用户名: 密码: 验证码:
氟苯尼考与聚醚类离子载体抗球虫药在肉鸡体内的相互作用初步研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
氟苯尼考是一种广泛应用于畜禽和水产养殖业中的氯霉素类新型广谱抗菌药,具有抗菌活性高、不良反应小等特点。氟苯尼考在食品动物体内的药动学和残留研究报道较多,其主要药动学特征是吸收良好、生物利用度高,但代谢产物较多,动物性产品中残留严重。目前,介导氟苯尼考在动物体内的代谢酶及氟苯尼考与其他药物间的相互作用研究的还很少。本实验室前期研究资料显示,CYP3A和P-gp参与了氟苯尼考在兔体内的代谢,CYPIA参与了氟苯尼考在大鼠体内的代谢,而在全球消费量最大的食品动物鸡的体内,氟苯尼考的代谢由哪些酶和蛋白介导、氟苯尼考会不会和养禽业常用的其他药物发生相互作用尚待研究。聚醚类离子载体抗球虫药通常长期添加于饲料中以防控畜禽球虫病。大量研究报道,聚醚类离子载体抗球虫药的某些品种对动物体内的CYP450、b5、AND、AH、EROD、ECON等酶有诱导或抑制作用,对人肿瘤细胞中的P-糖蛋白的基因表达有抑制作用。因此,在使用氟苯尼考来治疗畜禽细菌性疾病感染时,聚醚类离子载体抗球虫药在动物体内的存在就可能与氟苯尼考产生相互作用。为避免药物相互作用带来的不良反应,指导兽医临床上氟苯尼考的合理用药,减少肉鸡可食性组织的药物残留,本试验研究了氟苯尼考与畜禽常用的聚醚类离子载体抗球虫药盐霉素、莫能菌素和马杜霉素在肉鸡体内的相互作用及其机制。具体内容如下:
     1.细胞色素CYP4501A、3A以及P-糖蛋白在肉鸡体内氟苯尼考代谢中的作用。
     1日龄AA肉鸡饲喂不含任何药物的饲料饲喂至28日龄后,挑选24只健康的雄性肉鸡分为对照组、氟伏沙明处理组、酮康唑处理组和维拉帕米处理组,每组6只。氟伏沙明处理组动物按25mg/kg b.w.t灌服氟伏沙明,1次/天,连续7天,最后一次灌药0.5h后,肉鸡按30mg/kg体重灌服氟苯尼考溶液;酮康唑处理组、维拉帕米处理组、对照组与氟伏沙明处理组操作相同,分别灌服60mg/kg b.w.t的酮康唑、9mg/kg b.w.t的维拉帕米和相同体积的生理盐水。所有肉鸡在灌服氟苯尼考后12h内从翅下静脉采血,高效液相色谱测定氟苯尼考的血药浓度,3P97药动学软件分析药-时数据。结果显示,肉鸡单剂量口服氟苯尼考的药动学过程符合一室开放动力学模型。对照组氟苯尼考的药-时曲线下面积(AUC)和表观清除率(CL/F)分别为13.80±2.18μg/mL-h和2.28±0.34L/kg/h,当体内的CYPIA活性被氟伏沙明特异性抑制后,血浆中氟苯尼考的药时曲线下面积、表观清除率均未发生显著变化(P>0.05);当体内的CYP3A活性被酮康唑特异性抑制后,血浆中氟苯尼考的药时曲线下面积显著上升了约3倍(35.04±2.11μg/mL·h;P<0.01),表观清除率显著下降到0.86±0.06L/kg/h(P<0.01);当肉鸡体内P-糖蛋白被特异性抑制后,血浆中氟苯尼考的峰浓度极显著升高,而药-时曲线下面积未发生显著改变。结果表明,CYP3A对氟苯尼考在肉鸡体内的代谢起关键作用,提示在肉鸡疾病防控用药时,为防止药物间相互作用的发生,氟苯尼考应避免和CYP3A的底物、诱导剂和抑制剂联合使用。
     2.聚醚类离子载体抗球虫药对氟苯尼考在肉鸡体内药动学的影响。
     1日龄AA肉鸡饲喂不含任何药物的饲料饲喂至28日龄后,挑选48只健康雄性肉鸡随机分成对照组、盐霉素诱导组、莫能菌素诱导组和马杜霉素诱导组,每组12只。对照组肉鸡连续14天继续饲喂不含任何药物的饲料;盐霉素诱导组、莫能菌素诱导组和马杜霉素诱导组分别连续14天饲喂含有盐霉素(60mg/kg)、莫能菌素(120mg/kg)和马杜霉素(5mg/kg)的饲料。第15天每组均按30mg/kg体重静脉注射(6只)和经口(6只)灌服氟苯尼考溶液,并分别采集给药后0-10h(静注)和0-24h的血液(口服),用高效液相色谱检测氟苯尼考的血药浓度。结果显示,静注给药后氟苯尼考血药浓度符合二室开放模型,马杜霉素诱导组肉鸡氟苯尼考中央室分布容积(Vc=1.66+0.09L/kg)显著高于对照组(Vc=1.33±0.08L/kg);盐霉素和马杜霉素诱导组肉鸡的氟苯尼考分布半衰期(t1/2α=0.67±0.05h(SAL),0.62±0.02h(MAD))显著低于对照组(t1/2α=0.86±0.06h);所有聚醚类离子载体抗球虫药诱导组肉鸡的氟苯尼考消除半衰期(t12β=2.29±0.18h(SAL),2.30±0.05h(MON),2.11±0.06h(MAD))和药时曲线下面积(AUC=24.24±1.97mg·h/L(SAL),23.04±1.43mg·h/L(MON),18.64±0.96mg-h/L(MAD))均显著低于对照组(t1/2β=3.34±0.16h,AUC=29.68±1.58mg·h/L);莫能菌素和马杜霉素诱导组血浆清除率(CLs=1.33土0.08L/kg·h(MON),1.63±0.08L/kg·h(MAD))显著高于对照组(CLs=1.02±0.05L/kg·h)。口服给药后氟苯尼考血药浓度符合一室开放模型。莫能菌素诱导组肉鸡的吸收半衰期(t1/2kα=0.59±0.06h)、药峰浓度(Cmax=2.93±0.41μg/mL)和峰时(Tmax=1.32±0.08h)显著低于对照组(t1/2kα=1.15±0.11h,Cmax=4.72±0.82gg/mL,Tmax=2.19±0.26h),而血浆表观清除率(CL/F(s)=2.75±0.30L/Kg·h)和表观分布容积(V/F=6.39±1.13L/kg)显著高于对照组(CL/F(s)=1.19±0.16L/kg·h,V/F=3.79±0.94L/kg);各聚醚类离子载体抗球虫药诱导组的药时曲线下面积(AUC=18.17±1.77mg-h/L,11.94±1.90mg·h/L,19.61±1.65mg-h/L)均显著低于对照组(AUC=26.99土2.85mg·h/L),但仅莫能菌素诱导组的生物利用度(F%=52±8)显著低于对照组(F%=91±10)。提示三种聚醚类离子载体抗球虫药与氟苯尼考之间产生了药物相互作用,因而给饲喂添加含有聚醚类离子载体药物的动物使用氟苯尼考需谨慎。
     3.聚醚类离子载体抗球虫药对肉鸡肝脏和小肠氟苯尼考代谢相关基因mRNA表达水平的影响。
     1日龄AA肉鸡饲喂不含任何药物的饲料饲喂至28日龄后,挑选24只健康雄性肉鸡随机分成对照组、盐霉素诱导组、莫能菌素诱导组和马杜霉素诱导组,每组6只。对照组肉鸡连续10天继续饲喂不含任何药物的饲料;盐霉素诱导组、莫能菌素诱导组和马杜霉素诱导组分别连续10天饲喂含有盐霉素(60mg/kg)、莫能菌素(120mg/kg)和马杜霉素(5mg/kg)的饲料。采用分光光度法测定肉鸡肝和小肠CYP450和b5的含量,荧光定量PCR检测肉鸡肝和小肠CYP3A37、CXR和MDR1mRNA的表达。荧光定量PCR检测显示,莫能菌素和马杜霉素极显著增加肉鸡肝脏中CYP3A37基因mRNA的含量(P0.01);盐霉素和马杜霉素则能促进肝脏中CXR基因mRNA的表达(P<0.01,P<0.05),同时还极显著降低肝脏中MDRl基因mRNA含量(P<0.01)。莫能菌素和马杜霉素能诱导肉鸡小肠中CYP3A37基因的mRNA的表达(P<0.01,P<0.05);三种抗球虫药对小肠中CXR的表达无显著影响;而盐霉素则极显著抑制了小肠中MDR1基因的表达(P<0.01)。结果表明,三种聚醚类离子载体抗球虫药对肉鸡肝脏和小肠中CYP3A37、CXR mRNA的表达有不同程度的诱导作用,对MDR1mRNA的表达有不同程度的抑制作用。三种聚醚类离子载体抗球虫药对肉鸡肝和小肠中CYP3A37及其受体CXR mRNA的表达的影响不一致,提示受体CXR并未参与CYP3A37mRNA的表达调控。
     4.聚醚类离子载体抗球虫药对肉鸡肝脏和小肠CYP3A蛋白表达的影响。
     1日龄AA肉鸡饲喂不含任何药物的饲料饲喂至28日龄后,挑选24只健康雄性肉鸡随机分成对照组、盐霉素诱导组、莫能菌素诱导组和马杜霉素诱导组,每组6只。对照组肉鸡连续10天继续饲喂不含任何药物的饲料;盐霉素诱导组、莫能菌素诱导组和马杜霉素诱导组分别连续10天饲喂含有盐霉素(60mg/kg)、莫能菌素(120mg/kg)和马杜霉素(5mg/kg)的饲料。以β-actin蛋白为内参,免疫印迹检测对照组和各诱导组肉鸡肝脏和小肠CYP3A蛋白表达的相对量。结果表明,盐霉素、莫能菌素可显著提高肉鸡肝脏组织中CYP450的含量(P<0.05),莫能菌素还可增加肝中b5的含量,而马杜霉素对CYP450含量则无显著影响;三种聚醚类离子载体抗球虫药诱导组肉鸡肝脏中CYP3A蛋白的表达量稍有增加,但统计学上无显著差异(P>0.05);而这三种聚醚类离子载体抗球虫药均能显著提高肉鸡小肠中CYP3A蛋白的含量(P<0.01)。提示三种聚醚类离子载体抗球虫药对肉鸡肝脏和小肠中CYP3A蛋白的表达的诱导作用存在组织差异性,对小肠中CYP3A蛋白表达的诱导作用是导致聚醚类离子载体抗球虫药与氟苯尼考相互作用的关键因素。兽医临床上联合使用聚醚类离子载体抗球虫药和氟苯尼考等经由CYP3A代谢的药物或其他对CYP3A有诱导或抑制作用的药物时,会产生严重的药物相互作用。
Florfenicol is a newly synthetic broad spectum antibacterial which has high activity and little adverse reaction. Many data of pharmacokinetics and residue of florfenicol in food anmimals have been reported. The absorption property of florfenicol is good and the bioavailability is very high. However, there are many metabolites of florfenicol and the residue of florfenicol is very serious. At present, the studies of the metabolic enzymes and interaction with other drugs in the animal body are very few. The studies of our laboratory have revealed that CYP3A and P-gp are involved in metabolism of florfenicol in rabbits while in rat it was CYP1A mediates its metabolism. It still unknown that which enzymes and proteins mediate the metabolism of florfenicol in chicken and whether interactions will occure between forfenicol and other drugs that widely used in the poultry. Polyether ionophore coccidiostats are chronically added in the feeds husbandary to prevent and cure of coccidiosis. Many research reported that some drugs of this class can induce or inhibit some enzymes such as CYP450, bs, AND, AH, EROD and ECOD in animal body, and can inhibit the express of P-gp of human tumor cells. Therefore, when forfenicol was used to cure animal affection of bacteria, the drug-drug interactions may occure because of the presence of florfenicol. To avoid the adverse reaction resulted from drug-drug interaction, guide veterinary clinical co-administration of florfenicol, and reduce the drug residue of edible tissues of broiler chicken, the drug-drug interactions of florfenicol and three polyether ionophore coccidiostats that widely used in poulty such as salinomycin, monensin and maduramycin, were investigated in this study. The details are as follow:
     1. The roles of CYP4501A,3A and P-gp in the metabolism of florfenicol in broiler chickens.
     One day old AA broiler chickens are fed drug free feeds until they are28days old. Twenty-four healthy male broilers were randomly divided into four groups in this study and each group has6chickens. The four groups are FFC alone group (control group), FFC+fluvoxomine group (fluvoxomine treated group), FFC+ketoconazole group (ketoconazole treated group) and FFC+verapamil group (verapamil treated group) respectively. For the FFC alone group, saline solution was given the volume as the other groups via p.o. adiminstration once a day for7consecutive days. The other three groups were given via p.o. administration of fluvoxamine (60mg/kg), ketoconazole (25mg/kg) and verapamil (9mg/kg), respectively, once a day for7consecutive days. On the7th day, all chickens were given via p.o. administration at a single dose of30mg/kg of FFC30min post the final administration of saline solution, fluvoxamine, ketoconazole and verapamil. The blood samples were taken from each chicken at time points of0-12h post administration of FFC. The plasma concentration of FFC was detected by high performance liquid chromatography. The pharmacokinetic analysis of FFC was performed using3P97. The results showed that plasma concentration-time data of FFC in chickens was best described by a one-compartment open model. The AUC and CLs of FFC in control group were13.8±2.18μg/mL-h and2.28±0.34L/kg/h, respectively. No significant difference of the AUC and CLs of FFC was found when CYP1A was inhibited by fluvoxomine (P>0.05). However, inhibition of CYP3A by ketoconazole can significantly increase the AUC to3times of that in control group (P<0.01;35.04±2.11μg·/mL·h), and decrease the CL/F of FFC (P<0.0\;0.86±0.06L/kg/h). The Cmax of FFC in the FFC+verapamil group was significantly increased, but the AUC was not changed. These data suggested that CYP3A played a key role, P-gp may be involved and CYP1A was not important in the metabolism of FFC in broiler chickens, implying that the adverse drug-drug interaction may occur in the use of FFC if the the co-administrated drugs are the substrates, inducers or inhibitors of CYP3A or/and P-gp.
     2. The effects of polyther ionophore coccidiostas on pharmacokinetics of florfenicol in broiler chickens.
     One day old AA broiler chickens are fed drug free feeds until they are28days old. Forty-eight healthy male broilers were randomly divided into four groups in this study and each group has12chickens. The four groups are FFC alone group (control group), FFC+SAL group (SAL induced group), FFC+MON group (MON induced group) and FFC+ MAD group (MAD induced group) respectively. The chickens were fed rations with or without SAL (60mg/kg feeds), MON (120mg/kg feeds) or MAD (5mg/kg feeds) for14consecutive days. FFC was given to the chickens either via intravenously injection (i.v.) or oral administration (p.o.) at a single dose of30mg/kg body weight. The blood samples were taken from each chicken at time points of0-10h (i.v.) and0-24h (p.o.) post administration of FFC. The plasma concentration of FFC was detected by high performance liquid chromatography. The results showed that following i.v. injection the florfenicol plasma concentration declined in a biphasic pattern that can be described by a two-compartment open model. The distribution of center compartment of FFC in MAD induced group chickens (Vc=1.66±0.09L/kg) are higher than the control group (Vc=1.33±0.08L/kg). The distribution half-lives of FFC in SAL or MAD induced group chickens (t1/2α=0.67±0.05h (SAL),0.62±0.02h (MAD)) are lower that the control group (t1/2α=0.86±0.06h). The elimination half-lives (t1/2β=2.29±0.18h (SAL),2.30±0.05h (MON),2.11±0.06h (MAD)) and the area under the drug plasma curve (AUC=24.24±1.97mg-h/L (SAL),23.04±1.43mg-h/L (MON),18.64±0.96mg-h/L (MAD)) of FFC in all the polyether ionophore coccidiostats induced group are lower that the control group (t1/2β=3.34±0.16h, AUC=29.68±1.58mg-h/L). The plasma clearance of FFC in MON and MAD induced group chickens (CLs=1.33±0.08L/kg-h (MON),1.63±0.08L/kg-h (MAD)) are higher than the control gorup (CLs=1.02±0.05L/kg-h). Following p.o. administration the florfenicol plasma concentration can be described adequately by a one-compartment open model. The absorption half-life (t1/2ka=0.59±0.06h), the maximal plasma concentration (Cmax=2.93±0.41μg/mL), and the time of Cmax (Tmax=1.32±0.08h) of FFC in MON induced group chickens are lower than the control group (t1/2ka=1.15±0.11h, Cmax=4.72±0.82μg/mL, Tmax=2.19±0.26h), while the plasma appearance clearance (CL/F(S)=2.15±0.30L/kg-h) and the appearance distribution (V/F=6.39±1.13L/kg) are higher than the control group (CL/F(s)=1.19±0.16L/kg·h, V/F=3.79±0.94L/kg). The area under the drug plasma curve (AUC=18.17±1.77mg-h/L,11.94±1.90mg-h/L,19.61±1.65mg-h/L) of FFC in all the polyether ionophore coccidiostats induced group are lower that the control group (AUC=26.99±2.85mg-h/L) while only the bioavailability of FFC in MON induced group chickens (F%=52±8)is significantly lower than the control group (F%=91±10). It suggests that the drug-drug interactions hve occured between FFC and these three polyether ionophores. Therefore, more attentions should be paid when FFC was used in chicken meanwhile its feed contain the polyether ionophore coccidiostats.
     3. The effects of polyther ionophore coccidiostas on mRNA expression of florfenicol metabolic genes in the liver and small intestine of broiler chicken.
     One day old AA broiler chickens are fed drug free feeds until they are28days old. Twenty-four healthy male broilers were randomly divided into four groups in this study and each group has6chickens. The four groups are FFC alone group (control group), FFC+SAL group (SAL induced group), FFC+MON group (MON induced group) and FFC+MAD group (MAD induced group) respectively. The chickens were fed rations with or without SAL (60mg/kg feeds), MON (120mg/kg feeds) or MAD (5mg/kg feeds) for10consecutive days. Content of CYP450in the liver and intestine of chicken was measured by spectrophotometry. The mRNA levels of CYP3A37, CXR and MDR1were detected by real-time reverse transcriptase-polymerase chain reaction (Real-time PCR). The results showed that CYP3A37mRNA level of broiler chicken liver was significantly increased by monensin and maduramycin (P<0.01); Salinomycin and maduramycin can significantly facilate the transcription of CXR mRNA (P<0.01, P<0.05) and inhibit the the expression of MDR1(P<0.0\) of chicken liver, monensin and maduramycin can induce the mRNA expression of chicken intestine CYP3A37gene (P<0.01, P<0.05), however, the three polyether ionophore coccidiostats have no significant effect on the CXR expression, while the MDR1expression of intestine was extremely inhibited by salinomycin (P<0.01).
     4. The effects of polyther ionophore coccidiostas on CYP3A protein expression in the liver and small intestine of broiler chicken.
     One day old AA broiler chickens are fed drug free feeds until they are28days old. Twenty-four healthy male broilers were randomly divided into four groups in this study and each group has6chickens. The four groups are FFC alone group (control group), FFC+SAL group (SAL induced group), FFC+MON group (MON induced group) and FFC+MAD group (MAD induced group) respectively. The chickens were fed rations with or without SAL (60mg/kg feeds), MON (120mg/kg feeds) or MAD (5mg/kg feeds) for10consecutive days. The protein expression of CYP3A was detected by Western blot. The results showed that salinomycin and monensin could increase the content of CYP450of the liver of broiler chickens (P<0.05), but maduramycin could not (P>0.05). Monensin also increased the content of b5of broiler chicken liver. The three drugs could increase protein expression of CYP3A of broiler liver, but there was no statistically defferences (P>0.05). However, they can significantly increase the CYP3A protein expression in boiler intestine (P<0.01). It indicated that serous drug-drug interaction may be occur when polyether ionophore coccidiostats were co-administrated with drugs which metabolished by CYP3A, or/and induced or inhibited CYP3A.
引文
[1]Papich MG, Riviere JE. Chloramphenicol and derivatives, macrolides, lincosatnides and miscellaneous antimicrobials [M]. In:Adams, H.R. (Ed.), Veterinary Pharmacology and Therapeutics, AmesIA, Iowa State University Press,2001:868-897.
    [2]Cannon M, Harford S, Davies J. A comparative study on the inhibitory actions of chloramphenicol, thiamphenicol and some fluorinated derivatives [J]. Journal of Antimicrobial Chemotherapy,1990, 26:307-317.
    [3]Paape MJ, Miller RH, Ziv G. Effects of florfenicol, chloramphenicol and thiamphenicol on phagocytosis, chemiluminescence, and morphology of bovine polymorphonuclear neutrophil leukocytes [J]. Journal of Dairy Science,1990,73:1734-1744.
    [4]Graham R, Palmer D, Pratt BC, et al. In vitro activity of florfenicol [J]. European Journal of Clinical Microbiology and Infectious Diseases,1988,7:691-694.
    [5]Ueda Y, Suenaga I. In vitro antibacterial activity of florfenicol against Actinobacillus pleuropneumonia [J]. Journal of Veterinary Medical Science,1995,57:363-364.
    [6]Afifi NA, AboEl-Sooud K. Tissue concentration and pharmacokinetics of florfenicol in broiler chickens [J]. British Poultry Science,1997,38:425-428.
    [7]Varma KH, Adams PE, Powers TE, et al. Pharmacokinetics of florfenicol in veal calves [J]. Journal of Veterinary Pharmacology and Therapeutics,1986,9:412-425.
    [8]Voorspoels JD, Dhaes BA, DeCraene BA, et al. Pharmacokinetics of florfenicol aftert treatment of pigs with single oral or intramuscular doses or with medicated feed fort hree days [J]. Veterinary Record,1999,145:397-399.
    [9]Byung-Kwon Park, Jong-Hwan Lim, Myoung-Seok Kim, et al. Pharmacokinetics of florfenicol and its metabolite, florfenicol amine in dogs [J]. Research in Veterinary Science,2008,84:85-89.
    [10]Zhao HY, Zhang GH, Bai L, et al. Pharmacokinetics of florfenicol in crucian carp (Carassius auratus cuvieri) after a single intramuscular or oral administration [J]. Journal of Veterinary Pharmacology and Therapeutics,2011,34:460-463.
    [11]Shen J, Wu X, Hu D, et al. Pharmacokinetics of florfenicol in healthy and Escherichia coli-infected broiler chickens [J]. Research in Veterinary Science,2002,73:137-140.
    [12]Liu J, Fung KF, Chen Z, et al. Pharmacokinetics of florfenicol in healthy pigs and in pigs experimentally infected with Actinobacillus pleuropneumoniae [J]. Antimicrobial Agents and Chemotherapy,2003,47:820-823.
    [13]邓利斌,欧阳五庆,景俊年,等.氟苯尼考-2-羟丙基-β-环糊精包合物制备工艺[J].武汉工业学院学报,2005,24(1):10-13.
    [14]洪涛,欧阳五庆.PVPK氟苯尼考固体分散体的制备及体外溶出速率的研究[J].黑龙江畜牧兽医,2005,6:65-67.
    [15]Yerramilli M, Robert HS. Compositions containing podrugs of forfenicol and mthods of use[P].US,2005/0014828,2005-01-20.
    [16]Erwin E, Jan E. Veterinary aqueous injectable suspensiongs containing florfenicol [P].US, 2006/0223889,2006.
    [17]时书宁.氟苯尼考水性注射混悬剂的研制及在猪的药动学研究[D].广州:华南农业大学,2006.
    [18]李旭东,鲍恩东,苏建东.一种畜禽使用的氟苯尼考肺靶向微球及其制备方法[P].CN1985812,2007.
    [19]吴小宁.氟苯尼考脂质体的制备及药效学研究[D].杨凌:西北农林科技大学,2005.
    [20]杨水新.一种氟苯尼考微乳的制备方法[P].CN101152169,2008.
    [21]杨桂香,邓国东,邹明,曾振灵,陈杖榴.氟砜霉素的急性毒性和亚慢性毒性试验[J].中国兽医学报,2000,20(3):275-278.
    [22]焦库华,马建云,袁燕,刘宗平,马晓丹,岑皓.不同剂量氟苯尼考对猪血液生化指标及猪瘟抗体的影响[J].中国兽医学报,2009,29(12):1586-1589.
    [23]Gaudin V, Hedou C, Rault A, et al. Validation of a Five Plate Test, the STAR protocol, for the screening of antibiotic residues in muscle from different animal species according to European Decision 2002/657/EC [J]. Food Addit Contain Part A Chem Anal Control Expo Risk Assess,2010, 27(7):935-952.
    [24]Luo P, Jiang H, Wang Z, et al. Simultaneous determination of florfenicol and its metabolite florfenicol amine in swine muscle tissue by a heterologous enzyme-linked immunosorbent assay [J]. Journal of AOAC International,2009,92(3):981-988.
    [25]Zhang S, Sun F, Li J, et al. Simultaneous determination of florfenicol and florfenicol amine in fish, shrimp, and swine muscle by gas chromatography with a microcell electron capture detector [J]. Journal of AOAC International,2006,89(5):1437-1441.
    [26]Wrzesinski CL, Crouch LS, Endris R. Determination of florfenicol amine in channel catfish muscle by liquid chromatography [J]. Journal of AOAC International,2003,86(3):515-520.
    [27]van de Riet JM, Potter RA, Christie-Fougere M, et al.Simultaneous determination of residues of chloramphenicol, thiamphenicol, florfenicol, and florfenicol amine in farmed aquatic species by liquid chromatography/mass spectrometry [J]. Journal of AOAC International,2003,86(3): 510-514.
    [28]Smith S, Gieseker C, Reimschuessel R, et al. Simultaneous screening and confirmation of multiple classes of drug residues in fish by liquid chromatography-ion trap mass spectrometry [J]. Journal of Chromatography A,2009 Nov 13;1216(46):8224-8232.
    [29]Rezende DR, Filho NF, Rocha GL. Simultaneous determination of chloramphenicol and florfenicol in liquid milk, milk powder and bovine muscle by LC-MS/MS [J]. Food Addit Contain Part A Chem Anal Control Expo Risk Assess,2012,29(4):559-570.
    [30]Laurie D. Ionophore toxicity in chickens:A review of pathology and diagnosis [J]. Avian Pathology, 1992,21(3):355-368.
    [31]Weisman Y, Wax E, Bartov I. Monensin toxicity in two breeds of laying hens [J]. Avian Pathology, 1994,23(3):575-578.
    [32]B Earl J. Van Assen. A case of salinomycin intoxication in turkeys [J]. Canadian Veterinary Journal, 2006,47(3):256-258.
    [33]Szucs G, Tamasi V, Laczay P, et al. Biochemical background of toxic interaction between tiamulin and monensin [J]. Chemico-Biological Interactions,2004,147(2):151-161.
    [34]Mezes M, Salyi G, Banhidi G, et al. Effect of acute salinomycin-tiamulin toxicity on the lipid peroxide and antioxidant status of broiler chicken [J]. Acta Veterinaria Hungarica,1992,40(4): 251-257.
    [35]Badiolaa JJ, Luco DF, Perez V, et al. Maduramycin and tiamulin compatibility in broiler chickens [J]. Avian Pathology,1994,23(1):3-17.
    [36]Sawant SG, Terse PS, Dalvi RR. Toxicity of dietary monensin in quail [J]. Avian Diseases,1990,34: 571-574.
    [37]Zhang LL, Zhang JR, Yu ZG, et al. Effects of ionophores on liver CYP1A and 3A in male broilers [J]. Journal of Veterinary Pharmacology and Therapeutics,2010,33(6):551-557.
    [38]Dacasto M, Ceppa L, Cornaglia E. Effect of the ionophore antibiotic monensin on hepatic biotransformations and target organ morphology in rat [J]. Pharmacological Research,1999, 39:5-10.
    [39]Riccioni R, Dupuis ML, Bernabei M, et al. The cancer stem cell selective inhibitor salinomycin is a P-glycoprotein inhibitor [J]. Blood Cells, Molecules, and Diseases,2010,45(1):86-92.
    [40]Shaik MS, Chatterjee A, Singh M. Effects of monensin liposomes on the cytotoxicity, apoptosis and expression of multidrug resistance genes in doxorubicin-resistant human breast tumour (MCF-7/dox) cell-line [J]. Journal of Pharmacy and Pharmacology.2004,56(7):899-907.
    [41]Ratz V, Laczay P, Mora Z. Recent studies on the effect of tiamulin and monensin on hepatic cytochrome p450 activities in chickens and turkeys [J]. Journal of Veterinary Pharmacology and Therapeutics,1997,20:415-418.
    [42]Ershov E, Bellaiche M, Hanji V, et al. The effect of hepatic microsomal cytochrome P450 monooxygenases on monensin-sulfadimidine interactions in broilers [J]. Journal of Veterinary Pharmacology and Therapeutics,2001,24:73-76.
    [43]Hidaka M, Okumura M, Fujita K, et al. Effects of pomegranate juice on human cytochrome P450 3A (CYP3A) and carbamazapine pharmacokinetics in rats [J]. Drug Metabolism and Disposition, 2005,33:644-648.
    [44]Van Herwaarden AE, Smit JW, Sparidans RW, et al. Midazolam and cyclosporin A in transgenic mice with liver-specific expression of human CYP3A4 [J]. Drug Metabolism and Disposition,2005, 33:892-895.
    [45]Johanna Fink-Gremmels. Implications of hepatic cytochrome P450-related biotransformation processes inveterinary sciences [J]. European Journal of Pharmacology,2008,585(2-3):502-509.
    [46]Ratz V, Laczay P, Mora Z, et al. Recent studies on the effects of tiamulin and monensin on hepatic cytochrome P450 activities in chickens and turkeys [J]. Journal of Veterinary Pharmacology and Therapeutics,1997,20:415-418.
    [47]Ceppa L, Dacasto M, Carletti M, et al.'In vitro'interactions of monensin with hepatic xenobiotic metabolizing enzymes [J]. Pharmacological Research,1997,36:249-254.
    [48]Witkamp RF, Nijmeijer SM, Csik GO, et al. Tiamulin selectively inhibits oxidative hepatic steroid and drug metabolism in vitro in the pig [J]. Journal of Veterinary Pharmacology and Therapeutics, 1994,17:317-322.
    [49]Nebbia C, Ceppa L, Dacasto M, et al. Oxidative metabolism of monensin in rat liver microsomes and interactions with tiamulin and other chemotherapeutic agents:evidence for the involvement of cytochrome P-4503A subfamily [J]. Drug Metabolism and Disposition,1999,27:1039-1044.
    [50]Szucs G, Tamasi V, Laczay P, et al. Biochemical background of toxic interaction between tiamulin and monensin [J]. Chemico-Biological Interactions,2004,147:151-161.
    [51]Ershov E, Bellaiche M, Hanji V, et al. Interaction of fluoroquinolones and certain ionophores in broilers:effect on blood levels and hepatic cytochrome p450 monooxygenase activity [J]. Drug Metabolism and Drug Interactions,2001,1:209-219.
    [52]Sureshkumar V, Venkateswaran KV, Jayasundar S. Interaction between enrofloxacin and monensin in broiler chickens [J]. Veterinary and Human Toxicology,2004,46:242-245.
    [53]Atkins WM, Wang RW, Lu AY. Allosteric behavior in cytochrome P450-dependent in vitro drug-drug interactions:a prospective based on conformational dynamics [J]. Chemical Research in Toxicology,2001,14:338-347.
    [54]Regmi NL, Abd El-Aty AM, Kubota R, et al. Lack of inhibitory effects of several fluoroquinolones on cytochrome P-4503A activities at clinical dosage in dogs [J].Journal of Veterinary Pharmacology and Therapeutics,2007,30:37-42.
    [55]Orito K, Saito M, Fukunaga K, et al. Pharmacokinetics of zonisamide and drug interaction with phenobarbital in dogs [J]. Journal of Veterinary Pharmacology and Therapeutics,2008,31(3): 259-264.
    [56]Kuroha A, Azumano Y, Kuze M, et al. Effect of multiple dosing of ketoconazole on pharmacokinetics of midazolam, a cytochrome P-4503A substrate in beagle dogs [J]. Drug Metabolism and Disposition,2002,30:63-68.
    [57]Pont A, Goldman ES, Sugar AM, et al. Ketoconazole-induced increase in estradiol-testosterone ratio. Probable explanation for gynecomastia [J]. Archives of Internal Medicine,1985,145:1429-1431.
    [58]Qiang F, Lee BJ, Ha I, et al. Effect of macelignan on the systemic exposure of paclitaxel:In vitro and in vivo evaluation [J]. European Journal of Pharmaceutical Science,2010,41(2):226.
    [59]Choi DH, Chung JH, Choi JS. Pharmacokinetic interaction between oral lovastatin and verapamil in healthy subjects:role of P-glycoprotein inhibition by lovastatin [J]. European Journal of Clinical Pharmacology,2010,66(3):285.
    [60]Griffiths NM, Hirst BH, Simmons NL. Active secretion of the fluoroquinolone ciprofloxacin by human intestinal epithelial Caco-2 cell layer [J]. British Journal of Pharmacology,1993,108: 575-576.
    [61]Alderman CP, Allcroft PD. Digoxin-itraconazole interaction:possible mechanisms [J]. Annals of Pharmacotherapy,1998,31:438-440.
    [62]苏成业.P-糖蛋白在药物代谢动力学中的作用及其临床意义[J].药学学报,2005,40(8):673.
    [63]Woo JS, Lee CH, Shim CK, et al. Enhanced oral bioavailability of paclitaxel by coadministration of the P-glycoproteinin inhibitor KR30031 [J]. Pharmaceutical Research,2003,20(1):24.
    [64]Maeng HJ, Yoo HJ, Kim IW, et al. P-glycoprotein-mediated transport of berberine across Caco-2 cell monolayers [J]. Journal of Pharmaceutical Sciences,2002,91(12):2614.
    [65]De Lange EC, Marchand S, Van Den Berg DJ, et al. In vitro and in vivo investigations on fluoroquinolones effects of the P-glycoprotein efflux transporter on brain distribution of sparfloxacin [J]. European Journal of Pharmaceutical Science,2000,12(2):85.
    [66]Su SF, Huang JD. Inhibition of the intestinal digoxin absorption and exsorption by quinidine [J]. Drug Metabolism and Disposition,1996,24(2):142.
    [67]Greiner B, Eichelbaum M, Fritz P, et al. The role of intestinal P-glycoprotein in the interaction of digoxin and rifampin [J]. Journal of Clinical Investigation,1999,104(2):147.
    [68]Schwarz UI, Gramatte T, Krappweis J, et al. P-glycoprotein inhibitor erythromycin increases oral bioavailability of talinolol in humans [J]. International Journal of Clinical Pharmacology and Therapeutics,2000,38(4):161.
    [69]Westphal K, Weinbrenner A, Giessmann T, et al. Oral bioavailability of digoxin is enhanced by talinololrevidence for involvement of intestinal P-glycoprotein [J]. Clinical Pharmacology and Therapeutics,2000,68(1):6.
    [70]Rushing DA, Raber SR, Rodvold KA, et al. The effects of cyclosporine on the pharmacokinetics of doxorubicin in patients with small cell lung cancer [J]. Cancer,1994,74(3):834.
    [71]Smit J W, Schinkel A H, Weert B, et al. Hepatobilary and intestinal clearance of amphiphilic cationic drugs in mice in which both mdrla and mdrlb genes have been disrupted [J]. British Journal of Pharmcology,1998,124:416.
    [72]Dhananjay Pal, Ashim K. MDR-and CYP3A4-mediated drug-drug interactions [J]. Journal of Neuroimmune Pharmacology,2006,1(3):323.
    [73]Fromm MF, Kim RB.Stein CM, et al. Inhibition of P-glycoprotein-mediated drug transports unifying mechanism to explain the interaction between digoxin and quinidine [J]. Circulation,1999, 99:552.
    [74]Estabrook RW. The remarkable P450s:A historical overview of the versatile heme protein catalysts [J]. Faseb Journal,1996,10:202-204.
    [75]Poulos TL, Finzel BC, Gunsalus IC, et al. The crystal of Pseudomonas pulled cytochrome P450 [J]. Biological Chemistry,1985,260:16122-16130.
    [76]Nelson DR, Kamataki T, Waxman DJ, et al. The P450 superfamily:update on new sequence, gene mapping, accession numbers, early trivial names of enzymes and nomenclature [J]. DNA Cell Biology,1993,12(1):1-51.
    [77]Wrighton SA, Vardonbradon M, Ring BJ. The human drug metabolizing cytochrome P450 [J]. Journal of Pharmacokinetics and Biopharmaceutics,1996,26:461.
    [78]冷欣夫,邱星辉.细胞色素P450酶系的结构、功能与应用前景[M].北京:科学出版社,2001.
    [79]骆文香,张银娣.药物代谢中的肝细胞色素P450[J].药学进展,1999,23(1):27-32.
    [80]邱星辉,冷欣夫.细胞色素P450的多样性[J].生命的化学,1997,17(6):13-16.
    [81]Anzenbacher P, Anzenbacherov a E. Cytochromes P450 and metabolism of xenobiotics [J]. Cellular and Molecular Life Sciences,2001,58(5-6):737-747.
    [82]Coon MJ, Ding X, Pernecky SJ, et al. Cytochrome P450:Progress and predictions [J]. Faseb Journal,1992,6:669-673.
    [83]Lewis DF. P450 structures and oxidative metabolism of xenobiotics [J]. Pharmacogenomics,2003, 4(4):387-395.
    [84]王永铭,苏定冯.药理学进展[M].北京:科学出版社,2003,6-16.
    [85]陈晓光.新药药理学[M].北京:中国协和医科大学出版社,2004,157.
    [86]Porter TD, Coon MJ. Cytochrome P450:Multipcity of isoforms, substrates, and catalytic and regulatory mechanisms [J]. Biological Chemistry,1991,21:13459-13472.
    [87]Yun CH, Shimada T, Guengerich FP. Purification and characterization of human liver microsomal cytochrome P-4502A6 [J]. Molecular Pharmacology,1991,40(5):679-685.
    [88]Rendic S, Di Carlo FJ. Human cytochrome P450 enzymes:a status report summarizing their reactions, substrates, inducers, and inhibitors [J]. Drug Metabolism Reviews,1997,29(1-2): 413-580.
    [89]Schaeffeler E, Schwab M, Eichelbaum M, et al. CYP2D6 genotyping strategy based on gene copy number determination by TaqMan real-time PCR [J]. Human Mutation,2003,22(6):476-485.
    [90]Daly AK, Brockmoller J, Broly F, et al. Nomenclature for human CYP2D6 alleles [J]. Pharmacogenetics,1996,6(3):193-201.
    [91]Roberts BJ, Song BJ, Soh Y, et al. Ethanol induces CYP2E1 by protein stabilization. Role of ubiquitin conjugation in the rapid degradation of CYP2E1 [J]. Journal of Biological Chemistry, 1995,270(50):29632-29635.
    [92]Park BK, Kitteringham NR, Pirmohamed M, et al. Relevance of induction of human drug-metabolizing enzymes:pharmacological and toxicological implications [J]. British Journal of Clinical Pharmacology,1996,41(6):477-491.
    [93]Powell H, Kitteringham NR, Pirmohamed M, et al. Expression of cytochrome P4502E1 in human liver:assessment by Mrna, genotype andphenorype [J]. Pharmacogenetics,1998,8:411-421.
    [94]Jaeschke H, Gores GJ, Cederbaum AI, et al. Mechanisms of hepatotoxicity [J]. Toxicological Science,2002,65(2):166-176.
    [95]Djordjevic D, Nikolic J, Stefanovic V. Ethanol interactions with other cytochrome P450 substrates including drugs, xenobiotics, and carcinogens [J]. Pathologie Biologie (Paris),1998,46(10): 760-770.
    [96]Novak RF, Woodcraft KJ. The alcohol-inducible form of cytochrome P450 (CYP 2E1):role in toxicology and regulation of expression [J]. Archives of Pharmaceutical Research,2000,23(4): 267-282.
    [97]Imaoka S, Yamada T, Hiroi T, et al. Multiple forms of human P450 expressed in Saccharomyces cerevisiae. Systematic characterization and comparison with those of the rat [J]. Biochemical Pharmacology,1996,51(8):1041-1050.
    [98]Yamano S, Tatsuno J, Gonzalez FJ. The CYP2A3 gene product catalyzes coumarin 7-hydroxylation in human liver microsomes [J]. Biochemistry,1990,29(5):1322-1329.
    [99]Pelkonen O, Maenpaa J, Taavitsainen P, et al. Inhibition and induction of human cytochrome P450 (CYP) enzymes [J]. Xenobiotica,1998,28(12):1203-1253.
    [100]Kato R, Yamazoe Y. Sex specific cytochrome P450 as a cause of sex and species related differences in drug toxicity [J]. Toxicology Letters,1992,64:661-667.
    [101]Kalow W. Genetic variation in the human hepatic cytochrome P450 system [J]. European Journal of Clinical Pharmacology,1987,31(6):633-641.
    [102]Gupta RP, Abou-Donia MB. Ethanol-inducible microsomal aniline hydroxylase activity and cytochrome P450 isozymes in adult hen liver [J]. Comparative Biochemistry and Physiology,1992, 101C:505-512.
    [103]Abou-Donia MB, Nomeir AA. The role of pharmacokinetics and metabolism in species sensitivity to neurotoxic agents [J]. Fundamental and Applied Toxicology,1986,6:190-207.
    [104]王玉山,彭仁绣.不同鼠龄大鼠肝微粒体苯胺羟化酶及氨基比林N-脱甲基酶活性[J].湖北医学院学报,1991,12(1):40-44.
    [105]刘建勋.中药新药药效学实验研究方法与要求[J].中药新药与临床药理,1998,9(2):114-117.
    [106]Anderson CD, Wang J, Kumar CN, et al. Dexamethasone induction of taxol metabolism in the rat [J]. Drug Metabolism and Disposition,1995,23(11):1286-1290.
    [107]Henrik E, Poulen. Antiprine as a model drug to study hepatic drug-metabolizing capacity [J]. Journal of Hepatology,1988,6:374-382.
    [108]郭涛.新编药物动力学[M].北京:中国科学技术出版社,2005,264-289.
    [109]Birkett DJ, Mackenzie PI, Veronese ME, et al. In vitro approaches can predict human drug metabolism [J]. Trends in Pharmacological Sciences,1993,14:292-294.
    [110]Rodrigues AD. Use of in vitro human metabolism studies in drug development:an industrial perspective [J]. Biochemical Pharmacology,1994,48:2147-2156.
    [111]Wrighton SA, Ring BJ, VandenBranden M. The use of in vitro metabolism techniques in the planning and interpretation of drug safety studies [J]. Toxicologic Pathology,1995,23(2):199-208.
    [112]Guillouzo A. Acquisition and use of human in vitro liver preparations [J]. Cell Biology and Toxicology,1995,11:141-145.
    [113]Schmider J, Brockmoller J, Arold G, et al. Simultaneous assessment of CYP3A4 and CYP1A2 activity in vivo with alprazolam and caffeine [J]. Pharmacogenetics,1999,9(6):725-734.
    [114]Kivisto KT, Kroemer HK. Use of Probe Drugs as Predictors of Drug Metabolism in Humans [J]. Journal of Clinical Pharmacology,1997,37:423-428.
    [115]Tucker GT, Houston JB, Huang SM. Optimizing drug development:strategies to assess drug metabolism/transporter interaction potential-toward a consensus [J]. Pharmaceutical Research, 2001,18(8):1071-1080.
    [116]Brockmoller J, Roots I. Assessment of liver metabolic function:clinical implications [J]. Clinical Pharmacokinetics,1994,27(3):216-248.
    [117]Paolini M, Biagi GL, Bauer C, et al. Cocktail strategy:complications and limitations [J]. Journal of Clinical Pharmacology,1993,33(11):1011-1012.
    [118]Kinirons MT, O'Shea D, Downing TE, et al. Absence of correlations among three putative in vivo probes of human cytochrome P4503A activity in young healthy men [J]. Clinical Pharmacology and Therapeutics,1993,54(6):621-629.
    [119]彭华,程泽能.细胞色素P450 3A4相关的药物相互作用[J].中国临床药理学杂志,2001,5:379-385.
    [120]Park JY, Kim KA, Kang MH, et al. Effect of rifampin on the pharmacokinetics of rosiglitazone in healthy subjects [J]. Clinical Pharmacology and Therapeutics,2004,75(3):157-162.
    [121]Rost KL, Br sicke H, Brockmuller J, et al. Increase of cytochrome P4501A2 activity by omeprazole:evidence by the 13C-[N-3-methyl]-cafFeine breath test in poor and extensive metabolizers of S-mephenytoin [J]. Clinical Pharmacology and Therapeutics,1992,52(2):170-180.
    [122]Loboz KK, Gross AS, Williams KM, et al. Cytochrome P4502B6 activity as measured by bupropion hydroxylation:effect of induction by rifampin and ethnicity [J]. Clinical Pharmacology and Therapeutics,2006,80(1):75-84.
    [123]Jayasagar G, Krishna Kumar M, Chandrasekhar K, et al. Influence of rifampicin pretreatment on the pharmacokinetics of celecoxib in healthy male volunteers [J]. Drug Metabolism and Drug Interactions,2003,19(4):287-295.
    [124]Girre C, Lucas D, Hispard E, et al. Assessment of cytochrome P4502E1 induction in alcoholic patients by chlorzoxazone pharmacokinetics [J]. Biochemical Pharmacology,1994,47(9): 1503-1508.
    [125]Gerber JG, Rosenkranz SL, Fichtenbaum CJ, et al. Effect of efavirenz on the pharmacokinetics of simvastatin, atorvastatin, and pravastatin:results of AIDS Clinical Trials Group 5108 Study [J]. Journal of Acquired Immune Deficiency Syndromes,2005,39(3):307-312.
    [126]Niemi M, Backman JT, Neuvonen M, et al. Rifampin decreases the plasma concentrations and effects of repaglinide [J]. Clinical Pharmacology and Therapeutics,2000,68(5):495-500.
    [127]Cheng JW. Cytochrome p450-mediated cardiovascular drug interactions [J]. Heart Disease,2000, 2(3):254-258.
    [128]Honkakoski P, Sueyoshi T, Negishi M. Drug-activated nuclear receptors CAR and PXR [J]. Annals of Medicine,2003,35(3):172-182.
    [129]Tirona RG, Kim RB. Nuclear receptors and drug disposition gene regulation [J]. Journal of Pharmaceutical Sciences,2005,94(6):1169-1186.
    [130]Whitlock JP Jr. Induction of cytochrome P4501A1 [J]. Annual Review of Pharmcology and Toxicology,1999,39:103-125.
    [131]Carrier F, Chang CY, Duh JL, et al. Interaction of the regulatory domains of murine Cyplal gene with two DNA binding proteins in addition to the Ah receptor and the Ah receptor nuclear translocator (ARNT) [J]. Biochemical Pharmacology,1994,48(9):1767-1778.
    [132]Rendic S, Di Carlo FJ. Human cytochrome P450 enzymes:a status report summarizing their reactions, substrates, inducers, and inhibitors [J]. Drug Metabolism Reviews,1997,29(1/2): 413-580.
    [133]Fuhr U. Induction of drug metabolizing enzymes:pharmacokinetic and toxicological consequences in humans [J]. Clinical Pharmacokinetics,2000,38(6):493-504.
    [134]Masuyama H, Suwaki N, Tateishi Y, et al. The pregnane X receptor regulates gene expression in a ligand andpromoter2 selective fashion [J]. Molecular Endocrinology,2005,19:1170-1180.
    [135]Sueyoshi T, Negishi M. Phenobarbital response elements of cytochrome P450 genes and nuclear receptors [J]. Annual Review of Pharmcology and Toxicology,2001,41:123-143.
    [136]Faucette SR, Zhang TC, Moore R, et al. Relative activation of human pregnane X receptor versus constitutive androstane receptor defines distinct classes of CYP2B6 and CYP3A4 inducers [J]. Journal of Pharmacology and Experimental Therapeutics,2007,320(1):72-80.
    [137]Juliano RL, Ling V. A surface glycoprotein modulating drug pemeability in Chinese hamster ovary cell mutants [J]. Biochimica et Biophysica Acta,1976,455:152-162.
    [138]Ueda K, Cardarelli C, Gottesman MM, et al. Expression of a full-length cDNA for the human "MDR1" gene confers resistance to colchicine, doxorubicin, and vinblastine [J]. Proceeding of National Academy of Sciences of the United States of America,1987,84:3004-3008.
    [139]Schinkel AH, Smit JJ, van Tellingen O, et al. Disruption of the mouse mdrla P-glycoprotein gene leads to a deficiency in the blood-brain barrier and to increased sensitivity to drugs [J]. Cell,1994, 7:491-502.
    [140]Uhr M, Grauer MT, Yassouridis A, et al. Blood-brain barrier penetration and pharmacokinetics of amitriptyline and its metabolites in p-glycoprotein (abc bla/b) knock-out mice and controls [J]. Jouranl of Psychiatric Research,2007,41:179-188.
    [141]Li XG, Choi JS. Effect of genistein on the phannacokinetics of paclitaxel administered orally or intravenously in rats [J]. International Journal of Pharmaceutics,2007,37:188-193.
    [142]Bozina N, Rojnie KM, Medved V, et al. Association between MDR1 gene polymorphisms and schizophrenia and therapeutic response to olanzapine in female schizophrenic patients [J]. Jouranl of Psychiatric Research,2008,42:89-97.
    [143]Aller SG, Yu J, Ward A, et al. Structure of P-glycoprotein reveals a molecular basis for poly-specific drug binding [J]. Science,2009,323:1718-1722.
    [144]Dawson RJ, Locher KP. Structure of a bacterial multidrug ABC transporter [J]. Nature,2006,443: 180-185.
    [145]Ceckova-Novotna M, Pavek P, Staud F. P-glycoprotein in the placenta:expression, localization, regulation and function [J]. Reproductive Toxicology,2006,22:400-410.
    [146]Cascorbi I. P-glycoprotein:tissue distribution, substrates, and functional consequences of genetic variations [J]. Handbook of Experimental Pharmacology,2011,201:261-283.
    [147]Szabov D, Keyzer H, Kaiser HE, et al. Reversalofmultidrug resistance of tumor cells [J]. Anticancer Research,2000,20(6B):4261-4274.
    [148]Sauna ZE, Smith MM, Muller M, et al. The mechanism of action of multidrug-resistance-linked P-Glycoprotein [J]. Journal of bioenergetics and biomembranes,2001,33(6):481-491.
    [149]Ambudkar SV, Kim IW, Sauna ZE. The power of the pump, mechanisms of action of P-glycoprotein (ABCB1) [J]. European Journal of Pharmaceutical Science,2006,27(5):392-400.
    [150]Sakurai A, Onishi Y, Hirano H, et al. Quantitative structure-activity relationship analysis and molecular dynamics simulation to functionally validate nonsynonymous polymorphisms of human ABC transporter ABCB1 (P-glycoprotein/MDR1) [J]. Biochemistry,2007,46:7678-7693.
    [151]Lee VH, Sporty JL, Fandy TE. Pharmacogenomics of drug transporters:the next drug delivery challenge [J]. Advanced Drug Delivery Reviews,2001,50(Suppl 1):33-40.
    [152]Inui K, Terada T, Masuda S. Physiological and pharmacological implications of peptide transporters, PEPT1 and PEPT2 [J]. Nephrology Dialysis transplantation,2000,15 Suppl 6:11-13.
    [153]Konig J, Cui Y, Nies AT. Localization and genomic organization of a new hepatocellular organic anion transporting polypeptide [J]. Journal of Biological Chemistry,2000,275 (30):23161-23168.
    [154]Kullak-Ublick GA, Ismair MG, Stieger B, et al. Organic anion-transporting polypeptide B (OATP-B) and its functional comparison with three other OATPs of human liver [J]. Gastroenterology,2001,120 (2):525-533.
    [155]Greiner B, Eichelbaum M, Fritz P, et al. The role of intestinal P-glycoprotein in the interaction of digoxin and rifampin [J]. Journal of Clinical Investigation,1999,104 (2):147-153.
    [156]Masuda S, Uemoto S, Hashida T, et al. Effect of intestinal P-glycoprotein on daily tacrolimus trough level in a living donor small bowel recipient [J]. Clinical Pharmacology and Therapeutics, 2000,68 (1):98-103.
    [157]Jonker JW, Smit JW, Brinkhuis RF, et al. Role of breast cancer resistance protein in the bioavailability and fetal penetration of topotecan [J]. Journal of National Cancer Institute,2000, 92(20):1651-1656.
    [158]Kusuhara H, Suzuki H, Sugiyama Y. The role of P-glycoprotein and canalicular multispecific organic anion transporter in the hepatobiliary excretion of drugs [J]. Journal of Pharmaceutical Sciences,1998,87 (9):1025-1040.
    [159]Borst P, Evers R, Kool M, et al. The multidrug resistance protein family [J]. Biochimica et Biophysica Acta,1999,1461(2):347-357.
    [160]Ayrton A, Morgan P. Role of transport proteins in drug absorption, distribution and excretion [J]. Xenobiotica,2001,31 (8-9):469-497.
    [161]Hirohashi T, Suzuki H, Chu XY, et al. Function and expression of multidrug resistance-associated protein family in human colon adenocarcinoma cells (Caco-2) [J]. Journal of Pharmacology and Experimental Therapeutics,2000,292 (1):265-270.
    [162]Mertens-Talcott SU, De Castro WV, Manthey JA, et al. Polymethoxylated flavones and other phenolic derivates from citrus in their inhibitory effects on P-glycoprotein-mediated transport of talinolol in Caco-2 cells [J]. Journal of Agricultural Food Chemistry,2007,55(7):2563.
    [163]李全志,段京莉.抗消化性溃疡药物的相互作用评价[J].中国医院用药评价与分析,2008,8(12):883.
    [164]Di YM, Li CG, Xue CC, et al. Clinical drugs that interactwith St. John swort and implication in drug development [J]. Current Pharmaceutical Design,2008,14(17):1723.
    [165]Nowack R. Review article:cytochrome P450 enzyme, and transport protein mediated herb-drug interactions in renaltransplant patients:grapefruit juice, St John swort-and beyond [J]. Nephrology (Carlton),2008,13(4):337.
    [166]Dasgupta A. Herbal supplements and therapeutic drugmonitoringrfocus on digoxin immunoassays and interactionswith St. John swort [J]. Therapeutic Drug Monitoring,2008,30(2):212.
    [167]Bansal T, Awasthi A, Jaggi M, et al. Pre-clinical evidence foraltered absorption and biliary excretion of irinotecan (CPT-11) in combination with quercetin:possible contribution of P-glycoprotein [J] Life Sciences,2008,83(7-8):250.
    [168]Helium BH, Nilsen OG In vitro inhibition of CYP3A4 metabolism and P-glycoprotein mediated transport bytrade herbal products [J]. Basic and Clinical Pharmacology and Toxicology,2008, 102(5):466.
    [1]Graham R, Palmer D, Pratt BC, Hart CA. In vitro activity of florfenicol [J]. European Journal of Clinical Microbiology and Infectious Diseases,1988,7:691-694.
    [2]Ueda Y, Suenaga I. In vitro antibacterial activity of florfenicol against Actinobacillus pleuropneumonia [J]. Journal of Veterinary Medical Science,1995,57:363-364.
    [3]Papich MG, Riviere JE. Chloramphenicol and derivatives, macrolides,lincosamides and miscellaneous antimicrobials [M]. Veterinary Pharmacology and Therapeutics, AmesIA, Iowa State University Press,2001,868-897.
    [4]Cannon M, Harford S, Davies J. A comparative study on the inhibitory actions of chloramphenicol, thiamphenicol and some fluorinated derivatives [J]. Journal of Antimicrobial Chemotherapy,1990, 26:307-317.
    [5]Paape MJ, Miller RH, Ziv G. Effects of florfenicol, chloramphenicol and thiamphenicol on phagocytosis, chemiluminescence, and morphology of bovine polymorphonuclear neutrophil leukocytes [J]. Journal of Dairy Science,1990,73:1734-1744.
    [6]Soback S, Paape MJ, Filep R, et al. Florfenicol pharmacokinetics in lactating cows after intravenous, intramuscular and intramammary administration [J]. Journal of Veterinary Pharmacology and Therapeutics,1995,18:413-417.
    [7]McKeller QA, Varma KJ. Pharmacokinetics and tolerance of florfenicol in Equidae [J]. Equine Veterinary Journal,1996,28:209-213.
    [8]Liu J, Fung KF, Chen Z, et al. Pharmacokinetics of florfenicol in healthy pigs and in pigs experimentally infected with Actinobacillus pleuropneumoniae [J]. Antimicrobial Agents and Chemotherapy,2003,47:820-823.
    [9]Afifi NA, Abo el-Sooud KA. Tissue concentrations and pharmacokinetics of florfenicol in broiler chickens [J]. British Poultry Science,1997,38:425-428.
    [10]Zhao HY, Zhang GH, Bai L, et al. Pharmacokinetics of florfenicol in crucian carp (Carassius auratus cuvieri) after a single intramuscular or oral administration [J]. Journal of Veterinary Pharmacology and Therapeutics,2011,34:no. doi:10.1111/j.l365-2885.2011.01273.x
    [II]Decraene, BA, Deprez P, D'Haese E et al. Pharmacokinetics of florfenicol in cerebrospinal fluid and plasma of calves [J]. Antimicrobial Agents and Chemotherapy,1997,41:1991-1995.
    [12]Switaia M, Hrynyk R, Smutkiewicz A, Jaworski K, et al. Pharmacokinetics of florfenicol, thiamphenicol, and chloramphenicol in turkeys [J]. Journal of Veterinary Pharmacology and Therapeutics 2007,30:145-150.
    [13]Ali BH, Al-Qarawi AA, Hashaad M. Comparative plasma pharmacokinetics and tolerance of florfenicol following intramuscular and intravenous administration to camels, sheep and goats [J]. Veterinary Research Communications,2003,27:475-483.
    [14]Abd El-Aty AM, Goudah A, El-Sooud K, et al. Pharmacokinetics and bioavailiability of florfenicol following intravenous, intramuscular and oral administrations in rabbits [J]. Veterinary Research Communications,2004,28:515-524.
    [15]Byung-KwonPark, Jong-HwanLim, Myoung-SeokKim, et al. Pharmacokinetics of florfenicol and its metabolite, florfenicol amine in dogs [J]. Research in Veterinary Science,2008,84:85-89.
    [16]Park BK, Lira JH, Kim MS, et al. Pharmacokinetics of florfenicol and its major metabolite, florfenicol amine, in rabbits [J]. Journal of Veterinary Pharmacology and Therapeuticsap,.2007,30: 32-36.
    [17]Zhang SX, Liu ZW, Guo X, et al. Simultaneous determination and confirmation of chloramphenicol, thiamphenicol, florfenicol and florfenicol amine in chicken muscle by liquid chromatography-tandem mass spectrometry [J]. Journal of Chromatography B,2008,875:399-404.
    [18]王永铭,苏定冯.药理学进展[M].北京:科学出版社,2003:6-16.
    [19]Imaoka S, Yamada T, Hiroi T, et al. Multiple forms of human P450 expressed in Saccharomyces cerevisiae. Systematic characterization and comparison with those of the rat [J]. Biochemical Pharmacology,1996,51(8):1041-1050.
    [20]Yamano S, Tatsuno J, Gonzalez FJ. The CYP2A3 gene product catalyzes coumarin 7-hydroxylation in human liver microsomes [J]. Biochemistry,1990,29(5):1322-1329.
    [21]Pelkonen O, Maenpaa J, Taavitsainen P, et al. Inhibition and induction of human cytochrome P450 (CYP) enzymes [J]. Xenobiotica,1998,28(12):1203-1253.
    [22]Greiner B, Eichelbaum M, Fritz P, et al. The role of intestinal P-glycoprotein in the interaction of digoxin and rifampin [J]. Journal of Clinical Investigation,1999,104 (2):147-153.
    [23]Masuda S, Uemoto S, Hashida T, et al. Effect of intestinal P-glycoprotein on daily tacrolimus trough level in a living donor small bowel recipient [J]. Clinical Pharmacology and Therapeutics,2000,68 (1):98-103.
    [24]Ayrton A, Morgan P. Role of transport proteins in drug absorption, distribution and excretion [J]. Xenobiotica,2001,31(8-9):469-497.
    [25]Varma KH, Adams PE, Powers TE, et al. Pharmacokinetics of florfenicol in veal calves [J]. Journal of Veterinary Pharmacology and Therapeutics,1986,9:412-425.
    [26]Adams PE, Varma KJ, Powers TE, et al. Tissue concentrations and pharmacokinetics of florfenicol in male veal calves given repeated doses [J]. American Journal of Veterinary Research,1987,48: 1725-1732.
    [27]Booker CW, Jim GK, Guichon PT, et al. Evaluation of florfenicol for the treatment of undifferentiated fever in feedlot calves in western Canada [J]. The Canadian Veterinary Journal, 1997,38:555-560.
    [28]Shen J, Hu D, Wu X, et al. Bioavailability and pharmacokinetics of florfenicol in broiler chickens [J]. Journal of Veterinary Pharmacology and Therapeutics,2003,26:337-341.
    [29]Shen J, Wu X, Hu D, et al. Pharmacokinetics of florfenicol in healthy and Escherichia coli-infected broiler chickens [J]. Research in Veterinary Science,2002,73:137-40.
    [30]National Research Council. Nutrient Requirements of Poultry,9th rev. edn. National Academies Press, Washington DC,1994.
    [31]Kowalski P, Konieczna L, Chmielewska A, et al. Comparative evaluation between capillary electrophoresis and high-performance liquid chromatography for the analysis of florfenicol [J]. Journal of Pharmaceutical and Biomedical Analysis,2005,39:983-989
    [32]Wrzesinski CL, Crouch LS, Endris R. Determination of florfenicol amine in channel catfish muscle by liquid chromatography [J]. Journal of AOAC International,2003,86(3):515-520.
    [33]Zhang S, Sun F, Li J, et al. Simultaneous determination of florfenicol and florfenicol amine in fish, shrimp, and swine muscle by gas chromatography with a microcell electron capture detector [J]. Journal of AOAC International,2006,89(5):1437-1441.
    [34]van de Riet JM, Potter RA, Christie-Fougere M, et al. Simultaneous determination of residues of chloramphenicol, thiamphenicol, florfenicol, and florfenicol amine in farmed aquatic species by liquid chromatography/mass spectrometry [J]. Journal of AOAC International,2003,86(3): 510-514.
    [35]Smith S, Gieseker C, Reimschuessel R, et al. Simultaneous screening and confirmation of multiple classes of drug residues in fish by liquid chromatography-ion trap mass spectrometry [J]. Journal of Chromatography A,2009,1216(46):8224-8232.
    [36]Rezende DR, Filho NF, Rocha GL. Simultaneous determination of chloramphenicol and florfenicol in liquid milk, milk powder and bovine muscle by LC-MS/MS [J]. Food Addit Contam Part A Chem Anal Control Expo Risk Assess,2012,29(4):559-570.
    [37]Nebbia C, Ceppa L, Dacasto M, et al. Oxidative monensin metabolism and cytochrome P450 3A content and functions in liver microsomes from horses, pigs, broiler chicks, cattle and rats [J]. Journal of Veterinary Pharmacology and Therapeutics,2001,24:399-403.
    [38]Liu N, Guo M, Mo F, et al. Involvement of P-glycoprotein and cytochrome P450 3A in the metabolism of florfenicol of rabbits [J]. Journal of Veterinary Pharmacology and Therapeutics,2011, doi:10.1111365-2885.2011.01310.x. [Epub ahead of print]
    [39]Jones FT, Ricke SC. Observations on the history of the development of antimicrobials and their use in poultry feeds [J]. Poultry Science,2003,82:613-617.
    [40]Pal D, Mitra AK. MDR-and CYP3A4-mediated drug-drug interactions [J]. Journal of Neuroimmune Pharmacology,2006,1:323-339.
    [41]Yao C, Kunze KL, Kharasch ED, et al. Fluvoxamine-theophylline interaction:gap between in vitro and in vivo inhibition constants toward cytochrome P4501A2 [J]. Clinical Pharmacology and Therapeutics,2001,70:415-424.
    [42]Venkatakrishnan K, von Moltke LL, Greenblatt DJ. Effects of the antifungal agents on oxidative drug metabolism [J]. Clinical Pharmacokinetics,2000,38:111-180.
    [43]Zhou SF. Drugs behave as substrates, inhibitors and inducers of human cytochrome P4503A4 [J]. Current Drug Metabolism,2008,9:310-322.
    [44]Olkkola KT, Isohanni MH, Hamunen K et al. The Effect of Erythromycin and Fluvoxamine on the Pharmacokinetics of Intravenous Lidocaine [J]. Anesthesia and Analgesia,2005,100:1352-1356.
    [45]Yasui-Furukori N, Takahata T, Nakagami T, et al. Different inhibitory effect of fluvoxamine on omeprazole metabolism between CYP2C19 genotypes [J]. British Journal of Clinical Pharmacology, 2004,57:487-494.
    [46]Weiss J, Dormann S M, Martin-Facklam M et al. Inhibition of P-glycoprotein by newer antidepressants [J]. Journal of Pharmacology and Experimental Therapeutics,2003,305:197-204.
    [1]Gendi AYI, Atef M, Aziza Amer MM, et al. Pharmacokinetic and tissue distribution of doxycycline in broiler chickens pretreated with either:diclazuril or halofuginone [J]. Food and Chemical Toxicology,2010,48:3209-3214.
    [2]Doonan GR, Brown CM, Mullaney TP, et al. Monensin poisoning in horses-an international incident [J]. Canadian Veterinary Journal,1989,30:165-169.
    [3]Miskimins DW, Neiger RD. Monensin toxicosis in swine [J]. Journal of Veterinary Diagnostic Investigation,1996,8:396-397.
    [4]Braunius WW. Poisoning due to ionophore anticoccidial drugs in poultry [J]. Tijdschr Diergeneeskd, 1989,114:933-938.
    [5]Wardrope DD, Macleod NS, Sloan JR. Outbreak of monensin poisoning in cattle [J]. Veterinary Record,1983,112:560-561.
    [6]Ficken, MD, Wages, DP, Gonder, E. Monensin toxicity in turkey breeder hens [J]. Avian Diseases, 1989,33:186-190.
    [7]Synge BA. Monensin poisoning in sheep [J]. Veterinary Record,1989,124:410-411.
    [8]Dalvi RR, Sawant SG. Studies on monensin toxicity in goats [J]. Zentralbl Veterinarmed A,1990,37: 352-355.
    [9]Arts HT. Poisoning due to an ionophore anticoccidial agent in a commercial rabbit breeding farm [J]. Tijdschr Diergeneeskd,1991,116:504-507.
    [10]Ershov E, Bellaiche M, Hanji V, et al. Interaction of monensin and sulfadimethoxine in broilers, as mediated by hepatic microsomal cytochrome P-450 monooxygenases [J]. Drug Metabolism and Drug Interactions,2000,16:1-12.
    [11]Ershov E, Bellaiche M, Hanji V, et al. Interaction of fluoroquinolones and certain ionophores in broilers:effect on blood levels and hepatic cytochrome P450 monooxygenase activity [J]. Drug Metabolism and Drug Interactions,2001,18:209-219.
    [12]Crespo R, Shivaprasad HL, Sommer F, et al. Interaction of ionophore and vitamin E in knockdown syndrome of turkeys [J]. Journal of Veterinary Diagnostic Investigation,2008,20:472-476.
    [13]Elsasser TH. Potential interactions of ionophore drugs with divalent cations and their function in the animal body [J]. Journal of Animal Science,1984,59:845-853.
    [14]Graham R, Palmer D, Pratt BC, et al. In vitro activity of florfenicol [J]. European Journal of Clinical Microbiology and Infectious Diseases,1988,7:691-694.
    [15]Ueda Y, Suenaga I. In vitro antibacterial activity of florfenicol against Actinobacillus pleuropneumonia [J]. Journal of Veterinary Medical Science,1995,57:363-364.
    [16]Varma KH, Adams PE, Powers TE, et al. Pharmacokinetics of florfenicol in veal calves [J]. Journal of Veterinary Pharmacology and Therapeutics,1986,9:412-425.
    [17]Voorspoels JD, Dhaes BA, DeCraene BA, et al. Pharmacokinetics of florfenicol aftert reatment of pigs with single oral or intramuscular doses or with medicated feed fort hree days [J]. Veterinary Record,1999,145:397-399.
    [18]Afifi NA, AboEl-Sooud K. Tissue concentration and pharmacokinetics of florfenicol in broiler chickens [J]. British Poultry Science,1997,38:425-428.
    [19]Byung-KwonPark, Jong-HwanLim, Myoung-SeokKim, et al. Pharmacokinetics of florfenicol and its metabolite, florfenicol amine in dogs [J]. Research in Veterinary Science,2008,84:85-89.
    [20]Zhao HY, Zhang GH, Bai L, et al. Pharmacokinetics of florfenicol in crucian carp (Carassius auratus cuvieri) after a single intramuscular or oral administration [J]. Journal of Veterinary Pharmacology and Therapeutics,2011,34:460-463.
    [21]National Research Council. Nutrient Requirements of Poultry,9th rev. edn. National Academies Press, Washington DC,1994.
    [22]Kowalski P, Konieczna L, Chmielewska A, et al. Comparative evaluation between capillary electrophoresis and high-performance liquid chromatography for the analysis of florfenicol [J]. Journal of Pharmaceutical and Biomedical Analysis,2005,39:983-989
    [23]Lin JH. Drug-drug interaction mediated by inhibition and induction of P-glycoprotein [J]. Advanced Drug Delivery Reviews,2003,55:53-81.
    [24]Fromm MF, Kim RB, Stein CM, et al. Inhibition of P-glycoprotein mediated drug transport:A unifying mechanism to explain the interaction between digoxin and quinidine [J]. Circulation,1999, 99:552-557.
    [25]Lin JH, Lu AY. Inhibition and induction of cytochrome P450 and the clinical implications [J]. Clinical Pharmacokinetics,1998,35:361-390.
    [26]Brandy L Paris, Brian W Ogilvie, Julie A Scheinkoenig, et al. In vitro inhibition and induction of human liver cytochrome P450 enzymes by milnacipran [J]. Drug Metabolism and Disposition,2009, 37:2045-2054.
    [27]Atef M, El-Gendi AY, Amer AM, Abd El-Aty AM. Effect of three anthelmentics on disposition kinetics of florfenicol in goats [J]. Food Chem Toxicol,2010,48(12):3340-3344.
    [28]Bretzlaff KN, Neff-Davis CA, Att RS, et al. Flofenicol in non-lactating dairy cows. Pharmacokinetics, binding to plasma proteins and effects on phagocytosis by blood neutrophils [J]. Journal of Veterinary Pharmacology and Therapeutics,1987,10:233-240.
    [29]Chang SK, Davis JL, Cheng CN, et al. Pharmacokinetics and tissue depletion of florfenicol in Leghorn and Taiwan Native chickens [J]. Journal of Veterinary Pharmacology and Therapeutics, 2010,33:471-479.
    [30]Pal D, Mitra AK. MDR-and CYP3A4-mediated drug-drug interactions [J]. Journal of Neuroimmune Pharmacology,2006,1:323-339.
    [31]Switala M, Hrynyk R, Smutkiewicz A, et al. Pharmacokinetics of florfenicol, thiamphenicol and chloramphenicol in turkeys [J]. Journal of Veterinary Pharmacology and Therapeutics,2007,30: 145-150.
    [32]Schinkel AH, Wagenaar E, van Deemter L, et al. Absence of the mdrla P-Glycoprotein in mice affects tissue distribution and pharmacokinetics of dexamethasone, digoxin, and cyclosporin A [J]. Journal of Clinical Investigation,1995,96:1698-1705.
    [33]Choo EF, Leake B, Wandel C, et al. Pharmacological inhibition of P-glycoprotein transport enhances the distribution of HIV-1 protease inhibitors into brain and testes [J]. Drug Metabolism and Disposition,2000,28(6):655-660.
    [34]Liu N, Guo M, Mo F, et al. Involvement of P-glycoprotein and cytochrome P4503A in the metabolism of florfenicol of rabbits [J]. Journal of Veterinary Pharmacology and Therapeutics,2011, doi:10.1111/j.1365-2885.2011.01310.x. [Epub ahead of print]
    [35]Zhang, LL, Zhang JR, Yu ZG, et al. Effects of ionophores on liver CYP1A and 3A in male broilers [J]. Journal of Veterinary Pharmacology and Therapeutics,2010,33:551-557.
    [36]Ismail M, El-Kattan YA. Comparative pharmacokinetics of florfenicol in the chicken, pigeon and quail [J]. British Poultry Science,2009,50:144-149.
    [37]Riccioni R, Dupuis ML, Bernabei M, et al. The cancer stem cell selective inhibitor salinomycin is a P-glycoprotein inhibitor [J]. Blood Cells Molecules and Diseases,2010,45:86-92.
    [38]Shaik SS, Chatterjee A, Singh M. Effects of monensin liposomes on the cytotoxicity, apoptosis and expression of multidrug resistance genes in doxorubicin-resistant human breast tumour (MCF-7/dox) cell-line [J]. Journal of Pharmacy and Pharmacology,2004,56:899-907.
    [39]Leu BL, Huang JD. Inhibition of intestinal P-glycoprotein and effects on etoposide absorption [J]. Cancer Chemotherapy and Pharmacology,1995,35:432-436.
    [40]Flicker G, Drewe J, Huwyler J, et al. Relevance of P-glycoprotein for the enteral absorption of cyclosporin A:in vitro-in vivo correlation [J]. British Journal of Pharmacology,1996,118: 1841-1847.
    [41]Salphati L, Benet LZ. Effects of ketoconazole on digoxin absorption and disposition in rat [J]. Pharmacology,1998,56:308-313.
    [42]Wacher VJ, Silverman JA, Zhang Y, et al. Role of P-glycoprotein and cytochrome P4503A in limiting oral absorption of peptides and peptidomimetics [J]. Journal of Pharmaceutical Sciences, 1998,87:1322-1330.
    [43]Gharaibeh S, Al-Rifai R, Al-Majali A. Molecular typing and antimicrobial susceptibility of Clostridium perfringens from broiler chickens [J]. Anaerobe,2010,16:586-589.
    [44]Salmon SA, Watts JL. Minimum inhibitory concentration determinations for various antimicrobial agents against 1570 bacterial isolates from turkey poults [J]. Avian Diseaseseases,2000,44:85-98.
    [45]Inglis V, Richards RH. The in vitro susceptibility of Aeromonas salmonicida and other fish-pathogenic bacteria to 29 antimicrobial agents [J]. Journal of Fish Diseases,1991,14:641-650.
    [1]Ourlin JC, Baader M, Fraser D, et al. Cloning and functional expression of a first inducible avian cytochrome P450 of the CYP3A subfamily (CYP3A37) [J]. Archives of Biochemistry and Biophysics,2000,373(2):375-384.
    [2]Handschin C, Podvinec M, Meyer UA. CXR, a chicken xenobiotic-sensing orphan nuclear receptor, is related to both mammalian pregnane X receptor (PXR) and constitutive androstane receptor (CAR) [J]. Proceeding of National Academy of Sciences of the United States of America USA, 2000,97(20):10769-10774.
    [3]Handschin C, Podvinec M, Stockli J, et al. Conservation of signaling pathways of xenobiotic-sensing orphan nuclear receptors, chicken xenobiotic receptor, constitutive androstane receptor, and pregnane X receptor, from birds to humans [J]. Molecular Endocrinology,2001,15(9):1571-1585.
    [4]Rawal S, Yip SS, Coulombe RA. Cloning, expression and functional characterization of cytochrome P450 3A37 from turkey liver with high aflatoxin B1 epoxidation activity [J]. Chemical Research in Toxicology,2010,23(8):1322-1329.
    [5]Fraser DJ, Podvinec M, Kaufmann MR, et al. Drugs mediate the transcriptional activation of the 5-aminolevulinic acid synthase (ALAS1) gene via the chicken xenobiotic-sensing nuclear receptor (CXR) [J]. Journal of Biological Chemistry,2002,277(38):34717-34726.
    [6]National Research Council. Nutrient Requirements of Poultry.9th rev. edn. National Academies Press, Washington DC,1994.
    [7]Haritova AM, Schrickx JA, Fink-Gremmels J. Functional studies on the activity of efflux transporters in an ex vivo model with chicken splenocytes and evaluation of selected fluoroquinolones in this model [J]. Biochemical Pharmacology,2007,73(6):752-759.
    [8]Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2-ΔΔCT Method [J]. Methods,2001,25(4):402-408.
    [9]陈英剑,胡成进.荧光实时逆转录PCR定量研究进展[J].国外医学临床生物化学与检验学分册,2004,25(4):348-351.
    [10]Nowakowski-Gashaw I, Mrozikiewicz PM, Roots I, et al. Rapidquantif1 cation of CYP3A4 expression in human leukocytes by real-time reverse transcription-PCR [J]. Clinical Chemistry, 2002,48(2):366-370.
    [11]Bowen WP, Carey JE, Miah A, et al. Measurement of cytochrome P450 gene induction in human hepatocytes using quantitative real-time reverse transcriptase-polymerase chain reaction [J]. Drug Metabolism and Disposition,2000,28(7):781-788.
    [12]Yengi LG, Xiang Q, Pan J, et al. Quantitation of cytochrome P450 mRNA levels in human skin [J]. Analytical Biochemistry,2003,316(1):103-110.
    [13]Nishimura M, Yaguti H, Yoshitsugu H, et al. Tissue distribution of mRNA expression of human cytochrome P450 isoforms assessed by high-sensitivity real-time reverse transcription PCR [J]. Yakugaku Zasshi,2003,123(5):369-375.
    [14]Hukkanen J, Vaisanen T, Lassila A, et al. Regulation of CYP3A5 by glucocorticoids and cigarette smoke in human lung-derived cells [J]. Journal of Pharmacology and Experimental Therapeutics, 2003,304(2):745-752.
    [15]Pan J, Xiang Q, Renwick AB, et al. Use of a quantitative real-time reverse transcription-polymerase chain reaction method to study the induction of CYPIA, CYP2B and CYP4A forms in precision-cut ratliver slices [J]. Xenobiotaca,2002,32(9):739-747.
    [16]Goriya HV, Kalia A, Bhavsar SK et al. Comparative evaluation of phenobarbital-induced CYP3A and CYP2H1 gene expression by quantitative RT-PCR in Bantam, Bantamized White Leghorn and White Leghorn chicks [J]. Journal of Veterinary Science,2005,6(4):279-285.
    [17]Nebbia C, Ceppa L, Dacasto M, et al. Oxidative monensin metabolism and cytochrome P4503A content and functions in liver microsomes from horses, pigs, broiler chicks, cattle and rats [J]. Journal of Veterinary Pharmacology and Therapeutics,2001,24(6):399-403.
    [18]Zhang LL, Zhang JR, Yu ZG, et al. Effects of ionophores on liver CYPIA and 3A in male broilers [J]. Journal of Veterinary Pharmacology and Therapeutics,2010,33(6):551-557.
    [19]Hu HF, Gao ZX, Cheng YY. Inhibition of CYP3A mRNA and protein expression, and enzymatic activity, by enrofloxacin in chickens [J]. Journal of Veterinary Pharmacology and Therapeutics, 2010,33(6):546-550.
    [20]Tegude H, Schnabel A, Zanger UM, et al. Molecular mechanism of basal CYP3A4 regulation by hepatocyte nuclear factor 4alpha:evidence for direct regulation in the intestine [J]. Drug Metabolism and Disposition,2007,35(6):946-954.
    [21]Cortright KA, Craigmill AL. Cytochrome P450-dependent metabolism of midazolam in hepatic microsomes from chickens, turkeys, pheasant and bobwhite quail [J]. Journal of Veterinary Pharmacology and Therapeutics,2006,29(6):469-476.
    [22]Baader M, Gnerre C, Stegeman JJ, et al.Transcriptional activation of cytochrome P450 CYP2C45 by drugs is mediated by the chicken xenobiotic receptor (CXR) interacting with a phenobarbital response enhancer unit [J]. Journal of Biological Chemistry,2002,277(18):15647-15653.
    [23]Handschin C, Podvinec M, Looser R, et al. Multiple enhancer units mediate drug induction of CYP2H1 by xenobiotic-sensing orphan nuclear receptor chicken xenobiotic receptor [J]. Molecular Pharmacology,2001,60(4):681-689.
    [24]Haritova AM, Schrickx J, Fink-Gremmels J. Expression of drug efflux transporters in poultry tissues [J]. Research of Veterinary Science,2010,89(1):104-107.
    [25]Choi DH, Chung JH, Choi JS. Pharmacokinetic interaction between oral lovastatin and verapamil in healthy subjects:role of P-glycoprotein inhibition by lovastatin [J]. European Journal of Clinical Pharmacology,2010,66(3):285.
    [26]Griffiths NM, Hirst BH, Simmons NL. Active secretion of the fluoroquinolone ciprofloxacin by human intestinal epithelial Caco-2 cell layer [J]. British Journal of Pharmacology,1993,108: 575-576.
    [27]Woo JS, Lee CH, Shim CK, et al. Enhanced oral bioavailability of paclitaxel by coadministration of the P-glycoproteinin inhibitor KR30031 [J]. Pharmaceutical Research,2003,20(1):24.
    [28]Maeng HJ, Yoo HJ, Kim IW, et al. P-glycoprotein-mediated transport of berberine across Caco-2 cell monolayers [J]. Journal of Pharmaceutical Sciences,2002,91(12):2614.
    [29]De Lange EC, Marchand S, Van Den Berg DJ, et al. In vitro and in vivo investigations on fluoroquinolones effects of the P-glycoprotein efflux transporter on brain distribution of sparfloxacin [J]. European Journal of Pharmaceutical Science,2000,12(2):85.
    [30]Pajic M, Iyer JK, Kersbergen A, et al. Moderate increase in Mdrla/lb expression causes in vivo resistance to doxorubicin in a mouse model for hereditary breast cancer [J]. Cancer Research,2009, 69(16):6396-6404.
    [31]Haritova AM, Rusenova NV, Rusenov AG, et al.Effects of fluoroquinolone treatment on MDR1 and MRP2 mRNA expression in Escherichia coli-infected chickens [J]. Avian Pathology,2008, 37(5):465-470.
    [32]Edelmann HM, Duchek P, Rosenthal FE, et al. Mdrl, a chicken P-glycoprotein, confers multidrug resistance and interacts with estradiol [J]. Biological Chemistry,1999,380(2):231-241.
    [33]Galski H, Sullivan M, Willingham MC, et al. Expression of a human multidrug resistance cDNA (MDR1) in the bone marrow of transgenic mice:resistance to daunomycin-induced leukopenia [J]. Molecular Cell Biology,1989,9(10):4357-4363.
    [1]National Research Council. Nutrient Requirements of Poultry.9th rev. edn. National Academies Press, Washington DC,1994.
    [2]曾苏.药物代谢学[M].杭州:浙江大学出版社,2008,337-338.
    [3]Khalil WF, Saitoh T, Shimoda M, et al. In vitro cytochrome P450-mediated hepatic activities for five substrates in specific pathogen free chickens [J]. Journal of Veterinary Pharmacokinetics and Therapeutics,2001,24(5):343-348.
    [4]舒炎,周宏颢.药理学进展[M].北京:科学出版社,2000,19-31.
    [5]J.萨姆克鲁斯,D.W.拉塞尔.分子克隆实验指南[M](第三版).北京:科学出版社,2002,418-423.
    [6]D.R.马歇克,J0T.门永,R.R.布格斯,等.蛋白质纯化与鉴定实验指南[M].北京:科学出版社,2000,53-54.
    [7]Laemmli. Cleavage of structural proteins during the assembly of the head of bacteriophage T4 [J]. Nature,1970,227:680-685.
    [8]Imaoka S, Yamada T, Hiroi T, et al. Multiple forms of human P450 expressed in Saccharomyces cerevisiae. Systematic characterization and comparison with those of the rat [J]. Biochemical Pharmacology,1996,51(8):1041-1050.
    [9]邱星辉,冷欣夫.细胞色素P450的多样性[J].生命的化学,1997,17(6):13-16.
    [10]Rawal S, Yip SS, Coulombe RA Jr. Cloning, expression and functional characterization of cytochrome P4503A37 from turkey liver with high aflatoxin B1 epoxidation activity. Chemical Research in Toxicology,2010,23(8):1322-1329.
    [11]Porter TD, Coon MJ. Cytochrome P450:Multipcity of isoforms, substrates, and catalytic and regulatory mechanisms [J]. Biological Chemistry,1991,21:13459-13472.
    [12]Fujita K. Food-drug interactions via human cytochrome P4503A (CYP3A) [J]. Drug Metabolism and Drug Interactions,2004,20:195-217.
    [13]Rendic S, Di Carlo FJ. Human cytochrome P450 enzymes:a status report summarizing their reactions, substrates, inducers, and inhibitors [J]. Drug Metabolism Reviews,1997,29(1-2): 413-580.
    [14]Lewis DFV. P450 structures and oxidative metabolism of xenobiotics [J]. Pharmacogenomics,2003, 4(4):387-395.
    [15]Rostami-Hodjegan A. Tucker GT Simulation and prediction of in vivo drug metabolism in human populations from in vitro data [J]. Nature Reviews Drug Discovery,2007,6:140-148.
    [16]Scott EE, Halpert JR. Structures of cytochrome P4503A4 [J]. Trends in Biochemisty Science,2005, 30:5-7.
    [17]Houston JB, Galetin A. Modelling atypical CYP3A4 kinetics:principles and pragmatism [J]. Archives of Biochemistry and Biophysics,2005,433:351-360.
    [18]Coon MJ, Ding X, Pemecky SJ, et al. Cytochrome P450:Progress and predictions [J]. Faseb Journal,1992,6:669-673.
    [19]Park BK, Kitteringham NR, Pirmohamed M, et al. Relevance of induction of human drug-metabolizing enzymes:pharmacological and toxicological implications [J]. British Journal of Clinical Pharmacology,1996,41(6):477-491.
    [20]Pelkonen O, Maenpaa J, Taavitsainen P, et al. Inhibition and induction of human cytochrome P450 (CYP) enzymes [J]. Xenobiotica,1998,28(12):1203-1253.
    [21]Torimoto N, lshii I, Hata M, et al. Direct interaction between substrates and endogenous steroids in the active site may change the activity of cytochrome P4503A4 [J]. Biochemistry,2003,42(51): 15068-15077.
    [22]Dilmaghanian S, Gerber JCS Filler SCE et al. Enantioselectivity of inhibition of cytochrome P450 3A4 (CYP3A4) by ketoconazole:Testosterone and methadone as substrastrates [J]. Chirality,2004, 16(2):79-85.
    [23]Djordjevic D, Nikolic J, Stefanovic V. Ethanol interactions with other cytochrome P450 substrates including drugs, xenobiotics, and carcinogens [J]. Pathologie Biologie,1998,46(10):760-770.
    [24]Giorgi M, Marini S, Longo V, et al. Cytochrome P450-dependent monooxygenase activities and their inducibility by classic P450 inducers in the liver, kidney, and nasal mucosa of male adult ring-necked pheasants [J]. Toxicology and Applied Pharmacology,2000,167:237-245.
    [25]Vancutsem PM, Babish JG. In vitro and in vivo study of the effects of enrofloxacin on the hepatic cytochrome P450 potential for drug interactions [J]. Veterinary and Human Toxicology,1996,38: 254-259.
    [26]Mclellan RA, Drobitch RK, Monshouwer M, et al. Fluoroquinolones antibiotics inhibit cytochrome P450-mediated microsomal drug metabolism in rat and human [J]. Drug Metabolism and Disposition,1998,24:1134-1138.
    [27]Fraser DJ, Podvinec M, Kaufmann MR, Meyer UA. Drugs mediate the transcriptional activation of the 5-aminolevulinic acid synthase (ALAS1) gene via the chicken xenobiotic-sensing nuclear receptor (CXR). Journal of Biological Chemistry,2002,277(38):34717-34726.
    [28]Handschin C, Podvinec M, Meyer UA. CXR, a chicken xenobiotic-sensing orphan nuclear receptor, is related to both mammalian pregnane X receptor (PXR) and constitutive androstane receptor (CAR) [J]. Proceeding of National Academy of Sciences of the United States of America, USA, 2000,97(20):10769-10774.
    [29]Handschin C, Podvinec M, Stockli J, Hoffmann K, et al. Conservation of signaling pathways of xenobiotic-sensing orphan nuclear receptors, chicken xenobiotic receptor, constitutive androstane receptor, and pregnane X receptor, from birds to humans. Molecular Endocrinology,2001,15(9): 1571-1585.
    [30]Rawal S, Yip SS, Coulombe RA. Cloning expression and functional characterization of cytochrome P4503A37 from turkey liver with high aflatoxin B1 epoxidation activity [J]. Chemical Research in Toxicology,2010,23(8):1322-1329.
    [31]Sawant SG, Terse PS, Dalvi RR. Toxicity of dietary monensin in quail [J]. Avian Diseases,1990,34: 571-574.
    [32]Dacasto M, Ceppa L, Comaglia E. Effect of the ionophore antibiotic monensin on hepatic biotransformations and target organ morphology in rat [J]. Pharmacological Research,1999, 39:5-10.
    [33]Ratz V, Laczay P, Mora Z. Recent studies on the effect of tiamulin and monensin on hepatic cytochrome p450 activities in chickens and turkeys [J]. Journal of Veterinary Pharmacology and Therapeutics,1997,20:415-418.
    [34]Ershov E, Bellaiche M, Hanji V, et al. The effect of hepatic microsomal cytochrome P450 monooxygenases on monensin-sulfadimidine interactions in broilers [J]. Journal of Veterinary Pharmacology and Therapeutics,2001,24:73-76.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700