用户名: 密码: 验证码:
二穗短柄草耐旱抗氧化机理及其相关基因的SNP研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
二穗短柄草(Brachypodium distachyon L.)是一种冷季型温带禾本科植物,原产于地中海和中东,在中东、北非、亚洲和欧洲广泛分布。目前,二穗短柄草已成为研究谷物、牧草、草坪草和能源草的模式植物。二穗短柄草基因组研究结果为禾本科作物研究奠定了基础,并且人们对二穗短柄草的研究已经取得了很多成果。植物的抗旱性是复杂的数量性状,关联分析是研究基因与复杂的数量性状的基本工具,并且通过直接测序法获得的单核苷酸多态性准确率可以达到100%,结果具有很高的准确性。
     本研究利用57份二穗短柄草二倍体资源,在温室条件下对其进行抗旱性鉴定;并以抗性材料T-9和最敏感材料B2C为材料,分析干旱胁迫下其与抗旱相关的抗氧系统中抗氧化产物及其酶活性的变化,确定了5个编码抗氧化酶的基因作为候选基因,分析其单核苷酸多态性等;根据57份材料的非变性聚丙烯酰胺胶中POD酶活性染色变化,根据蛋白质谱的结果,确定了8个POD候选基因,对候选基因的核苷酸多态性及与抗旱性状的关联等一系列分析。全文的具体研究结果如下
     1二穗短柄草的抗旱性鉴定
     在温室条件下对二穗短柄草抗旱性的自然变异进行鉴定。结果表明,57份二穗短柄草的抗旱性差异很大,根据主成分分析结果分成了4个组,其中抗性组有3份材料,中抗组有16份材料,敏感组有32份材料,最敏感组有6份材料。抗性组表现出很轻微的叶片萎蔫,叶绿素荧光和叶片相对含水量相对于对照降低程度都很小敏感组表现出很严重的叶片萎蔫,并且叶绿素荧光值和叶片相对含水量相对于对照降低程度很大。干旱胁迫明显增加了叶片中总糖的含量,但是各个组之间并没有明显的差异。
     2二穗短柄草的抗氧化机理
     在干旱胁迫下抗性材料Tek-9(T-9)和最敏感材料BdTR2C (B2C)叶片中过氧化氢和丙二醛含量增加,根中超氧阴离子含量增加;与抗性材料T-9相比,B2C中的过氧化氢和丙二醛的增加量更多。在叶片中,T-9的谷胱甘肽过氧化物酶(GPX)活性增加,B2C的过氧化氢酶(CAT)和单脱氢抗坏血酸还原酶(MDHAR)活性降低。干旱胁迫也增加了两份材料根中的CAT和MDHAR的活性,并且T-9的增加量多。在T-9根中的GPX、抗坏血酸过氧化物酶(APX)、脱氢抗坏血酸还原酶(DHAR)和谷光甘肽还原酶(GR)的活性也增强了,但是在B2C根中超氧化物歧化酶(SOD)的活性降低。
     3抗氧化物酶候选基因的单核苷酸多态性分析
     根据二穗短柄草叶片中抗氧化物酶活性表达稳定或者上调的基因转录水平上的表达情况确定候选基因。候选基因包括编码APX、GPX、CAT、MDHAR和DHAR的基因。其中编码GPX、MDHAR和DHAR的基因转录水平表达情况和干旱胁迫下的酶活性变化一致。编码CAT、GPX、DHAR、MDHAR和APX五个基因的平均核苷酸多态性(π)为0.0027。5个基因的平均单核苷酸多态性(SNP)为每133bp有1个SNP。所有基因的连锁不平衡(LD)衰减范围近于1.6kb。用编码DHAR、MDHAR和CAT基因构建邻近法系统树(Neighbor-joining tree),各个材料的聚类情况和其抗旱情况基本一致。因此这些基因的单核苷酸多态性(SNP)可以作为二穗短柄草的抗旱标记。
     4过氧化物酶(POD)的单核苷酸多态性及其关联分析
     通过对二穗短柄草57份材料的POD酶活性染色发现,抗性材料和敏感材料中蛋白条带的位置不一致,就对不同位置的条带进行蛋白的质谱分析,确定了8个POD的候选基因。
     二穗短柄草的8个POD候选基因扩增测序得到9178bp基因组序列,占总基因序列的56%;序列比较分析后共获得90个SNPs(平均102bp有1个SNP)。编码区长4396bp,共检测到44个SNP(平均100bp有1个SNP)。8个POD基因都符合中性进化。8个PODs候选基因的单倍体,平均单倍型多样性为0.652。8个POD基因的连锁不平衡估算,共获得SNP位点间r2值557个,其中34%(190个)的位点存在显著的连锁不平衡。
     8个基因总共含有90个SNP,与抗旱生理性状紧密相关联的SNP占总数的30%,其中抗性基因中有21个,占总显著相关联SNP数的70%,而敏感基因中仅有9个与抗旱性状显著相关联,仅占21%。在P=0.05水平上,基因Bradilg63060.1与抗旱性状相关联的SNP数最多,为10个(占这个基因总SNP数的55.6%),其次为抗性基因Bradi3g41340.1,显著关联的SNP数为6个(占这个基因总SNP数60%);其中显著相关联SNP数最少的基因为敏感基因Bradilg26870.1和Bradilg65820.2,占基因总SNP的百分率分别为7.1%和12.5%。因此Bradilg63060.1可以作为抗旱标记及其转基因的基因资源。并且8个POD基因90个SNP结果分析,转换与颠换的比率为1.5:1,因此碱基突变的主要类型为转换。
The severity and frequency of drought stress is unexpected to increase because of climate change, which can significantly affect on plant growth and development. Drought stress is highly variable in nature, with frequency changes in intensity and duration. And the drought is a complicated trait, and is regulated by many genes. So it is very important sutible for analysis materials and methods. Brachypodium distachyon is a temperate wild grass species and is a powerful model system for studying grain, energy, forge and turf grasses. The gene and genomic results were bases on analysis grasses. And they have large natural various. So Brachypodium distachyon was good materials for analysis drought stress. Association analysis is a good tool for the study on the relationship between genes and quantitative traits. And the accuracy was100%according to sequence directly. This research was carried out the phenotypic diversity of drought tolerance in57natural populations of Brachypodium in greenhouse for twice. Drought tolerant (T-9) and susceptible accession (B2C) were used to determine production of reactive oxygen species and antioxidative response of the leaves and roots of Brachypodium to drought stress. And5genes related to antioxidative as the candidate genes for analysis the single nucleotide polymorphisms were selected. And8peroxides genes were candidate genes according to the results of native gel analysis and MALDT-TOF-MS. Association analysis on8PODs gene SNPs and traits related to drought was present. The main results are described as followed:
     1. Natural variation of drought response in Brachypodium distachyon
     Two experiments were conducted in a greenhouse to assess the drought tolerance of57natural populations of Brachypodium. Principle component analysis revealed that reductions in chlorophyll fluorescence (Fv/Fm) and leaf water content (LWC) under drought stress explained most of the phenotypic variation, which was used to classify the tolerant and susceptible accessions. Four groups of accessions differing in drought tolerance were identified, with3tolerant,16moderately tolerant,32susceptible and6most susceptible accessions. The tolerant group had little leaf wilting and fewer reduction in Fv/Fm and LWC, while the most susceptible groups showed severe leaf wilting and more reductions in Fv/Fm and LWC. Drought stress increased total water soluble sugar (WSS) concentration, but no differences in the increased WSS were found among different groups of accessions.
     2. Antioxidative metabolism of Brachypodium Distachyon under drought stress
     Drought stress increased the accumulation of hydrogen peroxide (H2O2) and degree of lipid pexoxidation (Malondialdehyde, MDA) in the leaves and superoxide (O2) concentration in the roots, but to a greater extent in the B2C compared with T-9. An enhanced leaf activity of glutathione peroxidase (GPX) in T-9and the decreased activities of catalase (CAT) and monodehydroascorbate reductase (MDHAR) in B2C were observed, respectively. Drought stress increased root activities of CAT and MDHAR in both accessions, to a greater degree in the tolerant T-9. Drought stress also increased root activities of GPX, ascorbate peroxidase (APX), dehydroascorbate reductase (DHAR) and glutathione reductase (GR) in the T-9but decreased activity of superoxide dismutse (SOD) in the B2C.
     3. Nucleotide diversity and linkage disequilibrium in antioxidative candidate genes for drought tolerance of Brachypodium distachyon
     The section of these genes was based on the significant changes in enzyme activities observed between the control and drought-stressed plants, either tolerant T-9, or susceptible B2C, or both. The average nucleotide diversity (π) for CAT, GPX, DHAR, MDHAR, and APX (encoding ascorbate peroxidase) was0.0027among accessions contrasting drought tolerance. The average single nucleotide polymorphism (SNP) frequency across these five genes was one SNP per133bβ in the total length. The linkage disequilibrium (LD) decay extended to a distance of1.6kb across all genes. The neighbor-joining tree analyses of DHAR, MDHAR, and CA T generally separated accessions differing in drought tolerance.
     4. Nucleotide diversity and association analysis on POD genes and drought traits
     Make sure8candidate genes through POD enzyme native gel analysis in57Brachypodium distachyon and MALDT-TOF-MS.
     90SNPs were from8POD genes with the sequence length9178bp. Coding part had44SNPs with the sequence length4396bp. And8genes belonged to natural test. The average indel diversity was0.652. There was557r2according to linkage disequilibrium analysis, and significant points were190and the ratio34%.
     The number of SNPs related with drought traits accounted for30%in90SNPs according to association analysis. There were21SNPs significantly related with drought traits in tolerance genes and accounted for70%, but the susceptible genes only have9SNPs and accounted for21%.
     The most related SNPs was the gene Bradilg63060.1and more related was the gene Bradi3g41340.1. There were a few related SNPs in the susceptible gene Bradilg26870.1and Bradilg65820.2and accounted for7.1%and12.5%, respectively. So the drought tolerant gene Bradilg63060.1was a good gene for molecular marker and transfer genes. The ration between transition and transversion was1.5:1based on SNP analysis results. Therefor the transition was the main base mutation.
引文
Agrama HA, Eizenga GC, Yan W. Association mapping of yield and its components in rice cultivars[J]. Mol Breed,2007,19:341-356.
    Ahmad P, Sarwat M and Sharma S. Reactive oxygen species, antioxidants and signaling in plants[J]. Journal of plant biology,2008,51(3):167-173.
    Almeselmani M, Deshmukh PS, Sairam RK, et al. Protective role of antioxidant enzymes under high temperature stress[J]. Plant Sci,2006,171:382-388.
    Alonso-Blanco C, Asrts MGM, Bentsink L, et al. What has natural variation taught us about plant development, physiology, and adaptation?[J] The Plant Cell,2009,21:1877-1896.
    AlscherRG, Erturk N, Heath, LS. Role of superoxide dismutases (SODs) in controlling oxidative stress in plants[J]. J Exp Bot,2002,53:1331-1341
    Anderson MD, Prasad TK, Stewart CR. Changes in isozyme profiles of catalase, peroxidase, and glutathione reductase during acclimation to chilling in mesocotyls of maize seedlings[J]. Plant Physiol,1995,109:1247-1257.
    Aranzana M J, Kim S, Zhao K Y, et al. Genome-wide association mapping in Arabidopsis identifies previously known flowering time and pathogen resistance genes[J]. Plos Genet.2005,1:531-539.
    Aranzana MJ, Kim S, Zhao K, et al. Genome-wide association mapping in Arabidopsis identifies previously known flowering time and pathogen resistance genes[J]. PLoS Genet,2005,1:60.
    Arcioni S, Falcinelli M, Mariotti D. Ecological adaptation in Lolium perenne L.:Physiological relationships among persistence, carbohydrate reserves and water availability[J]. Can J Plant Sci, 1985,65:615-624.
    Asada K, Takahashi M. Production and scavenging of active oxygen in photosynthesis In:Kyle DJ, Osmond CB, Arentzen CJ (eds), Photoinhibition, Elsevier, Amsterdam,1987, pp 221-217.
    Asada K. Production and scavenging of reactive oxygen species in Chloroplasts and their functions[J]. Plant Physilogy,2006,141:391-396.
    Asada K. The water-water cycle in chloroplasts:scavenging of active oxygen and dissipation of excess photons[J]. Annual Review of Plant Physiology and Plant Molecular Biology,1999,50:601-639.
    Asda K. The role of ascorbate peroxidase and monodehydroascorbate reductase in H2O2 scavenging in plants. In:Scandalios JG (ed) Oxidative stress and the molecular biology of antioxidant defenses[J]. Cold Spring Harbor Laboratory Press, New York,1997, pp 715-735.
    Atwell S, Huang YS, Vilhjalmsson BJ, et al. Genome-wide association study of 107 phenotypes in Arabidopsis thaliana inbred lines[J]. Nature,2010,465:627-631.
    Azevedo Neto AD, Prisco JT, Eneas-Filho J, et al. Effect of salt stress on antioxidative enzymes and lipid peroxidation in leaves and roots of salt-tolerant and salt-senstive maize genotypes[J]. Environ Exp Bot,2006,56:87-94.
    Babita M, Maheswari M, Lao LM, et al. Osmotic adjustment, drought tolerance and yield in castor (Ricinus communis L.) hybrids[J]. Environ Exp Bot,2010,69:243-249.
    BaisakR, RanaD, AcharyaPBB, et al. Alteration in the activities of active oxygen scavenging enzymes of wheat leaves subjected to water stress[J]. Plant Cell Physiol,1994,35:489-495.
    Bao JS, Corke H, Sun M. Nucleotide diversity in starch synthase lla and validation of single nucleotide polymorphisms in relation to starch gelatinization temperature and other physicochemical properties in rice (Oryzasativa L.). Thero Appl Genet,2006,113:1171-1183.
    Bartels D, Sunkar R. Drought and salt stress in plants[J]. Critical Reviews in Plant Sciences,2005, 24:23-58.
    Bazzaz FA, Grace J. Plant resource allocation[M]. California, Academic Press 1997:161-206
    Beauchamp C, Fridovich I. Superoxide dismutase:Improved assay and an assay applicable to acrylamide gels[J]. Anal Biochem,1971,44:276-287.
    Benfey PN, Mitchell-Olds T. From genotype to phenotype:systems biology meets natural variation[J]. Science,2008,320:495-497.
    Bennetzen J L, SanMiguel P, Chen M, et al.. Grass genomes. Proceedings of National Academy of Sciences of the USA.1998,95:1975-1978.
    Bernards MA, Summerhurst DK, Razem FA. Oxidases, peroxidases and hydrogen peroxide:the suberin connection[J]. Phytochemistry Review,2004,3:113-126.
    Bernt E, Bergmeyer HU. Inorganic peroxides. In:Bergmeyer HU, editor. Methods of Enzymatic AnalysisfM]. Academic Press, New York,1974. p 2246-2248.
    Bevan MW, Garvin DF, Vogel JP. Brachypodium distachyon genomics for sustainable food and fuel productionfJ]. Curr Opin Biotech,2010,21:211-217.
    Bian S, Jiang Y. Reactive oxygen species, antioxidant enzyme activities and gene expression patterns in leaves and roots of kentucky bluegrass in response to drought stress and recovery. Scientia Horticulturae 2009,120:264-270.
    BohnertHJ, GongQ, LiP, et al. Unraveling abiotic stress tolerance mechanisms-Getting genomics going[J]. Curr. Opin. Plant Biol,2006,9:180-188.
    Bossolini E, Wicker T, Knobel P A, et al. Comparison of orthologous loci from small grass genomes Brachypodium and rice:implications for wheat genomics and grass genome annotation. Plant J. 2007,49:704-717
    Bouchabke O, Chang FQ, Simon M, et al. Natural variation in Arabidopsis thaliana as a tool for highlighting differential drought responses[J]. PLoS One,2008,3:e1705.
    Bowler C, Montagu MV, Inze D. Superoxide dismutase and stress tolerance[J]. Ann Rev Plant Physiol Plant Mol Biol,1992,43:83-116.
    Boyer JS. Plant productivity and environment. Science,1982,218:7443-448.
    Bradford MM. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding[J]. Anal Biochem,1976,72:248-254.
    Bray EA. Abscisic acid regulation of gene expression during water-deficit stress in the era of the Arabidopsis genome[J]. Plant Cell and Enviroment,2002,25:153-161.
    Bray, E. A. Drought-and ABA-induced changes in polypeptide and mRNA accumulation in tomato leaves[J]. Plant Physiology,1988,88:1210-1214.
    Brazauskas G, Pasakinskiene I, Asp T, et al. Nucleotide diversity and linkage disequilibrium in five Lolium perenne genes with putative role in shoot morphology[J]. Plant Science,2010,179:194-201
    Brkljacia J, Grotewold E, Scholl R, et al, Brachypodium as a model for the grasses:Today and the future[J]. Plant Physiology,2011,157:3-13.
    Broadbent P, Greissen GP, Kular B, et al. Oxidative stress responses in transgentic tobacco containing altered levels of glutathione reductase activity[J]. The Plant J,1995,8:247-255.
    Buchanan B, Gruissem W, Jones R. Biochemistry and molecular biology of plants[M]. American Society of Plant Physiologists, Rockville.2000.
    Buckler IV E S, Thornsberry J M, Kresovich S. Molecular diversity, structure and domestication of grasses[J]. Genetic Research Cambridge,2001,77:213-218.
    Cakir B, Agasse A, Gaillard C, et al. A grape ASR protein involved in sugar and abscisic acid signaling[J]. Plant Cell,2003,15:2165-2180.
    Caldwell K S, Russell J, Langridge P, et al. Extreme population-dependent linkage disequilibrium detected in an inbreeding plant species, Hordeum vulgare[J]. Genetics,2006,172:557-567.
    Camus-Kulandaivelu L, Veyrieras JB, Madur D, et al. Relatinship between population structure and polymorphism in the Dwarf8 gene[J]. Genetics,2006,172:2449-2463.
    Carpita N C. Structure and biogenesis of the cell walls of grasses[J]. Annul Review of Plant Physiology and Plant Molecular Biology,1996,47:445-476.
    Charlesworth D, Mable B K, Schierup M H, et al. Diversity and linkage of genes in the self-incompatibility gene family in Arabidopsis lyrata[J]. Genetics,2003,164:1519-1535.
    Chaves M M, Oliveira M M. Mechanisms underlying plant resilience to water deficits:prospects for water-saving agriculture[J]. Journal of Experimental Botany,2004,55:2365-2384.
    Chaves MM, MarocoJP, and Pereira JS. Understanding plant response to drought-from genes to the whole plant[J]. Functional Plant Biology,2003,30:239-264.
    Chen EL, Chen YA, Chen LM, et al. Effect of copper on peroxidase activity and lignin content Raphanus sativus[J]. Plant Physiology and Biochemistry,2002,40(5):439-444.
    ChenJB, JingR L, Yun H Y, et al. Single nucleotide polymorphism of TaDREBl gene in wheat germplasm[J]. Scientia Agricultura Sinica,2005,38:2387-2394.
    Ching A, Caldwell K S, Jung M, et al. SNP frequency, haplotype structure and linkage disequilibrium in elite maize inbred lines[J]. BMC Genet.20023:19.
    Choi DW, Rodriguez EM, Close TJ. Barley Cbf3 gene identification expression pattern, and map location[J]. Plant Physiol,2002,129(4):1781-1787.
    Choi HW, Kim YJ, Lee SC, et al. Hydrogen peroxide generation by the pepper extracellular peroxidase CaPO2 activates local and systemic cell death and defense response to bacterial pathogens[J]. Plant Physiol,2007,145:890-904.
    Cohen S, Cohen Y. Field studies of leaf conductance response to environmental variablesincitrus[J]. Journal of Applied Ecology,1983,20:561-570.
    Cook E R, Woodhouse C A, Eakin M, et al. Long-term aridity changes in the western United States[J]. Science,2004,306:1015-1018.
    Cosio C, Dunand C. Transcriptome analysis of various flower and silique development stages indicates a set of class 0 peroxidase genes potentially invoved in pod shattering in Arabidopsis thaliana[J]. BMC Genomics,2010,11:528.
    Cui Y Y, Pandey D M, Hahn E J, et al. Effect of drought on physiological aspects of Crassulacean acid metabolism in Doritaenopsis[J]. Plant Science,2004,167(6):1219-1226.
    Cushman JC, Bohnert HJ. Genomic approaches to plant stress toferance[J]. Current Opinion in Plant Biology,2000,3:117-124.
    DaCosta M, Huang B. Changes in antioxidant enzyme activities and lipid peroxidation for bentgrass species in responses to drought stress[J]. Journal of the American Society for Horticultural Science, 2007,132:319-326.
    Dalmia A, Sawhney V. Antioxidant defence mechanism under drought stress in wheat seedlings[J]. Physiol Mol Biol-Plants,2004,10:109-114.
    Dat J, Vandenabeele S, Vranova E, et al. Dual action of active oxygen species during plant stress response[J]. Cellular and Molcular Life Sciences,2005,57:779-995.
    David MM, Coelho D, Barrote I, et al. Leaf age effects on photosynthetic activity and suger accumulation in draughted and rewatered Lupinus albus plants[J]. Australian Journal of plant physiology,1998,25:200-306.
    Demircan T, Akkaya MS. Virus induced gene silencing in Brachypodium distachyon, a model organism for cereals. Plant cell, Tissue and Organ Culture,2009,1:91-96.
    Devos K M, Beales J, Nagamura Y, et al. Arabidopsis-rice:will conlinearity allow gene prediction across the eudicot-monocot divide?[J] Genome Research,1999,9:825-829.
    Dhindsa RS, Plumb-Dhindsa P, Thorpe TA. Leaf senescence:correlated with increased leaves of membrane permeability and lipid peroxidation and decreased levels of superoxide dismutase and catalase[J]. Journal of Experiment Botany,1981,32:93-101.
    Donovan LA, Dudley SA, Rosenthal DM, et al. Phenotypic selection on leaf water use efficiency and related ecophysiological traits for natural populations of desert sunflowers. Oecologia[J].2007,152: 13-25.
    Doyle J J. Doyle J L. Isolation of plant DNA from fresh tissue[J]. Focus,1990,12:13-15.
    Draper J, Mur LAJ, Jenkins G, et al. Brachypodium distachyon:A new model system for functional genomics in grasses[J]. Plant Physiol,2001,127:1539-1555.
    Dubouzet JG, Sakuma Y, Ito Y, et al. OsDREB gene in rice, Oryza sativa L., encode transcription activators that function in drought-, high-salt-and cold-responsive gene expression[J]. Plant J,2003, 33(4):751-763.
    Eckert AJ, Wegrzyn JL, Pande B, et al. Multiocus patterns of nucleotide diversity and divergence reveal positive selection at candidate genes related to cold hardiness in Coastal Douglas Fir(Pseudotsuga menziesii var. menziesii)[J]. Genetics,2009,183:289-298.
    Ehrenreich IM, Hanzawa Y, Chou L, et al. Candidate gene association mapping of Arabidopsis flowering time[J]. Genetics,2009,183:325-335.
    Ehrenreich IM, Stafford PA, Purugganan MD. The genetic architecture of shoot branching in Arabidopsis thaliana:a comparative assessment of candidate gene associations vs. quantitative trait locus mapping[J]. Genetics,2007,176:1223-1236.
    Evanno G, Regnaut S, Goudet J Detecting the number of clusters of individuals using the software structure:a simulation study[J]. Molecular Ecology,2005,14:2611-2610.
    Falush D, Steohens M, Pritchard JK. Inference of population structure using multilocus genotype data: Linked loci and correlated allele frequencies[J]. Genetics,2003,164:1567-1587.
    Fan JB, Gunderson KL, Bibikova M, et al. Illuminate universal bead arrays. Methods Enzymol,2006, 410:57-73.
    Farooq M, Wahid A, Kobayashi N, et al. Plant drought stress:effects, mechanisms and management[J]. Agron Sustain,2009 Dev 29:185-212.
    Farquhar GD, Wong SC, Evans JR, et al. Photosynthesis and gas exchange. In:Jones HG, Flowers TJ, Jones MB (eds) Plants Under Stress[M], Cambridge University Press, Cambridge, UK,1989, pp 47-69.
    Filiz E, Ozdemir BS, Budak F, et al. Molecular, morphological, and cytological analysis of diverse Brachypodiwn distachyon inbred lines[J]. Genome,2009,52:876-890.
    Flavell R. Role of model plant species. Methods in molecular biology (Clifton, N. J.),2009,513:1-28
    Flint-Garcia S A, Thornsberry J M, Buckler IV E S. Structure of linkage disequilibrium in plants[J]. Annual Review of Plant Biology,2003,54:357-374.
    Flint-Garcia SA, Thuillet AC, Yu JM, et al. Maize association population:a high-resolution platform for quantitative trait locus dissection[J]. Plant Journal,2005,44:1054-1064.
    Foyer CH, Lopez-Delgado H, Dat JF, et al. Hydrogen peroxide and glutathione-associated mechanisms of acclamatory stress tolerance and signaling[J]. Physiol Plant,1997,100:241-254.
    Foyer CH, Noctor G. Oxygen processing in photosynthesis:Regulation and signaling[J]. New Phytol, 2000,146:359-388.
    Frahry G, Schopfer P. NADH-stimulated, cyanide-resistant superoxide production in maize coleoptiles analyzed with a tetrazolium-based assay[J]. Planta,2001,212:175-183.
    Fu YX, Li WH. Statistical tests of neutrality of mutations[J]. Genetics,1993,133(3):693-709.
    Ganal M W, Altmann T, Roder M S. SNP identification in crop plants [J]. Current opinion in Plant Biology[J],2009,12(2):211-217.
    Gao JJ, Zhang Z, Peng RH, et al. Forced expression of MdmyblO, a myb transcription factor gene from apple, enhances tolerance to osmotic stress in transgenic Arabidopsis[J]. Mol Biol Rep.2011, 38(l):201-211
    Garcia-Sanchez F, Syvertsen JP, Gimeno V, et al. Responses to flooding and drought stress by two citrus rootstock seedlings with different water-use efficiency[J]. Physiol Plant,2007,130:532-542.
    Garris A J, McCouch S R, kresovich S. Population structure and its effect on haplotype diversity and linkage disequilibrium surrounding the xa5 locus of rice (Oryza sativa L.) [J]. Genetics,2003, 165:759-769.
    Garvin D F, Gu Y-Q, Hasterok S P, et al. Development of genetic and genomic research resources for Brachypodium distachyon, a new model system for grass crop research[J]. The plant Genome,2008, 48 (ST) S69-s84.
    Garvin DF, McKenzie N, Vogel JP, et al. An SSR-based genetic linkage map of the model grass Brachypodium distachyon[J]. Genome,2010,53:1-13.
    Garvin DF. Brachypodium distachyon A new model system for structural and functional analysis of grass genomes. In:Varshney RK, Koebner RMD (eds.)[J] Model Plants and Crop Improvement, CRC Press, Boca Raton, FL, USA,2007, pp 109-124.
    Gaunt B S. Evolutionary drnamics of grass genomes[J]. New Phytol.,2002,154:15-28.
    Giannopolities CN, Rise SK. Superoxidedismutasesl. Occurrence in higher plants[J]. Plant Physiol,1977, 59:309-304.
    Goldstein D B. Islands of linkage disequilibrium[J]. Nature Genetics,2001,29:109-111.
    Gonzalez-Martinez S C, Ersoz E, Brown G R, et al. DNA sequence variation and selection of tag single-nucleotide polymorphisms at candidate genes for drought-stress response in Pinus taeda L[J]. Genetics,2006,172:1915-1926.
    Guillet-Claude C, Birolleau-Touchard C, Manicacci D,et al. Nucleotide diversity of the ZmPox3 maize peroxidase gene:relationships between a MITE insertion in exon 2 and variation in forage maize digestibility[J]. BMC Genetics,2004,16,5 (1):19.
    Guillon F, Bouchet B, Jamme F, et al. Brachypodium distachyon grain:characterization of endosperm cell walls[J]. Journal of Experimental Botany,2011,62:1001-1015.
    Guo XH, Jiang J, Wang BC, et al. The POD3, a truncated polypeptide from Tamarix hispida, conferred drought tolerance in Escherichia coli[J]. Mol Biol Rep,2010,37:1183-1190.
    Guo Z, Ou W, Lu S, et al. Differential responses of antioxidative system to chilling and drought in four rice cultivars differing in sensitivity[J]. Plant Physiology and Biochemistry,2006,44:828-836.
    Gupta PK, Rustgi S, Kulwal PL. Linkage disequilibrium and association studies in higher plants:Present status and future prospects[J]. Plant Molecular Biology,2005,57:461-485.
    Gusta LV, Benning NT, Wu G, et al. Superoxide dismnutase:An all-purpose gene for agri-biotechnology [J]. Mol Breed,2009,24:103-115.
    Haake V, Cook D, Riechmann JL, et al. Transcription factor CBF4 is a regulator of drought adaptation in Arabidopsis[J]. Plant Physiol,2002,130(2):639-648.
    Halliwell B, Gutterides JMC. Lipid peroxidation:A radical chain reaction. In:Halliwell B, Gutteridge JMC, editors. Free Radicals in Biology and Medicine[M]. Clarendon Press, Oxford, UK,1989. p188-260.
    Hamblin M T, Mitchell S E, White G M, et al. Comparative population genetics of the panicoid grasses: sequence polymorphism, linkage disequilibrium and selection in a diversity sample of sorghum bicolor[J]. Genetics,2004,167:471-483.
    Hasterok R, Marasek A, Donnison I S, et al. Alignment of the genomes of Brachypodium distachyon and temperate cereals and grasses using BAC landing with fluorescent in situ hybridization[J], Genetics. 2006,173(1):349-362.
    Hayashi K, Hashimoto N, Daigen M, et al. Development of PCR-based SNP markers for rice blast resistance genes at the Piz locusfJ]. Theroretical and Applied Genetics,2004,108:1212-1220.
    Herbinger K, Tausz M, Wonisch A, et al. Complex interactive effects of drought and ozone stress on the antioxidant defence systems of two wheat cultivars[J]. Plant Physiology and Biochemistry,2002,40: 691-696.
    Higgins JA, Bailey PC, Laurie DA. Comparative genomics of flowering time pathway using brachypodium distachyon as a model for the temperate Grasses[J]. PLoS ONE,2010,5.
    Hill W G, Robertson A. Linkage disequilibrium in finite populations[J]. Theoretical and Applied Genetics (Der Ziichter),1968,38:22G231
    Hong S Y, Seo P J, Yang M S, et al. Exploring valid reference genes for gene expression studies in Brachypodium distahyon by real-time PCR[J]. BMC Plant Biology,2008,8:112.
    Hsiao T C, Acevedo E, Fereres E, et al. Water stress, growth, and osmotic adjustment[J]. Philosophical transactions of the royal society,1976,273:479-500.
    Hsiap TC, Xu LK. Sensitivity of growth of roots versus to water stress:biophysical analysis and relation to water transport[J]. Jornal of Experimental Botany,2000,51:1595-1616.
    Huang X, Wei X, Sang T et al. Genome-wide association studies of 14 agronomic traits in rice landraces[J]. Nature Genetics.2010,42:961-976.
    Hugo A P, Fabio M D M. Drought tolerance in relation to protection against oxidative stress in clones of Coffea canephora subjected to long-term drought[J]. Plant Science,2004,167:1307-1314.
    Huo N, Guo Y, Vogel J P, et al. Construction and characterization of two BAC libraries from Brachypodium distachyon, a new model for grass genomics[J]. Genome,2006,49:1099-1108.
    Huo N, Lazo G, Vogel JP, et al. The nuclear genome of Brachypodium distachyon:analysis of BAC end sequences[J]. Funct Integr Genomics,2008,8:135-147.
    ICPP (2007). Intergovernmental Panel on Climate Change. Adaptation and vulnerability.
    Ingvarsson PrK. Nucleotide Polymorphism and Linkage Disequilibrium Within and Among Natural Populations of European(Populus tremula L., Salicaceae) [J]. Genetics,2005,169:945-953.
    Irigoyen JJ, Emerich DW, Sanchez-Diaz M. Water stress induced changes in concentrations of proline and total soluble sugar in nodulated alfalfa (Medicago sativa) plants. Physiol Plant,1992,84:55-60.
    Ivandic V, Hackett CA, Zhang ZJ, et al. Phenotypic responses of wild barley to experimentally imposed water stress[J]. J Exp Bot,2000,51:2021-2029.
    Iwata H, Ebana K, Uga Y, et al. Genome-wide association study of grain shape variation among Oryza sativa L. germplasms based on elliptic fourier analysis[J]. Mol Breed,2010,25:203-215.
    Iwata H, Uga Y, Yoshioka Y, et al. Association mapping of multiple quantitative trait loci and its application to the analysis of genetic variation among Oryza sativa L. germplasma[J]. Theor Appl Genet,2007,114:1437-1449.
    Jannoo N, Grivet L, Dookun A, et al. Linkage disequilibrium among modern sugarcane cultivars[J]. Theoretical and Applied Genetics,1999,99:1053-1060.
    Jenkins G, Hasterok R, Draper J. Building the molecular cytogenetic infrastructure of a new model grass. In Z Zwierzykowski, M Surma,P Kachlicki, eds,Application of novel cytogenetic and molecular techniques in genetics and breeding of the grasses. Polish Academy of Sciences, Poznan,2003, pp 77-84.
    Jiang MY, Zhang JH. Water stress induced abscisic acid accumulation triggers the increased generation of reactive oxygen species and up regulates the activities of antioxidant enzymes in maize leaves[J]. J Exp Bot,2002,53:2401-2410.
    Jiang Y, Huang B. Drought and heat stress injury to two cool-season turfgrasses in relation to antioxidant metabolisms and lipid peroxidation[J]. Crop Sci,2001,41:436-442.
    Jiang Y, Huang B. Osmotic adjustment and root growth associated with drought preconditioning-enhanced heat tolerance in Kentucky bluegrass[J]. Crop Sci,2001,41:1168-1173.
    Jiang Y, Watkins E, Liu S, et al. Antioxidative responses and candidate gene expression in prairie junegrass under drought[J]. Journal of the American Society for Horticultural Science,2010, 135:303-309.
    Jones H G, Lakso A N, Syvertsen J P. Physiological control of water status in temperateandsubtropical fruit trees[J]. Horticultural Review,1985,7:301-344.
    Jump AS, Marchant R, Penuelas J. Environmental change and the option value of genetic diversity[J]. Trends Plant Sci,2009,14:51-58.
    Ka*rkkainen K, Agren J. Genetic basis of trichome production in Arabidopsis lyrata[J]. Hereditas,2002, 136:219-226.
    Keller B, Feuillet C. Colinearity and gene density in grass genomes[J]. Trends in Plant Science,2000,5: 246-251.
    Kellogg E A. Evolutionary history of the grasses [J]. Plant Physiology,2001,125:1198-1205.
    Kerepesi I, Galiba G. Osmotic and salt stress-induced alteration in soluble carbohydrate content in wheat seedlings[J]. Crop Sci,2000,40:482-487.
    Kim S, Plagnol V, Hu T T, et al. Recombination and linkage disequilibrium in Arabidopsis thealiana[J\. Nature Genetics,2007,39:1151-1155.
    Kim YH, Kim CY, Song WK, et al. Overexpression of sweetpotato swpa4 peroxidase results in increased hydrogen peroxide production and enhance stress tolerance in tobacco[J]. Planta,2008,227:867-881.
    Kizis D, Pages M. Maize DRE-binding proteins DBF1 and DBF2 are involved in rabl7 regulation through the drought responsive element in an ABA-dependent pathway[J]. Plant J,2002,30(6):679-689.
    Kover PX, Valdar W, Trakalo J, et al. A multiparent advanced generation inter-cross to fine-map quantitative traits in Arabidopsis thaliana[J]. PLoS Genet,2009,5, e1000551.
    Kraakman ATW, Niks RE, Van Den Berg PMMM,et al. Linkage disequilibrium mapping of yield and yield stability in modern spring barley aultivars[J]. Genetics,2004,168:435-446
    Kristie A M, Caicedo A L, Polato N R, et al. The extent of linkage disequilibrium in rice (Oryza sativa L.)[J]. Genetics,2007,177:2223-2232.
    Kruglyak L. The use of a genetic map of biallelic marker in linkage studies[J]. Nature genetics,1997,17: 21-24.
    Krutovsky K V, Neal D B. Nucleotide diversity and linkage disequilibrium in cold-Hardiness-and wood quality-related candidate genes in Douglas Fir[J]. Genetics,2005,171:2029-2041.
    Kiihn H, Borchert A. Regulation of enzymatic lipid peroxidation:the interplay of peroxidizing and peroxide reducing enzymes[J]. Free Radical Biol Med,2003,33:154-172.
    Kwak S-S, Lim S, Tang L, et al. Enhanced tolerance of transgenic crops expressing both superoxide dismutase and ascorbate peroxidase in chloroplasts to multiple environmental stress[M]. In:Ashral M, Ozturk M, Athar HR, editors. Salinity and Water Stress. Springer, Dordrecht, The Netherlands, 2009. p197-203.
    Lambers H, Chapin FS, Pons TL. Plant physiological ecology[M].Springer-verlag New York Inc, New York City.1998.
    Larre C, Penninck S, Bouchet B, et al. Brachypodium distachyon grain:Identification and subcellular localization of storage proteins[J]. Journal of Experimental Botany,2010,61:1771-1783.
    Lawlor D W. Limitation to photosynthesis in water-sressed leaves:Stomata vs. Metabolism and the Role of ATP[J]. Ann Bot.2002,89(7):871-885.
    Levitt J. Responses of Plants to Environmental Stresses[M]. New York, Academic Press.1972:325-358.
    Li HW, Zang Bs, Deng XW, et al. Overexpression of the trehalose-6-phosphate synthase gene OsTPSl enhances abiotic stress tolerance in rice[J]. Planta,2011,234:1007-1018.
    Li W. Rates and patterns of nucleotide substitutions[M]. In, Molecular Evolution19,1997, PP,177-214.
    Li Y, Haseneyer G, SchSn C C, et al. High level of nucleotide diversity and fast decline of linkage disequilibrium in rye (Secale cereale L.) genes involved in frost response[J]. BMC Plant Biology, 2011,11:6.
    Li Y, Huang Y, Bergelson J et al. Association mapping of local climiate-sensitive quantitative trait loci in Arabidopsis thaliana[J]. PNAS,2010,107(49):21199-21204.
    Ligterink W, Hirt H. MAP kinase pathways in plants:versatile signaling tools[J]. Int Rev Cytol,2000, 201:209-258.
    Lin Y, Hwang SY, Hsu PY, et al. Molecular population genetics and gene expression analysis of duplicated CBF genes of Arabidopsis thaliana[J]. BMC Plant Biology,2008,8:16.
    Liu A, Burke J M. Patterns of nucleotide diversity in wild and cultivated sunflower[J]. Genetics,2006, 173:321-330.
    Liu S, Jiang Y. Identification of differentially expressed genes under drought stress in perennial ryegrass[J]. Physiologla Plantarum,2010,139:375-387.
    Liu X, Yue Y, Li B. et al. A G protein-coupled receptor is a plasma membrane receptor for the planthormone abscisic acid[J]. Science,2007,315:1712-1716.
    Loggini B, Scartazza A, Brugnoli E, et al. Antioxidant defense system, pigment composition, and photosynthetic efficiency in two wheat cultivars subjected to drought[J]. Plant Physiology,1999, 119:1091-1099.
    Ludlow MM. Strategies of response to water stress. In Kreeb KH, Richter H, Hinckley TM (eds.) Structural and Functional Responses to Environmental Stresses:Water Shortage, SPB Academic Publishing, The Hague, The Netherlands,1989, pp 269-281.
    Malysheva-Otto LV, Ganal MW,R6der MS. Analysis of molecular diversity, population structure and linkage disequilibrium in worldwide survey of cultivated barley germplasm (Hordeum vulgare L.)[J], BMC Genetics,2006,7:6
    Manicacci D, Camus-Kulandaivelu L, Fourmann M, et al. Epistatic Interaction between Opaque 2 Transcriptional activator and its target gene CyppDKl control kernel trait variation in Maize[J]. Plant Physiology,2009,150:506-520.
    Mardis E R. The impact of next generation sequencing technology on genetics[J]. Trends Genet,2007, 24:133-141.
    Maroco J, Rodrigues M L, Lopes C, et al. Limitations to leaf photosynthesisin grapevine under drought-metabolic and modeling approaches [J]. FunctionalPlant Biology.2002,29:1-9.
    Mather K A, Caicedo A L, Polato N, Olsen K M, Mccouch S. et al.,2007 The extent of linkage disequilibrium in rice (Oryza sativa L.)[J]. Genetics 177:2223-2232.
    Matin MA, Brown JH, Ferguson H. Leaf water potential, relative water content, and diffusive resistance as screening techniques for drought resistance in barley[J]. Agron J,1989,81:100-105.
    Maurel C, Simonnneu T, Sutka M. The significance of roots as hydraulic rheostats[J]. J Exp Bot 1:a001545
    Maynard smith J, HaighJ.The hitch-hiking effect of a favourable gene[J]. Genet. Res.,1974,23:23-35.
    McCord JM. The evolution of free radicals and oxidative stress[J]. Am J Med,2000,108:652-659.
    Meyer P. Controlling and understanding transgene expression[J]. Transgenics,1995,13:332-337.
    Meyers B C, Tingey S V, Morgante M. Abundance, distribution and transcriptional activity of repetitive elements in the maize genome[J]. Genome Res,2001,11:1660-1676.
    Miller A, Galiba G, Dubcovsky J. Acluster of 11 CBF transcription factors is located at frost tolerance locus FrAm2 in Triticum monococcum[J]. Mol Gen Genomics,2006,275(2):193-203.
    Mittler G, Shulaev V, Millter R. Reactive oxygen signaling and abiotic stress[J]. Physiol Plant,2008, 133:481-489.
    Mittler R, Vanderauwera S, Gollery M, et al. Reactive oxygen gene network of plants[J]. Trends Plant Science,2004,9:490-498.
    Mittler R, Zilinskas BA. Detection of ascorbate peroxidase activity in native gels by inhibition of the ascorbate-dependent reduction of nitroblue tetrazolium[J]. Anal Bioche,1993,212:540-546.
    Mittler R. Oxidative stress, antioxidants and stress tolerance[J]. Trends in Plant Science,2002,7:405-410.
    Mφller I M, Jensen P E, Hansson A. Oxidative modifications to cellular components in plants[J]. Annual Review of Plant Biology,2007,58:459-481.
    MoranJF, BecanaM, lturbe-Ormaetxel, et al. Drought induces oxidative stress in pea plants[J]. Planta, 1994,194:346-352.
    Morgan JM. Osmoregulation and water stress in higher plants[J]. Annu Rev Plant Physiol,1984,35: 299-319.
    Morrell P L, Toleno D M, Lundy K E, et al. Low level of linkage disequilibrium in wild barley (Hordeum vulgare ssp, spontaneum) despite high rates of self-fertilization[J]. Proc. Natl. Acad. Sci. USA,2005,102:2442-2447
    Munne-Bosch S, Alegre L. Drought -induced changes in the redox state of a-tocopherol, ascorbate and the diterpene comosic acid in chloroplasts of Labiatae species differing in carnosic acid contens[J]. Plant Physiol,2003,131:1816-1825.
    Nei M. Molecular evolutionary genetics[M]. Columbia University Press, New York,1987.
    Ning J, Liu SY, Hu HH, et al. Systematic analysis of NPK1-like genes in rice reveals a stress-inducible gene cluster co-localized with a quantitative traits locus of drought resistance[J]. Mol Genet Genomics,2008,280:535-546.
    Nordborg M, Borevitz JO, Bergelson J, et al. The extent of linkage disequilibrium in Arabidopsis thaliana[J]. Nature Genetic,2002,30:190-193.
    Nordborg M, Hu TT, Ishino Y, et al. The pattern of polymorphism in Arabidopsis thaliana[M\. PLoS Biology 3,2005:e196.
    Nordborg M. Linkage disequilibrium gene trees and selfing:an ancestral recombination graph with partial self-fertilization[J]. Genetics,2000,154:923-929.
    NordborgM, InnanH. Molecular population genetics[J]. Curr. Opin. Plant Biol.,2002,5:69-73.
    Ober E, Sharp R. Regulation of root growth response to water deficit. In:Advances in molecular breeding towards salinity and drought tolerance (M.A. Jenks, P.M. Hasegawa and S.M.Jain)[J], Springer, Dordrecht, The Netherlands,2007, pp.33-53.
    Ohashi Y, Nakayama N, Saneoka H, et al. Effects of drought stress on photosynthetic gas exchange, chlorophyll fluorescence and stem diameter of soybean plants[J]. Biologia Plantarum.2006,50: 138-141.
    Oliveira G, Penuelas J. Effects of winter cold stress on photosynthesis and photochemical efficiency of PSII of the Mediterranean Cistus albidus L. and Quercus ilex L[J]. Plant Ecol.2004,175:179-191.
    Olsen K M, Womack A R, Garrett J I, et al. Constrasting evolutionary forces in Arabidopsis thaliana floral developmental pathway[J]. Genetics,2002,160:1641-1650.
    Olsen KM, Halldorsdottir SS, Stinchcombe JR, el al. Linkage disequilibrium mapping of Arabidopsis CRY2 flowering time alleles[J]. Genetics,2004,167:1361-1369.
    Olsen KM, Purugganan MD. Molecular evidence on the origin and evolution of glutinous rice[J]. Genetics,2002,162:941-950.
    Olsen P, Lenk I, Jensen CS, et al. Analysis of two heterologous flowering genes in Brachypodium distachyon demonstrates its potential as a grass model plant[J]. Plant Science,2006,170:1020-1025.
    Olson MS, Robertson AL, Takebayashi N, et al. Nucleotide diversity and linkage disequilibrium in Balsam Poplar (Populus balsamifera)[J]. New Phytologist,2010,186:526-536.
    O'Neill PM, Shanahan JF, Schepers JS. Use of chlorophyll fluorescence assessments to differentiate corn hybrid response to variable water conditions[J]. Crop Sci,2006,46:681-687.
    Opanowicz M, Hands P, Betts D, et al. Endosperm development in Brachypodium distachyon[J]. Journal of Experimental Botany,2010,62:735-748.
    Ozdemir BS, Hernandez P, Filiz E, et al. Brachypodium genomics[J]. International Journal of Plant Genomics,2008,1-7.
    Pacak A, Geisler K, Jφrgensen B, et al. Investigation of barley strip mosaic virus as a gene silencing vector in barley roots and in Brachypodium distachyon and oat[J]. Plant Methods 6,2010.
    Pacurar DL, Thordal-Chirsten H, Nielsen KK, et al. A high-throughput Agrobacterium-mediated transformation system for the grass model species Brachypodium distachyon L[J]. Transgenic Research,2008,17(5):965-975.
    Panchuk Ⅱ, Volkov RA, Schoffl F. Heat stress-and heat shock transcription factor-dependent expression and activity of ascorbate peroxidase in Arabidopsis[J]. Plant Physiol,2002,129:838-835.
    Pandey HC, Baig MJ, Chandra A, et al. Drought stress induced changes in lipid peroxidation and antioxidant system in genus Avena[J]. J Environ Biol,2010,31:435-440.
    Pandey HC, Baig MJ, Chandra A,et al. Drought stress induced changes in lipid peroxidation and antioxidant system in genus Avena[J]. J Environ Biology,2010,31:435-440.
    Park SY, Ryu SH, Kwon SY, et al. Differential expression of six novel peroxidase cDNAs from cell cultures of sweet potato in response to stress[J]. Mol Gene Genomics,2003,269:542-552.
    Passardi F, Cosio C, Penel C, et al. Peroxidases have more functions than a Swiss army knife[J]. Plant Cell Rep,2005,24:255-265.
    Passarsi F, Longet D, Penel C, et al. The class III peroxidase multigenic family in rice and its evolution in land plants[J]. Phytochemistry,2004,65:1879-1893.
    Pavlidis, P., Jensen, J. D., Stephan, W. (2010) Searching for footprint of positive selection in whole-genome SNP data from nonequilibrium population. Genetics 185:907-922.
    Peng Z Y, Wang M C, Li F, et al. A proteomic study of the response to salinity and drought stress in an introgression strain of Bread Wheat[J].Molecular & Cellular proteomics,2009,8:2676-2686.
    Peraldi A, Beccari G, Steed A, et al. Brachypodium Distachyon:A new pathosyatem to study Fusarium head blight and other Fusarium diseases of wheat[J]. BMC Plant Biology,2011,100.
    Pierre CS, Trethowan R, Reynolds M. Stem solidness and its relationship to water-soluble carbohydrates: association with wheat yield under water deficit[J]. Func Plant Bio,2010,37:166-174.
    Ponomarenko J V, Merkulova T I, Vasiliev G V, et al.A database system for analysis of transcription factor binding to target sequences:Application to SNPs and site-direction mutations[J]. Nucleic Acids Research,2001,29(1):312-316.
    Poorter H, Nagel O.The role of biomass allocation in the growth response of plants to different levels of light, CO2, nutrients and water:a quantitative review[J], Australian Journal of Plant Physiology, 2000,27:595-607.
    Posch S, Bennett LT. Photosynthesis, photochemistry and antioxidative defence in response to two drought severities and with re-watering in Allocasnarina luehmannii[J]. Plant Biol,2009,11:83-93.
    Prashanth SR, Sadhasivam V, Parida A. Over expression of cytosolic copper/zinc superoxide dismutase from a mangrove plant Avicennia marina in indica Rice var Pusa Basmati-1 confers abiotic stress tolerance[J]. Transgenic Research,2008,17:281.
    Prochazkova D, Wilhelmova N. Leaf senescence and activities of the antioxidant enzymes[J]. Biologia Plantarum,2007,51 (3):401-406.
    Pui-Yan Kwork, MD, PhD. Polymorphisms Method and Protocols [M]. Methods in molecular biology, 2003,212.
    Qin F, Sakuma Y, Li J, et al. Cloning and functional analysis of a novel DREB1/CBF transcription factor involved in cold-responsive gene expression in Zes mays L[J]. Plant Cell Physiol,2004, 45(8):1042-1052.
    Ramachandra RA, Chaitanya KV, Vivekanandan M. Drought induced response of photosynthesis and antioxidant metabolism in higher plants[J]. J Plant Physiol, 2004,161:1189-1202.
    Razem F A, El-Kereamy A, Abrams S R. et al. The RNA-binding protein FCA is an abscisic acid receptor[J]. Nature.2006,439:290-294.
    Remington D L, Thornsberry J M, Matsuoka Y, et al. Structure of linkage disequilibrium and phenotypic associations in the maize genome[J]. Proceedings of National Academy of Sciences of the United States of America,2001,98:11479-11484.
    Rish N, Merikangas K. The future of genetic studies of complex human diseases[J]. Science,1996,273: 1516-1517.
    Rizhsky L, Liang H J, Mittler R. The combined effect of drought stress and heat shock on gene expression in tobacco[J]. Plant Physiology,2002,130:1143-1151.
    Rizhsky L, Liang H J, Schuman J, et al. When defense pathways collide. The response of Arabidopsis to a combination of drought and heat stress[J]. Plant Physiology,2004,134:1683-1696.
    Rostoks N, Mudie S, Cardle L, et al. Genome-wide SNP discovery and linkage analysis in barley based on genes responsive to abiotic stress[J]. Molecular Genetics and Genomics,2005,274(5):515-527.
    Rozas J, Rozas R. DnaSP version 3:an integrated program for molecular population genetics and molecular evolution analysis[J]. Bioinformatics,1999,15:174-175.
    Ruivenkamp G, Richards P. Drought tolerance research as a social process[J]. Biotechnology and Development Monitor,1994,18:3-4.
    Sairam RK, Saxena DC. Oxidative stress and antioxidants in wheat genotypes:possible mechanism of water stress tolerance[J]. Journal of Agronomy and Crop Science,2000,184:55-61.
    SAS procedures guide. SAS Institute Inc., Release 9.1 Edition[M], Cary, NC, USA,2004.
    Scandalios JG. Oxygen stress and superoxide dismutases[J]. Plant Physiol,1993,101:7-12.
    Schurr U, Heckenberger U, Herdel K, et al. Leaf development in Ricinus communis during drought stress:dynamics of growth processes, of cellular structure and of sink-source transition[J]. Journal of Experimental Botany,2000,51:1515-1529.
    Schurr U, Heckenberger U, Herdel K. et al. Leaf development in Ricinus communis during drought stress:dynamics of growth process, of cellular structure and of sink-source transition[J]. Journal of Experimental Botany,2000,51:1515-1529.
    SchwanzP, PiconC, VivinP, et al. Responses of the antioxidative systems to drought stress in pendunculate oak and maritime pine as affected by elevated CO2[J]. Plant Physiol,1996,100:393-402.
    Schwartz CJ, Doyle MR, Manzaneda AJ, et al. Natural variation of flowering time and vernalization responsiveness in Brachypodium Distachyon[J]. Bioenerg Res,2010,3:38-46.
    Schweizer P. Tissue-specific expression of a defence-related peroxidase in transgenic wheat potentiates cell death in pathogen attacked leaf epidermis[J]. Mol Plant Pathol,2008,9:45-57.
    Seager R, Ting M F, Held I, et al. Model projections of an imminent transition to a more arid climate in southwestern North American[J]. Science,2007,316:1181-1184.
    SgherriCL, Navari-IzzoF.Sunflower seedlings subjected to increasing water deficit stress:oxidative stress and defense mechanism[J]. Physiol. Plant,1995,93:25-30.
    Sharma P, Dubey R S. Drought induces oxidative stress and enhance the activities of antioxidant enzymes in growing rice seedlings[J]. Plant growth regulation,2005,46(3):209-221.
    Sharma P, Dubey RS. Ascorbate peroxidase from rice seedlings:properties of enzyme isoforms. Effects of stresses and protective roles of osmolytes[J]. Plant Sci,2004,167:541-550.
    Sharma P, Dubey RS. Drought induces oxidative stress and enhances the activities of antioxidant enzyme in growing rice seedling[J]. Plant Growth Regul,2005,46:209-221.
    Sharp RE, Poroyko V, Hejlek LG, et al. Root growth maintenance during water deficits:physiology to functional genomics[J]. Journal of Experimental Botany,2004,55:2343-2351.
    Shen Y Y, Wang X F, Wu F Q. et al. The Mg-chelatase H subunit is an abscisic acidreceptor[J]. Nature. 2006,443:823-826.
    Sherrard ME, Maherali H. The adaptive significance of drought escape in Avena barbata, an annual grass[J]. Intl J Org Evol,2006,60:2478-2489.
    Shimamoto K, Kyozaka J. Rice as a model for comparative genomics of plants[J]. Annu. Rev. Plant. Biol. 2002,53:399-419.
    Shing-yong Hong, Pil Joon Seo, Moon-Sik Yang, et al. Exploring valid reference genes for gene experession studies in Brachypodium distachyon by real-time PCR[J]. BMC Plant Biology,2008 8:112;1-11.
    Shinozaki K and Yamaguchi-Shinozaki K,2007. Gene networks involved in drought stress response and tolerance[J]. Journal of Experimental Botany 58(2):221-227
    Shinozaki K, Yamaguchi-Shinozaki K, Seki M.Regulatory network of gene expression in the drought and cold stress responses[J]. Current Opinion in Plant Biology.2003.6,410-417.
    Shinozaki K, Yamaguchi-Shinozaki K. Gene networks involved in drought stress response and tolerance[J]. J Exp Bot,.2007,58(2):221-227.
    Smirnoff N. The role of active oxygen in the response of plants to water deficit and desiccation[J]. New Phytol,1993,125:27-58.
    Smirnoff N. The role of active oxygen in the response of plants to water deficit and desiccation[J]. New Phytol,2000,125:27-58.
    Smirnoff N.The role of active oxygen in the response of plants to water deficient and desiccation[J]. New Phytol,1993,125:27-58.
    Smith, AT, Veuth, NC. Substrate binding and catalysis in heme peroxidases[J]. Curr Opin Chem Biol, 1998,2:269-278.
    Sofa A, Tuzio AC, Dichio B, et al. Influence of water deficit and rewatering on the components of the ascorbate-glutathione cycle in four interspecific Prunus hybrids[J]. Plant Sci.,2005,169:403-412.
    Somers D J, Banks T, DePauw R, et al. Genome-wide linkage disequilibrium analysis.in bread wheat and durum wheat[J]. Genome,2007,50:557-567.
    SomervilleC. The billion-ton biofuels vision[J]. Science,2006,312:1277.
    Srivalli B, Chinnusamy V, Khanna-Chopra R. Antioxidant defense in response to abiotic stresses in plants[J]. J Plant Biol,2003,30:121-139.
    StephanW, SongYS,LangleyGH. The hitchhiking effect on linkage disequilibrium between linked neutral loci[J]. Genetics,2006,172:2647-2663.
    Sterl A, Severijns C, Hazeleger W, et al. When can we expect extremely high surface temperatures?[J]. Genophysical Research letters(GRL) paper,2008.
    Stich B, Melchinger AE, Frisch M, et al. Linkage disequilibrium in European elite maize germplasm investigated with SSRs[J]. Theoretical and applied Genetics,2005,111:723-730.
    Stitziel NO, Tseng YY, Perouchine D, et al. Structural location of disease-associated single nucleotide polymorphisms[J]. J Mol Biol.,2003,327:1021-1030.
    Szalma S J, Buckler E S, Snook M E,et al. Association analysis of candidate genes for maysin and chlorogenic acid accumulation in maize silks[J]. Theor Appl Genet,2005,110:1324-1333
    Tajima F. Statistical method for testing the neutral mutation hypothesis by DNA polymorphism[J]. Genetics,1989,123:585-595.
    Tenaillon, M. I., Sawkins, M. C., Anderson, L. K., Stack, S. M., Doebley, J.2002 Patterns of diversity and recombination along chromosome 1 of maize(Zea mays ssp. Mays L.)[J]. Genetics 162:1401-1413
    TenaillonM, SawkinsAD, LongAD, et al. Patterns of DNA sequence polymorphism along chromosome 1 of maize (Zea mays ssp. Mays L.)[J]. Proc. Natl. Acad. Sci. USA,2001,98:9161-9166
    The intenational Brachypodium initiative. Genome sequencing and analysis of the model grass Brachypodium distachyon[J]. Nature,2010,463:763-768.
    Thompson A J, Mulholland B J, Jackson A C, et al. Regulation and manipulation of ABAbiosynthesis in roots[J]. PlantCell Environ,2007,30:67-78.
    Tian Z, Qian Q, Liu Q, et al. Allelic diversities in rice starch biosynthesis lead to a diverse array of rice eating and cooking qualities[J]. Proc Natl Acad Sci USA,2009,106:21760-21765.
    Tognolli M, Penel C, Greppin H, et al. Analysis and expression of the class III peroxidase large gene family in Arabidopsis thaliana[J].Gene,2002,288:129-138.
    Tyagi A K, Mohanty A. Rice transformation for crop improvement and functional genomics[J]. Plant Sci., 2000,158:1-18.
    Ursini F, Miaorino M, Brigelius-Flohe R, et al. Diversity of glutathione peroxidases[M]. Methods Enzymol,1995,252:38-53.
    Valliyodan B, Nguyen H T. Understanding regulatory networks and engineering for enhanced drought tolerance in plants[J]. Current opinion in plant biology,2006,9:189-195.
    Van K, Hwang E Y, Kim M Y, et al. Discovery of SNPs in soybean genotypes frequently in the United States and Korea[J]. J. Hered.2005,96:529-535.
    Van Rensburg L, Kruger GHJ. Evaluation of components of oxidative stress metabolism for use in selection of drought tolerant cultivars of Nicotiana tabacum L.[J]. J. Plant Physiol,1994,143:730-737.
    Venter JC, Adams MD, Myers EW, et al. The sequence of the human genome[J]. Science,2001,291: 1304-1351.
    VersluesPE, Agarwal, M, Katiyer-AgarwalS, et al.Methods and concepts in quantifying resistance to drought, salt and freezing, abiotic stresses that affect plant water status[J]. Plant J.2006,45:523-539.
    Vogel J P, Bragg J. Chapter 16 Brachypodium distachyon, a new model for the Triticeae[J]. Plant genetics and genomics[J]:Crops and models,2006,7:427-449
    Vogel J P, Garvin D F, Leong O M, et al. Agrobacterium-mediated transformation and inbred line development in the model grass Brachypodium distachyon[J]. Plant Cell.Tissue and Organ Culture, 2006,84(2):199-211.
    Vogel J P, Garvin D F, Leong O M. et al. Agrbacterium-mediated transformation and inbred line development in the model grass Brachypodium distachyon[J]. Plant Cell Tiss. Org. Cult.,2006a, 85:199-211.
    Vogel J P, Gu Y, Twigg P, et al. EST sequencing and phylogeneticanalysis of the model grass Brachypodium distachyon[J]. Theor. Appl. Genet.2006b 113:186-195.
    Vogel J P, Tuna M, Budak H, et al. Development of SSR markers and analysis of diversity in Turkish populations of Brachypodium distachyon[J]. BMC Plant Biol 2009,9:88
    Vogel J, Hill T. High-efficiency Agrobacterium-mediated transformation of Brachypodium distachyon inbred line Bd21-3[J]. Plant Cell Rep,2008,27:471-478.
    Vogel JP, Garvin DF, Leong O, et al. Agrobacterium-mediated transformation and inbred line development in the model grass Brachypodium distachyon[J]. Plant Cell Tiss. Org. Cult.2006,85: 199-211.
    Vogel JP, Garvin DF, Mockler TC, et al. (The International Brachypodium Initiative). Genome sequencing and analysis of the model grass Brachypodium distachyon[J]. Nature,2010,463:763-768.
    Vogel JP, Hill T. High-efficiency Agrobacterium-mediated transformation of Brachypodium distachyon inbred line Bd21-3[J]. Plant Cell Rep,2008,27:471-478.
    Vogel JP, Tuna M, Budak H, et al. Development of SRR markers and analysis of diversity in Turkish populations of Brachypodium distachyon[J], BMC Plant Bio,2009,9:88.
    Volaire F, Thomas H, Lelievre F. Survival and recovery of perennial forage grasses under prolonged Mediterranean drought[J]. New Phytol,1998,140:439-449.
    Volaire F. Growth, carbohydrate reserves and drought survival strategies of contrasting Dactylis glomerata populations in a Mediterranean environment[J]. J Applied Eco,1995,32:56-66.
    Wang F Z, Wang Q B, Kwon S Y, et al. Enhanced drought tolerance of transgenic rice plants expressing a pea manganese superoxide dismutase[J]. Journal of Plant Physiology,2005,162:465-472.
    Wang HJ, Hsu CM, Jauh GY, et al. A lily pollen ASR protein localizes to both cytoplasm and nuclei requiring a nuclear localization signal[J]. Physiol Plant,2005,123:314-320.
    Wang JP, Bughrara SS. Evaluation of drought tolerance for Atlas fescue, perennial ryegrass, and their progeny[J]. Euphytica,2008,164:113-122.
    Wang K, Han X, Dong K, et al. Characterization of seed proteome in Brachypodium distachyon[J]. Journal of Cereal Science,2011,52:177-186.
    Watt M, Schneebeli K, Dong P, et al. The shoot and root growth of Brachypodium and its potential as a model for wheat and other cereal crops[J]. Functional Plant Biology,2009,36:960.
    Watterson G A. On the number of segregating sites on genetical models without recombination[J]. Theoretical Population Biology,1975,7:256-276.
    Wen W, Mei H, Feng F, et al. Population structure and association mapping on chromosome 7 using a diverse panel of Chinese germplasm office(Oryza sativa L.)[J]. Theor Appl Genet,2009,119:459-470.
    Wilson L M, Whitt S R, Ibanez A M, et al. Dissection of maize kerbel composition and starch production by candidate associations[J]. Plant Cell,2004,16:2719-2733.
    Wilson PB, Estavillo GM, Field KJ et al. The nucleotidase/phosphatase SAL1 is a negative regulator of drought tolerance in Arabidopsis[J]. Plant J,2009,58:299-317.
    Wright SI, Schroeder SG, Yamasaki M, et al. The effects of artificial selection on the maize genome[J]. Science,2005,308:1310-1314.
    Wu CA, Lowry DB, Nutter LI, et al. Natural variation for drought-response traits in the Mimulus guttatus species complex[J]. Oecologia,2010,162:23-33.
    Wu T, Kong XP, Zong XJ, et al. Expression analysis of five maize MAP kinase genes in response to various abiotic stresses and signal moleculesfJ]. Mol Biol Rep.2011,38:3967-3975.
    Wu Y, Thorne ET, Sharp RE, et al. Modification of expansin transcript levels in the maize primary root at low water potentials[J]. Plant Physiology,2001,126:1471-1479.
    Xiao B, Chen X, Xiang C, et al. Evaluation of seven function-known candidate genes for their effects on improving drought resistance of transgenic rice under field[J]. Mol Plant,2009,2:73-83.
    Xing Y, Frei U, Schejbel B, et al. Nucleotide diversity and linkage disequilibrium in 11 expressed resistance candidate genes in Lolium perenne[J]. BMC Plant Biology,2007,7:43.
    Xiong L M, Wang R G, Mao G H, et al. Identification of drought tolerance determinants by genetic analysis of root response to drought stress and abscisic acid[J]. Plant physiol,2006,142:1065-1074.
    Xu W, Shi W, Ueda A, et al. Mechanisms of salt tolerance in transgentic Arabidopsis thaliana carrying a peroxisomal ascorbate peroxidase gene from barly[J]. Pedosphere,2008,18:480-495.
    Yamasaki M, Schroeder S, Sanchez-Villeda H, et al. Empirical analysis of selection screens for domestication and improvement loci in maize by extended DAN sequencing[J]. Plant Genome, 2008,1:33-43.
    Yan L, Loukoiano A, Tranquilli G, et al. Positional cloning of the wheat vernalization gene VRN1[J]. Proc. Natl. Acad. Sci. USA,2003,100:6263-6268.
    Yan WG, Li Y, Agrama HA, et al. Association mapping of stigma and spikelet characteristics in rice (Oryza sativa L.)[J]. Mol Breed,2009,24:277-292.
    Yang HM, Zhang XY, Wang GX. Relationships between stomatal character, photosynthetic charater and seed chemical composition in grass pea at different water avail abilities[J]. J.Agr. Sci. (Cambridge), 2004,142:675-68.
    Ying S, Zhang DF, Fu J, et al. Cloning and characterization of a maize bZIP transcription factor, ZmbZIP72, confers drought and salt tolerance in transgenic Arabidopsis[J]. Planta,2012,235:253-266
    Yu J. Buckler E S. Genetic association mapping and genome organization of maize[J]. Current Opinion in Biotechnology,2006,17:155-160.
    Zhang J, Kirkham MB. Antioxidant responses to drought in sunflower and sorghum seedling[J]. New Phytologist,1996,132:361-373.
    Zhang T, Liu Y, Yang T, et al. Diverse signals converge at MAPK cascades in plant[J]. Plant Physiol Biochem,2006,44:274-283.
    Zhao HH, Fernando RL, Dekkers JCM. A power and precision of alternate methods for linkage disequilibrium mapping of quantitative trait loci[J]. Genetics,2007,175:1975-1986.
    Zhao J, Sun HY, Dai HX, et al. Difference in response to drought stress among Tibet wild barley genotypes[J]. Euphytica,2010,172:395-403.
    Zhu C, Gore M, Buckler E S, et al. Status and prospects of association mapping in plants[J]. The Plant Genome,2008,1:5-20.
    Zhu Y L, Song Q J, Hyten D L, et al. Single-nucleotide polymorphisma in soybean[J]. Genetics,2003, 163:1123-1134.
    Zhu YL, Song QJ, Hyten SM, Fickus EW, et al. Single-nucleotide polymorphism in soybean[J]. Genetics, 2003,163:1123-1134
    Zondervan K T, Cardon R C. The complex interplay among factors that influence allelic association[J]. Nat Rev Genet,2004,5:89-100.
    Zulini L, Rubinigg M, Zorer R, et al. Effects of drought stress on chlorophyll fluorescence and photosynthetic pigments in grapevine leaves (Vitis vinifera cv.'White Riesling') [J]. Acta Hort, 2007,754:289-294.
    曾兴.144份玉米自交系纹枯病抗性相关性状的关联分析[D].四川农业大学博士学位论文.2011年.
    崇宝强.油菜LACS1基因和油菜LACS4基因的克隆与鉴定[D].江苏镇江:江苏大学.2008.
    谷瑞升,郗荣庭,刘万生.水分胁迫对早实核桃生长和结果的影响[J].林业科学,1994,30:79-82
    谷瑞升,郗荣庭,童本群.早实核桃水分指标的研究[J]林业科学,1991,27:461-464
    郝岗平,杨清,吴忠义,等.植物的单核苷酸多态性及其在作物遗传育种中的作用[J],植物学通报,2004,21(5):618-624
    郝岗平.拟南芥抗旱候选基因的SNP及其抗旱性状的相关性分析以及ATHK1基因的功能分析[D].江苏南京:南京农业大学.2004.
    蒋高明.植物生理生态[M].高等教育出版社,2004,pp:191-192
    金亮.水稻关联定位群体的构建及若干品质性状的关联分析[D].浙江杭州:浙江大学.2009.
    景蕊莲.作物抗旱研究的现状与思考[J].干旱地区农业研究,1999,17(2):79-85.
    李百凤,冯浩,吴普特,等.土壤水分下限对番茄光和速率、品质及产量的影响[J].中国农学通报,2007,5:471-476.
    李江风.中国干旱半干旱地区气候环境与区域开发研究[J].北京,气象出版社,1990:16-23.
    刘希华.欧洲黑杨幼苗氮高效基因型及SNPs标记筛选的研究[D].江苏南京:南京林业大学.2010.
    刘越,吕世民.单核苷酸多态性影响基因功能的机制.生命化学,2008,28(2):214-216.
    卢艳.水稻OsAGP基因序列变异及其与千粒重的关联分析[D].浙江杭州:浙江大学.2011.
    倪郁,李唯.作物抗旱机制及其指标的研究进展与现状[J].甘肃农业火学报,2001,36(1):14-22.
    任安芝,高玉葆,梁宇等.白草和赖草无性系生长对干旱胁迫的反应阴[J].中国沙漠,199919(1):30-34
    宋淑明.甘肃省紫苜蓿地方类型抗旱性的综合评判[J].草业科学,1988(2):74-8
    苏治军,郝转芳,谢传晓,等.玉米dbfl基因与耐早相关性状的关联分析[J].植物遗传资源学报,2010,11(4):474-478.
    王建义.小叶杨逆境相关基因的克隆及单核苷酸多态性分析[D].内蒙古包头:内蒙古农业大学.2008
    王荣焕,王天宇,黎裕.关联分析在作物种质资源分子评价中的应用[J],植物遗传资源学报,2007,8(3):366-372.
    文自翔.中国栽培和野生大豆的遗传多样性、群体分化和演化及其育种性状QTL的关联分析[D].江苏南京:南京农业大学.2008.
    徐宁迎.候选基因法检测家畜数量性状基因位点的研究与应用.浙江农业学报[J].1999,11(5):266-270.
    杨小红,严建兵,郑艳萍,等.植物数量性状关联分析研究进展[J].作物学报,2007,33(4):523-530.
    岳爱琴,李昂,毛新国,等.小麦果聚糖合成酶基因6-SFT-A单核苷酸多态性分析及定位[J],中国农业科学,2011,44(11):2216-22
    张洪映,毛新国,景蕊莲等.小麦TaPK7基因的单核苷酸多态性与抗旱性的关系[J].作物学报,2008,34(9):1537-1543.
    张俊,陈桂亚,杨文发.国内外干旱研究进展综述[J].人民长江,2011,42(5):65-69.
    张强,张良,崔显成,等.干旱监测与评价技术的发展及其科学挑战[J].地球科学进展,2011,26(7):763-778.
    张志彤.我国抗旱减灾工作的里程碑[J].中国水利,2009,06.
    中国科学院中国植物志编辑委员会.中国植物志:第九卷第二分册[M].北京,科学出版社,2002:382.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700