用户名: 密码: 验证码:
肠黏膜屏障损伤对自身免疫性肝炎患者枯否细胞免疫调节功能影响的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
背景:自身免疫性肝炎(AIH)发病机制尚未阐明,目前认为是具有遗传易感性个体在环境因素的诱发下丧失了对自身肝细胞的免疫耐受,通过激活多种针对肝脏自身抗原的免疫应答引起了肝脏损伤。而枯否细胞(KC)作为定居在肝脏的巨噬细胞,在免疫耐受的形成和维持中具有重要作用。有研究认为KC被肠源性毒素激活,生物学功能发生改变并释放一系列炎性因子,可进一步造成免疫耐受破坏。因此,明确AIH患者是否存在肠黏膜屏障损伤,细菌移位活化KC并诱导KC出现一系列生物学功能改变,导致免疫耐受缺失,从而启动免疫反应值得进一步探讨。
     目的:本研究拟评价AIH患者肠黏膜屏障功能,从Toll样受体(TLR)激活的角度研究肠源性毒素活化KC的情况,进一步评价活化的KC细胞骨架相关蛋白、外周血单核细胞吞噬功能及抗原递呈功能的变化情况,明确AIH患者肠黏膜屏障功能破坏及其对KC的影响以及KC生物学功能变化情况,将为揭示KC在免疫反应中的作用提供理论依据,加深其在肠道—肝脏互作中的理解,而且将为深入研究AIH的发病机制提供新的视角和思路。
     方法:
     第一部分取我院2012年~2013年诊断为AIH行胃镜检查患者十二指肠降段黏膜组织,并留取患者外周血及粪便标本,同时设健康体检者为对照组。检测肝功能ALT水平;在光镜下及电镜下观察十二指肠黏膜组织结构的病理变化并应用免疫组织化学法分析十二指肠黏膜组织中紧密连接蛋白ZO-1、occludin的表达水平;以细菌16SrDNA荧光定量PCR方法测定粪便中关键细菌的含量;采用鲎珠实验测定血浆内毒素(LPS)水平。
     第二部分取我院2011年~2013年诊断为AIH行肝活检患者肝组织,同时取非酒精性脂肪性肝病行肝活检患者肝组织设为对照组。采用Western blot检测肝组织TLR4的表达量;采用免疫荧光双标的方法确定KC上TLR4的表达情况。
     第三部分采用Western blot检测肝组织Rac1通路上下游VAV1和PAK1的表达量并采用免疫荧光双标的方法明确其在KC上的表达情况;采用梯度离心法获得外周血单个核细胞(PBMC),用荧光抗体偶联的特异性抗体标记CD80、HLA-DR单核细胞表面分子,用流式细胞仪测定这两种抗原递呈分子在单核细胞表面的表达情况,从而判断单核细胞的抗原递呈能力;单核细胞通过CD14单克隆磁珠抗体分选获得,将单核细胞与FITC标记的大肠杆菌共培养,利用流式细胞仪评价单核细胞的吞噬能力。
     结果:
     第一部分(1)AIH肝功异常组、AIH肝硬化组血清ALT水平较健康对照组均明显升高(AIH肝功异常组VS健康对照组为:263.7±57.2U/L vs22.3±5.7U/L, P=0.000; AIH肝硬化组VS健康对照组为:286.4±36.8U/L vs22.3±5.7U/L,P=0.000);(2)病理检查发现AIH患者十二指肠黏膜微绒毛受损,变短,密度减低,上皮细胞间隙增宽,胞核固缩,且损伤程度与疾病严重程度一致;(3)AIH肝功正常组、AIH肝功异常组及AIH肝硬化组ZO-1蛋白均存在分布不均,并且胞质染色程度较健康对照组明显减低,4组染色评分差异有统计学意义(χ2=14.775,P=0.0389);AIH各组occludin染色散乱,染色程度明显低于健康对照组,4组染色评分差异有统计学意义(χ2=16.351,P=0.0216);(4)AIH患者存在肠道菌群失调,最突出的改变为双歧杆菌和乳酸杆菌为代表的厌氧菌数量下降(P均<0.05),大肠杆菌和肠球菌为代表的需氧菌数量变化不大;双歧杆菌/大肠杆菌(Bifidobacteria/escherichia coli, B/E)值下降(P均<0.05),且三组间两两比较均有差异(P均<0.05);(5)AIH肝功正常组、AIH肝功异常组、AIH肝硬化组血浆LPS水平较健康对照组均升高(AIH肝功正常组VS健康对照组为:7.47±1.64pg/ml vs5.26±0.86pg/ml, P=0.026; AIH肝功异常组VS健康对照组为:9.75±1.53pg/ml vs5.26±0.86pg/ml,P=0.012; AIH肝硬化组VS健康对照组为:14.23±4.23pg/ml vs5.26±0.86pg/ml,P=0.006),AIH三组间两两比较均有差异(P均<0.05)。
     第二部分(1)AIH肝功正常组、AIH肝功异常组、AIH肝硬化组肝组织TLR4蛋白表达量明显高于对照组(P均<0.05),且三组间两两比较均有差异(P均<0.05);(2)AIH患者组定位于KC上的TLR4明显高于对照组。
     第三部分(1)AIH肝功正常组、AIH肝功异常组、AIH肝硬化组肝组织VAV1和PAK1蛋白表达量明显高于对照组(P均<0.05),且三组间两两比较均有差异(P均<0.05);(2)AIH患者组定位于KC上的VAV1和PAK1明显高于对照组;(3)AIH肝功正常组、AIH肝功异常组、AIH肝硬化组外周血单核细胞HLA-DR+细胞所占比例较对照组明显降低(AIH肝功正常组VS对照组为:97.06±2.73%vs99.21±0.52%,P=0.036;AIH肝功异常组VS对照组为:92.57±6.93%vs99.21±0.52%,P=0.027;AIH肝硬化组VS对照组为:89.74±10.41%vs99.21±0.52%,P=0.018),AIH三组间两两比较均有差异(P均<0.05);AIH肝功正常组、AIH肝功异常组、AIH肝硬化组外周血单核细胞CD80+细胞所占比例较对照组均明显降低(AIH肝功正常组VS对照组为:79.15±10.29%vs82.34±5.38%,P=0.032;AIH肝功异常组VS对照组为:74.72±10.74%vs82.34±5.38%,P=0.019;A1H肝硬化组VS对照组为:70.84±12.47%vs82.34±5.38%,P=0.012),AIH三组间两两比较均有差异(P均<0.05);(4)AIH各组吞噬率较对照组均明显降低(AIH肝功正常组VS对照组为:4.34±1.82%vs6.144±2.23%,P=0.027;AIH肝功异常组VS对照组为:3.27±2.04%vs6.14±2.23%,P=0.016;AIH肝硬化组VS对照组为:2.03±±1.47%vs6.14±2.23%,P=0.011),AIH三组间两两比较均存在差异(P均<0.05)。
     结论:
     (1)AIH患者肠黏膜上皮破坏、紧密连接蛋白减少、肠道菌群失调致肠黏膜屏障功能损伤,肠黏膜通透性增高致细菌移位,血浆LPS升高,且肠黏膜屏障损伤程度与肝脏发病严重程度相关,提示肠黏膜屏障功能受损与AIH的发生发展相关。
     (2)AIH患者肠源性内毒素LPS通过TLR4激活KC。
     (3)AIH患者KC的Rac1通路过度激活,结合外周血单核细胞抗原提呈能力减低,吞噬能力减低,推测患者单核-巨噬细胞系统细胞骨架变化影响其功能状态。
     综上所述,AIH患者存在肠黏膜屏障损伤,LPS可能沿肠黏膜通透性升高→细菌移位→TLR4激活→KC活化并出现生物学功能改变→免疫耐受缺失这条轴线诱发自身免疫反应。本研究不仅能打开LPS与KC相互作用的新视角,而且能帮助证实“肠-肝轴”理论即肠黏膜通透性升高致细菌移位,LPS诱发AIH的免疫耐受损伤机制,最终改善肠道屏障功能可能成为治疗AIH的新靶点。
Background and Objects:The pathogenesis of autoimmune hepatitis (AIH) was still unknown. Attack against liver cell self antigens following the breakdown of immune tolerance were believed to be the major mechanism. Kupffer cells (KC), the resident liver macrophages, with the function of TLR signal pathway, played an important role in immune tolerance induction and maintenance. Recent studies have demonstrated that intestinal-derived toxin could promote production of cytokines and disfunction of biological system of the liver. Based on these observations, we hypothesized that intestinal injury and increased intestinal permeability combined with bacteria translocation could promote. TLR4-dependent KC activation as an early event in the pathogenesis of AIH.
     Methods:Part1The mucous membrane of duodenum were observed by electron microscope and immunohistochemistry technique was used to examine the tight junction proteins Zonula occludens-1(ZO-1)、Occludin.16SrDNA fluorescent quantitative PCR was applied in determining the content of bifidobacterium, lactobacillus, escherichia coli and enterococcus in feces. And the level of endotoxin (LPS) and alanine aminotransferase (ALT) were detected in the peripheral blood.
     Part2Western blot and double immunofluorescence staining techniques were used to examine the expression and the resource of TLR4in liver tissues. Part3Western blot and double immunofluorescence staining techniques were used to examine the expression and the resource of Racl signaling makers (Vavl and PAK1) in liver tissues. The function of antigen presentation of peripheral blood monocyte was analyzed by CD80and HLA-DR using flow cytometry. Phagocytosis of peripheral blood monocytes was analyzed by challenging cells with fluorescein isothiocyanate (FITC) labeled Escherichia coli (E.coli) using flow cytometry.
     Results:Part1(1) The level of serum ALT in AIH group was obviously higher than that in control group (P<0.05).(2) The structure of the duodenum mucosa is obviously broken, the mucosal microvilli structure and tight junction is significantly broken in the AIH group than those in control group.(3) ZO-1and occludin were localized along the apical region of the lateral plasma membrane representing the region of tight junctions in surface and crypt epithelial cells. The positive stainings of ZO-1and occludin of AIH group were obviously decreased (P<0.05).(4) The amount of anaerobes represented by the bifidobacterium and lactobacillus declined (P <0.05). However, the amount of aerobes represented by escherichia coli and enterococcus did not change obviously, Bifidobacteria/Escherichia coli (B/E) which indicated a balance of intestinal flora declined (P<0.05). The results showed the intestinal dysbacteriosis occured in patients with AIH.(5) The level of plasma endotoxin of AIH group were obviously increased than that in control group (P<0.05). Part2The expression of TLR4in liver tissue of AIH group was obviously higher than that of control group(P<0.05), and the expression of TLR4on Kupffer cells of AIH group was obviously higher than that of control group. Part3(1) The expressions of VAV1and PAK1in liver tissue of AIH group were obviously higher(P <0.05), and the expression of VAV1and PAK1on Kupffer cells of AIH group was obviously higher than that of control group.(2) The peripheral blood monocytes antigen presentation function of AIH group was lower than control group (P<0.05).(3) The peripheral blood monocytes phagocytic function of AIH group was lower than control group (P<0.05).
     Conclusions:AIH was associated with increased intestinal permeability. Intestinal-derived LPS might activate KC through TLR4signaling in early stages of AIH. The intestinal mucosal barrier fuction might be an important part in the etiology of liver injury. Thus, disfunction of intestinal mucosal barrier might bring a new vision to treatment or prevention of AIH via KC.
引文
[1]Czaja AJ. Autoimmune hepatitis. Evolving concepts and treatment strategies[J]. Dig Dis Sci,1995,40(2):435-456.
    [2]Ngu JH, Bechly K, Chapman BA, et al. Population-based epidemiology study of autoimmune hepatitis:a disease of older women? [J]. J Gastroenterol Hepatol, 2010,25(10):1681-1686.
    [3]Wong RJ, Gish R, Frederick T, et al. The impact of race/ethnicity on the clinical epidemiology of autoimmune hepatitis [J]. J Clin Gastroenterol,2012, 46(2):155-161.
    [4]杨蜜蜜,马欢,周璐,等.自身免疫性肝病166例临床及病理特征分析[J].中华内科杂志,2013,52(5):412-414.
    [5]Longhi MS, Ma Y, Mieli-Vergani G, et al. Aetiopathogenesis of autoimmune hepatitis[J]. J Autoimmun,2010,34(1):7-14.
    [6]Vergani D, Mieli-Vergani G. Aetiopathogenesis of autoimmune hepatitis [J]. World J Gastroenterol,2008,14(21):3306-3312.
    [7]王茜,何浩,宋文刚.枯否细胞的负向免疫调节作用[J].细胞与分子免疫学杂志,2010,26(6):611-612.
    [8]Scott MJ, Billiar TR. Beta2-integrin-induced p38 MAPK activation is a key mediator in the CD14/TLR4/MD2-dependent uptake of lipopolysaccharide by hepatocytes[J]. J Biol Chem,2008,283(43):29433-29446.
    [9]Schuchmann M, Hermann F, Herkel J, et al. HSP60 and CpG-DNA-oligonucleotides differentially regulate LPS-tolerance of hepatic Kupffer cells[J]. Immunol Lett,2004:93(2-3):199-204.
    [10]Jiang W, Sun R, Wei H, et al. Toll-like receptor 3 ligand attenuates LPS-induced liver injury by down-regulation of toll-like receptor 4 expression on macrophages[J]. Proc Natl Acad Sci U S A,2005,102(47):17077-17082.
    [11]Almeida J, Galhenage S, Yu J, et al. Gut flora and bacterial translocation in chronic liver disease[J]. World J Gastroenterol,2006,12(10):1493-1502.
    [12]Adachi Y, Moore LE, Bradford BU, et al. Antibiotics prevent liver injury in rats following long-term exposure to ethanol[J]. Gastroenterology,1995, 108(1):218-224.
    [13]Otogawa K, Kinoshita K, Fujii H, et al. Erythrophagocytosis by liver macrophages (Kupffer cells) promotes oxidative stress, inflammation, and fibrosis in a rabbit model of steatohepatitis:implications for the pathogenesis of human nonalcoholic steatohepatitis[J]. Am J Pathol,2007,170(3):967-980.
    [14]MacFie J. Enteral versus parenteral nutrition:the significance of bacterial translocation and gut-barrier function[J]. Nutrition,2000,16(7-8):606-611.
    [15]Racanelli V, Rehermann B. The liver as an immunological organ[J]. Hepatology, 2006,43(2 Suppl 1):S54-62.
    [16]Marshall JC. The gut as a potential trigger of exercise-induced inflammatory responses[J]. Can J Physiol Pharmacol,1998,76(5):479-484.
    [17]Zeuzem S. Gut-liver axis[J]. Int J Colorectal Dis,2000,15(2):59-82.
    [18]Vanni E, Bugianesi E. The gut-liver axis in nonalcoholic fatty liver disease: Another pathway to insulin resistance? [J]. Hepatology,2009,49(6):1790-1792.
    [19]许伟红,刘梅,吕志武等.急性肝衰竭大鼠胃肠运动改变与肠神经元关系研究[J].实用肝脏病杂志,2011,14(1):3-5.
    [20]杨洁,聂青和.肝衰竭与肠道屏障功能障碍[J].实用肝脏病杂志,2010,13(1):66-67.
    [21]Tilg H, Moschen AR. Evolution of inflammation in nonalcoholic fatty liver disease:the multiple parallel hits hypothesis [J]. Hepatology,2010, 52(5):1836-1846.
    [22]Compare D, Coccoli P, Rocco A, et al. Gut--liver axis:the impact of gut microbiota on non alcoholic fatty liver disease [J]. Nutr Metab Cardiovasc Dis, 2012,22(6):471-476.
    [23]Fouts DE, Torralba M, Nelson KE, et al. Bacterial translocation and changes in the intestinal microbiome in mouse models of liver disease[J]. J Hepatol,2012, 56(6):1283-1292.
    [24]Yan AW, Schnabl B. Bacterial translocation and changes in the intestinal microbiome associated with alcoholic liver disease [J]. World J Hepatol,2012, 4(4):110-118.
    [25]Miele L, Valenza V, La Torre G, et al. Increased intestinal permeability and tight junction alterations in nonalcoholic fatty liver disease[J]. Hepatology,2009, 49(6):1877-1887.
    [26]Czaja AJ, Manns MP. Advances in the diagnosis, pathogenesis, and management of autoimmune hepatitis[J]. Gastroenterology,2010,139(1):58-72.
    [27]Krawitt EL. Autoimmune hepatitis[J]. N Engl J Med,2006,354(1):54-66.
    [28]Goldfeld DA, Verna EC, Lefkowitch J, et al. Infliximab-induced autoimmune hepatitis with successful switch to adalimumab in a patient with Crohn's disease: the index case[J]. Dig Dis Sci,2011,56(11):3386-3388.
    [29]Ma Y, Bogdanos DP. Polyclonal T-cell responses to cytochrome P450ⅡD6 are associated with disease activity in autoimmune hepatitis type 2[J]. Gastroenterology,2006,130(3):868-882.
    [30]Longhi MS, Ma Y, Mitry RR, et al. Effect of CD4+CD25+regulatory T-cells on CD8 T-cell function in patients with autoimmune hepatitis [J]. J Autoimmun, 2005,25(1):63-71.
    [31]Backhed F, Ding H, Wang T, et al. The gut microbiota as an environmental factor that regulates fat storage [J]. Proc Natl Acad Sci U S A,2004, 101(44):15718-15723.
    [32]Bode C, Kugler V, Bode JC. Endotoxemia in patients with alcoholic and non-alcoholic cirrhosis and in subjects with no evidence of chronic liver disease following acute alcohol excess[J]. J Hepatol,1987,4(1):8-14.
    [33]Fukui H, Brauner B, Bode JC, et al. Plasma endotoxin concentrations in patients with alcoholic and non-alcoholic liver disease:reevaluation with an improved chromogenic assay [J]. J Hepatol,1991,12(2):162-169.
    [34]Gunnarsdottir SA, Sadik R, Shev S, et al. Small intestinal motility disturbances and bacterial overgrowth in patients with liver cirrhosis and portal hypertension[J]. Am J Gastroenterol,2003,98(6):1362-1370.
    [35]Mutlu E, Keshavarzian A, Engen P, et al. Intestinal dysbiosis:a possible mechanism of alcohol-induced endotoxemia and alcoholic steatohepatitis in rats[J]. Alcohol Clin Exp Res,2009,33(10):1836-1846.
    [36]Hennes EM, Zeniya M, Czaja AJ, et al. Simplified criteria for the diagnosis of autoimmune hepatitis[J]. Hepatology,2008,48(1):169-176.
    [37]Shimizu M, Saitoh Y, Itoh H. Immunohistochemical staining of Ha-ras oncogene product in normal, benign, and malignant human pancreatic tissues [J]. Hum Pathol,1990,21(6):607-612.
    [38]Walter J, Hertel C, Tannock Gw, et al. Detection of Lactobacillus, Pediococcus, Leuconostoc, and Weissella species in human feces by using group-specific PCR primers and denaturing gradient gel electrophoresis[J]. Appl and Environ Microbiol,2001,67(6):2578-2585.
    [39]Heilig HG, Zoetendal EG, Vaughan EE, et al. Molecular diversity of Lactobacillus spp. and other lactic acid bacteria in the human intestine as determined by specific amplification of 16S ribosomal DNA[J]. Appl Environ Microbiol,2002,68(1):114-123.
    [40]Garside P, Millington O, Smith KM. The anatomy of mucosal immune responses[J]. Ann N Y Acad Sci,2004,1029:9-15.
    [41]Liboni KC, Li N, Scumpia PO, et al. Glutamine modulates LPS-induced IL-8 production through IkappaB/NF-kappaB in human fetal and adult intestinal epithelium[J]. J Nutr,2005,135(2):245-251.
    [42]Arrieta MC, Bistritz L, Meddings JB. Alterations in intestinal permeability [J]. Gut,2006,55(10):1512-1520.
    [43]Barrett KE. New ways of thinking about (and teaching about) intestinal epithelial function[J]. Adv Physiol Educ,2008,32(1):25-34.
    [44]Deitch EA, Xu D, Kaise VL. Role of the gut in the development of injury-and shock induced SIRS and MODS:the gut-lymph hypothesis, a review[J]. Front Biosci,2006,11:520-528.
    [45]Berg RD, Garlington AW. Translocation of certain indigenous bacteria from the gastrointestinal tract to the mesenteric lymph nodes and other organs in a gnotobiotic mouse model[J]. Infect Immun,1979,23(2):403-411.
    [46]Wiest R, Garcia-Tsao G. Bacterial translocation (BT) in cirrhosis[J]. Hepatology, 2005,41(3):422-433.
    [47]Assimakopoulos SF, Scopa CD, Vagianos CE. Pathophysiology of increased intestinal permeability in obstructive jaundice [J]. World J Gastroenterol,2007, 13(48):6458-6464.
    [48]Yu LX, Yan HX, Liu Q, et al. Endotoxin accumulation prevents carcinogen-induced apoptosis and promotes liver tumorigenesis in rodents [J]. Hepatology,2010,52(4):1322-1333.
    [49]Enomoto N, Ikejima K, Bradford BU, et al. Role of Kupffer cells and gut-derived endotoxins in alcoholic liver injury[J]. J Gastroenterol Hepatol,2000,15 Suppl:D20-25.
    [50]Bode C, Kugler V, Bode JC. Endotoxemia in patients with alcoholic and non-alcoholic cirrhosis and in subjects with no evidence of chronic liver disease following acute alcohol excess[J]. J Hepatol,1987,4(1):8-14.
    [51]Lumsden AB, Henderson JM, Kutner MH. Endotoxin levels measured by a chromogenic assay in portal, hepatic and peripheral venous blood in patients with cirrhosis[J]. Hepatology,1988,8(2):232-236.
    [52]Lin RS, Lee FY, Lee SD, et al. Endotoxemia in patients with chronic liver diseases:relationship to severity of liver diseases, presence of esophageal varices, and hyperdynamic circulation[J]. J Hepatol,1995,22(2):165-172.
    [53]Nakao A, Taki S, Yasui M, et al. The fate of intravenously injected endotoxin in normal rats and in rats with liver failure[J]. Hepatology,1994,19(5):1251-1256.
    [54]Shiomi S, Kuroki T, Ueda T, et al. Use of immobilized histidine in assay for endotoxin in patients with liver disease[J]. J Gastroenterol,1994,29(6):751-755.
    [55]Chan CC, Hwang SJ, Lee FY, et al. Prognostic value of plasma endotoxin levels in patients with cirrhosis [J]. Scand J Gastroenterol,1997,32(9):942-946.
    [56]Kavanaugh MJ, Clark C, Goto M, et al. Effect of acute alcohol ingestion prior to burn injury on intestinal bacterial growth and barrier function[J]. Burns,2005, 31(3):290-296.
    [57]Rao RK, Seth A, Sheth P. Recent advances in alcoholic liver disease I. Role of intestinal permeability and endotoxemia in alcoholic liver disease [J]. Am J Physiol Gastrointest Liver Physiol,2004,286(6):G881-884.
    [58]Wigg AJ, Roberts-Thomson IC, Dymock RB, et al. The role of small intestinal bacterial overgrowth, intestinal permeability, endotoxaemia, and tumour necrosis factor alpha in the pathogenesis of non-alcoholic steatohepatitis[J]. Gut,2001, 48(2):206-211.
    [59]苏琳,刘玉兰.非酒精性脂肪肝大鼠小肠黏膜机械屏障的变化[J].中华消化杂志,2010,30:741-744.
    [60]Carter BA, Karpen SJ. Intestinal failure-associated liver disease:management and treatment strategies past, present, and future [J]. Semin Liver Dis,2007, 27(3):251-258.
    [61]宋怀宇,姜春华,杨建荣等.慢性乙型肝炎重度患者肠道黏膜屏障功能的变化及其临床干预策略[J].中华肝脏病杂志,2009,17(10):754-758.
    [62]Li L, Wu Z, Ma W, et al. Changes in intestinal microflora in patients with chronic severe hepatitis[J]. Chin Med J (Engl),2001,114(8):869-872.
    [63]Zhao HY, Wang HJ, Lu Z, et al. Intestinal microflora in patients with liver cirrhosis[J]. Chin J Dig Dis,2004,5(2):64-67.
    [64]Lu H, Wu Z, Xu W, et al. Intestinal microbiota was assessed in cirrhotic patients with hepatitis B virus infection. Intestinal microbiota of HBV cirrhotic patients [J]. Microb Ecol,2011,61(3):693-703.
    [65]朱宁川,陈岩.肝病肠道菌群失调与肠源性内毒素血症[J].中国微生物学杂志,2004,16(1):64-65.
    [66]杨慧莹,林克荣.水飞蓟宾治疗脂肪肝的作用机制[J].中华现代内科学杂志,2006,3(8):1-6.
    [67]Sanchez E, Casafont F, Guerra A, et al. Role of intestinal bacterial overgrowth and intestinal motility in bacterial translocation in experimental cirrhosis [J]. Rev Esp Enferm Dig,2005,97(11):805-814.
    [68]Guarner C, Soriano G. Bacterial translocation and its consequences in patients with cirrhosis[J]. Eur J Gastroenterol Hepatol,2005,17(1):27-31.
    [69]Inamura T, Miura S, Tsuzuki Y, et al. Alteration of intestinal intraepithelial lymphocytes and increased bacterial translocation in a murine model of cirrhosis[J]. Immunol Lett,2003,90(1):3-11.
    [70]Chiva M, Guarner C, Peralta C, et al. Intestinal mucosal oxidative damage and bacterial translocation in cirrhotic rats[J]. Eur J Gastroenterol Hepatol,2003, 15(2):145-150.
    [71]Zhang W, Gu Y, Chen Y, et al. Intestinal flora imbalance results in altered bacterial translocation and liver function in rats with experimental cirrhosis [J]. Eur J Gastroenterol Hepatol,2010,22(12):1481-1486.
    [72]Balzan S, de Almeida Quadros C, de Cleva R, et al. Bacterial translocation: overview of mechanisms and clinical impact[J]. J Gastroenterol Hepatol,2007, 22(4):464-471.
    [73]Romond MB, Colavizza M, Mullie C, et al. Does the intestinal bifidobacterial colonisation affect bacterial translocation? [J]. Anaerobe,2008,14(1):43-48.
    [74]Cani PD, Bibiloni R, Knauf C, et al. Changes in gut microbiota control metabolic endotoxemia-induced inflammation in high-fat diet-induced obesity and diabetes in mice[J]. Diabetes,2008,57(6):1470-1481.
    [75]孙天燕,王惠吉,原庆.微生态制剂对肝硬化大鼠肠道细菌过度生长及肠道细菌易位的影响[J].医学研究杂志,2008,37(3):78.
    [76]Li Z, Yang S, Lin H, et al. Probiotics and antibodies to TNF inhibit inflammatory activity and improve nonalcoholic fatty liver disease[J]. Hepatology,2003,37(2): 343-350.
    [77]Liberal R, Longhi MS, Mieli-Vergani G, et al. Pathogenesis of autoimmune hepatitis[J]. Best Pract Res Clin Gastroenterol,2011,25(6):653-664.
    [78]Dienes HP, Drebber U. Pathology of immune-mediated liver injury [J]. Dig Dis, 2010,28(1):57-62.
    [79]Christen U, Holdener M, Hintermann E. Cytochrome P450 2D6 as a model antigen[J]. Dig Dis,2010,28(1):80-85.
    [80]Christen U, Hintermann E, Holdener M, et al. Viral triggers for autoimmunity:is the'glass of molecular mimicry'half full or half empty? [J]. J Autoimmun,2010, 34(1):38-44.
    [81]Such J, Guardiola JV, de Juan J, et al. Ultrastructural characteristics of distal duodenum mucosa in patients with cirrhosis [J]. Eur J Gastroenterol Hepatol, 2002,14(4):371-376.
    [82]Ikenouchi J, Umeda K, Tsukita S, et al. Requirement of ZO-1 for the formation of belt-like adherens junctions during epithelial cell polarization[J]. J Cell Biol, 2007,176(6):779-786.
    [83]Matter K, Balda MS. Signalling to and from tight junctions [J]. Nat Rev Mol Cell Biol,2003,4(3):225-236.
    [84]康慧媛,于力,王莉莉.闭锁小带蛋白1研究进展[J].生物技术通讯,2009,20(4):576-579.
    [85]Condon MR, Viera A, D'Alessio M, et al. Induction of a rat enteric defensin gene by hemorrhagic shock[J]. Infect Immun,1999,67(9):4787-4793.
    [86]李兰娟.肝衰竭的发病机制及治疗[J].国际流行病学传染病学杂志,2008,35:217-220.
    [87]Deitch EA. Bacterial translocation or lymphatic drainage of toxic products from the gut:what is important in human beings? [J]. Surgery,2002,131(3):241-244.
    [88]Walser EM, Nealon WH, Marroquin S, et al. Sterile fluid collections in acute pancreatitis:catheter drainage versus simple aspiration [J]. Cardiovasc Intervent Radiol,2006,29(1):102-107.
    [89]Alexander JW, Boyce ST, Babcock GF, et al. The process of microbial translocation[J]. Ann Surg,1990,212(4):496-510.
    [90]Woodcock NP, Robertson J, Morgan DR, et al. Bacterial translocation and immunohistochemical measurement of gut immune function[J]. J Clin Pathol, 2001,54(8):619-623.
    [91]Kalambokis G, Tsianos EV. Endotoxaemia in the pathogenesis of cytopenias in liver cirrhosis. Could oral antibiotics raise blood counts? [J]. Med Hypotheses, 2011,76(1):105-109.
    [92]Sileri P, Morini S, Sica GS, et al. Bacterial translocation and intestinal morphological findings in jaundiced rats[J]. Dig Dis Sci,2002,47(4):929-934.
    [93]宋红丽,李永新,祝英华等.门脉高压性胃病与肠道菌群失调及内毒素相关性研究[J].中国实用内科杂志,2004,12:741-742.
    [94]Erhardt A, Tiegs G. Tolerance induction in response to liver inflammation[J]. Dig Dis,2010,28(1):86-92.
    [95]Otogawa K, Kinoshita K, Fujii H, et al. Erythrophagocytosis by liver macrophages (Kupffer cells) promotes oxidative stress, inflammation, and fibrosis in a rabbit model of steatohepatitis:implications for the pathogenesis of human nonalcoholic steatohepatitis[J]. Am J Pathol,2007,170(3):967-980.
    [96]Movita D, Kreefft K, Biesta P, et al. Kupffer cells express a unique combination of phenotypic and functional characteristics compared with splenic and peritoneal macrophages[J]. J Leukoc Biol,2012,92(4):723-733.
    [97]Johnson ML, Billiar TR. Roles of nitric oxide in surgical infection and sepsis[J]. World J Surg,1998,22(2):187-196.
    [98]Hassett DJ, Cohen MS. Bacterial adaptation to oxidative stress:implications for pathogenesis and interaction with phagocytic cells [J]. FASEB J,1989, 3(14):2574-2582.
    [99]Ruiter DJ, van der Meulen J, Brouwer A, et al. Uptake by liver cells of endotoxin following its intravenous injection[J]. Lab Invest,1981,45(1):38-45.
    [100]Tiegs G, Lohse AW. Immune tolerance:what is unique about the liver[J]. J Autoimmun,2010,34(1):1-6.
    [101]Ikezo T, Yang Y, Heber D, et al. PC-SPES:a potent inhibitor of nuclear factor-kappa B rescues mice from lipopolysaccharide-induced septic shock[J]. Mol Pharmacol,2003,64(6):1521-1529.
    [102]Liu H, Cao H, Wu ZY. Isolation of Kupffer cells and their suppressive effects on T lymphocyte growth in rat orthotopic liver transplantation [J]. World J Gastroenterol,2007,13(22):3133-3136.
    [103]Jirillo E, Caccavo D, Magrone T, et al. The role of the liver in the response to LPS:experimental and clinical findings[J]. J Endotoxin Res,2002,8(5):319-327.
    [104]Erhardt A, Tiegs G Tolerance induction in response to liver inflammation[J]. Dig Dis,2010,28(l):86-92.
    [105]Su GL. Lipopolysaccharides in liver injury:molecular mechanisms of Kupffer cell activation[J]. Am J Physiol Gastrointest Liver Physiol,2002, 283(2):G256-265.
    [106]EI Kasmi KC, Anderson AL, Devereaux MW, et al. Toll-like receptor 4-dependent Kupffer cell activation and liver injury in a novel mouse model of parenteral nutrition and intestinal injury[J]. Hepatology,2012,55(5):1518-1528.
    [107]Hoffmann JA. The immune response of Drosophila[J]. Nature,2003, 426(6962):33-38.
    [108]Piccinini AM, Midwood KS. DAMPening inflammation by modulating TLR signaling[J]. Mediators Inflamm,2010, doi:10.1155/2010/672395.
    [109]Akira S, Takeda K. Toll-like receptor signalling [J]. Nat Rev Immunol,2004, 4(7):499-511.
    [110]Barton GM, Medzhitov R. Toll-like receptor signaling pathways [J]. Science, 2003,300(5625):1524-1525.
    [111]Fitzgerald KA, Palsson-McDermott EM, Bowie AG, et al. Mal (MyD88-adapter-like) is required for Toll-like receptor-4 signal transduction[J]. Nature,2001,413(6851):78-83.
    [112]Palsson-McDermott EM, O'Neill LA. Signal transduction by the lipopolysaccharide receptor, Toll-like receptor-4 [J]. Immunology,2004, 113(2):153-162.
    [113]陈恩,肖建华,何军等.X射线全身照射对小鼠免疫功能的影响[J].放射免疫学杂志,2012,25(1):1-3.
    [114]Karavitis J, Kovacs EJ. Macrophage phagocytosis:effects of environmental pollutants, alcohol, cigarette smoke, and other external factors[J]. J Leukoc Biol, 2011,90(6):1065-1078.
    [115]何慧,潘育芳.甘露聚糖肽片对小鼠单核吞噬细胞吞噬功能的影响[J].国际医药卫生导报,2006,12(11):12-13.
    [116]李淑莲,付克,刘睿姝.柴芩清肝胶囊对小鼠单核吞噬细胞吞噬功能的影响[J].中医药信息,2009,26(1):88.
    [117]Nomura M, Kaji A, Ma W, et al. Suppression of cell transformation and induction of apoptosis by caffeic acid phenethyl ester [J]. Mol Carcinog,2001, 31(2):83-89.
    [118]Lawrence T, Willoughby DA, Gilroy DW. Anti-inflammatory lipid mediators and insights into the resolution of inflammation[J]. Nat Rev Immunol. 2002,2(10):787-795.
    [119]谢志坚,熊晓东,左筠等.FcyR介导巨噬细胞吞噬作用信号转导机制[J].国外医学免疫学分册,2002,25(1):5-9.
    [120]Gotthardt D, Warnatz HJ, Henschel O, et al. High-resolution dissection of phagosome maturation reveals distinct membrane trafficking phases [J]. Mol Biol Cell,2002,13(10):3508-3520.
    [121]Naito M, Hasegawa G, Takahashi K. Development, differentiation, and maturation of Kupffer cells[J]. Microsc Res Tech,1997,39(4):350-364.
    [122]Takezawa R, Watanabe Y, Akaike T. Direct evidence of macrophage differentiation from bone marrow cells in the liver:a possible origin of Kupffer cells[J]. J Biochem,1995,118(6):1175-1183.
    [123]Crispe IN. The liver as a lymphoid organ[J]. Annu Rev Immunol,2009, 27:147-163.
    [124]Tu Z, Bozorgzadeh A, Pierce RH, et al. TLR-dependent cross talk between human Kupffer cells and NK cells[J]. J Exp Med,2008,205(1):233-244.
    [125]Adlersberg L, Singer JM, Ende E. Redistribution and elimination of intravenously injected latex palticles in mice[J]. J Reticuloendothel Soc,1969, 6(5):536-560.
    [126]张帆.肝脏非实质细胞的功能[J].临床肝胆病杂志,1989,5(4):193.
    [127]Bouwens L, Baekeland M, Wisse E. Importance of local proliferation in the expanding Kupffer cell population of rat liver after zymosan stimulation and partial hepatectomy[J]. Hepatology,1984,4(2):213-219.
    [128]Jones EA, Summerfiele JA. Functional aspects of hepatic sinusoidal cells[J]. Semin Liver Dis,1985,5(2):157-174.
    [129]Seki E, Schnabl B. Role of innate immunity and the microbiota in liver fibrosis:crosstalk between the liver and gut[J]. J Physiol,2012,590(Pt 3):447-458.
    [130]Martynova TV, Aleksieieva IM. Functional activity of peritoneal macrophages in liver immune damage of cellular and antibody genesis in mice[J]. Fiziol Zh,2009,55(1):36-42.
    [131]Lleo A, Bowlus CL, Yang GX, et al. Biliary apotopes and anti-mitochondrial antibodies activate innate immune responses in primary biliary cirrhosis [J]. Hepatology,2010,52(3):987-998.
    [132]Nobes CD, Hall A. Rho GTPases control polarity, protrusion, and adhesion during cell movement[J]. J Cell Biol,1999,144(6):1235-1244.
    [133]Schwartz M. Rho signalling at a glance[J]. J Cell Sci,2004, 117(Pt23):5457-5458.
    [134]Manser E, Leung T, Salihuddin H, et al. A brain serine/threonine protein kinase activated by Cdc42 and Racl[J]. Nature,1994,367(6458):40-46.
    [135]Burbelo PD, Kozak CA, Finegold AA, et al. Cloning, central nervous system expression and chromosomal mapping of the mouse PAK-1 and PAK-3 genes [J]. Gene,1999,232(2):209-215.
    [136]Adam L, Vadlamudi R, Mandal M, et al. Regulation of microfilament reorganization and invasiveness of breast cancer cells by kinase dead p21-activated kinase-1[J]. J Biol Chem,2000,275(16):12041-12050.
    [137]Kumar R, Gururaj AE, Barnes CJ. p21-activated kinases in cancer [J]. Nat Rev Cancer,2006,6(6):459-471.
    [138]Dummler B, Ohshiro K, Kumar R, et al. Park protein kinases and their role in cancer[J]. Cancer Metastasis Rev,2009,28(1-2):51-63.
    [139]Hsu HY, Twu YC. Tumor necrosis factor-alpha-mediated protein kinases in regulation of scavenger receptor and foam cell formation on macrophage[J]. J Biol Chem,2000,275(52):41035-41048.
    [1]Marshall JC. The gut as a potential trigger of exercise-induced inflammatory responses[J]. Can J Physiol Pharmacol,1998,76(5):479-484.
    [2]Zeuzem S. Gut- liver axis[J]. Int J Colorectal Dis,2000,15(2):59-82.
    [3]Vanni E, Bugianesi E. The gut-liver axis in nonalcoholic fatty liver disease: Another pathway to insulin resistance? [J]. Hepatology,2009,49(6):1790-1792.
    [4]许伟红,刘梅,吕志武等.急性肝衰竭大鼠胃肠运动改变与肠神经元关系研究[J].实用肝脏病杂志,2011,14(1):3-5.
    [5]杨洁,聂青和.肝衰竭与肠道屏障功能障碍[J].实用肝脏病杂志,2010,13(1):66-67.
    [6]Garside P, Millington O, Smith KM. The anatomy of mucosal immune responses[J]. Ann N Y Acad Sci,2004,1029:9-15.
    [7]Liboni KC, Li N, Scumpia PO, et al. Glutamine modulates LPS-induced IL-8 production through IkappaB/NF-kappaB in human fetal and adult intestinal epithelium[J]. J Nutr,2005,135(2):245-251.
    [8]Arrieta MC, Bistritz L, Meddings JB. Alterations in intestinal permeability [J]. Gut, 2006,55(10):1512-1520.
    [9]Barrett KE. New ways of thinking about (and teaching about) intestinal epithelial function[J]. Adv Physiol Educ,2008,32(1):25-34.
    [10]Utech M, Bruwer M, Nusrat A. Tight junctions and cell-cell interactions[J]. Methods Mol Biol,2006,341:185-195.
    [11]Condon MR, Viera AD, D'Alessio M, et al. Induction of a rat enteric defensin gene by hemorrhagic shock[J]. Infect Immun,1999,67(9):4787-4793.
    [12]朱宁川,陈岩.肝病肠道菌群失调与肠源性内毒素血症[J].中国微生态学杂志,2004,16(1):61-62.
    [13]Lu L, Walker WA. Pathologic and physiologic interactions of bacteria with the gastrointestinal epithelium[J]. Am J Clin Nutr,2001,73(6):1124S-1130S.
    [14]Nagura H, Sumi Y. Immunological functions of the gut-role of the mucosal immune system[J]. Toxicol Pathol,1988,16(2):154-164.
    [15]Deitch EA, Xu D, Kaise VL. Role of the gut in the development of injury-and shock induced SIRS and MODS:the gut-lymph hypothesis, a review[J]. Front Biosci,2006,11:520-528.
    [16]Dickinson E, Tuncer R, Nadler E, et al. NOX, a novel nitric oxide scavenger, reduces bacterial translocation in rats after endotoxin challenge [J]. Am J Physiol, 1999,277(6 Pt 1):G1281-1287.
    [17]Hsu CM, Liu CH, Chen LW. Nitric oxide synthase inhibitor ameliorates oral total parenteral nutrition-induced barrier dysfunction[J]. Shock,2000, 13(2):135-139.
    [18]Hirota M, Nozawa F, Okabe A, et al. Relationship between plasma cytokine concentration and multiple organ failure in patients with acute pancreatitis [J]. Pancreas,2000,21(2):141-146.
    [19]鲁正,朱言亮,何长林等.脾脏在大鼠急性胰腺炎中对肠粘膜屏障功能的影响[J].肝胆胰外科杂志,2005,17(6):98-100.
    [20]Pscheidl E, Schywalsky M, Tschaikowsky K, et al. Fish oil-supplemented parenteral diets normalize splanchnic blood flow and improve killing of translocated bacteria in a low-dose endotoxin rat model [J]. Crit Care Med,2000, 28(5):1489-1496.
    [21]Freestone PP, Williams PH, Haigh RD, et al. Growth stimulation of intestinal commensal Escherichia coli by catecholamines:a possible contributory factor in trauma-induced sepsis[J]. Shock,2002,18(5):465-470.
    [22]Cuoco L, Montalto M, Jorizzo RA, et al. Eradication of small intestinal bacterial overgrowth and oro-cecal transit in diabetics [J]. Hepatogastroenterology,2002, 49(48):1582-1586.
    [23]Deitch EA. Bacterial translocation or lymphatic drainage of toxic products from the gut:what is important in human beings? [J]. Surgery,2002,131(3):241-244.
    [24]Walser EM, Nealon WH, Marroquin S, et al. Sterile fluid collections in acute pancreatitis:catheter drainage versus simple aspiration[J]. Cardiovasc Intervent Radiol,2006,29(1):102-107.
    [25]Berg RD, Garlingtor AW. Translocation of certain indigenous bacteria from the gastrointestinal tract to the mesenteric lymph nodes and other organs in a gnotobiotic mouse model[J]. Infect Immun,1979,23(2):403-411.
    [26]Alexander JW, Boyce ST, Babcock GF, et al. The process of microbial translocation[J]. Ann Surg,1990,212(4):496-510.
    [27]Woodcock NP, Robertson J, Morgan DR, et al. Bacterial translocation and immunohistochemical measurement of gut immune function [J]. J Clin Pathol, 2001,54(8):619-623.
    [28]Kalambokis G, Tsianos EV. Endotoxaemia in the pathogenesis of cytopenias in liver cirrhosis. Could oral antibiotics raise blood counts? [J]. Med Hypotheses, 2011,76(1):105-109.
    [29]Sileri P, Morini S, Sica GS, et al. Bacterial translocation and intestinal morphological findings in jaundiced rats[J]. Dig Dis Sci,2002,47(4):929-934.
    [30]宋红丽,李永新,祝英华等.门脉高压性胃病与肠道菌群失调及内毒素相关性研究[J].中国实用内科杂志,2004,12:741-742.
    [31]Racanelli V, Rehermann B. The liver as an immunological organ[J]. Hepatology, 2006,43(2 Suppl 1):S54-62.
    [32]Crispe IN. Hepatic T cells and liver tolerance [J]. Nat Rev Immunol,2003, 3(1):51-62.
    [33]Tanis W, Mancham S, Binda R, et al. Human hepatic lymph nodes contain normal numbers of mature myeloid dendritic cells but few plasmacytoid dendritic cells[J]. Clin Immunol,2004,110(1):81-88.
    [34]Zarember KA, Godowski PJ. Tissue expression of human Toll-like receptors and differential regulation of Toll-like receptor mRNAs in leukocytes in response to microbes, their products, and cytokines[J]. J Immunol,2002,168(2):554-561.
    [35]Lichtman SN, Wang J, Lemasters JJ. LPS receptor CD14 participates in release of TNF-alpha in RAW 264.7 and peritoneal cells but not in Kupffer cells[J]. Am J Physiol,1998,275(1 Pt 1):G39-46.
    [36]De Creus A, Abe M, Lau AH, et al. Low TLR4 expression by liver dendritic cells correlates with reduced capacity to activate allogeneic T cells in response to endotoxin[J]. J Immunol,2005,174(4):2037-2045.
    [37]Nishimura M, Naito S. Tissue-specific mRNA expression profiles of human toll-like receptors and related genes[J]. Biol Pharm Bull,2005,28(5):886-892.
    [38]Lemaitre B, Nicolas E, Michaut L, et al. The dorsoventral regulatory gene cassette spatzle/Toll/cactus controls the potent antifungal response in Drosophila adults[J]. Cell,1996,86(6):973-983.
    [39]Roach JC, Glusman G, Rowen L, et al. The evolution of vertebrate Toll-like receptors[J]. Proc Natl Acad Sci U S A,2005,102(27):9577-9582.
    [40]Schnare M, Barton GM, Holt AC, et al. Toll-like receptors control activation of adaptive immune responses[J]. Nat Immunol,2001,2(10):947-950.
    [41]Aderem A, Ulevitch RJ. Toll-like receptors in the induction of the innate immune response[J]. Nature,2000,406(6797):782-787.
    [42]Alisi A, Carsetti R, Nobili V. Pathogen-or damage-associated molecular patterns during nonalcoholic fatty liver disease development [J]. Hepatology,2011, 54(5):1500-1502.
    [43]Miura K, Seki E, Ohnishi H, et al. Role of Toll-like receptors and their downstream molecules in the development of nonalcoholic fatty liver disease [J]. Gastroenterol Res Pract,2010,2010:362847.
    [44]Liu S, Gallo DJ, Green AM, et al. Role of toll-like receptors in changes in gene expression and NF-kappa B activation in mouse hepatocytes stimulated with lipopolysaccharide[J]. Infect Immun,2002,70(7):3433-3442.
    [45]Matsumura T, Degawa T, Takii T, et al. TRAF6-NF-kappaB pathway is essential for interleukin-1-induced TLR2 expression and its functional response to TLR2 ligand in murine hepatocytes [J]. Immunology,2003,109(1):127-136.
    [46]Matsumura T, Ito A, Takii T, et al. Endotoxin and cytokine regulation of toll-like receptor (TLR) 2 and TLR4 gene expression in murine liver and hepatocytes[J]. J Interferon Cytokine Res,2000,20(10):915-921.
    [47]Li K, Chen Z, Kato N, et al. Distinct poly(I-C) and virus-activated signaling pathways leading to interferon-beta production in hepatocytes[J]. J Biol Chem, 2005,280(17):16739-16747.
    [48]Mimura Y, Sakisaka S, Harada M, et al. Role of hepatocytes in direct clearance of lipopolysaccharide in rats[J]. Gastroenterology,1995,109(6):1969-1976.
    [49]Hampton RY, Golenbock DT, Penman M, et al. Recognition and plasma clearance of endotoxin by scavenger receptors [J]. Nature,1991, 352(6333):342-344.
    [50]Vishnyakova TG, Bocharov AV, Baranova IN, et al. Binding and internalization of lipopolysaccharide by Cla-1, a human orthologue of rodent scavenger receptor B1[J]. J Biol Chem,2003,278(25):22771-22780.
    [51]Crispe IN. The liver as a lymphoid organ[J]. Annu Rev Immunol,2009, 27:147-163.
    [52]Schuchmann M, Hermann F, Herkel J, et al. HSP60 and CpG-DNA-oligonucleotides differentially regulate LPS-tolerance of hepatic Kupffer cells[J]. Immunol Lett,2004:93(2-3):199-204.
    [53]Jiang W, Sun R, Wei H, et al. Toll-like receptor 3 ligand attenuates LPS-induced liver injury by down-regulation of toll-like receptor 4 expression on macrophages[J]. Proc Natl Acad Sci U S A,2005,102(47):17077-17082.
    [54]Kopydlowski KM, Salkowski CA, Cody MJ, et al. Regulation of macrophage chemokine expression by lipopolysaccharide in vitro and in vivo[J]. J Immunol, 1999,163(3):1537-1544.
    [55]Fox ES, Thomas P, Broitman SA. Clearance of gut-derived endotoxins by the liver. Release and modification of 3H,14C-lipopolysaccharide by isolated rat Kupffer cells[J]. Gastroenterology,1989,96(2 Pt 1):456-461.
    [56]Van Bossuyt H, De Zanger RB, Wisse E. Cellular and subcellular distribution of injected lipopolysaccharide in rat liver and its inactivation by bile salts [J]. J Hepatol,1988,7(3):325-337.
    [57]Seki E, Tsutsui H, Nakano H, et al. Lipopolysaccharide-induced IL-18 secretion from murine Kupffer cells independently of myeloid differentiation factor 88 that is critically involved in induction of production of IL-12 and IL-lbeta[J]. J Immunol,2001,166(4):2651-2657.
    [58]Tsutsui H, Matsui K, Okamura H, et al. Pathophysiological roles of interleukin-18 in inflammatory liver diseases [J]. Immunol Rev,2000, 174:192-209.
    [59]Seki E, Tsutsui H, Tsuji NM, et al. Critical roles of myeloid differentiation factor 88-dependent proinflammatory cytokine release in early phase clearance of Listeria monocytogenes in mice[J]. J Immunol,2002,169(7):3863-3868.
    [60]Bataller R, Brenner DA. Liver fibrosis[J]. J Clin Invest,2005,115(2):209-218.
    [61]Paik YH, Schwabe RF, Bataller R, et al. Toll-like receptor 4 mediates inflammatory signaling by bacterial lipopolysaccharide in human hepatic stellate cells[J]. Hepatology,2003,37(5):1043-1055.
    [62]Brun P, Castagliuolo I, Prinzani M, et al. Exposure to bacterial cell wall products triggers an inflammatory phenotype in hepatic stellate cells [J]. Am J Physiol Gastrointest Liver Physiol,2005,289(3):G571-578.
    [63]Gabele E, Muhlbauer M, Dorn C, et al. Role of TLR9 in hepatic stellate cells and experimental liver fibrosis[J]. Biochem Biophys Res Commun,2008, 376(2):271-276.
    [64]Yoneyama H, Ichida T. Recruitment of dendritic cells to pathological niches in inflamed liver[J]. Med Mol Morphol,2005,38(3):136-141.
    [65]Hirano K, Shimizu Y, Nakayama Y, et al. Overexpression of granulocyte-macrophage colony-stimulating factor in mouse liver enhances the susceptibility of lipopolysaccharide leading to massive apoptosis of hepatocytes[J]. Liver Int,2005,25(5):1027-1035.
    [66]Torres D, Barrier M, Bihl F, et al. Toll-like receptor 2 is required for optimal control of Listeria monocytogenes infection[J]. Infect Immun,2004, 72(4):2131-2139.
    [67]Wertheimer AM, Bakke A, Rosen HR. Direct enumeration and functional assessment of circulating dendritic cells in patients with liver disease [J]. Hepatology 2004,40(2):335-345.
    [68]Jones DE, Palmer JM, Burt AD, et al. Bacterial motif DNA as an adjuvant for the breakdown of immune self-tolerance to pyruvate dehydrogenase complex[J]. Hepatology,2002,36(3):679-686.
    [69]Xu MQ, Suo YP, Gong JP, et al. Prolongation of liver allograft survival by dendritic cells modified with NF-kappaB decoy oligodeoxynucleotides[J]. World J Gastroenterol,2004,10(16):2361-2368.
    [70]Uhrig A, Banafsche R, Kremer M, et al. Development and functional consequences of LPS tolerance in sinusoidal endothelial cells of the liver[J]. J Leukoc Biol,2005,77(5):626-633.
    [71]Wu J, Lu M, Meng Z, et al. Toll-like receptor-mediated control of HBV replication by nonparenchymal liver cells in mice[J]. Hepatology,2007,46(6): 1769-1778.
    [72]Harada K, Ohira S, Isse K, et al. Lipopolysaccharide activates nuclear factor-kappaB through toll-like receptors and related molecules in cultured biliary epithelial cells[J]. Lab Invest,2003,83(11):1657-1667.
    [73]Ikeda H, Sasaki M, Ishikawa A, et al. Interaction of Toll-like receptors with bacterial components induces expression of CDX2 and MUC2 in rat biliary epithelium in vivo and in culture[J]. Lab Invest,2007,87(6):559-571.
    [74]Kavanaugh MJ, Clark C, Goto M, et al. Effect of acute alcohol ingestion prior to burn injury on intestinal bacterial growth and barrier function [J]. Burns,2005, 31(3):290-296.
    [75]Rao RK, Seth A, Sheth P. Recent advances in alcoholic liver disease I. Role of intestinal permeability and endotoxemia in alcoholic liver disease [J]. Am J Physiol Gastrointest Liver Physiol,2004,286(6):G881-884.
    [76]Thakur V, McMullen MR, Pritchard MT, et al. Regulation of macrophage activation in alcoholic liver disease[J]. J Gastroenterol Hepatol,2007,22 Suppl 1:S53-56.
    [77]Beier JI, Luyendyk JP, Guo L, et al. Fibrin accumulation plays a critical role in the sensitization to lipopolysaccharide-induced liver injury caused by ethanol in mice[J]. Hepatology,2009,49(5):1545-1553.
    [78]Fujimoto M, Uemura M, Nakatani Y, et al. Plasma endotoxin and serum cytokine levels in patients with alcoholic hepatitis:relation to severity of liver disturbance[J]. Alcohol Clin Exp Res,2000,24(4 Suppl):48S-54S.
    [79]Parlesak A, Schafer C, Schutz T, et al. Increased intestinal permeability to macromolecules and endotoxemia in patients with chronic alcohol abuse in different stages of alcohol-induced liver disease [J]. J Hepatol,2000, 32(5):742-747.
    [80]Keshavarzian A, Farhadi A, Forsyth CB, et al. Evidence that chronic alcohol exposure promotes intestinal oxidative stress, intestinal hyperpermeability and endotoxemia prior to development of alcoholic steatohepatitis in rats[J]. J Hepatol, 2009,50(3):538-547.
    [81]Nanji A, Jokelainen K, Fotouhinia M, et al. Increased severity of alcoholic liver injury in female rats:role of oxidative stress, endotoxin, and chemokines[J]. Am J Physiol Gastrointest Liver Physiol,2001,281(6):G1348-1356.
    [82]Enomoto N, Schemmer P, Ikejima K, et al. Long-term alcohol exposure changes sensitivity of rat Kupffer cells to lipopolysaccharide[J]. Alcohol Clin Exp Res, 2001,25(9):1360-1367.
    [83]Adachi Y, Moore LE, Bradford BU, et al. Antibiotics prevent liver injury in rats following long-term exposure to ethanol[J]. Gastroenterology,1995,108(1): 218-224.
    [84]Mandrekar P, Bala S, Catalano D, et al. The opposite effects of acute and chronic alcohol on lipopolysaccharide-induced inflammation are linked to IRAK-M in human monocytes[J]. J Immunol,2009,183(2):1320-1327.
    [85]Romics L Jr, Kodys K, Dolganiuc A, et al. Diverse regulation of NF-kappaB and peroxisome proliferator-activated receptors in murine nonalcoholic fatty liver [J]. Hepatology,2004,40(2):376-385.
    [86]Hritz I, Mandrekar P, Velayudham A, et al. The critical role of toll-like receptor (TLR) 4 in alcoholic liver disease is independent of the common TLR adapter MyD88[J]. Hepatology,2008,48(4):1224-1231.
    [87]Miele L, Valenza V, La Torre G, et al. Increased intestinal permeability and tight junction alterations in nonalcoholic fatty liver disease[J]. Hepatology,2009, 49(6):1877-1887.
    [88]苏琳,刘玉兰.非酒精性脂肪肝大鼠小肠黏膜机械屏障的变化[J].中华消化杂志,2010,30:741-744.
    [89]Carter BA, Karpen SJ. Intestinal failure-associated liver disease:management and treatment strategies past, present, and future [J]. Semin Liver Dis,2007, 27(3):251-258.
    [90]Mitaka C. Clinical laboratory differentiation of infectious versus non-infectious systemic inflammatory response syndrome [J]. Clin Chim Acta,2005, 351(1-2):17-29.
    [91]Cani PD, Amar J, Iglesias MA, et al. Metabolic endotoxemia initiates obesity and insulin resistance [J]. Diabetes,2007,56(7):1761-1772.
    [92]Zhang C, Zhang M, Wang S, et al. Interactions between gut microbiota, host genetics and diet relevant to development of metabolic syndromes in mice[J]. ISME J,2010,4(2):232-241.
    [93]Wigg AJ, Roberts-Thomson IC, Dymock RB, et al. The role of small intestinal bacterial overgrowth, intestinal permeability, endotoxaemia, and tumor necrosis factor alpha in the pathogenesis of non-alcoholic steatohepatitis[J]. Gut,2001, 48(2):206-211.
    [94]Zvenigorodskaia LA, Drozdov VN, Egorova EG. Nonalcoholic fatty liver disease and insulin resistance:clinical, biochemical, and morphological parallels [J]. Eksp Klin Gastroenterol,2008,3:25-30.
    [95]Henao-Mejia J, Elinav E, Jin C, et al. Inflammasome-mediated dysbiosis regulates progression of NAFLD and obesity[J]. Nature,2012, 482(7384):179-185.
    [96]Abu-Shanab A, Quigley EM. The role of the gut microbiota in nonalcoholic fatty liver disease[J]. Nat Rev Gastroenterol Hepatol,2010,7(12):691-701.
    [97]Rao RK. Acetaldehyde-induced barrier disruption and paracellular permeability in Caco-2 cell monolayer[J]. Methods Mol Biol,2008,447:171-183.
    [98]宋怀宇,姜春华,杨建荣等.慢性乙型肝炎重度患者肠道黏膜屏障功能的变化及其临床干预策略[J].中华肝脏病杂志,2009,17(10):754-758.
    [99]Li L, Wu Z, Ma W, et al. Changes in intestinal microflora in patients with chronic severe hepatitis[J]. Chin Med J (Engl) 2001,114(8):869-872.
    [100]Zhao HY, Wang HJ, Lu Z, et al. Intestinal microflora in patients with liver cirrhosis[J]. Chin J Dig Dis,2004,5(2):64-67.
    [101]Lu H, Wu Z, Xu W, et al. Intestinal microbiota was assessed in cirrhotic patients with hepatitis B virus infection. Intestinal microbiota of HBV cirrhotic patients[J]. Microb Ecol,2011,61(3):693-703.
    [102]朱宁川,陈岩.肝病肠道菌群失调与肠源性内毒素血症[J].中国微生物学杂志,2004,16(1):64-65.
    [103]杨慧莹,林克荣.水飞蓟宾治疗脂肪肝的作用机制[J].中华现代内科学杂志,2006,3(8):1-6.
    [104]Chen C, Li L, Wu Z, et al. Effects of lactitol on intestinal microflora and plasma endotoxin in patients with chronic viral hepatitis[J]. J Infect,2007,54(1):98-102.
    [105]De Nardo D, Nguyen T, Hamilton JA, et al. Down-regulation of IRAK-4 is a component of LPS-and CpG DNA-induced tolerance in macrophages[J]. Cell Signal,2009,21(2):246-252.
    [106]Sanchez E, Casafont F, Guerra A, et al. Role of intestinal overgrowth and intestinal motility in bacterial translocation in experimental cirrhosis [J]. Rev Esp Enferm Dig,2005,97(11):805-814.
    [107]Guarner C, Soriano G Bacterial translocation and its consequences in patients with cirrhosis[J]. Eur J Gastroenterol Hepatol,2005,17(1):27-31.
    [108]Inamura T, Miura S, Tsuzuki Y, et al. Alteration of intestinal intraepithelial lymphocytes and increased bacteria translocation in a murine model of cirrhosis[J]. Immunol Lett,2003,90(1):3-11.
    [109]Chiva M, Guarner C, Peralta C, et al. Intestinal mucosal oxidative damage and bacterial translocation in cirrhotic rats[J]. Eur J Gastroenterol Hepatol,2003, 15(2):145-150.
    [110]Zhang W, Gu Y, Chen Y, et al. Intestinal flora imbalance results in altered bacterial translocation and liver function in rats with experimental cirrhosis [J]. Eur J Gastroenterol Hepatol,2010,22(12):1481-1486.
    [111]Balzan S, de Almeida Quadros C, de Cleva R, et al. Bacterial translocation: overview of mechanisms and clinical impact[J]. J Gastroenterol Hepatol,2007, 22(4):464-471.
    [112]Romond MB, Colavizza M, Mullie C, et al. Does the intestinal bifidobacterial colonisation affect bacterial translocation? [J]. Anaerobe,2008,14(1):43-48.
    [113]Karaca C, Kaymakoglu S, Uyar A, et al. Intestinal bacterial overgrowth in liver cirrhosis:is it a predisposing X factor for spontaneous ascetic infection?[J]. Am J Gastroenterol,2002,97(7):1851.
    [114]Almeida J, Galhenage S, Yu J, et al. Gut flora and bacterial translocation in chronic liver disease[J]. World J Gastroenterol,2006,12(10):1493-1502.
    [115]殷王乐,陈维维.肝硬化对肠黏膜屏障的损害综述[J].国际消化病杂志,2008,28(4):287-288.
    [116]Martell M, Coll M, Ezkurdia N, et al. Physiopathology of splanchnic vasodilation in portal hypertension[J]. World J Hepatol,2010,2(6):208-220.
    [117]Farhadi A, Banan A, Fields J, et al. Intestinal barrier:an interface between health and disease[J]. J Gastroenterol Hepatol,2003,18(5):479-497.
    [118]秦环龙,高志光.肠上皮细胞紧密连接在肠屏障中的作用研究进展[J].世界华人消化杂志,2005,13(4):443-447.
    [119]Yorganci K, Baykal A, Kologlu M, et al. Endotoxin challenge causes a proinflammatory state in obstructive jaundice[J]. J Invest Surgery,2004, 17(3):119-126.
    [120]逄作祥,李晓东,吕晓军等.小肠细菌过度生长与肝硬化的关系探讨[J].实用肝脏病杂志,2008,11(5):328-329.
    [121]Cani PD, Bibiloni R, Knauf C, et al. Changes in gut microbiota control metabolic endotoxemia-induced inflammation in high-fat diet-induced obesity and diabetes in mice[J]. Diabetes,2008,57(6):1470-1481.
    [122]Csak T, Ganz M, Pespisa J, et al. Fatty acid and endotoxin activate inflammasones in mouse hepatocytes that release danger signals to stimulate immune cells[J]. Hepatology,2011,54(1):133-144.
    [123]Membrez M, Blancher F, Jaquet M, et al. Gut microbiota modulation with norfloxacin and ampicillin enhances glucose tolerance in mice[J]. FASEB J,2008, 22(7):2416-2426.
    [124]孙天燕,王惠吉,原庆.微生态制剂对肝硬化大鼠肠道细菌过度生长及肠 道细菌易位的影响[J].医学研究杂志,2008,37(3):78.
    [125]郑盛,刘海.肠道屏障功能障碍与自发性细菌性腹膜炎[J].实用肝脏病杂志,2007,10(6):422-423.
    [126]Fan JG, Xu ZJ, Wang GL. Effect of lactulose on establishment of a rat non-alcoholic steatohepatitis model[J]. World J Gastroenterol,2005,11(32): 5053-5056.
    [127]Cani PD, Neyrinck AM, Fava F, et al. Selective increases of bifidobacteria in gut microflora improve high-fat-diet-induced diabetes in mice through a mechanism associated with endotoxaemia[J]. Diabetologia,2007, 50(11):2374-2383.
    [128]Li Z, Yang S, Lin H, et al. Probiotics and antibodies to TNF inhibit inflammatory activity and improve nonalcoholic fatty liver disease [J]. Hepatology, 2003,37(2):343-350.
    [129]Ma X, Hua J, Li Z. Probiotics improve high fat diet-induced hepatic steatosis and insulin resistance by increasing hepatic NKT cells [J]. J Hepatol,2008,49(5): 821-830.
    [130]Li YT, Wang L, Chen Y, et al. Effects of gut microflora on hepatic damage after acute liver injury in rats[J]. J Trauma,2010,68(1):76-83.
    [131]白顺滟,彭燕.酒精性肝病与肠道屏障功能改变[J].实用肝脏病杂志,2006,9(3):178-179.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700