用户名: 密码: 验证码:
不结球白菜BcHSP81-4基因在Po1CMS中的表达分析及BcFLC基因的功能验证
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
细胞质雄性不育系是作物杂交育种的重要材料,也是研究花粉发育、细胞质遗传、核质互作以及时序性表达的理想材料。因此,对细胞质雄性不育分子机理的研究具有非常重要的意义。不结球白菜(Brassica campestris ssp. chienesis Makino)原产于中国,是我国南方普遍种植的大众化蔬菜,在蔬菜周年供应中起着举足轻重的作用。近年来,随着分子生物学技术的发展,对CMS的研究取得了较大的进展,但雄性不育的机理研究尚不清楚。故本研究以Pol胞质雄性不育系及其保持系为材料,从分子生物学方面入手,对不结球白菜Pol雄性不育系和保持系花期发育之间的差异表达基因进行了研究分析,有助于全面地了解高等植物中雄性不育发生的机理。同时,不结球白菜先期抽薹现象降低了产品的产量和质量,晚抽薹基因FLC的引入可避免该现象,但FLC对植物发育存在消极影响,因而,对抽薹和植物发育关系的研究具有重要意义。本文主要研究结果如下:
     1.不结球白菜Pol胞质不育系花期抑制性消减文库的构建
     以不结球白菜Pol胞质雄性不育系及其保持系为材料,采用抑制性消减杂交(supperssion subtraetive hybridization, SSH)技术,构建Pol胞质雄性不育系抑制消减cDNA文库。菌落PCR检测显示,有效重组率为91%,插入片段大小主要集中在100bp到1000bp之间。斑点杂交筛选得到32个阳性克隆,序列测定和同源性比对分析表明,15个克隆功能未知,其余涉及到激素信号转导、第二信使、光合作用、脂肪酸代谢及衰老等多个方面。
     2.不结球白菜BcHSP81-4基因的克隆及其在PolCMS中的表达分析
     从不结球白菜Pol胞质雄性不育系抑制消减cDNA文库中筛选出一条BcHSP81-4基因,经鉴定是热激蛋白家族的成员之一。从BcHSP81-4基因的氨基酸比对中,发现其与其他物种的HSP90家族具有很高的同源性。同时,本文还研究了BcHSP81-4在不同花发育时期和不同胁迫条件下的表达差异。结果表明,BcHSP81-4在35℃的热胁迫条件下,表达无显著差异,但是在盐胁迫和冷胁迫条件下,都能诱导表达。同时本文也发现BcHSP81-4基因在不育系的花蕾中高表达,因此,本研究推测BcHSP81-4基因在polCMS不育系中也可能起一定的作用。将BcHSP81-4基因片段连接到原核表达载体PGEX-4T-3,转化大肠杆菌BL21(DE3)后诱导重组蛋白的表达。经IPTG诱导后进行SDS-PAGE电泳,产生了预期大小的重组蛋白,进一步证明了该基因属于热激蛋白90家族。理化性质分析结果显示该蛋白含699个氨基酸,分子量为80.05KD,理论等电点pI值为4.95。TMpred跨膜分析结果显示,它含有1个显著的跨膜螺旋区,这个区域与ProtScale预测的疏水区基本对应。用TargetP server和WOLFPSORT server程序预测该蛋白为细胞质蛋白,二级结构以a-螺旋和随机卷曲为主。
     3.不结球白菜晚抽薹基因BcFLC过表达影响拟南芥的育性和抗寒性
     FLC在拟南芥中对开花是一个剂量依赖型抑制因子。本实验室从不结球白菜中克隆到一条FLC相关序列,命名为BcFLC,本研究将该基因在拟南芥中组成型过表达,结果发现,BcFLC可以显著延迟抽薹时间10天左右,表明BcFLC是抑制抽薹开花的一个基因。在BcFLC过表达植株中,花期的SOC1的表达量降低,但LFY和FT的表达量显著高于对照。因此本文认为BcFLC过表达植株比对照植株需要更多剂量的LFY和FT来促进开花。同时,本文还发现过表达BcFLC的拟南芥育性受到影响,主要是由于RGA和RGL等花丝抑制因子的表达量上升和SEP3等花和胚珠发育相关基因的下调造成的。在BcFLC过表达植株中,CBF1,2,3和COR15a等抗寒相关基因的表达量上调,植株抗寒性增强,表明BcFLC的过表达激活了CBF1,2,3和COR15a抗寒基因的表达,从而提高植物的抗寒性。
     4.外源硝酸盐和NaCl胁迫对拟南芥开花的调节
     植物开花受到内源和外源信号的双重调节。很多植物在一定的逆境胁迫下(如低硝酸盐和盐胁迫)都能提前开花,但有关这些胁迫是如何调节植物开花的机理尚不清楚。本研究发现低浓度的硝酸盐和NaCl胁迫能够增强GA生物合成酶GA1的活性,激活GA的生物合成。从而使得CO和SOC1的表达量增强,促进开花。但是硝酸盐和NaCl对开花光周期途径的影响是不同的。光周期相关基因CCA1和LHY在低浓度NaCl胁迫下受到抑制;但在低浓度硝酸盐胁迫下却没有显著变化。先前的研究表明,SOC1介导开花所有的内源途径:春化,自主开花,长日照和GA途径。因此,本文推测SOC1基因在介导植物内外源信号调节植物开花中起着重要作用。
Cytoplasmic male sterile (CMS) lines do not only play a major role in cross breeding of crops, but also they are taken as ideal materials for studying pollen development, cytoplasmic inheritance, nucleo-cytoplasmic interaction and time-dependent expression. Accordingly, studies on the molecular mechanism of cytoplamic male sterile are very significant. Non-heading Chinese cabbage(Brassica campestris ssp. chinensis Makino) which originated from China, is one of the most widely cultivated vegetables in China, especially in the south of China. In recent years, with the development of molecular biotechnology, studies about cytoplasmic male sterility increased gradually. However, there is little kownledge about gene recombination and its expression. The buds of newly bred Pol CMS of non-heading Chinese cabbage and its maintainer line as plant materials, genes differentially expressed transcripts were analyzed by molecular biology. Therefore, this study laid a good foundation on revealing the molecular mechanism of CMS line. Meanwhile, earlier bolting reduces the yield and quality of the products in non-heading chinese cabbage. The introduction of late bolting gene FLC could avoid this phenomenon. but FLC has a passive effect on plant fertility. Therefore, studying the relations of bolting and plant fertility has a great significance.The main results are as follows:
     1-Suppression subtractive library was constructed using flowers of Pol cytoplasmic male sterile lines of Non-heading Chinese cabbage
     Using suppression subtractive hybridization, the suppression subtractive cDNA library was builded, Pol cytoplasmic male sterile lines of Non-heading Chinese cabbage as the tester, and maintain as the driver. Colony were detected by PCR, the effective recombination rate is91%, and the size of inserts mainly between100bp and1000bp. Through dot blot screening,32positive clones were sequenced. Homology comparison analysis showed that15clones were unknown function, and the rest related to multiple aspects of the hormonal signal transduction, such as second messenger, photosynthesis, fatty acid metabolism and aging.
     2. Cloning and expression analysis of BcHSP81-4gene in the PolCMS of Non-heading Chinese Cabbage
     BcHSP81-4gene, a member of heat shock proteins, was identified from a suppression subtractive hybridization cDNA library in non-heading Chinese cabbage (Brassica campestris ssp. chinensis Makino). The deduced amino acid sequence of the BcHSP81-4cDNA revealed that it has high homology to other plant organelle isoforms and similar homology to both cytoplasmic and prokaryotic HSP90s. To study the regulation of gene expression, BcHSP81-4genes in maintainer and sterility lines were monitored at different development stages and at different stress treatments. Real-time PCR was used for quantification of BcHSP81-4mRNA. These results indicate that BcHSP81-4is not responsive to heat shock at least at35℃, while it is very responsive to salt and cold stress. And high expression of BcHSP81-4in the bud of sterile line suggests that it may play prominent roles in sterility of pol CMS in non-heading Chinese cabbage. Then the ORF had been cloned into PGEX-4T-3vector and transformed into the host BL21(DE3). Results of SDS-PAGE showed that the specific fusion protein was successfully induced to express by IPTG, and further proved that the gene belongs to heat shock protein90family。The heat shock protein BcHSP81-4gene of Brassica campestris ssp. Chinensis was analyzed by using a series of online software in the following aspects:physical and chemical characters, hydrophobicity, transmembrane topologieal structure, subcellular localization, and structure of the protein. The results indicated that the protein contains699amino acid residues. Its molecular weight is80.05KD, and the theoretical pI is4.95. TMpred analysis shows that it contained one distinguished transmembrane helice which correspond with the hydrophobic region that predicted by ProtScale. It is located in cytoplasm by Target P server. Structure analysis shows that a-helix and random coil are the main secondary structures of this protein.
     3. Fertility and Cold-resistance were affected in Arabidopsis by the overexpression of BcFLC isolated from Non-heading Chinese cabbage
     FLOWERING LOCUS C (FLC) in Arabidopsis encodes a dosage dependent repressor of flowering. In this paper, we isolated a FLC-related sequence from Non-heading Chinese cabbage (Brassica campestris ssp. chinensis Makino). Constitutive expression of the BcFLC genes in Arabidopsis significantly delayed flowering by10days, confirming the requirement of this gene for floral repression. In35S::BcFLC overexpression line, the level of SOC1mRNA expression has decreased, but LEAFY (LFY) and FLOWERING LOCUS T (FT) expression in35S::BcFLC were significantly higher than that in wild-type when flowering. The analysis revealed that the35S::BcFLC overexpression line in Arabidopsis requires a greater dose of LFY and FT to flower than the wild type. Here, we reported that the reduced fertility in Arabidopsis by the overexpression of BcFLC may be related with the enhanced expression of anther filaments suppressor, RGA and RGL gene, and slightly declined expression of SEPALLATA3(SEP3) gene, encoding a MADS-box transcription factor involved flower and ovule development. We also found that, CBF1,2,3and COR15a expression were gradually increased in35S::BcFLC overexpression line, suggesting that increased BcFLC expression could activate the expression of CBF1,2,3and COR15a, and then improving the cold resistance.
     4. Exogenous Nitrate or NaCl regulates floral induction in Arabidopsis thaliana
     Flowering, the transition from the vegetative to reproductive phase in plants, is regulated by both endogenous and environmental signals. Exposure to an extended period of stress (such as low nitrate or NaCl) can also promote flowering in many species, but little is known about how these forms of stress regulate floral induction. We found that stress induced by low concentrations of nitrate or NaCl activated the biosynthesis of gibberellin (GA) as evidenced by increased expression of the GA biosynthetic enzyme GA1. Expression of CO and SOC1were also enhanced, leading to an acceleration of flowering. The effects of nitrate and NaCl on the photoperiod pathway were distinct, however. Two genes related to the photoperiod pathway, CCA1and LHY, were repressed only under low NaCl treatment, while expression was unaltered by nitrate. Previous studies have shown that SOC1integrated all endogenous pathways:vernalization, autonomous, long-day, and GA pathways. We suggest that the SOC1MADS-box gene may play an important role in integrating signals induced by exogenous stress with endogenous signals to regulate flowering in Arabidopsis.
引文
1. Kaul MLH. Male sterility in high plants. Monographs on the theoretical and applied. New York: Springer, Berlin Heidelber,1988.
    2.柯桂兰,赵稚雅,宋胭脂,等.大白菜异源胞质雄性不育系的选育[J].园艺学报,1992.2(1):15-20.
    3.方智远.甘蓝胞质雄性不育系的选育简报[J].中国蔬菜,1984.4:42-43.
    4. Anand, I.J., P.K. Mishra and D.S. Rawat. Mechanism of male sterility in Brassica juncea I. Manifestation of sterility and fertility restoration [J]. Cruciferae Newsletter.1985.10:44-46.
    5.刘录祥,黄铁城.作物化学杂交育种的实践与展望[J].中国农业科学,1990.23(2):1-9.
    6. Hu, J., and J. N. Rutger. Pollen characteristics and genetics of induced and spontaneous genetic male-sterile mutants in rice [J]. Plant Breed.1992.109:97-107.
    7. Sanders SL, Klebanow ER and Weil PA. TAF25p, a non-histone-like subunit of TFIID and SAGA complexes, is essential for total mRNA gene transcription in vivo[J]. J Biol Chem,1999.274: 18847-18850.
    8. Bonhomme S, Horlow C, Vezon D, et al. T-DNA mediated disruption of essential gametophytic genes in Arabidopsis is unexpectedly rare and cannot be inferred from segregation distortion alone[J]. Mol Gen Gene.1998.260:444-452.
    9. Howden R, Park SK, Moore JM, et al. Selection of T-DNA-tagged male and female gametophytic mutants by segregation distortion in Arabidopsis [J]. Genetics.1999.149:621-631.
    10. Aarts MGM, Dirkse WG, Stiekema WJ, et al. Transposon tagging of a male sterility gene in Arabidopsis [J]. Nature.1993.363:715-717.
    11. Cui X, Wise RP, Schnable PS. The rf2 nuclear restorer gene of male-sterile T-cytoplasm maize [J]. Science.1996.272:1334-1336.
    12. Twell D, Howden R. Mechanisms of asymmetric division and cell fate determination in developing pollen. In:Chupeau Y, Caboche M, Henry Y (eds). Androgenesis and haploid plants, Berlin Heidelberg:Springer-Verlag,1998.71-103.
    13.侯喜林,曹寿椿,佘建明.原生质体非对称电融合获得不结球白菜胞质杂种[J].园艺学报,2001.28(6):532-537.
    14.惠志明,刘凡,简元才,等.原生质体非对称融合法获得花椰菜与Ogura CMS甘蓝型油菜种间杂种[J].中国农业科学,2005,38(11):2372.
    15. Kubo T, mikami T. Organization and variation of angiosperm mitochondrial genome [J]. Physiologia Plantarum,2007.129:6-13.
    16. Volker Knoop, Axel Brennicke. Molecular biology of the plant mitochondrion [J]. Critical review of plant science,2002.21 (2):111-120.
    17.陈德富,陈喜文.植物线粒体基因的表达及控制的生命现象[J].生命科学研究,1999.3(2):102-117.
    18. Erickson L, Kemble R. Paternal inheritance of mitochondria in rapeseed (Brassica napus) [J]. Mol Gen Genet.1990.222:135-139.
    19. Leving CSⅢ, Siedow JN. Molecular basis of disease susceptibility in the Texas cytoplasm of maize [J]. Plant Mol Biol.1992.19:135-147.
    20. Schnable PS, Wise RP. The molecular basis of cytoplasmic male sterility and fertility restoration [J]. Trends in Plant Sciences.1998.3:175-180:
    21.孙俊,朱英国.植物雄性不育的分子基础[J].遗传,1993.15(2):382-411.
    22. Pring DR, Conde MF, Schertz KF. Organelle genome diversity in sorghum:male sterile cytoplasms [J]. Crop Sci.1982.22:414-420.
    23.应燕如,倪大洲,蔡以欣.水稻、小麦、油菜和烟草细胞质雄性不育系统中组分Ⅰ蛋白的比较分析[J].遗传学报.1989.16(5):362366.
    24.李继耕.细胞质雄性不育性的分子机理[J].遗传.1992.4(2):37-40.
    25.李继耕.叶绿体遗传与细胞质雄性不育性[J].中国农业科学.1983.(1):49-52.
    26.周长久,张友良.萝卜雄性不育性的几种特性研究[J].园艺学报.1994.21:65-70.
    27.庄杰云,樊叶杨,屠国庆,等.水稻CMS-DNA育性恢复基因定位及其互作分析[J].遗传学报.2001.28(2):129-134.
    28.傅鸿仪,耿玉轩,张孔.高粱雄性不育系及可育系的呼吸酶和游离全蛋白质的电泳分析[J].遗传.1980.2(3):28-30.
    29.刘根齐,朱保葛,陈建南.高梁3197A雄性不育系热激处理后代的可育性遗传[J].植物生理与分子生物学学报.2003.29(1):71-74.
    30.李冰.Ca2+-CaM信号系统在热激转录因子活性调节中的作用[D].河北师范大学.2003.
    31. Kimura Y, Yahara I, Lindquist S. Role of the Protein chaperone YDJ1 in establishing HSP90-mediated signal transduction Pathways [J]. Science.1995.268:1362-1365.
    32. Lee GJ, Vierling E. A small heat shock Protein cooperates with heat shock Protein 70 systems to reactivate a heat-denatured Protein [J]. Plant Physiol.2000.122:189-197.
    33. Boss PK, Bastow RM, Mylne JS, et al. Multiple Pathways in the Decision to Flower:Enabling, Promoting, and Resetting [J]. Plant Cell.2004.16:S18-S31.
    34. Michaels SD, Amasino RM. FLOWERING LOCUS C encodes a novel MADS domain protein that acts as a repressor of flowering [J]. Plant Cell.1999.11:949-956.
    35. Sheldon CC, Burn JE, Perez PP, et al. The FLF MADS box gene:A repressor of flowering in Arabidopsis regulated by vernalization and methylation [J]. Plant Cell.1999.11:445-458.
    36. Michaels SD, Amasino RM. Loss of FLOWERING LOCUS C activity eliminates the late-flowering phenotype of FRIGIDA and autonomous pathway mutations but not responsiveness to vernalization [J]. Plant Cell.2001.13:935-941.
    37. Sung S, Amasino RM. Vernalization in Arabidopsis thaliana is mediated by the PHD finger protein VIN3 [J]. Nature.2004.427:159-164.
    38. Levy YY, and C Dean. The transition to flowering [J]. Plant Cell.1998.10:1973-1989.
    39. Bastow R, Mylne JS, Lister C, et al. Vernalization requires epigenetic silencing of FLC by histone methylation [J]. Nature.2004.427:164-167.
    40. Sheldon CC, Rouse DT, Finnegan EJ, et al. The molecular basis of vernalization:The central role of FLOWERING LOCUS C (FLC) [J]. Proc Natl Acad Sci USA.2000.97:3753-3758.
    41. Koornneef M, C Aloso-Blanco, AJM Peeters, et al. Genetic control of flowering time in Arabidopsis [J]. Annu. Rev. Plant Physiol. Plant Mol. Biol.1998.49:345370.
    42. He B, Schultz N, Thomas HD, et al. Specific killing of BRCA2-deficient tumours with inhibitors of poly (ADP-ribose) polymerase[J].2005.434 (7035):913-917.
    43. Deng W, Ying H, Helliwell CA, et al. FLOWERING LOCUS C (FLC) regulates development pathways throughout the life cycle of Arabidopsis[J]. Proc Natl Acad Sci USA.2011.108: 6680-6685.
    44. Bernier G, Havelange A, Houssa C, et al. Physiological singals that induce flowering [J]. Plant Cell, 1993.5:1147-1155.
    45.陈竹君,陈迪锋,汗炳良,等.榨菜化芽分化早期的生化特性研究[J].浙江农业学报,2000.12(4):187-190.
    46.奥岩松,李式军.大白菜发育过程中可溶性蛋白质的变化[J].中国蔬菜,1997.(2):19-21.
    47.郝俊杰.小麦低温春化可溶性蛋白及冷诱导基因调控区初步分析[D].太谷:山西农业大学,2004.
    48. Zeevaart JAD. Gibberellins and flowering [A]. The Biochemistry and Physiology of Gibbere llins[C]. New York:Praeger,1983.2:333-374.
    49. Pharis RP, King RW. Gibberellins and reproductive development in seed plants [J]. Ann. Rev. Plant Physiol..1985.36:517-568.
    50.李梅.结球甘蓝抽薹开花性状的遗传、QTL定位及生理研究[D].北京:中国农业科学院,2009.
    51.夏广清,何启伟,王翠花,等.不同生态型大白菜抽薹时内源激素含量比较[J].中国蔬菜,2005.2:21-22.
    52.王淑芬,徐文玲,何启伟,等.春化深度对萝卜抽薹的影响及抽薹过程中GA3和IAA含量的变化[J].山东农业科学,2003.(6):20-21.
    53.宋贤勇,柳李旺,龚义勤,等.春萝卜抽薹过程中内源激素含量变化分析[J].植物研究,2007.27(2):182-185.
    54.蒋欣梅,马红,于锡宏.青花菜花芽分化前后内源激素含量及酶活性的变化[J].东北农业大学学报,2005.36(2):156-160.
    55. Van Huystee RB, Cairns WL. Progress and prospects in the use of peroxidase to study cell development [J]. Phytopathol,1997.345:235-270.
    56.汪炳良,邓检英,曾广文.萝卜花芽分化过程中茎尖和叶片碳水化合物含量的变化[J].园艺学报,2004.31(3):375-377.
    57.杨肇驯,王文宏,谭克辉.冬小麦幼苗春化期间过氧化物酶的变化[J].植物生理学报,1981.7(4):311-316.
    58.刘磊,刘士琦,许莉,等.洋葱抽薹与未抽薹植株生理生化特性对比研究[J].中国农学通报,2006.22(1):149-152.
    59.涂淑萍,穆鼎,刘春.不同百合品种花芽分化期的生理生化变化[J].中国农学通报,2005.21(7):207-209.
    60.陶萌春,赖钟雄.中国水仙花芽分化期POD活性变化[J].福建农业大学学报,1998.27(3)257-260.
    61.李秉真,李雄,孙庆林,等.苹果梨花芽分化期几种酶活性的变化[J].园艺学报,2001.28(2):159-160.
    62.凌俊,林振武.春化对油菜叶片硝酸还原酶活性的影响[J].植物生理学通讯,1993.29(2):90-98.
    63.张恩和,黄鹏.春化处理对当归苗生理活性的影响[J].甘肃农业大学学报,1998,33(3):240-243
    64.孙慧,汪隆植,龚义勤.萝卜几个亲本及杂种一代的四种同工酶分析[J].南京农业大学学报,1998.21(4):31-35
    65. Kim S, Malinverni JC, Sliz P, et al. Structure and function of an essential component of the outer membrane protein assembly machine [J]. Science.2007.317 (5840):961-964.
    66. Tadege M, Lin H, Bedair M, et al. STENOFOLIA Regulates Blade Outgrowth and Leaf Vascular Patterning in Medicago truncatula and Nicotiana sylvestris[J]. The Plant Cell.2011.23 (6): 2125-2142.
    67. Hepworth SR, Valverde F, Ravenscrof t, et al. Antagonistic regulation of flowering-time gene SOC1 by CONSTANS and FLC via separate promoter motifs[J]. The EMBO Journal.2002.21:4327-4337
    68. Diatchenko L, Lau YF, Campbell AP, et al. Suppression subtractive hybridization:a method for generating differentially regulated or tissue-specific cDNA probes and libraries [J]. PNAS,1996.93 (12):6025-6030.
    69.刘军.抑制差减杂交法(SSH)分离水稻幼穗发育早期特异表达的基因[D].复旦大学.1999.
    70. Kim M, Kim S, Kim S, et al. Isolation of cDNA clones differentially accumulated in the placenta of pungent pepper by suppression subtractive hybridization[J]. Mol Cells.2001.11 (2):213-219.
    71. Kloos DU, Oltmanns H, Dock C, et al. Isolation and molecular analysis of six taproot expressed genes from sugar beet [J]. J Exp Bot.2002.53 (373):1533-1534.
    72.黄凤兰,胡国富,胡宝忠.抑制性消减杂交在生物基因克隆中的应用[J].生物技术通报,2004.15(4):396-398.
    1. Abeh, Yainaguchi-Shinozaki K, Uraot, et al. Role of Arabidopsis MYC and MYB homologs in drought and abscisic acid-egulated gene expression[J]. Plant Cell.1997.1859-1868.
    2. Baum BR, Bassett IJ. Pollenmrphology of Tamarix species and its relationship to the taxonomy of the genus[J]. Pollenet Spores,1971.495-522.
    3. Baum BR. The genus Tamarix [M]. Jerusalem:Jerusalem A cademic Press,1978.2-17.
    4. Cushlnan JC, Bohnert HJ. Genomics approaches to Plant stress [J]. Curr Opin Plant Bio,2000. 117-124.
    5. Diatchenko L, Chris Lau YF, Campbell AP, et al. Suppression subtractive hybridization:A method for generating differentially regulated or tissue-specific cDNA probes and libraries[J]. PNAS,1996. 93:6025-6030.
    6. ERD TMAN G Pollenmorphology and plant taxonomy [M]. L isbon:Exell A W&F A Mendonca, 1952.117.
    7. Gilmour SJ, Sebolt AM, Salazar MP, et al. Overexpression of the Arabidopsis CBF3 transcriptional activator mimics multiple biochemical changes associated with cold cclimation [J]. Plant Physiol, 2000.1854-1865.
    8. Nair PKK. Pollen grains of Indian plants [J]. Bull. Gard. Lucknow,1962.1-9.
    9. Qa Iser M, Al I S Z. Tamaricaria-A new genus of Tamaricaceae Blumean [J],1978.150-155.
    10. Serrano R, Mulet JM, Rcos G, et al. A glimpse of the mechanisms of ion homeostasts during salt stress[J]. J Exp Bot,1999.1023-1036.
    11. Tsang EWT, Bowler C, Herouart D, et al. Differential regulation of superoxide dismutases in plants exposed to environ mental stress [J]. Plant Cell,1991.783-792.
    12.赖卫华,许杨,熊勇华,等.红曲菌cDNA消减文库的构建[J].菌物系统,2003.22(3):466-473.
    13.梁自文,罗东向,杨宗城,等.应用抑制性消减杂交克隆内皮细胞内毒素基因[J].解放军医学杂志,2002.336-338.
    14.王伏雄.中国植物花粉形态[M].北京:科学出版社,1995.105-107.
    15.王永胜,王景,李发强,等.水稻矮化突变体差异表达cDNA片段的克隆与分析[J].中山大学学报(自然科学版),2001.59-62.
    16.武金华.盐胁迫下紫杆柽柳cDNA文库构建及表达序列标签(EST)分析[D].黑龙江哈尔滨:东北林业大学,2003.
    17.席以珍.中国柽柳花粉形态学研究[J].植物研究,1988.23-42.
    18.杨传平,王玉成,刘桂丰,等.应用SSH技术研究NaHCO3胁迫下柽柳基因的表达[J].遗传学报,2004.31(9):926-933.
    19.曾日中,段翠芳,黎瑜,等.茉莉酸刺激下的橡胶树胶乳cDNA消减文库的构建及其序列分析[J].热带作物学报,2003.24(3)::1-6.
    20.张鹏云,张耀甲.柽柳科(A)中国植物志[M].第52卷.北京:科学出版.1979.125-127.
    21.张映霞,杨郁文,倪万潮,等.陆地棉黄萎病菌诱导抑制消减杂交cDNA文库的构建与分析[J].江苏农业学报,2008.24(1):17-21.
    22.赵斌,王先梅,张健,等.大鼠脑卒中相关基因的抑制性差减杂交文库构建[J].高血压杂志,2001.53-57.
    1. Brown MA, Zhu L, Schmidt C, et al. Hsp90-From signal transduction to cell transformation [J]. Biochem Biophys Res Commun.2007.363:241-246.
    2. Cao ZP, Jia ZW, Liu YJ, et al. Constitutive expression of ZmsHSP in Arabidopsis enhances their cytokinin sensitivity [J]. Mol Biol Rep.2009.10:1089-1097.
    3. Dafny-Yelin M, Guterman I, Menda N, et al. Flower proteome:changes in protein spectrum during the advanced stages of rose petal development [J]. Planta.2005.222:37-46.
    4. Dafny-Yelin M, Tzfira T, Vainstein A, et al. Non-redundant functions of sHSP-CIs in acquired thermotolerance and their role in early seed development in Arabidopsis[J]. Plant Mol Biol.2008. 67:363-373.
    5. 邓晓辉,张蜀宁,侯喜林,等.不结球白菜Pol胞质雄性不育系及其保持系的部分生理生化指标分析[J].江西农业大学学报.2007.4:522-525.
    6. Erickson L, Grant I, Beversdorf W. Cytoplasmic male sterility in rapeseed (Brassica napus L.).1. Restriction patterns of chloroplast and mitochondrial DNA [J]. Theor Appl Genet.1986. 72:145-150.
    7. Fu WD, Shuai L, Yao JT, et al. Molecular Cloning and Analysis of a Cytosolic Hsp70 Gene from Enteromorpha prolifera (Ulvophyceae, Chlorophyta) [J]. Plant Molecular Biology Reporter.2010. 28:430-437.
    8. Haralampidis K, Milioni D, Rigas S, et al. Combinatorial interaction of cis elements specifies the expression of the Arabidopsis AtHs90-1 gene [J]. Plant Physiol.2002.129:1138-1149.
    9. Ishiguro S, Watanabe Y, Ito N, et al. SHEPHERD is the Arabidopsis GRP94 responsible for the formation of functional CLAVATA proteins [J]. EMBO.2002.21:898-908.
    10. Jackson SE, Queitsch C, Toft D. HSP90:from structure to phenotype [J]. Nat Struct Mol Biol. 2004.11:1152-1156.
    11. Kemble RJ, and Barsby TL. Use of protoplast fusion systems to study organelle genetics in a commercially important crop. Biochem [J]. Cell. Biol.1988.66:665-676.
    12. Kotak S, Vierling E, Baumlein H, et al. A novel transcriptional cascade regulating expression of heat stress proteins during seed development of Arabidopsis [J]. Plant Cell.2007.19:182-195.
    13. Li FH, Luan W, Zhang CS, et al. Cloning of cytoplasmic heat shock protein 90 (FcHSP90) from Fenneropenaeus chinensis and its expression response to heat shock and hypoxia[J]. Cell Stress Chaperon.2009.14:161-172.
    14. Lin KH, Lin CH, Chan MT, et al. Identification of Flooding-Response Genes in Eggplant Roots by Suppression Subtractive Hybridization [J]. Plant Molecular Biology Reporter.2010.28:212-221.
    15. Liu D, Zhang X, Cheng Y, et al. rHsp90 gene expression in response to several environmental stresses in rice (Oryza sativa L.) [J]. Plant Physiol Biochem.2006.44:380-386.
    16. Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2-ΔΔCT Method [J]. Methods.2001.25:402-408.
    17. Magnard JL, Vergne P, Dumas C. Complexity and genetic variability of heat-shock protein expression in isolated maize microspores [J]. Plant Physiol.1996. 111:1085-1096.
    18. Marino R, Pinto MR, Cotelli F, et al. The hsp70 protein is involved in the acquisition of gamete self-sterility in the ascidian Ciona intestinalis [J]. Development.1998.125:899-907.
    19. Marrs KA, Casey ES, Capitant SA, et al. Characterization of two maize hsp90 heat shock protein genes and expression during heat shock, embryogenesis and pollen development [J]. Devel Genet. 1993.14:27-41.
    20. Mery DY, Tzvi T, Alexander V, et al. Non-redundant functions of sHSP-CIs in acquired thermotolerance and their role in early seed development in Arabidopsis[J]. Plant Mol Biol.2008. 67:363-373.
    21. Milioni D, Hatzopoulos P. Genomic organization of hsp90 gene family in Arabidopsis [J]. Plant Mol Biol.1997.35:955-961.
    22. Muller L, Schaupp A, Walerych D, et al. Hsp90 regulates the activity of wild type p53 under physiological and elevated temperatures[J]. J Biol Chem.2004.279:48846-48854.
    23. Pearl LH, Prodromou C. Structure and mechanism of the Hsp90 molecular chaperone machinery [J]. Annu Rev Biochem.2006.75:271-294.
    24. Perez DE, Hoyer JS, Johnson AI, et al. BOBBER1 Is a Noncanonical Arabidopsis Small Heat Shock Protein Required for Both Development and Thermotolerance [J]. Plant Physiology.2008. 151:241-252.
    25. Piano A, Franzellitti S, Tinti F, et al. Sequencing and expression pattern of inducible heat shock gene products in the European flat oyster, Ostrea edulis [J]. Gene.2005.361:119-126.
    26. Pratt WB, Toft DO. Regulation of signaling protein function and trafficking by the hsp90/hsp70-based chaperone machinery [J]. Exp Biol Med.2003.228:111-133.
    27. Rolland-Lagan AG, Bangham JA, Coen E. Growth dynamics underlying petal shape and asymmetry[J]. Nature.2003.422:161-163.
    28. Roshandel P, Flowers T. The ionic effects of NaCl on physiology and gene expression in rice genotypes differing in salt tolerance [J]. Plant soil.2009.315:135-147.
    29. Rutherford SL, Lindquist S. Hsp90 as a capacitor for morphological evolution [J]. Nature.1998. 396:336-342.
    30. Samakovli D, Thanou A, Valmas C, et al. Hsp90 canalizes developmental perturbation [J]. J Exp Bot.2007.58:3513-3524.
    31. Sambrook J, Fritsch EF, Maniatis T. Molecular cloning; a laboratory manual,2nd eds. Cold Spring Harbor, NY:Cold Spring Harbor Laboratory Press.1989.
    32. Scarpeci TE, Zanor MI, Valle EM. Investigating the role of plant heat shock proteins during oxidative stress [J]. Plant Signal Behav.2008.3:856-857.
    33. Scharf KD, Siddique M, Vierling E. The expanding family of Arabidopsis thaliana small heat stress proteins and a new family of proteins containing a-crystallin domains (Acd proteins) [J]. Cell Stress Chaperon.2001.6:225-237.
    34. Segui-Simarro JM, Testillano PS, Risueno MC. Hsp70 and Hsp90 change their expression and subcellular localization after microspore embryogenesis induction in Brassica napus L [J]. J Struct Biol.2003.142:379-391.
    35. Sheoran IS, Ross ARS, Olson DJH, et al. Differential expression of proteins in the wild type and 7B-1 male-sterile mutant anthers of tomato (Solanum lycopersicum):A proteomic analysis[J]. Journal of proteomics.2009.71:624-636.
    36. Song HM, Fan PX, Li YX. Overexpression of Organellar and Cytosolic AtHSP90 in Arabidopsis thaliana Impairs Plant Tolerance to Oxidative Stress [J]. Plant Molecular Biology Reporter.2009. 27:342-349.
    37. Swindell WR, Huebner M, Weber AP. Transcriptional profiling of Arabidopsis heat shock proteins and transcription factors reveals extensive overlap between heat and non-heat stress response pathways [J]. BMC Genomics.2007.8:125-140.
    38. Takahashi T, Naito S, Komeda Y. Isolation and analysis of the expression of two genes for the 81-kilodalton heat shock protein from Arabidopsis [J]. Plant Physiology.1992.99:383-390.
    39. Taylor NL, Heazlewood JL, Day DA, et al. Differential impact of environmental stresses on the pea mitochondrial proteome [J]. Mol Cell Proteomics.2005.4:1122-1133.
    40. Theodoraki MA, Mintzas AC. cDNA cloning, heat shock regulation and developmental expression of the hsp83 gene in the Mediterranean fruit fly Ceratitis capitata [J]. Insect Mol Biol.2006.15: 839-852.
    41. Vasquez-Robinet C, Mane SP, Ulanov AV, et al. Physiological and molecular adaptations to drought in Andean potato genotypes [J]. J Exp Bot.2008.59:2109-2123.
    42. Volkov RA, Panchuk Ⅱ, Schoffl F. Heat-stress dependent and developmental modulation of gene expression:the potential of house-keeping genes as internal standards in mRNA expression profiling using real-time RT-PCR [J]. J Exp Bot.2003.54:2343-2349.
    43. Wang WK, Liu CC, Chang TY, et al. Characterization of expressed sequence tags from flower buds of alpine Lilium formosanum using a subtractive cDNA library [J]. Plant Molecular Biology Reporter.2011.29:88-97.
    44. Xu G, Li C, Yao Y. Proteomics Analysis of Drought Stress-Responsive Proteins in Hippophae rhamnoides L [J]. Plant Molecular Biology Reporter.2009.27:153-161.
    45. Yabe N, Takahashi T, KomedaY. Analysis of tissue-specific expression of Arabidopsis thaliana HSP90-family gene HSP81 [J]. Plant Cell Physiol.1994.35:1207-1219.
    46. 杨晓云,曹寿椿.不结球白菜波里马胞质雄性不育系花药发育的细胞形态学研究[J].南京农业大学学报.1997.20:36-43.
    47. Yu J, Wang J, Lin W, et al. The genomes of Oryza sativa:a history of duplications. PLoS Biol. 2005.3:0266-0281.
    48. Yuan CX, Czarnecka-Verner E, Gurley WB. Expression of human heat shock transcription factors 1 and 2 in HeLa cells and yeast. Cell Stress Chaperones.1997.2:263-275.
    49. Zhang H, Burrows F. Targeting multiple signal transduction pathways through inhibition of Hsp90. J Mol Med.2004.82:488-499.
    1. 黄祥富,黄上志,傅家瑞.植物热激蛋白的功能及其基因表达的调控[J].植物学通报,1999.16(5):530-536.
    2. 张莉,刘吉平.热激蛋白研究进展[J].广东蚕业,2006.40(2):39-42.
    3. Scharf KD, Siddique M, Vierling E. The expanding family of Arabidopsis thaliana small heat stress proteins and a new family of proteins containing α-crystallin domains (Acd proteins) [J]. Cell Stress Chaperon.2001.6:225-37.
    4. Amand KB, Terranee EM. Evolutionary analysis by wholegenome [J]. Journal of Bacteriology. 2002.8:2260-2272.
    5. 赵群.基于生物信息学对主要蜥蜴科动物系统发生关系的研究[J].江苏农业科学,2009.4:59-63.
    6. 王学敏,李碧侠,任守文. CAPN2基因的生物信息学分析[J].江苏农业科学,2008.1:157-160.
    7. Foster PG, Hickey DA. Compositional biasmay affect both DNA-based and protein-based phylogenetic reconstructions [J]. Molecular Evolution.1999.48:284-290.
    8. Wang W, Wan SB, Zhang P, et al. Prokaryotic expression, polyclonal antibody preparation of the stilbene synthase gene from grape berry and its different expression in fruit development and under heat acclimation [J]. Plant Physiology and Biochemistry.2008.46:1085-1092.
    9. Gasteiger E, Hoogland C, Gattiker A, et al. The proteomics proto-cols handbook [M]. Totowa, New Jersey:Humana Press.2005:117-121.
    10. Hofmann K, Stoffelw. TMbase-A database ofmembrane spanning proteins segments [J]. Biological Chemistry Hoppe-Sey-ler.1993.374:166.
    11. Kristin E. InvB is required for typeⅢ-dependentsecretion of sopA in Salmonella entericaserver typhimurium [J]. Journal of Bac-teriology.2004.186 (4):1215-1219.
    12. Kimpel JA, Key JL. Presence of heat shock mRNAs in field grown soybeans [J]. Plant Physiology. 1985.79:672-678.
    13. Dafny YM, Tzfira T, Vainstein A, et al. Non-redundant functions of sHSP-CIs in acquired thermotolerance and their role in early seed development in Arabidopsis [J]. Plant Mol Biol.2008. 67:363-373.
    14. Haralampidis K, Milioni D, Rigas S, et al. Combinatorial interaction of cis elements specifies the expression of the Arabidopsis AtHsp90-1 gene [J]. Plant Physiology.2002.129:1138-1149.
    15. Suzanne LR, Susan L. Hsp90 as a capacitor for morphological evolution[J]. Nature.1998. 396:336-342.
    16.杨晓云,曹寿椿.温度对不结球白菜波里马胞质雄性不育系育性的影响[J].南京农业大学学报,1996.20(2):22-27.
    17.马信,林爱玲,封德顺,等.小麦细胞分裂素氧化酶基因’TaCKX1原核表达载体的构建及表达[J].生物技术,2009.19(1):10-13.
    18.蒋定文,郭明秋,陈立茜,等.HSP70与热激蛋白诱导胸腺细胞凋亡关系的研究[J].海军医学杂志,2000.21(4):303-307.
    19.孔海燕,贾桂霞,温跃戈.钙在植物花发育过程中的作用[J].植物学通报,2003.20(2):168-177.
    1. Achard P, Cheng H, De Grauwe L, et al. Integration of plant responses to environmentally activated phytohormonal signals [J]. Science.2006.331:91-94.
    2. Achard P, Renou JP, Berthome, R, et al. Plant DELLAs restrain growth and promote survival of adversity by reducing the levels of reactive oxygen species[J]. Curr. Biol.2008.18:656-660.
    3. Blazquez MA, Weigel D. Integration of floral inductive signals in Arabidopsis [J]. Nature.2000. 404:889-892.
    4. Dahanayake S, Galwey N. Effects of interactions between low-temperature treatments, gibberellin (GA3) and photoperiod on flowering and stem height of spring rape (Brassica napus var. annua) [J]. Annals of botany.1999.84:321-327.
    5. Deng W, Ying H, Helliwell CA, et al. FLOWERING LOCUS C (FLC) regulates development pathways throughout the life cycle of Arabidopsis[J]. Proc Natl Acad Sci USA.2011.108: 6680-6685.
    6. Dill A, Sun TP. Synergistic derepression of gibberellin signaling by removing RGA and GAI function in Arabidopsis thaliana [J]. Genetics.2001.159:777-785.
    7. Dornelas MC, Patreze CM, Angenent GC, et al. MADS:the missing link between identity and growth [J]? Trends Plant Sci.2010.16:89-97.
    8. Harberd NP. Relieving DELLA restraint [J]. Science.2003.299:1853-1854.
    9. He Y, Amasino RM. Role of chromatin modification in flowering-time control[J]. Trends Plant Sci. 2005.10:30-35.
    10. Helliwell CA, Wood CC, Robertson M, et al. The Arabidopsis FLC protein interacts directly in vivo with SOC1 and FT chromatin and is part of a high molecular weight protein complex [J]. Plant J. 2006.46:183-192.
    11. Hepworth SR, Valverde F, Ravenscroft D, et al. Antagonistic regulation of flowering-time gene SOC1 by CONSTANS and FLC via separate promoter motifs[J]. EMBO J.2002.21:4327-4337.
    12. Kaufmann K, Muino JM, Jauregui R, et al. Target genes of the MADS transcription factor SEPALLATA3:integration of developmental and hormonal pathways in The Arabidopsis flower [J]. PLoS Biol.2009.7:0854-0875.
    13. Kim SY, Park BS, Kwon SJ, et al. Delayed flowering time in Arabidopsis and Brassica rapa by the overexpression of FLOWERING LOCUS C (FLC) homologs isolated from Chinese cabbage (Brassica rapa L. ssp.pekinensis) [J]. Plant Cell Rep.2007.26:327-336.
    14. King K, Moritz T, Harberd NP. Gibberellins are not required for normal stem growth in Arabidopsis thaliana in the absence of GAI and RGA[J]. Genetics.2001.159:767-776.
    15. Lee H, Suh SS, Park E, et al. The AGAMOUS-LIKE 20 MADS domain protein integrates floral inductive pathways in Arabidopsis [J]. Genes Dev.2000.14:2366-2376
    16. Lee S, Cheng H, King KE, et al. Gibberellin regulates Arabidopsis seed germination via RGL2, a GAI/RGA-like gene whose expression is up-regulated following imbibition[J]. Genes Dev.2002.16: 646-658.
    17. Michaels SD, Amasino RM. FLOWERING LOCUS C encodes a novel MADS domain protein that acts as a repressor of flowering [J]. Plant Cell.1999.11:949-956.
    18. Michaels SD, Himelblau E, Kim SY, et al. Integration of flowering signals in winter-annual Arabidopsis [J]. Plant physiology.2005.137:149-156.
    19. Moon J, Lee H, Kim M, et al. Analysis of flowering pathway integrators in Arabidopsis [J]. Plant Cell Physiol.2005.46:292-299.
    20. Moon J, Suh SS, Lee H, et al. The SOC1 MADS-box gene integrates vernalization and gibberellin signals for flowering in Arabidopsis [J]. Plant J.2003.35:613-623.
    21. Onouchi H, Igeno MI, Perilleux C, et al. Mutagenesis of plants overexpressing CONSTANS demonstrates novel interactions among Arabidopsis flowering-time genes [J]. Plant Cell.2000.12: 885-900.
    22. Rieu I, Powers SJ. Real-time quantitative RT-PCR:design, calculations, and statistics [J]. Plant Cell. 2009.21:1031-1033.
    23. Samach A, Onouchi H, Gold SE, et al. Distinct roles of CONSTANS target genes in reproductive development of Arabidopsis [J]. Science.2000.288:1613-1616.
    24. Searle I, He Y, Turck F, et al. The transcription factor FLC confers a flowering response to vernalization by repressing meristem competence and systemic signaling in Arabidopsis [J]. Genes Dev.2006.20:898-912.
    25. Seo E, Lee H, Jeon J, et al. Crosstalk between cold response and flowering in Arabidopsis is mediated through the flowering-time gene SOC1 and its upstream negative regulator FLC [J]. Plant Cell.2009.21:3185-3197.
    26. Sheldon CC, Burn JE, Perez PP, et al. The FLF MADS box gene:a repressor of flowering in Arabidopsis regulated by vernalization and methylation [J]. Plant Cell.1999.11:445-458.
    27. Sheldon CC, Rouse DT, Finnegan EJ, et al. The molecular basis of vernalization:the central role of FLOWERING LOCUS C (FLC) [J]. Proc Natl Acad Sci USA.2000.97:3753-3758.
    28. Shore P, Sharrocks AD. The MADS-box family of transcription factors [J]. Eur J Biochem.1995. 229:1-13.
    29. Silverstone AL, Jung HS, Dill A, et al. Repressing a repressor:gibberellin-induced rapid reduction of the RGA protein in Arabidopsis[J]. Plant Cell.2001.13:1555-1566.
    30. Tadege M, Sheldon CC, Helliwell CA, et al. Control of flowering time by FLC orthologues in Brassica napus [J]. Plant J.2001.28:545-553.
    31. Tyler L, Thomas SG, Hu J, et al. DELLA proteins and gibberellin-regulated seed germination and floral development in Arabidopsis[J]. Plant Physiol.2004.135:1008-1019.
    32. Wen CK, Chang C. Arabidopsis RGL1 encodes a negative regulator of gibberellin responses [J]. Plant Cell.2002.14:87-100.
    33. Yamauchi Y, Ogawa M, Kuwahara A, et al. Activation of gibberellin biosynthesis and response pathways by low temperature during imbibition of Arabidopsis thaliana seeds [J]. Plant Cell.2004. 16:367-378.
    34. Yang G, Shen S, Yang S, et al. OsCDPK13, a calcium-dependent protein kinase gene from rice, is induced in response to cold and gibberellin [J]. Plant Physiology and Biochemistry.2003.41: 369-374.
    1. Alexandre CM, Hennig L. FLC or not FLC:the other side of vernalization[J]. Journal of experimental botany.2008.59:1127-1135.
    2. Balasubramanian S, Sureshkumar S, Lempe J, et al. Potent induction of Arabidopsis thaliana flowering by elevated growth temperature[J]. Plos Genetics.2006.2:980-989.
    3. Bernier G The control of floral evocation and morphogenesis[J]. Annual Review of Plant Physiology and Plant Molecular Biology.1988.39:175-219.
    4. Blazquez MA, Ahn JH, Weigel D. A thermosensory pathway controlling flowering time in Arabidopsis thaliana[J]. Nature genetics.2003.33:168-171.
    5. Candau R, Avalos J, Cerda-Olmedo E. Regulation of gibberellin biosynthesis in Gibberella fujikuroi[J]. Plant physiology.1992.100:1184-1188.
    6. Chandler J, Dean C. Factors influencing the vernalization response and flowering time of late flowering mutants of Arabidopsis thaliana (L.) Heynh[J]. Journal of experimental botany.1994. 45:1279-1288.
    7. Hayama R, Coupland G Shedding light on the circadian clock and the photoperiodic control of flowering[J]. Current Opinion in Plant Biology.2003.6:13-19.
    8. He Y, Amasino RM. Role of chromatin modification in flowering-time control[J]. Trends in plant science.2005.10:30-35.
    9. He Z. A Laboratory Guide to Chemical Control Technology on Field Crop. Beijing Agricultural University Press, Beijing,1993. pp 60-68.
    10. Helliwell CA, Wood CC, Robertson M, et al. The Arabidopsis FLC protein interacts directly in vivo with SOC1 and FT chromatin and is part of a high molecular weight protein complex[J]. The Plant Journal.2006.46:183-192.
    11. Hepworth SR, Valverde F, Ravenscroft D, et al. Antagonistic regulation of flowering-time gene SOC1 by CONSTANS and FLC via separate promoter motifs[J]. The EMBO Journal.2002. 21:4327-4337.
    12. Hisamatsu T, King RW, Helliwell CA, et al. The involvement of gibberellin 20-oxidase genes in phytochrome-regulated petiole elongation of Arabidopsis[. Plant Physiol.2005.138:1106-1116.
    13. Jacobsen SE, Olszewski NE. Mutations at the SPINDLY locus of Arabidopsis alter gibberellin signal transduction[J]. The Plant Cell.1993.5:887-896.
    14. Jung HH, Kim KS. Flowering and growth of adonis amurensis as influenced by temperature and photosynthetic photon flux density. Horticulture Environment and Biotechnology [J].2010. 51:153-158.
    15. Kim SY, Park BS, Kwon SJ, et al. Delayed flowering time in Arabidopsis and Brassica rapa by the overexpression of FLOWERING LOCUS C (FLC) homologs isolated from Chinese cabbage (.Brassica rapa L. ssp. pekinensis) [J]. Plant cell reports.2007.26:327-336.
    16. Klebs G. Uber das Verhaltnis der Auβenwelt zur Entwicklung der Pflanze. Sitz-Ber Akad Wiss Heidelberg Ser B.1913.5:3-47.
    17. Loeppky HA, Coulman BE. Residue removal and nitrogen fertilization affects tiller development and flowering in meadow bromegrass[J]. Agronomy Journal.2001.93:891-895.
    18. Marin IC, Loef I, Bartetzko L, et al. Nitrate regulates floral induction in Arabidopsis, acting independently of light, gibberellin and autonomous pathways[J]. Planta.2011.233:539-552.
    19. Martinez C, Pons E, Prats G, et al. Salicylic acid regulates flowering time and links defence responses and reproductive development[J]. The Plant Journal.2004.37:209-217.
    20. Moon J, Suh SS, Lee H, et al. The SOC1 MADS box gene integrates vernalization and gibberellin signals for flowering in Arabidopsis[J]. The Plant Journal.2003.35:613-623.
    21. Mouradov A, Cremer F, Coupland G. Control of flowering time:interacting pathways as a basis for diversity[J]. The Plant Cell.2002.14:S111-S130.
    22. Munns R. Na+, K+and Cl- in xylem sap flowing to shoots of NaCl-treated barley[J]. Journal of experimental botany.1985.36:1032-1042.
    23. Neta Sharir I, Shoseyov O, Weiss D. Sugars enhance the expression of gibberellin induced genes in developing petunia flowers[J]. Physiologia Plantarum.2000.109:196-202.
    24. Nieman R, Bernstein L. Interactive effects of gibberellic acid and salinity on the growth of beans[J]. American Journal of Botany.1959.46:667-670.
    25. Onouchi H, Igeno MI, Perilleux C, et al. Mutagenesis of plants overexpressing CONSTANS demonstrates novel interactions among Arabidopsis flowering-time genes[J]. The Plant Cell.2000. 12:885-900.
    26. Rieu I, Powers SJ. Real-time quantitative RT-PCR:Design, calculations, and statistics[J]. The Plant Cell.2009.21:1031-1033.
    27. Schmitz RJ, Amasino RM. Vernalization:a model for investigating epigenetics and eukaryotic gene regulation in plants. Biochimica et Biophysica Acta(BBA)-Gene Structure and Expression[J].2007. 1769:269-275.
    28. Seo E, Lee H, Jeon J, et al. Crosstalk between cold response and flowering in Arabidopsis is mediated through the flowering-time gene SOC1 and its upstream negative regulator FLC[J]. The Plant Cell.2009.21:3185-3197.
    29. Sharp R, Else M, Cameron R, et al. Water deficits promote flowering in Rhododendron via regulation of pre and post initiation development[J]. Scientia Horticulturae.2009.120:511-517.
    30. Sheldon CC, Finnegan EJ, Rouse DT, et al. The control of flowering by vernalization[J]. Current Opinion in Plant Biology.2000.3:418-422.
    31. Sheldon CC, Hills MJ, Lister C, et al. Resetting of FLOWERING LOCUS C expression after epigenetic repression by vernalization[J]. Proceedings of the National Academy of Sciences, USA. 2008.105:2214-2219.
    32. Storey R, Jones RGW. Salt stress and comparative physiology in the Gramineae. I. Ion relations of two salt-and water-stressed barley cultivars, California Mariout and Arimar[J]. Functional Plant Biology.1978.5:801-816.
    33. Suarez-Lopez P, Wheatley K, Robson F, et al. CONSTANS mediates between the circadian clock and the control of flowering in Arabidopsis[J]. Nature.2001.410:1116-1120.
    34. Sung S, Amasino RM. Remembering winter:toward a molecular understanding of vernalization[J]. Annual Review of Plant Biology.2005.56:491-508.
    35. Valverde F, Mouradov A, Soppe W, et al. Photoreceptor regulation of CONSTANS protein in photoperiodic flowering[J]. Science.2004.303:1003-1006.
    36. Wang ZY and Tobin EM. Constitutive Expression of the CIRCADIAN CLOCK ASSOCIATED 1 (CCA1) Gene Disrupts Circadian Rhythms and Suppresses Its Own Expression[J]. Cell.1998. 93:1207-1217.
    37. Weiler EW. Plant hormone immunoassay based on monoclonal and polyclonal antibodies. In HF Linskens, JF Jackson, eds, Immunology in Plant Sciences. Springer-Verlag, New York,1986. pp 1-17
    38. Wilson RN, Heckman JW, Somerville CR. Gibberellin is required for flowering in Arabidopsis thaliana under short days[J]. Plant physiology.1992.100:403-408.
    39. Yamauchi Y, Ogawa M, Kuwahara A, et al. Activation of gibberellin biosynthesis and response pathways by low temperature during imbibition of Arabidopsis thaliana seeds[J]. The Plant Cell. 2004.16:367-378.
    40. Yang YM, Xu CN, Wang BM, et al. Effects of plant growth regulators on secondary wall thickening of cotton fibres[J]. Plant growth regulation.2001.35:233-237.
    41.张敏,蔡瑞国,李慧芝,等.盐胁迫环境下不同抗盐性小麦品种幼苗长势和内源激素的变化[J]。生态学报.2008.28:310-320.
    42. Zhao XY, Yu XH, Foo E, et al. A study of gibberellin homeostasis and cryptochrome-mediated blue light inhibition of hypocotyl elongation[J]. Plant Physiol.2007.145:106-118.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700