用户名: 密码: 验证码:
KIBRA基因多态性与默认网络、执行控制网络相关性的多模态MRI研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的:
     基因学研究表明KIBRA rs17070145位点多态性与人类情景记忆、执行功能以及阿尔兹海默病密切相关,而其神经机制尚不清楚。本研究采用多模态磁共振成像(magnetic resonance imaging, MRI)技术,联合运用基于体素的形态学(voxel-based morphometry analysis, VBM)-.独立成分分析(independent component analysis, ICA)方法,研究KIBRA基因多态性与大脑默认网络、执行控制网络的关系。
     材料与方法:
     选择符合入组标准的健康青年志愿者288例,平均年龄:22.8±2.5岁;男性133例,女性155例。每名受试者完成韦氏记忆量表、威斯康星卡片测评。利用GE3.0T Signa HDX磁共振扫描仪对所有受试者进行静息态、结构像以及弥散像数据的采集。静息态扫描时嘱受试者闭眼、保持身体静止不动,均匀呼吸,精神放松,尽量不思考任何事情。
     1.基因型测定,利用EZgeneTM血液gDNA小量提取试剂盒,从3000μl全血中提取受试者的基因组DNA,应用聚合酶链反应(polymerase chain reaction, PCR)-连接酶检测反应(ligation detection reaction, LDR)的方法,检测受试者KIBRA基因rs17070145位点C/T等位基因多态性;根据不同基因型将受试者分成两组,一组为C等位基因携带者,另一组为TT纯合子携带者。
     2.采用基于Matlab平台的SPM8软件及其插件包VBM8对高分辨率结构像进行预处理,预处理过程包括:灰、白质分割、空间标准化及空间平滑。采用基于Matlab平台的DPARSF软件对静息态功能数据进行预处理,预处理过程包括:时间校正、头动校正、空间标准化、重采样到2mm×2mm×2mm的立方体素及空间平滑。
     3.采用预处理后的静息态功能数据,利用基于Matlab平台的MICA软件进行组ICA分析,得到5个静息态脑网络,在控制年龄、性别以及受教育年限影响因素后,探讨KIBRA基因对大脑网络功能的影响。
     4.采用预处理后的高分辨率结构像以及弥散像数据,在控制年龄、性别以及受教育年限影响因素后,研究KIBRA基因对大脑灰质体积、白质体积、白质完整性的影响。
     5.并采用AlphSim方法对结果进行多重比较校正,最后将校正后的统计参数映射到MNI标准三维模板脑进行显示,观察与流体推理有显著相关性的区域。描述并记录有统计学意义脑区的团块位置、大小(cluster size)、MNI坐标及相关强度。
     结果:
     1.通过KIBRA基因分型检测,288例受试者中,121例为C等位基因携带者(包括14例CC纯合子携带者),167例TT纯合子携带者;基因型分布频率符合Hardy-Weinberg分布[χ2(2)=0.36,p=0.55];年龄、性别、受教育年限、韦氏记忆量表评分以及威斯康辛卡片评分未发现组间差异,但CC纯合子携带者的记忆、执行功能有降低的趋势。
     2.通过组ICA方法,获得5个经典的静息态脑网络:默认网络(前、后两部分)、执行控制网络、感觉运动网络、视觉网络。
     3.与KIBRA TT等位基因携带者相比,C等位基因携带者在默认网络的内侧前额叶皮层、后扣带皮层,以及执行控制网络的右侧岛叶、双侧尾状核、背侧前扣带皮层的脑同步性活动明显增加;而视觉网络、感觉运动网络却没有发现明显差异。
     4. KIBRA C等位基因携带者在默认网络的内侧前额叶、执行控制网络的双侧的背侧前扣带皮层灰质体积较TT等位基因携带者明显减少。大脑白质体积、白质FA值(fractional anisotropy, FA)均未发现组间差异。
     结论:
     1.默认网络、执行控制网络的结构及功能受到KIBRA基因多态性的影响;
     2.在正常年轻受试者中,KIBRA基因C携带者脑网络同步性活动的增加则可能是对脑局部灰质体积减少的一种代偿;
     3.在正常年轻受试者中,KIBRA基因多态性可能不会影响大脑白质的完整性。
Objective:
     Genetic variation at the KIBRA rs17070145polymorphism has been linked to episodic memory, executive function, and Alzheimer's disease (AD); however its neural substrates remain elusive. We combined voxel-based morphometry (VBM) analysis of structural MRI data and independent component analysis (ICA) analysis of resting-state fMRI data to investigate to investigate neural correlates of KIBRA gene and brain networks in a large sample of healthy young adults.
     Subjects and Methods:
     A total of288healthy, young, right-handed subjects were recruited in this study. Resting-state fMRI, high-resolution structural imaging, and diffusion tensor imaging were performed using a GE3.0T Signa HDX scanner. During the scanning, all subjects were explicitly instructed to keep their eyes closed, relax, as motionless as possible and think of nothing.
     1. Genotyping We extracted genomic DNA from3000μl of whole blood using the EZgeneTM Blood gDNA Miniprep Kit (Biomiga Inc, San Diego, CA, USA). Then, we genotyped the KIBRA rs17070145in each subject using the PCR and ligation detection reaction (LDR) method.
     2. All preprocessing steps were carried out using the statistical parametric mapping (SPM8, http://www.fil.ion.ucl.ac.uk/spm) based on Matlab.
     3. The preprocessing of high resolution structural images including segmentation of gray and white matter, spatial normalization and smooth with a4mm full width at half maximum; while the preprocessing of rs-fMRI data including slice timing, realignment, spatial normalization to the MNI, resampling to to2×2×2mm3cubic voxels, and smoothed with a4mm full width at half maximum.
     4. Group ICA was performed using the MICA software based on Matlab, five RSNs were chosen from the results of ICA; and the group sychroniztion differences were investigated between the two KIBRA genotypes with the age, gender and education years as covariates.
     5. Voxel-based morphometry (VBM) analysis of structural MRI data was performed to investigate group differences of grey matter volume and white matter integrity
     6. Multiple comparisons were statistically corrected by Monte Carlo simulation. Finally, the corrected statistical parameter mapping was overlapped onto MNI standard template and the coordinate, size and peak t values of each significant cluster were recorded.
     Results:
     1. The genotype distribution of the SNP was in Hardy-Weinberg equilibrium [χ2(2)=0.36, p-0.55]. There were no significant group differences in age, gender, years of education, memory and WCST scores although the CC group showed a trend towards decreased memory and executive function.
     2. Five meaningful resting state networks were obtained from the MICA results: default mode network (anterior, posterior), executive control network, sensorimotor netwok, and visual network.
     3. KIBRA C-allele carriers showed significantly increased synchronization in the right MPFC of the aDMN and left PCC of the pDMN, the right AI, bilateral Cau, and bilateral dACC of ECN. No significant differences in synchronization were found in either the SMN or the VN between the two genotypes.
     4. KIBRA C-allele carriers showed significant decrease GMV in the right MPFC of the aDMN and the dACC of the ECN. No significant differences in white matter volume and white matter integrity were found between the two genotypes.
     Conclusion:
     1. The structure and function of the DMN and ECN may be selectively affected by KIBRA rs17070145polymorphism;
     2. The increased synchronization in the DMN and ECN is likely a reflection of compensation for the GMV deficit in these networks in young healthy subjects.
     3. The white matter volume and integrity might not be affected by KIBRA rs17070145polymorphism.
引文
[1]Spearman C.'General Intelligence'objectively determined and measured[J]. Am J Psychol,1904,15:201-293.
    [2]Scoville WB, Milner B. Loss of recent memory after bilateral hippocampal lesions.1957[J]. The Journal of neuropsychiatry and clinical neurosciences, 2000,12(1):103-113.
    [3]Goldberg TE, Weinberger DR. Genes and the parsing of cognitive processes[J]. Trends Cogn Sci,2004,8(7):325-335.
    [4]Fisher SE. Tangled webs:tracing the connections between genes and cognition[J]. Cognition,2006,101 (2):270-297.
    [5]Payton A. Investigating cognitive genetics and its implications for the treatment of cognitive deficit[J]. Genes, brain, and behavior,2006,5 Suppl 1:44-53.
    [6]Payton A. The impact of genetic research on our understanding of normal cognitive ageing:1995 to 2009[J]. Neuropsychology review, 2009,19(4):451-477.
    [7]Potkin SG, Turner JA, Guffanti G, et al. Genome-wide strategies for discovering genetic influences on cognition and cognitive disorders:methodological considerations[J]. Cognitive neuropsychiatry,2009,14(4-5):391-418.
    [8]Papassotiropoulos A, Stephan DA, Huentelman MJ, et al. Common Kibra alleles are associated with human memory performance [J]. Science, 2006,314(5798):475-478.
    [9]Buther K, Plaas C, Barnekow A, et al. KIBRA is a novel substrate for protein kinase Czeta[J]. Biochemical and biophysical research communications, 2004,317(3):703-707.
    [10]Schaper K, Kolsch H, Popp J, et al. KIBRA gene variants are associated with episodic memory in healthy elderly [J]. Neurobiology of aging, 2008,29(7):1123-1125.
    [11]Almeida OP, Schwab SG, Lautenschlager NT, et al. KIBRA genetic polymorphism influences episodic memory in later life, but does not increase the risk of mild cognitive impairment [J]. Journal of cellular and molecular medicine, 2008,12(5A):1672-1676.
    [12]Nacmias B, Bessi V, Bagnoli S, et al. KIBRA gene variants are associated with episodic memory performance in subjective memory complaints[J]. Neuroscience letters,2008,436(2):145-147.
    [13]Bates TC, Price JF, Harris SE, et al. Association of KIBRA and memory[J]. Neuroscience letters,2009,458(3):140-143.
    [14]Preuschhof C, Heekeren HR, Li SC, et al KIBRA and CLSTN2 polymorphisms exert interactive effects on human episodic memory[J]. Neuropsychologia, 2010,48(2):402-408.
    [15]Need AC, Attix DK, McEvoy JM, et al. Failure to replicate effect of Kibra on human memory in two large cohorts of European origin[J]. American journal of medical genetics Part B, Neuropsychiatric genetics:the official publication of the International Society of Psychiatric Genetics,2008,147B(5):667-668.
    [16]Jacobsen LK, Picciotto MR, Heath CJ, et al. Allelic variation of calsyntenin 2 (CLSTN2) modulates the impact of developmental tobacco smoke exposure on mnemonic processing in adolescents[J]. Biological psychiatry, 2009,65(8):671-679.
    [17]Zhang H, Kranzler HR, Poling J, et al. Cognitive flexibility is associated with KIBRA variant and modulated by recent tobacco use[J]. Neuropsychopharmacology:official publication of the American College of Neuropsychopharmacology,2009,34(12):2508-2516.
    [18]Corneveaux JJ, Liang WS, Reiman EM, et al. Evidence for an association between KIBRA and late-onset Alzheimer's disease[J]. Neurobiology of aging, 2010,31(6):901-909.
    [19]Beecham GW, Martin ER, Li YJ, et al. Genome-wide association study implicates a chromosome 12 risk locus for late-onset Alzheimer disease[J]. American journal of human genetics,2009,84(1):35-43.
    [20]Reiman EM, Webster JA, Myers AJ, et al. GAB2 alleles modify Alzheimer's risk in APOE epsilon4 carriers[J]. Neuron,2007,54(5):713-720.
    [21]Rodriguez-Rodriguez E, Infante J, Llorca J, et al. Age-dependent association of KIBRA genetic variation and Alzheimer's disease risk[J]. Neurobiology of aging, 2009,30(2):322-324.
    [22]Kauppi K, Nilsson LG, Adolfsson R, et al. KIBRA polymorphism is related to enhanced memory and elevated hippocampal processing[J]. The Journal of neuroscience:the official journal of the Society for Neuroscience, 2011,31(40):14218-14222.
    [23]Buckner RL, Andrews-Hanna JR, Schacter DL. The brain's default network: anatomy, function, and relevance to disease [J]. Annals of the New York Academy of Sciences,2008,1124:1-38.
    [24]Fox MD, Snyder AZ, Vincent JL, et al. The human brain is intrinsically organized into dynamic, anticorrelated functional networks [J]. Proceedings of the National Academy of Sciences of the United States of America, 2005,102(27):9673-9678.
    [25]Greicius MD, Srivastava G, Reiss AL, et al. Default-mode network activity distinguishes Alzheimer's disease from healthy aging:evidence from functional MRI[J]. Proceedings of the National Academy of Sciences of the United States of America,2004,101(13):4637-4642.
    [26]Raichle ME, MacLeod AM, Snyder AZ, et al. A default mode of brain function[J]. Proceedings of the National Academy of Sciences of the United States of America,2001,98(2):676-682.
    [27]Schacter DL, Addis DR, Buckner RL. Remembering the past to imagine the future:the prospective brain[J]. Nature reviews Neuroscience, 2007,8(9):657-661.
    [28]Spreng RN, Mar RA, Kim AS. The common neural basis of autobiographical memory, prospection, navigation, theory of mind, and the default mode:a quantitative meta-analysis[J]. Journal of cognitive neuroscience, 2009,21(3):489-510.
    [29]Svoboda E, McKinnon MC, Levine B. The functional neuroanatomy of autobiographical memory:a meta-analysis[J]. Neuropsychologia, 2006,44(12):2189-2208.
    [30]Filippini N, MacIntosh BJ, Hough MG, et al. Distinct patterns of brain activity in young carriers of the APOE-epsilon4 allele[J]. Proceedings of the National Academy of Sciences of the United States of America,2009,106(17):7209-7214.
    [31]Yaoxian G. Manual of Wechsler Memory Scale-China Revised. Chang Sha, China:Hunan Mapping Press; 1989.
    [32]Grant DA, Berg EA. A behavioral analysis of degree of reinforcement and ease of shifting to new responses in a Weigl-type card-sorting problem[J]. Journal of experimental psychology,1948,38(4):404-411.
    [33]Berg EA. A simple objective technique for measuring flexibility in thinking[J]. The Journal of general psychology,1948,39:15-22.
    [34]Heaton RK. The Wisconsin Card Sorting Test manual. Odessa:Psychological Assessment Resources Inc; 1981.
    [35]Perry W, Braff DL. A multimethod approach to assessing perseverations in schizophrenia patients[J]. Schizophrenia research,1998,33(1-2):69-77.
    [36]Nyhus E, Barcelo F. The Wisconsin Card Sorting Test and the cognitive assessment of prefrontal executive functions:a critical update[J]. Brain and cognition,2009,71(3):437-451.
    [37]Thomas G, Sinville R, Sutton S, et al. Capillary and microelectrophoretic separations of ligase detection reaction products produced from low-abundant point mutations in genomic DNA[J]. Electrophoresis, 2004,25(10-11):1668-1677.
    [38]Yi P, Chen Z, Zhao Y, et al. PCR/LDR/capillary electrophoresis for detection of single-nucleotide differences between fetal and maternal DNA in maternal plasma[J]. Prenat Diagn,2009,29(3):217-222.
    [39]Fox MD, Raichle ME. Spontaneous fluctuations in brain activity observed with functional magnetic resonance imaging[J]. Nat Rev Neurosci, 2007,8(9):700-711.
    [40]Biswal B, Yetkin FZ, Haughton VM, et al. Functional connectivity in the motor cortex of resting human brain using echo-planar MRI[J]. Magnetic resonance in medicine:official journal of the Society of Magnetic Resonance in Medicine/ Society of Magnetic Resonance in Medicine,1995,34(4):537-541.
    [41]Hampson M, Peterson BS, Skudlarski P, et al. Detection of functional connectivity using temporal correlations in MR images[J]. Hum Brain Mapp, 2002,15(4):247-262.
    [42]De Luca M, Beckmann CF, De Stefano N, et al. fMRI resting state networks define distinct modes of long-distance interactions in the human brain[J]. NeuroImage,2006,29(4):1359-1367.
    [43]Cordes D, Haughton VM, Arfanakis K, et al. Mapping functionally related regions of brain with functional connectivity MR imaging[J]. AJNR American journal of neuroradiology,2000,21(9):1636-1644.
    [44]Beckmann CF, DeLuca M, Devlin JT, et al. Investigations into resting-state connectivity using independent component analysis [J]. Philosophical transactions of the Royal Society of London Series B, Biological sciences, 2005,360(1457):1001-1013.
    [45]Kiviniemi V, Kantola JH, Jauhiainen J, et al. Independent component analysis of nondeterministic fMRI signal sources[J]. NeuroImage,2003,19(2 Pt 1):253-260.
    [46]van de Ven VG, Formisano E, Prvulovic D, et al. Functional connectivity as revealed by spatial independent component analysis of fMRI measurements during rest[J]. Hum Brain Mapp,2004,22(3):165-178.
    [47]McKeown MJ, Makeig S, Brown GG, et al. Analysis of fMRI data by blind separation into independent spatial components[J]. Hum Brain Mapp, 1998,6(3):160-188.
    [48]Zibulevsky M, Pearlmutter BA. Blind source separation by sparse decomposition in a signal dictionary [J]. Neural computation, 2001,13(4):863-882.
    [49]Gu H, Engelien W, Feng H, et al. Mapping transient, randomly occurring neuropsychological events using independent component analysis[J]. Neurolmage,2001,14(6):1432-1443.
    [50]Stone JV, Porrill J, Porter NR, et al. Spatiotemporal independent component analysis of event-related fMRI data using skewed probability density functions[J]. NeuroImage,2002,15(2):407-421.
    [51]Damoiseaux JS, Rombouts SA, Barkhof F, et al. Consistent resting-state networks across healthy subjects[J]. Proceedings of the National Academy of Sciences of the United States of America,2006,103(37):13848-13853.
    [52]Mantini D, Perrucci MG, Del Gratta C, et al. Electrophysiological signatures of resting state networks in the human brain[J]. Proceedings of the National Academy of Sciences of the United States of America, 2007,104(32):13170-13175.
    [53]Fransson P, Skiold B, Horsch S, et al. Resting-state networks in the infant brain[J]. Proceedings of the National Academy of Sciences of the United States of America,2007,104(39):15531-15536.
    [54]Damoiseaux JS, Beckmann CF, Arigita EJ, et al. Reduced resting-state brain activity in the "default network" in normal aging[J]. Cereb Cortex, 2008,18(8):1856-1864.
    [55]Vanhaudenhuyse A, Noirhomme Q, Tshibanda LJ, et al. Default network connectivity reflects the level of consciousness in non-communicative brain-damaged patients[J]. Brain:a journal of neurology,2010,133(Pt 1):161-171.
    [56]Kokkonen SM, Nikkinen J, Remes J, et al. Preoperative localization of the sensorimotor area using independent component analysis of resting-state fMRI[J]. Magnetic resonance imaging,2009,27(6):733-740.
    [57]Menon V, Uddin LQ. Saliency, switching, attention and control:a network model of insula function[J]. Brain structure & function,2010,214(5-6):655-667.
    [58]Allman JM, Watson KK, Tetreault NA, et al. Intuition and autism:a possible role for Von Economo neurons[J]. Trends Cogn Sci,2005,9(8):367-373.
    [59]Critchley HD. Neural mechanisms of autonomic, affective, and cognitive integration[J]. The Journal of comparative neurology,2005,493(1):154-166.
    [60]Chan RC, Shum D, Toulopoulou T, et al. Assessment of executive functions: review of instruments and identification of critical issues[J]. Archives of clinical neuropsychology:the official journal of the National Academy of Neuropsychologists,2008,23(2):201-216.
    [61]Collette F, Van der Linden M. Brain imaging of the central executive component of working memory [J]. Neuroscience and biobehavioral reviews, 2002,26(2):105-125.
    [62]Miller EK, Cohen JD. An integrative theory of prefrontal cortex function[J]. Annu Rev Neurosci,2001,24:167-202.
    [63]Alvarez JA, Emory E. Executive function and the frontal lobes:a meta-analytic review[J]. Neuropsychology review,2006,16(1):17-42.
    [64]Petrides M. Lateral prefrontal cortex:architectonic and functional organization[J]. Philosophical transactions of the Royal Society of London Series B, Biological sciences,2005,360(1456):781-795.
    [65]Jiang T, He Y, Zang Y,et al. Modulation of functional connectivity during the resting state and the motor task[J]. Hum Brain Mapp,2004,22(1):63-71.
    [66]De Luca M, Smith S, De Stefano N, et al. Blood oxygenation level dependent contrast resting state networks are relevant to functional activity in the neocortical sensorimotor system[J]. Experimental brain research Experimentelle Hirnforschung Experimentation cerebrale,2005,167(4):587-594.
    [67]Vassos E, Bramon E, Picchioni M, et al. Evidence of association of KIBRA genotype with episodic memory in families of psychotic patients and controls[J]. Journal of psychiatric research,2010,44(12):795-798.
    [68]Yasuda Y, Hashimoto R, Ohi K, et al. Association study of KIBRA gene with memory performance in a Japanese population[J]. The world journal of biological psychiatry:the official journal of the World Federation of Societies of Biological Psychiatry,2010,11(7):852-857.
    [69]Burgess JD, Pedraza O, Graff-Radford NR, et al. Association of common KIBRA variants with episodic memory and AD risk[J]. Neurobiology of aging, 2011,32(3):557 e551-559.
    [70]Wersching H, Guske K, Hasenkamp S, et al. Impact of common KIBRA allele on human cognitive functions[J]. Neuropsychopharmacology:official publication of the American College of Neuropsychopharmacology, 2011,36(6):1296-1304.
    [71]Wagner AKAP, Hatz LE, Scanlon JM, et al. Association of KIBRA rs 17070145 polymorphism and episodic memory in individuals with severe TBI[J]. Brain injury:[BI],2012.
    [72]Hayashi N, Kazui H, Kamino K, et al. KIBRA genetic polymorphism influences episodic memory in Alzheimer's disease, but does not show association with disease in a Japanese cohort[J]. Dementia and geriatric cognitive disorders, 2010,30(4):302-308.
    [73]Johannsen S, Duning K, Pavenstadt H, et al. Temporal-spatial expression and novel biochemical properties of the memory-related protein KIBRA[J]. Neuroscience,2008,155(4):1165-1173.
    [74]Daselaar SM, Prince SE, Cabeza R. When less means more:deactivations during encoding that predict subsequent memory[J]. NeuroImage,2004,23(3):921-927.
    [75]Otten LJ, Rugg MD. When more means less:neural activity related to unsuccessful memory encoding[J]. Current biology:CB, 2001,11(19):1528-1530.
    [76]Wagner AD, Shannon BJ, Kahn I, et al. Parietal lobe contributions to episodic memory retrieval[J]. Trends in cognitive sciences,2005,9(9):445-453.
    [77]Wheeler ME, Buckner RL. Functional dissociation among components of remembering:control, perceived oldness, and content[J]. The Journal of neuroscience:the official journal of the Society for Neuroscience, 2003,23(9):3869-3880.
    [78]Sorg C, Riedl V, Muhlau M, et al. Selective changes of resting-state networks in individuals at risk for Alzheimer's disease[J]. Proceedings of the National Academy of Sciences of the United States of America, 2007,104(47):18760-18765.
    [79]Wang K, Liang M, Wang L, et al. Altered functional connectivity in early Alzheimer's disease:a resting-state fMRI study[J]. Hum Brain Mapp, 2007,28(10):967-978.
    [80]Zhang HY, Wang SJ, Xing J, et al. Detection of PCC functional connectivity characteristics in resting-state fMRI in mild Alzheimer's disease[J]. Behavioural brain research,2009,197(1):103-108.
    [81]Westlye ET, Lundervold A, Rootwelt H, et al. Increased hippocampal default mode synchronization during rest in middle-aged and elderly APOE epsilon4 carriers:relationships with memory performance[J]. The Journal of neuroscience:the official journal of the Society for Neuroscience, 2011,31(21):7775-7783.
    [82]Nimchinsky EA, Gilissen E, Allman JM, et al. A neuronal morphologic type unique to humans and great apes[J]. Proceedings of the National Academy of Sciences of the United States of America,1999,96(9):5268-5273.
    [83]Hamalainen A, Tervo S, Grau-Olivares M, et al. Voxel-based morphometry to detect brain atrophy in progressive mild cognitive impairment[J]. NeuroImage, 2007,37(4):1122-1131.
    [84]Ashburner J, Friston KJ. Voxel-based morphometry--the methods[J]. NeuroImage,2000,11(6 Pt 1):805-821.
    [85]Baron JC, Chetelat G, Desgranges B, et al. In vivo mapping of gray matter loss with voxel-based morphometry in mild Alzheimer's disease [J]. NeuroImage, 2001,14(2):298-309.
    [86]Keller SS, Wilke M, Wieshmann UC, et al. Comparison of standard and optimized voxel-based morphometry for analysis of brain changes associated with temporal lobe epilepsy[J]. NeuroImage,2004,23(3):860-868.
    [87]Good CD, Johnsrude IS, Ashburner J, et al. A voxel-based morphometric study of ageing in 465 normal adult human brains[J]. NeuroImage,2001,14(1 Pt 1):21-36.
    [88]Mechelli A, Crinion JT, Noppeney U, et al. Neurolinguistics:structural plasticity in the bilingual brain[J]. Nature,2004,431 (7010):757.
    [89]Mechelli A, Price CJ, Friston KJ, et al. Voxel-based morphometry of the human brain:methods and applications[J]. Current Med Imaging Rev, 2005,1 (2):105-113.
    [90]Gili T, Cercignani M, Serra L, et al. Regional brain atrophy and functional disconnection across Alzheimer's disease evolution[J]. Journal of neurology, neurosurgery, and psychiatry,2011,82(1):58-66.
    [91]Chetelat G, Desgranges B, Landeau B, et al. Direct voxel-based comparison between grey matter hypometabolism and atrophy in Alzheimer's disease [J]. Brain:a journal of neurology,2008,131(Pt 1):60-71.
    [92]Villain N, Desgranges B, Viader F, et al. Relationships between hippocampal atrophy, white matter disruption, and gray matter hypometabolism in Alzheimer's disease[J]. The Journal of neuroscience:the official journal of the Society for Neuroscience,2008,28(24):6174-6181.
    [1]Herault J, Jutten C. Space or time adaptive signal processing by neural network models. In:AIP Conference Proceedings 151 on Neural Networks for Computing; 1987; Snowbird, Utah, United States:American Institute of Physics Inc.; 1987. p.206-211.
    [2]Cohen MH, Andreou AG. Current-mode subthreshold MOS implementation of the Herault-Jutten autoadaptive network[J]. Solid-State Circuits, IEEE Journal of,1992,27(5):714-727.
    [3]Comon P. Independent component analysis, A new concept?[J]. Signal Processing,1994,36(3):287-314.
    [4]Hyvarinen A, Oja E. Independent component analysis:algorithms and applications [J]. Neural networks:the official journal of the International Neural Network Society,2000,13(4-5):411-430.
    [5]Bell AJ, Sejnowski TJ. An information-maximization approach to blind separation and blind deconvolution[J]. Neural computation,1995,7(6):1129-1159.
    [6]Girolami M. Self-Organising Neural Networks:Independent Component Analysis and Blind Source Separation Springer; 1999.
    [7]Lee TW, Girolami M, Sejnowski TJ. Independent component analysis using an extended infomax algorithm for mixed subgaussian and supergaussian sources[J]. Neural computation,1999,11 (2):417-441.
    [8]Cardoso JF, Laheld BH. Equivariant adaptive source separation[J]. Signal Processing, IEEE Transactions on,1996,44(12):3017-3030.
    [9]Aapo H, Juha K, Erkki O. Independent Component Analysis:John Wiley, New York; 2001.
    [10]Zhong MJ, Tang HW, Wang HL, et al. An EM algorithm for independent component analysis in the presence of Gaussian noise [J]. Neural Information Processing:Letters and Reviews,2004,2(1):11-17.
    [11]Girolami M. A variational method for learning sparse and overcomplete representations[J]. Neural computation,2001,13(11):2517-2532.
    [12]Lewicki MS, Sejnawski TJ. Learning overeomplete representations[J]. Neural computation,2000,12:337-365.
    [13]Zhong MJ, Tang HW, Chen HJ, et al. An EM algorithm for learning sparse and overcomplete representations[J]. Neurocomputing,2004,57:469-476.
    [14]Harmeling S, Ziehe A, Kawanabe M, et al. Kernel-based nonlinear blind source separation[J]. Neural computation,2003,15(5):1089-1124.
    [15]Hyvarinen A. Independent component analysis:recent advances[J]. Philosophical Transactions of the Royal Society a-Mathematical Physical and Engineering Sciences,2013,371(1984).
    [16]Stefan Harmeling, Andreas Ziehe MK, Benjamin Blankertz, et al. Nonlinear Blind Source Separation Using Kernel Feature Spaces In:Third Internation Conference on Independent Component Analysis and Signal Separation; 2001:102-107.
    [17]Taleb A, Jutten C. Source separation in post-nonlinear mixtures[J]. Signal Processing, IEEE Transactions on,1999,47(10):2807-2820.
    [18]Te-Won L, Koehler BU, Orglmeister R. Blind source separation of nonlinear mixing models. In:Neural Networks for Signal Processing [1997] VII Proceedings of the 1997 IEEE Workshop; 1997 24-26 Sep 1997; 1997. p. 406-415.
    [19]Pham DT. Exploiting source non stationary and coloration in blind source separation. In:Digital Signal Processing,2002 DSP 2002 2002 14th International Conference on; 2002 2002; 2002. p.151-154 vol.151.
    [20]Sanchez VD. Frontiers of research in BSS/ICA[J]. Neurocomputing,2002,49:7-23.
    [21]Cardoso JF. Blind signal separation:statistical principles[J]. Proceedings of the IEEE,1998,86(10):2009-2025.
    [22]Lee T-W. Independent Component Analysis-Theory and Applications:Kluwer; 1998.
    [23]Roberts SJ, Everson R. Independent Component Analysis:Principles and Practice:Cambridge University Press; 2001.
    [24]Andrzej Cichocki, Amari S-i. Adaptive Blind Signal and Image Processing: Wiley; 2002.
    [25]Calhoun VD, Adali T, Pearlson GD, et al. Spatial and temporal independent component analysis of functional MRI data containing a pair of task-related waveforms[J]. Hum Brain Mapp,2001,13(1):43-53.
    [26]Makeig S, Jung TP, Bell AJ, et al. Blind separation of auditory event-related brain responses into independent components[J]. Proceedings of the National Academy of Sciences of the United States of America,1997,94(20):10979-10984.
    [27]McKeown MJ, Makeig S, Brown GG, et al. Analysis of fMRI data by blind separation into independent spatial components[J]. Hum Brain Mapp,1998,6(3):160-188.
    [28]Pignat JM, Koval O, Van De Ville D, et al. The impact of denoising on independent component analysis of functional magnetic resonance imaging data[J]. Journal of neuroscience methods,2013,213(1):105-122.
    [29]杨正汗,冯逢,王霄英.磁共振成像技术指南--检查规范、临床策略及新技术应用:人民军医出版社;2007.
    [30]Huber P. Projection pursuit[J]. Annals of Statistics,1985,13(2):435-475.
    [31]Cover TM, Thomas J. Elements of Information Theory:New York:Wiley; 1991.
    [32]J.Huber P. Projection Pursuit[J]. Ann Statist 1985,13(2):435-474.
    [33]Cardoso JF. Informax and maximum likelihood for bind separation[J]. IEEE Signal Processing Letters,1997,4(4):112-114.
    [34]Bishop C. Neural Networks for Pattern Recognition:Clarendon Press; 1995.
    [35]Mackay DJC. Maximum likelihood and covariant algorithms for independent component analysis:Available online at: ftp://w01.ra.phy.cam.ac.uk/pub/mackay/ica.pa.gz; 1996.
    [36]Zibulevsky M, Pearlmutter BA. Blind source separation by sparse decomposition in a signal dictionary [J]. Neural computation,2001,13(4):863-882.
    [37]Gu H, Engelien W, Feng H, et al. Mapping transient, randomly occurring neuropsychological events using independent component analysis[J]. NeuroImage,2001,14(6):1432-1443.
    [38]Stone JV, Porrill J, Porter NR, et al. Spatiotemporal independent component analysis of event-related fMRI data using skewed probability density functions[J]. NeuroImage,2002,15(2):407-421.
    [39]Ogawa S, Lee TM, Nayak AS, et al. Oxygenation-sensitive contrast in magnetic resonance image of rodent brain at high magnetic fields[J]. Magnetic resonance in medicine:official journal of the Society of Magnetic Resonance in Medicine /Society of Magnetic Resonance in Medicine,1990,14(1):68-78.
    [40]Raichle ME, MacLeod AM, Snyder AZ, et al. A default mode of brain function[J]. Proceedings of the National Academy of Sciences of the United States of America,2001,98(2):676-682.
    [41]Biswal B, Yetkin FZ, Haughton VM, et al. Functional connectivity in the motor cortex of resting human brain using echo-planar MRI[J]. Magnetic resonance in medicine:official journal of the Society of Magnetic Resonance in Medicine/ Society of Magnetic Resonance in Medicine,1995,34(4):537-541.
    [42]Lowe MJ, Mock BJ, Sorenson JA. Functional connectivity in single and multislice echoplanar imaging using resting-state fluctuations [J]. NeuroImage,1998,7(2):119-132.
    [43]Xiong J, Parsons LM, Gao JH, et al. Interregional connectivity to primary motor cortex revealed using MRI resting state images [J]. Hum Brain Mapp,1999,8(2-3):151-156.
    [44]KJ F, CD F, RSJ F. ime-dependent changes in effective connectivity measured with PET[J]. Hum Brain Mapp,1993,1(1):69-79.
    [45]Sporns O, Chialvo DR, Kaiser M, et al. Organization, development and function of complex brain networks[J]. Trends Cogn Sci,2004,8(9):418-425.
    [46]Cordes D, Haughton V, Carew JD, et al. Hierarchical clustering to measure connectivity in fMRI resting-state data[J]. Magnetic resonance imaging,2002,20(4):305-317.
    [47]Beckmann CF, DeLuca M, Devlin JT, et al. Investigations into resting-state connectivity using independent component analysis [J]. Philosophical transactions of the Royal Society of London Series B, Biological sciences,2005,360(1457):1001-1013.
    [48]Kiviniemi V, Kantola JH, Jauhiainen J, et al. Independent component analysis of nondeterministic fMRI signal sources[J]. NeuroImage,2003,19(2 Pt 1):253-260.
    [49]van de Ven VG, Formisano E, Prvulovic D, et al. Functional connectivity as revealed by spatial independent component analysis of fMRI measurements during rest[J]. Hum Brain Mapp,2004,22(3):165-178.
    [50]Damoiseaux JS, Rombouts SA, Barkhof F, et al. Consistent resting-state networks across healthy subjects[J]. Proceedings of the National Academy of Sciences of the United States of America,2006,103(37):13848-13853.
    [51]Mantini D, Perrucci MG, Del Gratta C, et al. Electrophysiological signatures of resting state networks in the human brain[J]. Proceedings of the National Academy of Sciences of the United States of America,2007,104(32):13170-13175.
    [52]Fransson P, Skiold B, Horsch S, et al. Resting-state networks in the infant brain[J]. Proceedings of the National Academy of Sciences of the United States of America,2007,104(39):15531-15536.
    [53]Damoiseaux JS, Beckmann CF, Arigita EJ, et al. Reduced resting-state brain activity in the "default network" in normal aging[J]. Cereb Cortex,2008,18(8):1856-1864.
    [54]Greicius MD, Srivastava G, Reiss AL, et al. Default-mode network activity distinguishes Alzheimer's disease from healthy aging:evidence from functional MRI[J]. Proceedings of the National Academy of Sciences of the United States of America,2004,101(13):4637-4642.
    [55]Vanhaudenhuyse A, Noirhomme Q, Tshibanda LJ, et al. Default network connectivity reflects the level of consciousness in non-communicative brain-damaged patients[J]. Brain:a journal of neurology,2010,133(Pt 1):161-171.
    [56]Kokkonen SM, Nikkinen J, Remes J, et al. Preoperative localization of the sensorimotor area using independent component analysis of resting-state fMRI[J]. Magnetic resonance imaging,2009,27(6):733-740.
    [1]Spearman C.'General Intelligence' objectively determined and measured[J]. Am J Psychol,1904,15:201-293.
    [2]Scoville WB, Milner B. Loss of recent memory after bilateral hippocampal lesions.1957[J]. The Journal of neuropsychiatry and clinical neurosciences,2000,12(1):103-113.
    [3]Lee YS, Silva AJ. The molecular and cellular biology of enhanced cognition[J]. Nat Rev Neurosci,2009,10(2):126-140.
    [4]Goldberg TE, Weinberger DR. Genes and the parsing of cognitive processes[J]. Trends Cogn Sci,2004,8(7):325-335.
    [5]Fisher SE. Tangled webs:tracing the connections between genes and cognition[J]. Cognition,2006,101(2):270-297.
    [6]Payton A. Investigating cognitive genetics and its implications for the treatment of cognitive deficit[J]. Genes, brain, and behavior,2006,5 Suppl 1:44-53.
    [7]Payton A. The impact of genetic research on our understanding of normal cognitive ageing:1995 to 2009[J]. Neuropsychology review,2009,19(4):451-477.
    [8]Potkin SG, Turner JA, Guffanti G, et al. Genome-wide strategies for discovering genetic influences on cognition and cognitive disorders: methodological considerations[J]. Cognitive neuropsychiatry,2009,14(4-5):391-418.
    [9]Papassotiropoulos A, Stephan DA, Huentelman MJ, et al. Common Kibra alleles are associated with human memory performance[J]. Science,2006,314(5798):475-478.
    [10]Buther K, Plaas C, Barnekow A, et al. KIBRA is a novel substrate for protein kinase Czeta[J]. Biochemical and biophysical research communications,2004,317(3):703-707.
    [11]Kremerskothen J, Plaas C, Buther K, et al. Characterization of KIBRA, a novel WW domain-containing protein[J]. Biochemical and biophysical research communications,2003,300(4):862-867.
    [12]Rayala SK, den Hollander P, Manavathi B, et al. Essential role of KIBRA in co-activator function of dynein light chain 1 in mammalian cells[J]. The Journal of biological chemistry,2006,281 (28):19092-19099.
    [13]Rizo J, Sudhof TC. C2-domains, structure and function of a universal Ca2+-binding domain[J]. The Journal of biological chemistry,1998,273(26):15879-15882.
    [14]Duning K, Schurek EM, Schluter M, et al. KIBRA modulates directional migration of podocytes[J]. Journal of the American Society of Nephrology: JASN,2008,19(10):1891-1903.
    [15]Schaper K, Kolsch H, Popp J, et al. KIBRA gene variants are associated with episodic memory in healthy elderly[J]. Neurobiology of aging,2008,29(7):1123-1125.
    [16]Almeida OP, Schwab SG, Lautenschlager NT, et al. KIBRA genetic polymorphism influences episodic memory in later life, but does not increase the risk of mild cognitive impairment J]. Journal of cellular and molecular medicine,2008,12(5A):1672-1676.
    [17]Nacmias B, Bessi V, Bagnoli S, et al. KIBRA gene variants are associated with episodic memory performance in subjective memory complaints[J]. Neuroscience letters,2008,436(2):145-147.
    [18]Need AC, Attix DK, McEvoy JM, et al. Failure to replicate effect of Kibra on human memory in two large cohorts of European origin[J]. American journal of medical genetics Part B, Neuropsychiatric genetics:the official publication of the International Society of Psychiatric Genetics,2008,147B(5):667-668.
    [19]Bates TC, Price JF, Harris SE, et al. Association of KIBRA and memory [J]. Neuroscience letters,2009,458(3):140-143.
    [20]Preuschhof C, Heekeren HR, Li SC, et al KIBRA and CLSTN2 polymorphisms exert interactive effects on human episodic memory [J]. Neuropsychologia,2010,48(2):402-408.
    [21]Jacobsen LK, Picciotto MR, Heath CJ, et al. Allelic variation of calsyntenin 2 (CLSTN2) modulates the impact of developmental tobacco smoke exposure on mnemonic processing in adolescents [J]. Biological psychiatry,2009,65(8):671-679.
    [22]Zhang H, Kranzler HR, Poling J, et al. Cognitive flexibility is associated with KIBRA variant and modulated by recent tobacco use[J]. Neuropsychopharmacology:official publication of the American College of Neuropsychopharmacology,2009,34(12):2508-2516.
    [23]Corneveaux JJ, Liang WS, Reiman EM, et al. Evidence for an association between KIBRA and late-onset Alzheimer's disease [J]. Neurobiology of aging,2010,31(6):901-909.
    [24]Beecham GW, Martin ER, Li YJ, et al. Genome-wide association study implicates a chromosome 12 risk locus for late-onset Alzheimer disease [J]. American journal of human genetics,2009,84(1):35-43.
    [25]Reiman EM, Webster JA, Myers AJ, et al. GAB2 alleles modify Alzheimer's risk in APOE epsilon4 carriers[J]. Neuron,2007,54(5):713-720.
    [26]Rodriguez-Rodriguez E, Infante J, Llorca J, et al. Age-dependent association of KIBRA genetic variation and Alzheimer's disease risk[J]. Neurobiology of aging,2009,30(2):322-324.
    [27]Johannsen S, Duning K, Pavenstadt H, et al. Temporal-spatial expression and novel biochemical properties of the memory-related protein KIBRA[J]. Neuroscience,2008,155(4):1165-1173.
    [28]Neuner-Jehle M, Denizot JP, Borbely A A, et al. Characterization and sleep deprivation-induced expression modulation of dendrin, a novel dendritic protein in rat brain neurons[J]. Journal of neuroscience research,1996,46(2):138-151.
    [29]Kremerskothen J, Kindler S, Finger I, et al. Postsynaptic recruitment of Dendrin depends on both dendritic mRNA transport and synaptic anchoring[J]. Journal of neurochemistry,2006,96(6):1659-1666.
    [30]Kremerskothen J, Plaas C, Kindler S, et al. Synaptopodin, a molecule involved in the formation of the dendritic spine apparatus, is a dual actin/alpha-actinin binding protein[J]. Journal of neurochemistry,2005,92(3):597-606.
    [31]Deller T, Korte M, Chabanis S, et al. Synaptopodin-deficient mice lack a spine apparatus and show deficits in synaptic plasticity [J]. Proceedings of the National Academy of Sciences of the United States of America,2003,100(18):10494-10499.
    [32]Asanuma K, Kim K, Oh J, et al. Synaptopodin regulates the actin-bundling activity of alpha-actinin in an isoform-specific manner[J]. The Journal of clinical investigation,2005,115(5):1188-1198.
    [33]Lauriat TL, Dracheva S, Kremerskothen J, et al. Characterization of KIAA0513, a novel signaling molecule that interacts with modulators of neuroplasticity, apoptosis, and the cytoskeleton[J]. Brain research,2006,1121(1):1-11.
    [34]Shin K, Wang Q, Margolis B. PATJ regulates directional migration of mammalian epithelial cells[J]. EMBO reports,2007,8(2):158-164.
    [35]Traer CJ, Rutherford AC, Palmer KJ, et al. SNX4 coordinates endosomal sorting of TfnR with dynein-mediated transport into the endocytic recycling compartment[J]. Nature cell biology,2007,9(12):1370-1380.
    [36]Rosse C, Formstecher E, Boeckeler K, et al. An aPKC-exocyst complex controls paxillin phosphorylation and migration through localised JNK1 activation[J]. PLoS biology,2009,7(11):e1000235.
    [37]Hilton HN, Stanford PM, Harris J, et al. KIBRA interacts with discoidin domain receptor 1 to modulate collagen-induced signalling [J]. Biochimica et biophysica acta,2008,1783(3):383-393.
    [38]Sacktor TC. PKMzeta, LTP maintenance, and the dynamic molecular biology of memory storage[J]. Progress in brain research,2008,169:27-40.
    [39]Nishizuka Y. The molecular heterogeneity of protein kinase C and its implications for cellular regulation[J]. Nature,1988,334(6184):661-665.
    [40]Ono Y, Fujii T, Ogita K, et al Identification of three additional members of rat protein kinase C family:delta-, epsilon- and zeta-subspecies[J]. FEBS letters,1987,226(1):125-128.
    [41]Ono Y, Fujii T, Ogita K, et al. The structure, expression, and properties of additional members of the protein kinase C family [J]. The Journal of biological chemistry,1988,263(14):6927-6932.
    [42]Ono Y, Fujii T, Ogita K, et al. Protein kinase C zeta subspecies from rat brain: its structure, expression, and properties [J]. Proceedings of the National Academy of Sciences of the United States of America,1989,86(9):3099-3103.
    [43]Sacktor TC, Osten P, Valsamis H, et al. Persistent activation of the zeta isoform of protein kinase C in the maintenance of long-term potentiation[J]. Proceedings of the National Academy of Sciences of the United States of America,1993,90(18):8342-8346.
    [44]Hernandez AI, Blace N, Crary JF, et al. Protein kinase M zeta synthesis from a brain mRNA encoding an independent protein kinase C zeta catalytic domain. Implications for the molecular mechanism of memory [J]. The Journal of biological chemistry,2003,278(41):40305-40316.
    [45]Muslimov IA, Nimmrich V, Hernandez AI, et al. Dendritic transport and localization of protein kinase Mzeta mRNA:implications for molecular memory consolidation J]. The Journal of biological chemistry,2004,279(50):52613-52622.
    [46]Ling DS, Benardo LS, Serrano PA, et al. Protein kinase Mzeta is necessary and sufficient for LTP maintenance[J]. Nature neuroscience,2002,5(4):295-296.
    [47]Serrano P, Yao Y, Sacktor TC. Persistent phosphorylation by protein kinase Mzeta maintains late-phase long-term potentiation[J]. The Journal of neuroscience:the official journal of the Society for Neuroscience,2005,25(8):1979-1984.
    [48]Ling DS, Benardo LS, Sacktor TC. Protein kinase Mzeta enhances excitatory synaptic transmission by increasing the number of active postsynaptic AMPA receptors[J]. Hippocampus,2006,16(5):443-452.
    [49]Yao Y, Kelly MT, Sajikumar S, et al. PKM zeta maintains late long-term potentiation by N-ethylmaleimide-sensitive factor/GluR2-dependent trafficking of postsynaptic AMPA receptors[J]. The Journal of neuroscience:the official journal of the Society for Neuroscience,2008,28(31):7820-7827.
    [50]Drier EA, Tello MK, Cowan M, et al. Memory enhancement and formation by atypical PKM activity in Drosophila melanogaster[J]. Nature neuroscience,2002,5(4):316-324.
    [51]Pastalkova E, Serrano P, Pinkhasova D, et al. Storage of spatial information by the maintenance mechanism of LTP[J]. Science,2006,313(5790):1141-1144.
    [52]Serrano P, Friedman EL, Kenney J, et al. PKMzeta maintains spatial, instrumental, and classically conditioned long-term memories[J]. PLoS biology,2008,6(12):2698-2706.
    [53]Shema R, Sacktor TC, Dudai Y. Rapid erasure of long-term memory associations in the cortex by an inhibitor of PKM zeta[J]. Science,2007,317(5840):951-953.
    [54]Yoshihama Y, Hirai T, Ohtsuka T, et al. KIBRA Co-localizes with protein kinase Mzeta (PKMzeta) in the mouse hippocampus[J]. Bioscience, biotechnology, and biochemistry,2009,73(1):147-151.
    [55]Kauppi K, Nilsson LG, Adolfsson R, et al. KIBRA polymorphism is related to enhanced memory and elevated hippocampal processing[J]. The Journal of neuroscience:the official journal of the Society for Neuroscience,2011,31(40):14218-14222.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700