用户名: 密码: 验证码:
大肠杆菌密度感应调节子C(QseC)在生物材料植入感染中的作用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
[背景和目的]
     随着生物材料被广泛应用于临床,生物材料植入感染(implant-associated infection)已经成为令人棘手的常见医院内感染,有报道占医院内感染的50%,往往给患者带来灾难性后果。大肠杆菌是临床生物材料植入感染优势菌种,在心脏瓣膜置换术、关节置换术、脑室腹腔分流术等术后生物材料植入感染中大肠杆菌检出率为3~10%。
     大肠杆菌(Escherichia coli)是人体肠道中的条件致病菌,心脏大血管手术体外循环期间、神经外科或骨科等手术控制性降压期间、以及临床上常见的失血性休克,均可导致肠通透性升高及肠道细菌移位,造成菌血症,血液中的细菌为细菌在生物材料表面黏附提供菌源。细菌在生物材料表面一旦形成细菌生物膜,就能有效地抵御机体的防御反应和抗生素的治疗,是导致生物材料植入感染难以控制的根源。密度感应系统(quorum sensing system)在细菌生物膜形成过程中起重要作用。Sperandio等研究表明大肠杆菌密度感应调节子C (Quorum sensing E. coli regulator C, QseC)可以识别自诱导物3(AI-3)、肾上腺素(EPI)及去甲肾上腺素(NE)等信号分子,在浮游状态时细菌的密度感应系统中起重要调节作用。然而,在肠道大肠杆菌移位引发的生物材料植入感染中,大肠杆菌QseC的作用如何,目前相关报道甚少。
     本研究采用Red同源重组技术构建大肠杆菌K-12菌株qseC阴性突变菌株;在前期建立的聚氯乙烯材料表面细菌生物膜模型基础上,采用激光扫描等技术,探讨大肠杆菌QseC对生物材料表面细菌生物膜形成能力的影响;通过失血性休克建立肠道细菌移位动物模型,探讨大肠杆菌QseC在肠道细菌移位引发生物材料植入感染中的作用;揭示防治大肠杆菌引发的生物材料植入感染的有效分子药物靶标,为防治生物材料植入感染提供实验依据。
     [方法]
     本研究分四部分:
     1、应用Red同源重组技术构建大肠杆菌qseC阴性突变菌株:选用大肠杆菌K-12MC1000菌株为研究对象,应用PCR技术扩增两翼与目的基因上下游同源、含有氯霉素抗性基因片段,电击转化入大肠杆菌MC1000。在阿拉伯糖诱导下,含有质粒pKD46的菌株MC1000表达Red同源重组酶,利用含同源臂的氯霉素抗性片段置换目的基因qseC,并进一步利用FLP位点专一性重组将氯霉素抗性基因删除。最后用鉴定引物行PCR对大肠杆菌qseC阴性突变菌株进行鉴定。所得突变菌株标记为qseC
     2、大肠杆菌QseC在细菌生物学表型变化中的作用:测定大肠杆菌MC1000和MC1000ΔqseC的生长曲线,及其在泳动能力检测培养基上的运动能力。探讨大肠杆菌QseC在细菌生物学表型变化中的作用。
     3、大肠杆菌QseC在生物材料表面细菌生物膜形成中的作用:以两株大肠杆菌(MC1000菌株和MC1000ΔqseC菌株)为实验菌株,在培养基中添加EPI或NE,建立PVC材料表面细菌生物膜体外模型。实验中同时设置未经EPI或NE处理的野生菌株和阴性突变菌株作为对照。采用半定量检测方法测定大肠杆菌的细菌生物膜形成能力,应用激光共聚焦显微镜(CLSM)动态观察PVC材料表面大肠杆菌生物膜的形成过程、细菌群落数量及细菌生物膜厚度等,应用扫描电镜(SEM)观察PVC材料表面大肠杆菌细菌生物膜的表面结构。探讨大肠杆菌QseC在PVC材料表面细菌生物膜形成中的作用。
     4、QseC在肠道细菌移位并在生物材料表面细菌生物膜形成中的作用:SPF级健康雄性SD大鼠随机分为6组:空白+假休克组(空白-Sham),空白+休克组(空白-HS),MC1000+假休克组(M-Sham), MC1000ΔqseC+假休克组(Δ-Sham),MC1000+休克组(M-HS),MC1000ΔqseC+休克组(Δ-HS),每组6只。将实验菌株定植于大鼠肠道内,经右下腹斜切口将PVC材料放入腹膜腔并建立失血性休克动物模型。在休克后24h处死大鼠,严格无菌条件下取门静脉血和肠系膜淋巴结、肝脾标本行细菌培养,采用平板菌落计数法计数细菌移位率及菌落数,并根据组织重量换算为每克组织的菌落总数(CFU/g);通过PCR反应对细菌进行鉴定,证实细菌来自于大鼠肠道内的实验菌株;取出PVC材料片作细菌培养和鉴定,同时用SEM对材料表面细菌生物膜的形成情况进行观察。
     [结果]
     1、大肠杆菌qseC阴性突变菌株的构建:PCR及DNA测序结果表明,qseC基因内部序列已被删除,且无氯霉素抗性基因,qseC基因已被成功敲除。
     2、大肠杆菌QseC在细菌生物学表型变化中的作用:①MC1000和MC1000ΔqseC在LB培养基中的生长并无明显差异;②MC1000和MC1000ΔqseC在LBEPI(或LBNE)培养基中的生长并无明显差异;③相对于MC1000菌株,MC1000ΔqseC突变株的运动能力明显下降(P<0.05);④MC1000菌株在LBEPI和LBNE培养基中的运动力较之在LB培养基中明显增强(P<0.05),而当存在EPI或NE时MC1000ΔqseC突变株的变化无统计学意义(P>0.05)。
     3、大肠杆菌QseC在生物材料表面细菌生物膜形成中的作用:①PVC材料表面大肠杆菌生物膜的形成过程:PVC材料表面细菌群落数量及细菌生物膜厚度随时间的变化而变化,培育18-24h时细菌群落数量达到高峰,培育24h“时细菌生物膜厚度达到峰值;②QseC在PVC材料表面细菌生物膜形成中的作用:与MC1000组相比,MC1000ΔqseC组PVC材料表面大肠杆菌生物膜的形成能力明显降低(P<0.05),单位面积细菌群落数量减少(P<0.05),细菌生物膜厚度明显减小(P<0.05);③EPI(或NE)对PVC材料表面大肠杆菌细菌生物膜形成的影响:添加EPI或NE后PVC材料表面MC1000细菌生物膜的形成能力明显增强(P<0.05),而添加EPI或NE后PVC材料表面MC1000ΔqseC细菌生物膜的形成能力并无明显改变(P>0.05)。
     4、QseC在肠道细菌移位并在生物材料表面细菌生物膜形成中的作用:①在大鼠门静脉血、肠系膜淋巴结、肝脾组织内以及PVC材料片上,均分离出耐链霉素细菌,经PCR证实这些细菌就是来自于灌饲到大鼠肠道的实验菌株;②Δ-HS组大鼠细菌移位率和内脏组织细菌含量都比M-HS组明显降低(P<0.05);③Δ-HS组大鼠PVC材料上的细菌含量较之M-HS组有明显降低(P<0.05)。
     [结论]
     1、大肠杆菌QseC缺失后运动能力显著下降。儿茶酚胺对大肠杆菌运动能力有直接促进作用,而且该作用是通过QseC介导的。
     2、生物材料表面大肠杆菌生物膜的形成是一个动态过程,生物材料表面细菌群落数量及细菌生物膜厚度的增加与时间的变化相关,这可能与生物材料植入感染的临床感染特征有关。
     3、大肠杆菌QseC在生物材料表面细菌生物膜的形成中具有重要作用。儿茶酚胺对大肠杆菌在生物材料表面细菌生物被膜的形成有直接促进作用,而且该作用是通过QseC介导的。
     4、大肠杆菌QseC缺失后,运动能力降低,同时QseC信号链中断,细菌对肠粘膜的侵袭力和穿透力减弱,导致细菌移位发生率下降。QseC-1肾上腺素信号通路在肠道大肠杆菌移位并在生物材料表面定植中起重要作用。
[Background and Objective]
     With the increasing numbers of devices that are being implanted, implant-associated infection (IAI) has already become the commonly formidable infection in hospital. According to a report, IAI accounts for50%infections in hospital. Escherichia coli is one of the most common microorganisms associated with device-related infections. Infections of prosthetic heart valves, prosthetic joints, and ventriculoperitoneal shunts are often caused by Escherichia coli.
     Cardiopulmonary bypass during cardiac surgery, controlled hypotension during neurosurgical or orthopedic procedure, and hemorrhagic shock result in the translocation of bacteria, leading to bacteremia. Bacterium in blood adhered to indwelling devices and then bacterial biofilm was formed. Bacterial biofilm has been shown to play an important role in implant-associated infections. In the biofilm state, microorganisms are relatively immune to antibodies and resistant to conventional antimicrobial agents. Regulation of the biofilm formation involves the qseC quorum-sensing system. The quorum sensing E.coli regulator C (QseC) is the histidine sensor kinase that detects autoinducer-3/epinephrine/norepinephrine in the planktonic state. However, the role of QseC in the implant-associated infection caused by Escherichia coli remains unclear.
     We investigated biofilm formation on the surface of medical-grade polyvinyl chloride (PVC) by using the E.coli K-12strain as well as corresponding qseC mutant. E.coli qseC mutant was constructed using lambda Red mutagenesis. LB with epinephrine and without epinephrine was used, and then the experiment of bacterial biofilm formation on PVC material was taken. The thickness of bacterial community and bacterial community quantity in the unit area on PVC materials were measured by confocal laser scanning microscope (CLSM), and the surface structure of biofilm formation was observed by scanning electron microscope (SEM). Additionally, a rat model of nonlethal hemorrhagic shock was used. Whether the ability of E.coli to sense epinephrine/norepinephrine by QseC would have the effect on the bacterial translocation to indwelling devices in a rat model of hemorrhagic shock was studied. These results serve to give a deeper understanding of how Escherichia coli biofilm on indwelling devices works. Our results are helpful for understanding and preventing biofilm formation, as well as helpful for combating implant-associated infections.
     [Methods]
     1. Construction of the qseC gene knockout
     The E.coli K-12MC1000qseC mutant was constructed by using the lambda Red mutagenesis strategy. The Cm resistance cassette from plasmid pKD3, including approximately50-bp extensions from the5'and3'ends of the predicted qseC gene was amplified. PCR products were electroporated into MC1000(pKD46) that had been induced to express the λRed recombinase. Cmr recombinants were selected. Mutations were confirmed by PCR. To remove the Cm cassette from the ΔqseC::Cm mutant, plasmid pCP20was introduced into the strain. The mutant, ΔqseC, was confirmed by PCR.
     2. The role of QseC in growth curves and motility
     The growth curves and motility of E. coli MC1000and MC1000ΔqseC were assayed.
     3. The role of QseC in the biofilm formation on the surface of polyethylene chloride
     We investigated the role of the QseC in the formation of biofilms on the surface of medical-grade poly vinyl chloride by using the E.coli K-12MC1000strain as well as a corresponding qseC mutant. LB with epinephrine and without epinephrine was used, and then the experiment of bacterial biofilm formation on PVC material was taken. The thickness of bacterial community and bacterial community quantity in the unit area on PVC materials were measured by confocal laser scanning microscope (CLSM), and the surface structure of biofilm formation was observed by scanning electron microscope (SEM).
     4. The role of QseC in the bacterial translocation to indwelling devices
     E. coli MC1000and MC1000ΔqseC were used to track BT after gavage in rats. A rat model of nonlethal hemorrhagic shock was used. The rats were divided into6groups:controls (SS), rats that received a sham shock and MC1000(M-SS), rats that received a sham shock and MC1000ΔqseC (A-SS), rats that received a hemorrhagic shock and were not fed with E. coli (HS), rats that received a hemorrhagic shock and MC1000(M-HS), and rats that received a hemorrhagic shock and MC1000ΔqseC (Δ-HS). At sacrifice (24h), portal venous blood, the mesenteric lymph nodes, the midsection of the spleen, and segment IV of the liver were aseptically removed for bacteriological examination, and segments of the ileum were harvested for histopathology. The polyethylene chloride from peritoneal cavity was observed by scanning electron microscope (SEM).
     [Results]
     1. Deletion of qseC using the lambda Red system
     The qseC-deleted mutant of E. coli was confirmed by various PCR and DNA sequencing. Gene qseC was completely deleted.
     2. The role of QseC in growth curves and motility
     ①There was no significant difference in growth ability between the qseC mutant strain and the wild-type strain MC1000in LB medium. Growth was not altered after qseC was deleted.②EPI and NE were used at concentrations of50μmol L-1. At these concentrations, no significant alterations in the growth of E.coli MC1000and MC1000ΔqseC were observed.③In the absence of EPI、NE, MC1000ΔqseC was less mobile than the isogenic wild-type strain.④MC1000motility increased upon the addition of EPI/NE. MC1000ΔqseC did not respond significantly to EPI/NE addition.
     3. The role of QseC in the biofilm formation on the surface of polyethylene chloride
     ①E.coli biofilm formation on the surface of polyethylene chloride:Bacterium community quantity and thickness of bacterium biofilm on PVC have changed over time. After being cultured18-24h, bacterium community quantity reached peak. After being cultured24h, thickness of bacterium biofilm reached peak.②The effect of QseC on bacterium biofilm formation on PVC surface:Deletion of qseC decreased biofilm formation in LB. Deletion of qseC led to the reduction of bacterium community quantity and biofilm thickness.③Effect of EPI/NE on biofilm formation of the qseC-deleted mutant of Escherichia coli on biomaterial:Biofilm formation was stimulated significantly by EPI/NE in LB medium for E.coli MC1000. But that in E.coli MC1000ΔqseC, biofilm formation was not stimulated significantly by EPI/NE.
     4. The role of QseC in the bacterial translocation to indwelling devices
     ①The streptomycin-resistant bacteria isolated from the portal venous blood, MLNs, spleen, liver and PVC in the M-HS group produced a band at1488bp, whereas the streptomycin-resistant extraintestinal bacteria in the Δ-HS group produced a band at237bp. So these bacteria were the E. coli MC1000or MC1000ΔqseC administered to the rats by gavage.②Rats treated with MC1000ΔqseC showed reduced levels of bacterial translocation following hemorrhagic shock compared with rats treated with MC1000.③The number of streptomycin-resistant bacteria found in the PVC in the A-HS group was considerably reduced and significantly lower than that of the M-HS group.
     [Conclusions]
     1. E.coli AqseC motility decreased. E.coli motility increased upon the addition of catecholamines. Catecholamines increased Escherichia coli motility through QseC.
     2. The bacterium biofilm formation on the surface of implant is a dynamic process. Bacterium community quantity and thickness of bacterium biofilm has changed over time. It is possibly the important factor resulting in repetatus infection caused by the implant.
     3. The qseC gene plays an important role in regulation of biofilm formation of Escherichia coli on the surface of implant. In E.coli AqseC, biofilm formation was not stimulated significantly by catecholamines, which indicates that catecholamines stimulate E.coli biofilm formation on the surface of implant through QseC.
     4. Rats treated with E.coli AqseC, which has a weakened motility and does not respond to catecholamines, showed reduced levels of bacterial translocation following hemorrhagic shock. The blockade of the QseC receptor-mediated action may be useful to attenuate bacterial translocation to indwelling devices after hemorrhage.
引文
[1]Sallam SA, Arafa MA, Razek AA, et al. Device-related nosocomial infection in intensive care units of Alexandria University Students Hospital. East Mediterr Health J,2005,11(1-2): 52-61
    [2]Costerton JW, Montanaro L, Arciola CR. Biofilm in implant infections:its production and regulation. Int J Artif Organs,2005,28(11):1062-1068
    [3]Harper C. Permacol:clinical experience with a new biomaterial. Hosp Med,2001,62(2): 90-95
    [4]Sampedro MF, Patel R. Infections associated with long-term prosthetic devices. Infect Dis Clin North Am,2007,21(3):785-819
    [5]Hedrick TL, Adams JD, Sawyer RG. Implant-associated infections:an overview. J Long Term Eff Med Implants,2006,16(1):83-99
    [6]Costerton JW, Geesey GG, Cheng KJ. How bacteria stick. Sci Am,1978,238(1):86-95
    [7]MacKintosh EE, Patel JD, Marchant RE, et al. Effects of biomaterial surface chemistry on the adhesion and biofilm formation of Staphylococcus epidermidis in vitro. J Biomed Mater Res A,2006,78(4):836-842
    [8]Patel JD, Ebert M, Ward R, et al. S. epidermidis biofilm formation:effects of biomaterial surface chemistry and serum proteins. J Biomed Mater Res A,2007,80(3):742-751
    [9]黄云超,张尔永,石应康,等.兔体内细菌对人工心脏瓣膜的粘附和清除研究.生物医学工程与临床.2004,8(2):61-64
    [10]叶联华,黄云超,李高峰,等.生物材料植入后发生感染与表皮葡萄球菌生物膜.生物医学工程与临床,2010,14(1):79-83
    [11]Costerton JW, Stewart PS, Greenberg EP. Bacterial biofilms:a common cause of persistent infections. Science,1999,284(5418):1318-1322
    [12]Jarvis WR, Martone WJ. Predominant pathogens in hospital infections. J Antimicrob Chemother,1992,29(Suppl A):19-24
    [13]Donlan RM, Costerton JW. Biofilms:survival mechanisms of clinically relevant microorganisms. Clin Microbiol Rev,2002,15(2):167-193
    [14]Montdargent B, Letourneur D. Toward new biomaterials. Infect Control Hosp Epidemiol, 2000,21(6):404-410
    [15]Bayston R, Penny SR. Excessive production of mucoid substance in staphylococcus SⅡA:a possible factor in colonisation of Holter shunts. Dev Med Child Neurol Suppl,1972,27: 25-28
    [16]Thuijls G, de Haan JJ, Derikx JP, et al. Intestinal cytoskeleton degradation precedes tight junction loss following hemorrhagic shock. Shock,2009,31(2):164-169
    [17]Fuqua WC, Winans SC, Greenberg EP. Quorum sensing in bacteria:the LuxR-LuxI family of cell density-responsive transcriptional regulators. J Bacteriol,1994,176(2):269-275
    [18]Miller MB, Bassler BL. Quorum sensing in bacteria. Annu Rev Microbiol,2001,55: 165-199
    [19]Waters CM, Bassler BL. Quorum sensing:cell-to-cell communication in bacteria. Annu Rev Cell Dev Biol.2005,21:319-346
    [20]Camilli A, Bassler BL. Bacterial small-molecule signaling pathways. Science,2006, 311(5764):1113-1116
    [21]Li J, Attila C, Wang L, et al. Quorum sensing in Escherichia coli is signaled by AI-2/LsrR: effects on small RNA and biofilm architecture. J Bacteriol,2007,189(16):6011-6020
    [22]Sperandio V, Torres AG, Kaper JB. Quorum sensing Escherichia coli regulators B and C (QseBC):a novel two-component regulatory system involved in the regulation of flagella and motility by quorum sensing in E. coli. Mol Microbiol,2002,43(3):809-821
    [23]Reading NC, Torres AG, Kendall MM, et al. A novel two-component signaling system that activates transcription of an enterohemorrhagic Escherichia coli effector involved in remodeling of host actin. J Bacteriol,2007,189(6):2468-2476
    [24]Hughes DT, Clarke MB, Yamamoto K, et al. The QseC adrenergic signaling cascade in Enterohemorrhagic E. coli (EHEC). PLoS Pathog,2009,5(8):e1000553
    [25]Kendall MM, Rasko DA, Sperandio V. Global effects of the cell-to-cell signaling molecules autoinducer-2, autoinducer-3, and epinephrine in a luxS mutant of Enterohemorrhagic Escherichia coli. Infect Immun,2007,75(10):4875-4884
    [26]Walters M, Sircili MP, Sperandio V. AI-3 synthesis is not dependent on luxS in Escherichia coli. J Bacteriol,2006,188(16):5668-5681
    [27]Pacheco AR, Sperandio V. Inter-kingdom signaling:chemical language between bacteria and host. Curr Opin Microbiol,2009,12(2):192-198
    [28]Clarke MB, Hughes DJ, Zhu C, et al. The QseC sensor kinase:a bacterial adrenergic receptor. Proc Natl Acad Sci U S A,2006,103(27):10420-10425
    [29]Curtis MM, Sperandio V. A complex relationship:The interaction among symbiotic microbes, invading pathogens, and their mammalian host. Mucosal Immunol,2011,4(2):133-138
    [30]Rasko DA, Moreira CG, Li de R, et al. Targeting QseC signaling and virulence for antibiotic development. Science,2008,321(5892):1078-1080
    [31]Dougan G. Does the Trojan horse have an Achilles' heel? N Engl J Med,2009,360(1):83-84
    [32]叶联华,许赓,黄云超,等.溴代呋喃酮对聚氯乙烯材料表面大肠杆菌生物膜形成的影响.中国修复重建外科杂志,2010,24(7):871-874
    [33]Costerton JW, Montanaro L, Arciola CR, et al. Bacterial communications in implant infections:a target for an intelligence war. Int J Artif Organs,2007,30(9):757-763
    [34]Dueger EL, House JK, Heithoff DM, et al. Salmonella DNA adenine methylase mutants elicit protective immune responses to homologous and heterologous serovars in chickens. Infect Immun.2001,69(12):7950-7954
    [35]El Karoui M, Amundsen SK, Dabert P, et al. Gene replacement with linear DNA in electroporated wild-type Escherichia coil. Nucleic Acids Res,1999,27(5):1296-1299
    [36]Rao BJ, Dutreix M, Radding CM. Stable three-stranded DNA made by RecA(?) protein. Proc Natl Acad Sci USA,1991,88(8):2984-2988
    [37]张雪,温廷益.Red重组系统用于大肠杆菌基因修饰研究进展.中国生物工程杂志,2008.28:89-93
    [38]Datsenko KA, Wanner BL. One-step inactivation of chromosomal genes in Escherichia coli K-12 using PCR products. Proc Natl Acad Sci U S A,2000,97(12):6640-6645
    [39]Cherepanov PP, Wackernagel W. Gene disruption in Escherichia coli:TcR and KmR cassettes with the option of Flp-catalyzed excision of the antibiotic-resistance determinant. Gene,1995, 158(1):9-14
    [40]Smithies O, Gregg RG, Boggs SS, et al. Insertion of DNA sequences into the human chrosomoal betaglobin locus by homologous recombination. Nature,1985,317(6034): 230-234
    [41]Murphy KC. Use of bacteriophage λ recombination functions to promote gene replacement in Escherichia coli. J Bacteriol,1998,180(8):2063-2071
    [42]Serra-Moreno R, Acosta S, Hernalsteens JP, et al. Use of the lambda Red recombinase system to produce recombinant prophages carrying antibiotic resistance genes. BMC Mol Biol,2006, 7:31-42
    [43]Lesic B, Rahme LG. Use of the lambda Red recombinase system to rapidly generate mutants in Pseudomonas aeruginosa. BMC Mol Biol,2008,9:20-28
    [44]Mosberg JA, Lajoie MJ, Church GM. Lambda Red Recombineering in Escherichia coli Occurs Through a Fully Single-Stranded Intermediate. Genetics,2010,186(3):791-799
    [45]Baba T, Ara T, Hasegawa M, et al. Construction of Escherichia coli K-12 in-frame, single-gene knockout mutants:the Keio collection. Mol Syst Biol,2006,2:doi: 10.1038/msb4100050
    [46]Yu D, Ellis HM, Lee EC, et al. An efficient recombination system for chromosome engineering in Escherichia coli. Proc Natl Acad Sci U S A,2000,97(11):5978-5983
    [47]Lee JH, Cho MH, Lee J.3-Indolylacetonitrile decreases Escherichia coli O157:H7 biofilm formation and Pseudomonas aeruginosa virulence. Environ Microbiol,2011,13(1):62-73
    [48]Lee J, Jayaraman A, Wood TK. Indole is an inter-species biofilm signal mediated by SdiA. BMC Microbiol,2007,7:42-56
    [49]Lee J, Maeda T, Hong SH, et al. Reconfiguring the quorum-sensing regulator SdiA of Escherichia coli to control biofilm formation via indole and N-Acylhomoserine lactones. Appl Environ Microb,2009,75(6):1703-1716
    [50]Lee J, Zhang XS, Hegde M, et al. Indole cell signaling occurs primarily at low temperatures in Escherichia coli. ISME J,2008,2(10):1007-1023
    [51]Gonzalez Barrios AF, Zuo R, Hashimoto Y, et al. Autoinducer 2 controls biofilm formation in Escherichia coli through a novel motility quorum-sensing regulator (MqsR, B3022). J Bacteriol,2006,188(1):305-316
    [52]Bearson BL, Bearson SM. The role of the QseC quorum-sensing sensor kinase in colonization and norepinephrine-enhanced motility of Salmonella enterica serovar Typhimurium. Microb Pathog,2008,44(4):271-278
    [53]Moreira CG, Weinshenker D, Sperandio V. QseC mediates Salmonella enterica Serovar Typhimurium virulence in Vitro and in Vivo. Infect Immun,2010,78(3):914-926
    [54]Sandrini SM, Shergill R, Woodward J, et al. Elucidation of the mechanism by which catecholamine stress hormones liberate iron from the innate immune defense proteins transferrin and lactoferrin. J Bacteriol,2010,192(2):587-594
    [55]Freestone PP, Williams PH, Haigh RD, et al. Growth stimulation of intestinal commensal Escherichia coli by catecholamines:a possible contributory factor in trauma-induced sepsis. Shock,2002,18(5):465-470
    [56]Freestone PP, Lyte M, Neal CP, et al. The mammalian neuroendocrine hormone norepinephrine supplies iron for bacterial growth in the presence of transferrin or lactoferrin. J Bacteriol,2000,182(21):6091-6098
    [57]Lyte M, Freestone PP, Neal CP, et al. Stimulation of Staphylococcus epidermidis growth and biofilm formation by catecholamine inotropes. Lancet,2003,361(9352):130-135
    [58]Beasley FC, Marolda CL, Cheung J, et al. Staphylococcus aureus transporters Hts, Sir, and Sst capture iron liberated from human transferrin by Staphyloferrin A, Staphyloferrin B, and catecholamine stress hormones, respectively, and contribute to virulence. Infect Immun,2011, 79(6):2345-2355
    [59]黄前川,丁进亚.细菌鞭毛的运动性在生物膜形成中的双重作用.医学综述,2010,16(20):3057-3059
    [60]Wood TK, Gonzalez Barrios AF, Herzberg M, et al. Motility influences biofilm architecture in Escherichia coli. Appl Microbiol Biotechnol,2006,72(2):361-367
    [61]赖世龙,侯浩,姜伟.细菌的运动性及其在致病初期过程中的作用.微生物学杂志,2006,26(5):68-70
    [62]Pratt LA, Kolter R. Genetic analysis of Escherichia coli biofilm formation:roles of flagella, motility, chemotaxis, and type Ⅰ pili. Mol Microbiol,1998,30(2):285-293
    [63]O'Boyle CJ, MacFie J, Mitchell CJ, et al. Microbiology of bacterial translocation in humans. Gut,1998,42(1):29-35
    [64]许赓,黄云超,叶联华,等.4-溴-5-(4-甲氧苯基)-3-(甲氨基)-呋喃酮对聚氯乙烯上细菌生物膜的影响.生物医学工程与临床,2008,12(1):5-8
    [65]Xue T, Zhao L, Sun H, et al. LsrR binding-site recognition and regulatory characteristics in Escherichia coli AI-2 quorum sensing. Cell Res,2009,19(11):1258-1268
    [66]Zhao L, Xue T, Shang F, et al. Staphylococcus aureus AI-2 quorum sensing associates with the KdpDE two-component system to regulate capsular polysaccharide synthesis and virulence. Infect Immun,2010,78(8):3506-3515
    [67]Zhao GQ, Ye LH, Huang YC, et al. In Vitro model of bacterial biofilm formation on polyvinyl chloride biomaterial. Cell Biochem Biophys,2011,61(2):371-376
    [68]叶联华,黄云超,李高峰,等.表皮葡萄球菌生物被膜结构观察.中华微生物学和免疫学杂志,2009,29(7):616-617
    [69]叶联华,黄云超,杨达宽.表皮葡萄球菌ica操纵子与生物材料感染.国际生物医学工程杂志,2008,31(3):164-168
    [70]黄云超,杨凯云,雷玉洁,等.人工瓣膜材料细菌黏附与细菌生长的关系.中国组织工程研究与临床康复,2008,12(39):7777-7780
    [71]叶联华,黄云超,杨达宽,等.葡萄糖对胸心外科聚氯乙烯材料细菌ica操纵子表型的影响.中华医院感染学杂志,2007,17(5):481-485
    [72]叶联华,黄云超,杨达宽,等.聚氯乙烯材料表面细菌生物膜结构观察.生物医学工程与临床,2007,11(4):251-254
    [73]O'Toole GA, Kolter R. Initiation of biofilm formation in Pseudomonas fluorescens WCS365 proceeds via multiple, convergent signaling pathways:a genetic analysis. Mol Microbiol, 1998,28(3):449-461
    [74]Christensen GD, Simpson WA, Younger JJ, et al. Adherence of coagulase-negative Staphylococci to plastic tissue culture plates:a quantitative model for the adherence of Staphylococci to medical devices. J Clin Microbiol,1985,22(6):996-1006
    [75]Lee J, Bansal T, Jayaraman A, et al. Enterohemorrhagic Escherichia coli biofilms are inhibited by 7-hydroxyindole and stimulated by isatin. Appl Environ Microbiol,2007,73(13): 4100-4109
    [76]Kuczynska-Wisnik D, Matuszewska E, Laskowska E. Escherichia coli heat-shock proteins IbpA and IbpB affect biofilm formation by influencing the level of extracellular indole. Microbiology,2010,156(Pt 1):148-157
    [77]Gotz F. Staphylococcus and biofilms. Mol Microbiol,2002,43(6):1367-1378
    [78]黄云超,张良,林兴,等.胞外粘质物在心血管材料表面细菌生物膜形成中的作用.中 华医院感染学杂志,2006,16(3):292-295
    [79]黄云超,林兴,张良,等.金属蛋白酶对涤纶材料表面金黄色葡萄球菌生物膜形成的影响.中国胸心血管外科临床杂志,2006,13(1):32-35
    [80]Mack D, Rohde H, Harris LG, et al. Biofilm formation in medical device-related infection. Int J Artif Organs,2006,29(4):343-359
    [81]黄云超,张尔永,石应康,等.人工心脏瓣膜材料细菌黏附的体外实验.生物医学工程杂志,1999,16(4):406-410
    [82]黄云超,张尔永,石应康,等.人工瓣膜材料细菌粘附与细菌生长的关系.中国胸心血管外科临床杂志,1999,6(1):7-9
    [83]Kostakioti M, Hadjifrangiskou M, Pinkner JS, et al. QseC-mediated dephosphorylation of QseB is required for expression of genes associated with virulence in uropathogenic Escherichia coli. Mol Microbiol,2009,73(6):1020-1031
    [84]Pullinger GD, Carnell SC, Sharaff FF, et al. Norepinephrine augments Salmonella enterica-induced enteritis in a manner associated with increased net replication but independent of the putative adrenergic sensor kinases QseC and QseE. Infect Immun,2010, 78(1):372-380
    [85]Njoroge J, Sperandio V. Enterohemorrhagic Escherichia coli virulence regulation by two bacterial adrenergic kinases, QseC and QseE. Infect Immun,2012,80(2):688-703
    [86]倪龙兴.细菌密度感应系统及其介导的信号传输.中华口腔医学杂志,2009,44(2):87-90
    [87]冷凤英,刘嘉林,瞿洪平.认识细菌密度感应信号系统的作用.中华微生物学和免疫学杂志.2010,30(3):287-290
    [88]Kopin IJ, Zukowska-Grojec Z, Bayorh MA, et al. Estimation of intrasynaptic norepinephrine concentrations at vascular neuroeffector junctions in vivo. Naunyn Schmiedebergs Arch Pharmacol,1984,325(4):298-305
    [89]Leinhardt DJ, Arnold J, Shipley KA, et al. Plasma NE concentrations do not accurately reflect sympathetic nervous system activity in human sepsis. Am J Physiol 1993,265(2 Pt 1): E284-288
    [90]Eldrup E, Richter EA. DOPA, dopamine, and DOPAC concentrations in the rat gastrointestinal tract decrease during fasting. Am J Physiol Endocrinol Metab,2000,279(4): E815-E822
    [91]Sugarman B, Young EJ. Infections associated with prosthetic devices:Magnitude of problem. Infec Dis Clin North Am,1989,3(2):187-198
    [92]MacFie J, O'Boyle C, Mitchell CJ, et al. Gut origin of sepsis:a prospective study investigating associations between bacterial translocation, gastric microflora, and septic morbidity. Gut,1999,45(2):223-228
    [93]Takesue Y, Kakehashi M, Ohge H, et al. Bacterial translocation:not a clinically relevant phenomenon in colorectal cancer. World J Surg,2005,29(2):198-202
    [94]Balzan S, Quadros CA, Cleva R, et al. Bacterial translocation:Overview of mechanisms and clinical impact. J Gastroenterol Hepatol,2007,22(4):464-471
    [95]Luyer MD, Buurman WA, Hadfoune M, et al. Strain-specific effects of probiotics on gut barrier integrity following hemorrhagic shock. Infect Immun,2005,73(6):3686-3692
    [96]Luyer MD, Jacobs JA, Vreugdenhil AC, et al. Enteral administration of high-fat nutrition before and directly after hemorrhagic shock reduces endotoxemia and bacterial translocation. Ann Surg,2004,239(2):257-264
    [97]Luyer MD, Buurman WA, Hadfoune M, et al. Exposure to bacterial DNA before hemorrhagic shock strongly aggravates systemic inflammation and gut barrier loss via an IFN-γ-dependent route. Ann Surg,2007,245(5):795-802
    [98]Berg RD. Bacterial translocation from the gastrointestinal tract. Trends Microbiol,1995,3(4): 149-154
    [99]Gatt M, Reddy BS, MacFie J. Review article:bacterial translocation in the critically ill-evidence and methods of prevention. Aliment Pharmacol Ther,2007,25(7):741-757
    [100]Berg RD, Garlington AW. Translocation of certain indigenous bacteria from the gastrointestinal tract to the mesenteric lymph nodes and other organs in a gnotobiotic mouse model. Infect Immun,1979,23(2):403-411
    [101]Deitch EA. The role of intestinal barrier failure and bacterial translocation in the development of systemic infection and multiple organ failure. Arch surg,1990,125(3): 403-404
    [102]Deitch EA. Bacterial translocation or lymphatic drainage of toxic products from the gut: what is important in human beings? Surgery,2002,131(3):241-244
    [103]Steinberg SM. Baelerial trallslocation:what it is and what it is not. Am J Surg,2003,186(3): 301-305
    [104]Lyte M, Bailey MT. Neuroendocrine-bacterial interactions in a neurotoxin-induced model of trauma. J Surg Res,1997,70(2):195-201
    [105]Chen C, Brown DR, Xie Y, et al. Catecholamines modulate Escherichia coli O157:H7 adherence to murine cecal mucosa. Shock,2003,20(2):183-188
    [1]Costerton JW, Montanaro L, Arciola CR. Biofilm in implant infections:its production and regulation. Int J Artif Organs,2005,28(11):1062-1068
    [2]Sallam SA, Arafa MA, Razek AA, et al. Device-related nosocomial infection in intensive care units of Alexandria University Students Hospital. East Mediterr Health J,2005,11(1): 52-61
    [3]Costerton JW, Geesey GG, Cheng KJ. How bacteria stick. Sci Am,1978,238(1):86-95
    [4]MacKintosh EE, Patel JD, Marchant RE, et al. Effects of biomaterial surface chemistry on the adhesion and biofilm formation of Staphylococcus epidermidis in vitro. J Biomed Mater Res A,2006,78(4):836-842
    [5]Patel JD, Ebert M, Ward R, et al. S. epidermidis biofilm formation:effects of biomaterial surface chemistry and serum proteins. J Biomed Mater Res A,2007,80(3):742-751
    [6]叶联华,黄云超,李高峰,等.生物材料植入后发生感染与表皮葡萄球菌生物膜.生物医学工程与临床,2010,14(1):79-83
    [7]Harper C. Permacol:clinical experience with a new biomaterial. Hosp Med,2001,62(2): 90-95
    [8]Sampedro MF, Patel R. Infections associated with long-term prosthetic devices. Infect Dis Clin North Am,2007.21(3):785-819
    [9]Hedrick TL, Adams JD, Sawyer RG. Implant-associated infections:An overview. J Long Term Eff Med Implants,2006,16(1):83-99
    [10]Thuijls G, de Haan JJ, Derikx JP, et al. Intestinal cytoskeleton degradation precedes tight junction loss following hemorrhagic shock. Shock,2009,31(2):164-169
    [11]O'Boyle CJ, MacFie J, Mitchell CJ, et al. Microbiology of bacterial translocation in humans. Gut,1998,42(1):29-35
    [12]Takesue Y, Kakehashi M, Ohge H, et al. Bacterial translocation:not a clinically relevant phenomenon in colorectal cancer. World J Surg,2005,29(2):198-202
    [13]叶联华,黄云超,杨达宽,等.聚氯乙烯材料表面细菌生物膜结构观察.生物医学工程与临床,2007,11(4):251-254
    [14]Donlan RM, Costerton JW. Biofilms:survival mechanisms of clinically relevant microorganisms. Clin Microbiol Rev,2002,15(2):167-193
    [15]de Silva GD, Kantzanou M, Justice A, et al. The ica operon and biofilm production in coagulase-negative Staphylococci associated with carriage and disease in a neonatal intensive care unit. J Clin Microbiol,2002,40(2):382-388
    [16]叶海云,侯树坤,曲星珂.细菌生物膜对尿管相关性尿路感染的影响.中华泌尿外科杂 志,2006,27(02):135-138
    [17]Schauder S,Shokat K,Surette MG,et al.The LuxS family of bacterial autoinducers: biosynthesis of a novel quorum-sensing signal molecule.Mol Microbiol,2001,41(2): 463-476
    [18]Costerton JW,Stewart PS,Greenberg EP Bacterial biofilms:A common cause of persistent infections.Science,1999,284(5418):1318-1322
    [19]Bayston R,Penny SR.Excessive production of mucoid substance in staphylococcus SⅡA:a possible factor in colonization of Holter shunts.Dev Med Child Neurol Suppl.1972,27: 25-28
    [20]叶联华,许赓,黄云超,等.溴代呋喃酮对聚氯乙烯材料表面大肠杆菌生物膜形成的影 响.中国修复重建外科杂志,2010,24(7):871-874
    [21]Ghigo JM.Are there biofilm-specific Physiological pathways beyond a reasonable doubt? Res Microbiol,2003,154(1):1-8
    [22]Kadry AA,Fouda SI,Shibl AM,et al.Impact of slime dispersants and anti-adhesives on in vitro biofilm formation of Staphylococcus epidermidis on intraocular lenses and on antibiotic activities. J Antimicrob Chemother,2009,63(3):480-484
    [23]Stevens NT,Tharmabala M,Dillane T,et al.Biofilm and the role of the ica operon and aap in Staphylococcus epidermidis isolates causing neurosurgical meningitis.Clin Microbiol Infect,2008,14(7):719-722
    [24]de Kievit TR,lqlewski BH.Bacterial Quorum Sensing in Pathogenic Relationships.Infect Immun,2000,68(9):4839-4849
    [25]Fuqua C,Winans SC,Greenberg EP Census and consensus in bacterial ecosystems:the LuxR-Luxl family of quorum-sensing transcriptional regulators.Annu Rev Microbiol,1996, 50(3):727-751
    [26]Davies DG,Parsek MR,Pearson JP,et al.The involvement of cell-to-cell signals in the development of a bacterial biofilm.Science,1998,280(5361):295-298
    [27]Ahmer BM.Cell to cell signaling in Escherichia coli and Salmonella enterica.Mol Microbiol,2004,52(4):933-945
    [28]Li J,Attila C,Wang L,et al.Quorum sensing in Escherichia coli is signaled by AI-2/LsrR: Effects on small RNA and biofilm architecture.J Bacteriol,2007,189(16):6011-6020
    [29]Walters M,Sircili MP,Sperandio V AI-3 synthesis is not dependent on luxS in Escherichia coli.J Bacteriol,2006,188(]6):5668-5681
    [30]Nealson KH,Platt T,Hastings JW.Cellular control of the synthesis and activity of the bacterial luminescent system.J Bacteriol,1970,104(1):313-322
    [31]Gray KM,Garey JR.The evolution of bacterial Luxl and LuxR quorum sensing regulators. Microbiology,2001,147(Pt 8):2379-2387
    [32]Fuqua C,Parsek MR,Greenberg EP Regulation of gene expression by cell to cell communication:acyl-homoserine lactone quorum sensing. Annu Rev Genet,2001,35: 439-468
    [33]Parsek MR, Greenberg EP. Acyl-homoserine lactone quorum sensing in gram-negative bacteria:a signaling mechanism involved in associations with higher organisms. Proc Natl Acad Sci U S A,2000,97(16):8789-8793
    [34]Lindsay A, Ahmer BM. Effect of sdiA on biosensors of N-acylhomoserine lactones. J Bacteriol,2005,187(14):5054-5058
    [35]Lee J, Jayaraman A, Wood TK. Indole is an inter-species biofilm signal mediated by SdiA. BMC Microbiol,2007,7:42-56
    [36]Bassler BL, Wright M, Silverman MR. Multiple signaling systems controlling expression of luminescence in Vibrio harveyi:sequenee and function of genes encoding a second sensory pathway. Mol Microbiol,1994,13(2):273-286
    [37]Surette MG, Miller MB, Bassler BL. Quorum sensing in Escherichia coli, Salmonella typhimurium, and Vibrio harveyi:a new family of genes responsible for auto inducer production. Proc Natl Acad Sci U S A,1999,96(4):1639-1644
    [38]Vendeville A, Winzer K, Heurlier K, et al. Making'sense'of metabolism:autoinducer-2, LuxS and pathogenic bacteria. Nat Rev Microbiol,2005,3(5):383-396
    [39]Henke JM. Bassler BL. Three parallel quorum-sensing systems regulate gene expression in Vibrio harveyi. J Bacteriol.2004,186(20):6902-6914
    [40]Merritt J, Qi F, Goodman SD. Mutation of luxS affects biofilm formation in streptococcus mutans. Infect Immun.2003,71(4):1972-1979
    [41]Curtis MM. Sperandio V. A complex relationship:The interaction among symbiotic microbes, invading pathogens, and their mammalian host. Mucosal Immunol,2011,4(2):133-138
    [42]Sandrini SM, Shergill R, Woodward J, et al. Elucidation of the mechanism by which catecholamine stress hormones liberate iron from the innate immune defense proteins transferrin and lactoferrin. J Bacteriol,2010,192(2):587-594
    [43]Freestone PP. Williams PH, Haigh RD, et al. Growth stimulation of intestinal commensal Escherichia coli by catecholamines:a possible contributory factor in trauma-induced sepsis. Shock,2002,18(5):465-470
    [44]Freestone PP, Lyte M, Neal CP, et al. The mammalian neuroendocrine hormone norepinephrine supplies iron for bacterial growth in the presence of transferrin or lactoferrin. J Bacteriol,2000,182(21):6091-6098
    [45]Lyte M, Freestone PP, Neal CP, et al. Stimulation of Staphylococcus epidermidis growth and biofilm formation by catecholamine inotropes. Lancet,2003,361(9352):130-135
    [46]Beasley FC, Marolda CL, Cheung J, et al. Staphylococcus aureus transporters Hts, Sir, and Sst capture iron liberated from human transferrin by Staphyloferrin A, Staphyloferrin B, and catecholamine stress hormones, respectively, and contribute to virulence. Infect Immun, 2011,79(6):2345-2355
    [47]Sperandio V, Torres AG, Kaper JB. Quorum sensing Escherichia coli regulators B and C (QseBC):a novel two-component regulatory system involved in the regulation of flagella and motility by quorum sensing in E. coli. Mol Microbiol,2002,43(3):809-821
    [48]Reading NC, Torres AG, Kendall MM, et al. A novel two-component signaling system that activates transcription of an enterohemorrhagic Escherichia coli effector involved in remodeling of host actin. J Bacteriol,2007,189(6):2468-2476
    [49]Kostakioti M, Hadjifrangiskou M, Pinkner JS, et al. QseC-mediated dephosphorylation of QseB is required for expression of genes associated with virulence in uropathogenic Escherichia coli. Mol Microbiol,2009,73(6):1020-1031
    [50]Moreira CG., Weinshenker D, Sperandio V. QseC Mediates Salmonella enterica Serovar Typhimurium Virulence In Vitro and In Vivo. Infect Immun,2010,78(3):914-926
    [51]Hughes DT, Clarke MB, Yamamoto K, et al. The QseC adrenergic signaling cascade in Enterohemorrhagic E. coli (EHEC). PLoS Pathog,2009,5(8):e1000553
    [52]Sperandio V, Torres AG, Jarvis B, et al. Bacteria-host communication:The language of hormones. Proc Natl Acad Sci U S A,2003,100(15):8951-8956
    [53]Clarke MB, Hughes DJ, Zhu C, et al. The QseC sensor kinase:A bacterial adrenergic receptor. Proc Natl Acad Sci U S A,2006,103(27):10420-10425
    [54]Pacheco AR, Sperandio V. Inter-kingdom signaling:chemical language between bacteria and host. Curr Opin Microbiol,2009,12(2):192-198
    [55]Moreira CG, Weinshenker D, Sperandio V. QseC Mediates Salmonella enterica Serovar Typhimurium Virulence In Vitro and In Vivo. Infect Immun,2010,78(3):914-926
    [56]Dickinson RB, Nagel JA, Proctor RA. Quantitative comparison of shear-dependent staphylococcus aureus adhesion to three polyurethane ionomer analogs with distinct surface properties. J Biomed Mater Res,1997,36(2):152-162
    [57]李艳星,黄云超,熊素华.血浆蛋白对心血管生物材料细菌黏附影响研究进展.国外医学生物医学工程分册,2003,26(6):268-272
    [58]李艳星,黄云超,杨达宽,等.人血清白蛋白在体外心血管生物材料细菌黏附中的作用.中国胸心血管外科临床杂志,2003,10(4):276-279
    [59]黄云超,林兴,张良.金属蛋白酶对涤纶材料表面细菌生物膜形成中的作用.中国胸心血管外科临床杂志,2006,13(1):32-35
    [60]李艳星,黄云超,杨达宽,等.血浆蛋白对心血管生物材料细菌粘附影响的研究.中国心血管病研究杂志,2004,2(5):64-68
    [61]Brokke P, Dankert J, Carballo J, et al. Adherence of coagulase-negative staphylococci onto polyethylene cathers in vitro and in vivo:a study on the influence of various plasma proteins. J Biomater Appl,1991,5(3):204-226
    [62]凌锋,黄云超,杨达宽.肝素对体外循环聚氯乙烯管道细菌粘附影响的研究.昆明医学院学报,2005,26(1):36-37
    [63]李建新,王进,沈利如,等.银离子注入表面改性涤纶材料的抗菌黏附性能研究.真空科学与技术学报,2006,26(5):408-412
    [64]Schierholz JM, Steinhauser H, Rump AF, et al. Controlled release of antibiotics from biomedical polyurethanes:morphological and structural features. Biomaterials,1997,18(12): 839-844
    [65]Alfaro JF. Zhang T, Wynn DP, et al. Synthesis of LuxS inhibitors targeting bacterial cell-cell communication. Org Lett,2004,6(18):3043-3046
    [66]Ren D, Sims JJ, Wood TK. Inhibition of biofilm formation and swarming of Escherichia coli by (5Z)-4-bromo-5-(bromomethylene)-3-butyl-2(5H)-furanone. Environ Microbiol,2001, 3(11):731-736
    [67]Rasko DA, Moreira CG, Li de R, et al. Targeting QseC signaling and virulence for antibiotic development. Science,2008,321(5892):1078-1080

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700