of the periodontal ligament during orthodontic tooth movement in humans.Ettr J Oral Sci,2007.1 15 (5):355-362.
    28. Raschkow, Alavi AM, Dubyak GR, et al. Immunohistochemical evidence for ATP receptors in human dental pulp.J Dent Res,2001,80 (2):476-483.
    29.卢云,杨秩,华小川等.大鼠实验性牙移动中P2X3配基门控阳离子通道受体在牙髓中的表达变化[J].华西口腔医学杂志2011.29.183-186.
    30. Yang Z, Cao Y, Wang Y, et al. Behavioural responses and expression of P2X3 receptor in trigeminal ganglion after experimental tooth movement in rats. Arch Oral Biol 2009,54 (1):63-70.
    31.李亚奇,范小平,王豫蓉等.正畸力作用下人牙髓组织中神经生长因子的表达[J].华南国防医学杂志,2009年第23卷第1期.
    32.胡小坤,彭辉,王睛竹,等.大鼠正畸牙移动过程中牙周组织NGF的表达变化[J].口腔医学,2009,29(4):205—207.
    33.新宝,刘静.正畸牙移动中牙周组织内VEGF动态变化的研究[J].实用医学杂志,2005,21(14):1502—1504.
    34. Nikolail T, Thame K. Distribution of calcitonin gene related peptide-and neuropeptide Y-like immunoreactivity in the trigeminal ganglion and mesencephalic trigeminal nucleus of the cat. Acta Histochem.1995,97:213-223.
    35. M. Takemura, T. Sugimoto, A. Sakai, Topographic organization of central terminal region of different sensory branches of the rat mandibular nerve, Exp. Neurol.96 (1987) 540-557.
    36. M. Takemura, T. Sugimoto, Y. Shigenaga, Difference in central projection of primary affer ents innervating facial and intraoral structures in the rat, Exp. Neurol. 111(1991) 324-331.
    37. Kato J, Wakisaka S, Tabata MJ,.et al.Induction of Fos protein in the rat trigeminal nucleus complex during an experimental tooth movement. Arch Oral Biol.1994 Aug;39 (8):723-6.
    38. Y. Aihara, T. Maeda, K. Hanada, S. Wakisaka, Effects of morphine on the distribution of Fos protein in the trigeminal subnucleus caudalis neurons during experimental tooth movement of the rat molar, Brain Res.819 (1999) 48-57.
    39. M. Watanabe, E. Tanaka, S. Suemune, S. et al.Expression of c-Fos protein in the trigeminal nuclear complex resulted from quantified force application to the rat molar, J. Oral Rehabil.30 (2003) 1128-1137.
    40. Y. Fujiyoshi, T. Yamashiro, T. Deguchi, T. et al.The difference in temporal distribution of c-Fos immu-norea cti ve ne uro ns bet ween the medul lary dorsa 1 ho rn an d the trigeminal subnucleus oralis in the rat following experimental tooth movement, Neurosci. Lett.283 (2000) 205-208.
    41. C.M. Magdalena, V.P. Navarro, D.M. Park, et al.c-fos expression in rat brain nuclei following incisor tooth movement,J. Dent. Res.83 (2004) 50-54.
    42. Yamashiro T, Nakagawa K, Satoh K, et al.c-fos expression in the trigeminal sensory complex and pontine parabrachial areas following experimental tooth movement.Neuroreport.1997 Jul 7;8 (9-10):2351-3.
    43. Yamashiro T, Satoh K, Nakagawa K,et al.Expression of Fos in the rat forebrain following experimental tooth movement. J Dent Res.1998 Nov;77 (11):1920-5.
    44. McAdam BF, Mardini IA, Habib A, Dissociation of microglial activation and neuropathic pain behaviors following peripheral nerve injury in the rat. J Neuroimmunol. 1997 Nov;79(2):163-75.
    45. Colburn RW, DeLeo JA, Rickman AJ,et al.Effect of regulated expression of human cyclooxygenase isoforms on eicosanoid and isoeicosanoid production in inflammation.J Clin Invest.2000 May;105(10):1473-82.
    46. Laflamme N, Lacroix S, Rivest S. An essential role of interleukin-1 beta in mediating NF-kappaB activity and COX-2 transcription in cells of the blood-brain barrier in response to a systemic and localized inflammation but not during endotoxemia.J Neurosci.1999 Dec 15;19(24):10923-30.
    47. Vardeh D, Wang D, Costigan M, et al. COX2 in CNS neural cells mediates mechanical inflammatory pain hypersensitivity in mice.J Clin Invest.2009 Feb;119(2):287-94.
    48. Gao Y, Duan YZ. Increased COX2 in the trigeminal nucleus caudalis is involved in orofacial pain induced by experimental tooth movement. Anat Rec (Hoboken) 2010,293 (3):485-491.
    49. Balam TA, Yamashiro T, Zheng L, et al.Experimental tooth movement upregulates preproenkephalin mRNA in the rat trigeminal nucleus caudalis and oralis. Brain Res.2005 Mar 2;1036 (1-2):196-201.
    50.钟带星等。生理科学进展,2003,34:353.
    51. Watkins LR, Milligan ED, Maier SF, et al. Spinal cord glia:new players in pain. Pain, 2001,93:201-209.
    52. Nimmerjahn A, Kirchhoff F, Helmchen F, et al. Resting microglial cells are highly dynamic surveillants of brain parenchyma in vivo.Science,2005,308:1314-1318.
    53. Raghavendra V, Tanga FY, DeLeo JA, et al. Complete Freund's adjuvant-induced peripheral inflammation evokes glial activation and proinflammatory cytokine expression in the CNS. Eur JNeurosci,2004,20 (2):467-473.
    54.罗层,陈军。胶质细胞在病理性痛中的作用。神经解剖学杂志,2002,18:366-369.
    55. Milligan ED, Mehmert KK, Hinde JL, et al. hyperalgesia andmechanical allodynia produced by intrathecal administration of the human immunodeficiency Virus-1 (HIV 1) envelope glycoprotein, gp120. Brain Res,2000,861:105-116.
    56. Haydon PG. Glia:listening and talking to the synapse. Nature Neuro sci Rev,2001,2: 185-193.
    57. Garrison CJ, Dougherty PM, Kajander KC, et al. Staining of glial fibrillary acidic protein (GFAP) in lumbar spinal cord increases following a sciatic nerve constriction injury. Brain Res,1991,565(1):1-7.
    58. Coyle DE. Partial peripheral nerve injury leads to activation of astroglia and microglia which parallels the development of allodynic behavior. Glia,1998,23(1):75-83.
    59. Fu KY, Light AR, Matsushima GK, et al. Microglial reactions after subcutaneous formalin injection into the rat hind paw. Brain Res,1999,825(1-2):59-67.
    60. Sweitzer SM, Colburn RW, Rutkowski M, et al. Acute peripheral inflammation induced moderate glial activation and spinal IL-lbeta expression that correlates with pain behavior in the rat.Brain Res,1999,829(1-2):209-221.
    61. Colburn RW, DeLeo JA, et al. The effect of perineural colchicines on nerve injury-induced spinal glial activation and neuropathic pain behavior. Brain Res Bull,1999, 49(6):419-427.
    62. Fu KY, Light AR, Maixner W, et al. Relationship between nociceptor activity, peripheral edema, spinal microglial activation and long-term hyperalgesia induced by formalin. Neuroscience,2000,101(4):1127-1135.31.
    63. Milligan ED, O'Connor KA, Nguyen KT, et al. Intrathecal HIV-1 envelope glycoprotein gp120 induces enhanced pain states mediated by spinal cord proinflammatory cytokines. J Neurosci,2001,21 (8):2808-2819.
    64. Watkins LR, Martin D, UIrich P, et al. Evidence for the involvement of spinal cord glia in Subcutaneous formalin induced hyperalgesia in the rat. Pain,1997,71:225-235.36. Watkins LR, Milligan ED, Maier SF. Spinal cord glia:new players in pain. Pain,2001, 93(3):201-205.37.
    65. Winkelstein BA, Rutkowski MD, Sweitzer SM, et al. Nerve injury proximal or distal to DRG induces similar spinal glial activationand selective cytokine expression but differential behavioral response to pharmacologic treatment. J Comp Neurol,2001,439 (2):127-139.38.
    66. Oka T, Wakuga wa Y, Hosoi M, et al.Intracerebro-ventricular injection of tumor necrosis factor-alphainduces thermal hyperalgesia in rats. Neuroimmunomodulat, 1996,3(2-3),135-140.
    67.傅开元.外周炎症性疼痛刺激诱发中枢神经系统小胶质细胞增殖活化。中国神经免疫学和神经病性杂志,2001,8:179-183.45.
    68.李卉丽,秦绿叶,等。疼痛研究的新亮点:星型胶质细胞。生理科学进展,2003,34:45-48.
    69. Colburn RW, DeLeo JA, Rickman AJ, et al.Dissociation of microglial activation and neuropathic pain behaviors following peripheral nerve injury in the rat.J Neuroimmunol. 1997 Nov;79(2):163-75.
    70. Hains BC, Waxman SG. Activated Microglia Contribute to the Maintenance of Chronic Pain after Spinal Cord Injury. J Neurosci,2006,26(16):4308-17.
    71. DeLeo JA, Tanga FY, Tawfik VL. Neuroimmune activation and neuroinflammation in chronic pain and opioid tolerance/hyperalgesia. Neuroscientist,2004,10(1):40-52.
    72. Zhuang ZY, Gerner P, Woolf CJ, Ji RR. ERK is sequentially activated in neurons,microglia, and astrocytes by spinal nerve ligation and contributes to mechanical allodynia in this neuropathic pain model. Pain,2005,114(1-2):149-59.
    73. Ledeboer A, Sloane EM, Milligan ED, et al. Minocycline attenuates mechanical allodynia and proinflammatory cytokine expression in rat models of pain facilitation.Pain, 2005,115(1-2):71-83.
    74. Raghavendra development V, Tanga FY, Deleo JA. Inhibition of microglial activation attenuates the but not existing hypersensitivity in a rat model of neuropathy. J Pharmacol Exp Ther,2003,306(2):624-30.
    75. Tanga FY, Raghavendra V, DeLeo JA. Quantitative real-time RT-PCR assessment of spinal microglial and astrocytic activation markers in a rat model of neuropathic pain.Neurochem Int,2004,45:397-407.
    76. Rouach N, Glowinski J, Giaume C. Activity-dependent neuronal control of gap-junctional communication in astrocytes.J Cell Biol.2000 Jun 26;149(7):1513-26.
    77. Lau LT, Yu ACH. Astrocyte produce and release interleukin-1, interleukin-6, tumor necrosis factor alpha and interferon-gamma following traumatic and metabolicinjury. J Neurotrauma,2001,18,351-359.
    78. MilliganED, Connor KAO, NguyenKT, et al. Intrathecal HIV-1 envelope glycoproteingp120induces enhanced pain statesmediatedby spinal cordproinflammatory cytokines. J Neurosci,2001,21,2808-2819.
    79. M. Takemura, T. Sugimoto, A. Sakai, Topographic organization of central terminal region of different sensory branches of the rat mandibular nerve, Exp. Neurol.96 (1987) 540-557.
    80.袁华,段丽,饶志仁.大鼠三叉神经尾侧亚核内星形胶质细胞对疼痛刺激的反应及与神经元的关系.解剖学报2003,34(6):563—567.
    81.袁华,段丽,饶志仁.痛刺激后大鼠三叉神经尾侧亚核星形细胞和神经元相互关系的电镜观察.中国神经科学杂志,2003,19(1),5-8.
    82.朱东望,刘洪臣,张勇,等.面部皮下福尔马林注射致大鼠三叉神经脊束核尾侧亚核c-fos和GFAP表达的动态变化[J].中华老年口腔医学杂志,2010,10(1):1-4.
    83. Bergles DE, Roberts JD, Somogyi P, et al. Glutamatergic synapses on oligodendrocyte precursor cells in the hippocampus[J]. Nature,2000,405(6783):187-191.
    84. Guo, L. H., Traumann, K., Schluesener, H. J. Expression of P2X4 receptor by lesion alactivated microglia during formalin-induced inflammatorypain [J]. Neuroimmu, 2005,163:120-127.
    85.贾静,刘洪臣,章捍东等.咬合创伤下大鼠三叉神经脊束核尾侧亚核星形胶质细胞的反应及其与细胞因子的关系[J].中华老年口腔医学杂志,2005,3(3):132-134.
    86.朱美玲,刘洪臣.三叉神经脊束核在口面痛传导中的作用[J].口腔颌面修复学杂志,2002,3(3):185-187.
    87. Xiao-Dong Liu, Jing-Jie Wang, Lei,et al. SunInvolvement of medullary dorsal horn glial cell activation in mediation of masseter mechanical allodynia induced by experimental tooth movement, archives of oral biology 54 (2009) 1143-1150.
    88. Tsuda M et al. Trends Neurosci,2005,28:101
    89. DeLeo JA, Tanga FY, Tawfik VL. Neuroimmune activation and neuroinflammation in chronic pain and opioid tolerance/hyperalgesia. Neuroscientist,2004,10(1):40-52.
    90. Stoll q Jander S. The role of microglia and macrophages in the pathophysiology of the CNS. Prog Neurobiol,1999,58(3):233-47.
    91. Nakajima K, Kohsaka S. Microglia:activation and their significance in the central nervous system. J Biochem (Tokyo),2001,130(2):169-175.
    92. moue K. The function of microglia through purinergic receptors:Neuropathic pain and cytokine release. Pharmacol Ther,2006,109(1-2):210-26.
    93. Tsuda M, Inoue K, Salter MW, et al. Neuropathic pain and spinal microglia:a big problem from molecules in "small" glia.Trends Neurosci.2005 Feb;28(2):101-7.
    94. Beltramo M, Bernardini N, Bertorelli R,et al.CB2 receptor-mediated antihyperalgesia: possible direct involvement of neural mechanisms. Eur J Neurosci.2006 Mar;23(6):1530-8.
    95. Yeo JF, Liu HP, Leong SK. Sustained microglial immunoreactivity in the caudal spinal trigeminal nucleus after formalin injection. J Dent Res.2001 Jun;80(6):1524-9.
    96. Villa G, Ceruti S, Zanardelli M, et al.Temporomandibular joint inflammation activates glial and immune cells in both the trigeminal ganglia and in the spinal trigeminal nucleus. Mol Pain.2010 Dec 10;6:89. doi:10.1186/1744-8069-6-89.
    97. Melzack R, Cassy KL.in The Skin Senses, Kenshalo DR, ed(Thomas, Spring field, IL,1968), pp:423-439。
    98. Price DD. Psychological Mechanisms of Pain and Analgesia(I.A.S.P Press, Seattle, WA,1999。
    99. Sewards TV, Sewards M. Separate, parallel sensory somatosensory system. Brain Res Bull.and hedonic pathways in 2002 Jul;58(3):243-60.
    100. IMelzack R, Cassy KL.in The Skin Senses, Kenshalo DR, ed(Thomas, Spring field, IL,1968), pp:423-439.
    101. Kenshalo DR Jr, Anton F, Dubner R.The detection and perceived intensity of noxious thermal stimuli in monkey and in human. J Neurophysiol.
    102. Stevens RT, Hodge CJ 3r, Apkarian AV.Medial, intralaminar, and lateral terminations of lumbar spinothalamic tract neurons:a fluorescent double-label study. Somatosens Mot Res.1989;6(3):285-308.
    103. Vogt BA, Sikes RW. The medial pain system, cingulate cortex, atd parallel processing of nociceptive information. Prog Brain Res.2000; 122:223-35.
    104. Schnitzler A, Ploner M. Neurophysiology and functional neuroanatomy ofpain perception. J Clin Neurophysiol.2000 Nov;17(6):592-603.
    105. McCracken LM, Spertus IL, Janeck AS, Sinclair D, Wetzel FT. Behavioral dimensions of adjustment in persons with chronic pain:pain-related anxiety an acceptance. Pain.1999 Mar;80(1-2):283-9.
    106. Rhudy JL, Meagher MW. Fear and anxiety:divergent effects on human pain thresholds. Pain.2000 Jan;84(1):65-75.
    107. Gureje O. Psychiatric aspects of pain. Curr Opin Psychiatry.2007Jan;20(1):42-6.
    108. Sewards Sewards M. Separate, parallel sensory in the mammalian somatosensory system. Brain Res Bull.Review.and hedonic pathways 2002 Jul;58(3):243-60.
    109. Vogt BA, Sikes RW. The medial pain system, cingulate cortex, and parallelprocessing of nociceptive information. Prog Brain Res.2000; 122,223-35.
    110. Wang CC, Shyu BC. Differential projections from the mediodorsal and centrolateral thalamic nuclei to the frontal cortex in rats. Brain Res.2004 Jan 9;995(2):226-35.
    111. Chudler EH, Foote WE, Poletti CE. Responses of cat C1 spinal cord dorsal and ventral horn neurons to noxious and non-noxious stimulation of the head and face.Brain Res.1991 Aug 2;555(2):181-92.
    112. Roeska K, Doods H, Arndt K, et al.Anxiety-like behaviour in rats with mononeuropathy is reduced by the analgesic drugs morphine an gabapentin. Pain.2008 Oct 15;139(2):349-57. Epub 2008 Jun 18.
    113. Suzuki Amata M, Sakaue T. Experimental neuropathy in q Nishimura S, moue T, Shibata M, Mashimos associated with delayed behavioral changes esth Analg.2007 3un;104(6):1570-7.
    114. Ji G, Fu Y, Ruppert KA, Neugebauer V Pain-related anxiety-like behavior requires CRF1 receptors in the amygdala. Mol Pain.2007 Jun 5;3:13.
    115. 张建伟.大鼠急性切割痛过程中焦虑样行为的产生及机制研究.
    116. rennan.TJ, Vandermeulen EP, Gebhart GF. Characterization of a rat model Pain of incisional pain.1996 Mar;64(3):493-501.
    117. Narita M, Kaneko C, Miyoshi K,et al. Chronic pain induces anxiety withconcomitant changes in opioidergic function in the amygdala. Neuropsychophannacology.2006 Apr;31(4):739-50.
    118. Suzuki T, Amata M,SakaueG,et al. Experimental neuropathy in mice is associated with delayed behavioral changes related to anxiety and depression. AnesthAnalg 2007; 104:1570-1577.
    119. Gameiro GH, Gameiro PH, Andrade Ada S, et al. Nociception-and anxiety-like behavior in rats submitted to different periods of restraint stress. Physiol Behav. 2006;87:643-649.
    120. BairMJ, RobinsonRL, KatonW,etal. Depression and pain comorbidity:a literature review[J]. Arch InternMed,2003,163(20):2433-2445.
    121. Castaneda AE, Tuulio-Henriksson A, MarttunenM,et al. A review on cognitive impairments in depr essive and anxi ety disorders with a focus on young adults. J Affect Disord 2008;106:1-27.
    122. DuricV, McCarson KE. Persistentpain produces stress-like alterations in hippocampal neurogenesis and gene expression. J Pain 2006; 7:544-555.
    123. DuricV, McCarson KE. Hippocampalneurokini n-1 receptor and brain-derivedneurotrophic factor geneexpressionis decreased in rat models of pain and stress. Neuroscience 2005;133:999-1006.
    124. 十束支郎,川胜忍.老年痴呆c:对亨为方0法缝黢、当lI芍藁散二土为治0[J].16代洋医(酶增),1991,15(12):315—317.
    125.张士云,吴凡.当归芍药散治疗老年性痴呆21例[J].安徽中医学院学报,1996,15(6):20-21.
    126. 韩祖成,史凡凡,王凌,等.当归芍药散治疗脑血管性痴呆36例[J].陕西中医,1998,19(11):16-17.
    127. 高德义,黄贾生,何宏文.当归芍药散治疗老年性痴呆36例临床研究[J].中国全科医学,2004,7(11):782—783.
    128. 罗焕敏,姚志彬,陈以慈,等.当归芍药散改良方对老年性痴呆鼠空间学习记忆力的影响[J].中国老年学杂志,1995,15(5):283-285.
    129. 耿淼,蒋宁,周文霞,等.当归芍药散对快速老化模型小鼠海马蛋白表达的影响[J].第三军医大学学报,2008,30(6):477-480.
    130. 寇俊萍,严永清,王霆,等.当归芍药散及其含药血清对离体海马脑片拟缺血样损伤的作用[J].中医药学刊,2003,21(2):198—199。
    131. 寇俊萍,华敏,朱丹妮,等.当归芍药散对脑缺血再灌注所致记忆损伤模型小鼠的影响[J].中国现代应用药学,2001,18(5):343。
    132. 张宝仁,朱家麟吴华,等.当归芍药散对谷氨酸诱导的小脑颗粒细胞神经元损伤的神经保护作用[J].国外医学·中医中药分册,1998,20(5):41-42.
    133. 金海,朱家麟,张宝仁,等.细胞周期蛋白Dl基因表达在心肌肥大形成中的时相性变化[J].第二军医大学学报,1999,5(20):959-961.
    134. 李世英,安红兵,张文义.当归芍药散对拟血管性痴呆小鼠行为学及脑海马神经肽含量的影响[J].辽宁中医药大学学报,2010,12(9):49-51.
    135. 刘孟渊,王达平,刘惠纯,等.加味当归芍药散对阿尔茨海默病模型小鼠记忆能力和脑组织tau蛋白及Fas抗原含量的影响[J].中医杂志,2004,45(5):378-380.
    136. 刘孟渊,肖柳英,潘竞锵,等.加味当归芍药散对阿尔茨海默病模型小鼠记忆能力和脑组织白介素1B,白介素6及NO含量的影响[J].中医杂志,2003.
    137. 何宏文,李泽良,曲怀刚,等.当归芍药散对SAM-P8小鼠海马CA区、齿状回锥体细胞的影响[J].解剖学研究,2008,30(5):358-359,384.
    138. Paixao S, Klein R. Neuron-astrocyte communication and synaptic plasticity.Curr Opin Neurobiol.2010 Aug;20(4):466-73. doi:10.1016/j.conb.2010.04.008. Epub 2010 May 12.
    139. Verkhratsky A, Olabarria M, Noristani HN, Yeh CY, Rodriguez JJ (2010) Astrocytes in Alzheimer's disease. Neurotherapeutics 7:399-412.22.
    140. Garwood CJ, Pooler AM, Atherton J, Hanger DP, et al.(2011) Astrocytes are important mediators of Abeta-induced neurotoxicity and tau phosphoryla-tion in primary culture. Cell Death Dis 2:e167.
    141. Cunningham C, Skelly DT (2012)Non-steroidalanti-inflammatory drugs andcognitive function:are prostaglandins at the heart of cognitive impairment in dementia and delirium? J Neuroimmune Pharmacol 7:60-73.
    142. Agostinho P, Cunha RA, Oliveira C (2010) Neuroinflammation, oxidative stress and the pathogenesis of Alzheimer's disease. Curr Pharm Des 16:2766-2778.
    143. Perez JL, Carrero I, Gonzalo P, Arevalo-Serrano J, et al.(2010) Soluble oligomeric forms of beta-amyloid (Abeta) peptide stimulate Abeta production via astrogliosis in the rat brain. Exp Neurol 223:410-421.
    144. Jae Woong Lee, Yong Kyung Lee, Dong Yeon Yuk, et al.Neuro-inflammation induced by lipopolysaccharide causes cognitive impairment through enhancement of beta-amyloid generation. Journal of Neuroinflammation 2008,5:37.
    145. Wang G, Dinkins M, He Q, et al.Astrocytes secrete exosomes enriched with pro-apoptotic ceramide and prostate apoptosis response 4 (PAR-4):a potential mechanism of apoptosis induction in Alzheimer's disease(AD). J Biol Chem.J Biol Chem.2012 Jun 15;287(25):21384-95.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700