用户名: 密码: 验证码:
棉纤维品质形成的生态基础与模拟模型研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文综合国内外棉纤维发育和纤维品质形成的生理生态研究成果,基于2005、2007和2009年在长江流域下游棉区(南京)和黄河流域黄淮棉区(徐州,安阳)进行的异地分期播种试验和施氮量试验,系统分析了棉花果枝部位、温光复合因子、施氮量与棉纤维品质形成的定量关系,明确了棉纤维品质主要性状形成的生态基础,并运用作物模型学原理和系统分析法,综合量化棉纤维品质形成过程及其与环境因子间的动态关系,建立了基于生理生态过程的棉纤维品质形成模拟模型。利用不同熟性棉花品种多年、多试点分播期的试验资料对模型的预测性和广适性进行了检验。同时,将棉纤维品质形成模拟模型与纤维综合品质模型结合,构建了基于过程模型和GIS的棉纤维综合品质地域分异评价系统。主要研究结果如下:
     1.棉花果枝部位、温光复合因子及施氮量对纤维伸长的影响
     在相同环境条件下,棉花中部果枝铃的纤维长度虽稍高于其他部位,但纤维伸长动态变化及最终纤维长度在不同果枝部位间的差异均未达显著水平。棉纤维伸长发育期的累积辐热积PTI可综合温光复合因子的效应,其与棉纤维最大伸长速率Vmax呈极显著线性正相关,与纤维快速伸长持续期T呈极显著线性负相关,与棉纤维长度理论最大值Lenm呈二次曲线函数关系,可以作为表征棉纤维伸长发育温光复合因子的指标。当棉纤维伸长发育期内PTI在335MJm-2左右时,Lenmm最大。氮素水平与温光复合因子对纤维长度的影响存在补偿效应,随施氮量的增加,棉纤维长度达到最大值时对应的PTI减小。当棉纤维伸长发育期内PTI达到240MJ m-2时,240kg N hm-2施氮量下的棉铃对位叶叶氮浓度(NA)更适宜棉纤维伸长;PTI低于此值时,增加施氮量(480kgNhm-2)可减小因累积辐热积降低而造成的棉纤维长度缩短的幅度。
     2.棉花果枝部位、温光复合因子及施氮量对棉纤维比强度形成的影响
     棉花果枝部位显著影响纤维比强度的形成,并与温光复合因子存在协同效应。棉花中部果枝铃发育期温光条件适宜,其纤维比强度显著大于其他果枝部位铃;随温光条件变差,纤维比强度在果枝部位间的差异不明显。棉纤维比强度随花后天数的增加可分为快速增加和稳定增加两个时期,后者是品种间纤维比强度形成差异的主要阶段。PTI与纤维比强度快速增加期的日均增长速率(VRG)线性正相关、与快速增加持续期(TRG)线性负相关。当PTI达到291MJ m-2左右时,纤维比强度Strobs最大,品种间差异主要源于纤维比强度稳定增加期。(3)纤维比强度达到最大值所需的PTI随施氮量增加而减小,施氮量可通过棉铃对位叶叶氮浓度(NA)影响纤维比强度的形成,棉花氮素营养对温光复合因子存在补偿效应,当PTI高于104MJ m-2时,本文240kgN hm-2下的NA更适宜于比强度的形成;PTI低于此值时,增加施氮量可对温光复合因子进行补偿,以利于高强纤维形成。
     3.棉花果枝部位、温光复合因子及施氮量对棉纤维细度、成熟度和马克隆值形成的影响
     最终棉纤维细度、成熟度和马克隆值在棉花不同果枝部位间的差异较小。棉纤维加厚期内的累积辐热积(PTI)与纤维细度、成熟度和马克隆值形成各项特征值的关系均达到极显著水平。达到最小棉纤维细度时,科棉1号、美棉33B所需的PTI分别为310.0.318.1MJm-2:纤维成熟度达到1.60-1.75时,科棉1号、美棉33B所需的PTI分别为211.5-299.7.233.2-301.4MJ m-2;纤维马克隆值达到3.7-4.2时,科棉1号、美棉33B对应的PTI范围分别为14.8-103.8、58.7-127.8MJ m-2。当纤维细度、成熟度和马克隆值形成期的PTI分别低于63.1、144.3、61.5MJ m-2时,增加施氮量可通过调节NA变化对温光复合因子进行补偿,改善棉纤维品质。
     4.棉纤维主要品质性状形成的模拟模型研究
     基于不同熟性棉花品种的异地分期播种和施氮量试验,综合量化品种特性、主要气象条件(温度、太阳辐射)和栽培措施(施氮量)对棉纤维长度、比强度、细度、成熟度和马克隆值形成的影响,建立基于过程的棉纤维品质形成模拟模型。模型根据纤维伸长和加厚发育时间与铃期的关系确定决定棉纤维长度的伸长生理发育时间(PDTFEP)和决定棉纤维比强度、细度、成熟度和马克隆值的加厚生理发育时间(PDTSWP)。在温度、太阳辐射因子方面,采用温光复合指标——辐热积(PTI)综合表示温度和光照对纤维品质形成的影响,并对棉花生育后期温度和太阳辐射之间的互补效应做了初步阐述。氮素因子方面,建立了半经验性的棉铃对位叶单位叶面积氮浓度模型,根据其与各纤维品质的关系,分别构建氮素效应函数。利用不同年份不同生态点的品种、播期和施氮量等田间试验资料对模型进行检验,结果表明:科棉1号、美棉33B的棉纤维长度预测值与实测值的根均方差(RMSE)和相对误差(RE)分别为1.03mm和12.2%、1.03mm和12.5%;纤维比强度的RMSE和RE分别为2.57cN tex-1和11.4%、1.82cN tex-1和9.3%;纤维细度的RMSE和RE分别为388m g-1和4.8%、355mg-1和5.0%;纤维成熟度的RMSE和RE分别为0.12和11.5%、0.11和11.2%;纤维马克隆值的RMSE和RE分别为0.33和12.7%、0.30和11.8%。表明模型对不同条件下纤维品质形成的预测精度较高,具较强的可靠性和适用性。
     5.基于模型和GIS的棉纤维品质地域分异评价系统
     以MapObjects(MO)为开发平台,C#为开发语言,结合基于过程的棉纤维综合品质模型,构建了棉纤维品质地域分异评价系统。该系统以棉花品种特性、气象及施氮量等因子为基本输入,实现了对棉纤维品质地域分异规律的分析和预测,并可对黄河流域和长江流域棉区238个棉花主栽县(市)及江苏省部分县(市)的当年和下一年主栽棉花品种的棉纤维长度、比强度、细度、成熟度、马克隆值和棉纤维综合品质进行预测计算,运行结果以表格、曲线图、柱状图形式输出,并自动生成专题图。以江苏省为例,选取33个棉花主栽县(市)2005年气象数据,选择当年主栽品种科棉1号,对棉纤维品质地域分异进行了系统的评价,运行结果表明,该系统操作简单,运行可靠,预测结果空间表达准确直观,站点评价选取灵活。该系统的实现为实时指导棉花区域生产管理、保障棉花区域经济可持续发展提供科学依据。
Based on the achievements in physiological and ecological mechanisms of cotton fiber development and fiber quality formation, the experiments conducted in the lower reaches of Yangtze River Valley (Nanjing) and the Yellow River Valley (Xuzhou, Anyang) in2005,2007, and2009, we quantify the effects of fruiting branches, weather (temperature and solar radiation, using PTI as an composite indicator), and N supply on cotton fiber development and quality formation. Using agricultural model principle and systematic analysis method, we developed simulation model for cotton fiber quality formation.These models were tested with the field experimental data collected from different sits. Meanwhile, a cotton fiber quality regional distribution and appraisal system based on model and GIS was built, which including both the cotton fiber formation model and integrated fiber quality model. The main results are as follows:
     1. Effects of fruiting branch position, temperature-light factors and nitrogen rates on cotton fiber elongation
     Cotton bolls developed in the middle-branch position produced longer fiber than that in lower-and upper-branch positions, but the dynamic changes of fiber length were not significant among different fruiting branches. PTI can be an indicator assessing temperature-light effect during cotton fiber elongation period. The maximum elongation rate (Vmax) and duration of fiber speedy elongation period (T) were linearly corelated with PTI, while the theoretical maximum of cotton fiber length (Lenm) was quadratic with PTI. The longest Lenm was obtained at PTI of335MJ m-2in cotton fiber elongation period, when Vmax was1.3mm d-and T was16d. There exists an interaction between N fertilization and PTI on fiber elongation. As N fertilization increased, values of PTI for obtaining the longest Lenm decreased. And when PTI was greater than240MJ m-2(237.6and241.6MJ m-2for Kemian1and NuCOTN33B, respectively), NA under240kg N ha-1was more suitable for the elongation of cotton fiber; while PTI was less than that value, NA under480kg N ha-1was more appropriate.
     2. Effects of fruiting branch position, temperature-light factors and nitrogen rates on cotton fiber strength formation
     An interaction between fruiting branch and temperature was observed. Cotton bolls in the Middle-branch produced stronger fiber than that in Lower-and Upper-branch when temperature-light factor was optimal. While temperature-light decreased, fruiting-branch effects are not significant. Development of cotton fiber strength can be divided into rapid and steady growth period, cultivar difference in cotton fiber strength may come from difference in steady growth period. The strongest Strobs was obtained at PTI of291MJ m-2. N fertilization significantly affects formation of cotton fiber strength and has a compensatory effect on PTI. As N increased, PTI for obtain the highest Stro\>s decreased. NA under240kg N ha-1is more suitable for cotton fiber strength when PTI was greater than104MJ m-2; when PTI is less than that value, NA under480kg N ha-1is more appropriate. Fruiting-branch significantly affects formation of cotton fiber strength and there is interaction between fruiting-branch and temperature-light factor. Temperature-light factor and nitrogen rate significantly influence cotton fiber strength formation, nitrogen has a compensate effect on temperature-light factor.
     3. Effects of fruiting branch position, temperature-light factors and nitrogen rates on cotton fiber fineness, maturity and micronaire formation
     The final fiber fineness, maturity, and micronaire were not significant among different fruiting branches. PTI can be an indicator assessing temperature-light effect during cotton fiber secondary wall synthesis period. It significantly related to eigen values of cotton fiber fineness (FinObS), maturity (Matm), and micronaire (Micm). Cottin fiber fineness and micronaire were quadratic with PTI, while cotton fiber maturity was linearly corelated with it. The lowest Finobs was obtained at PTI of310.0and318.1MJ m-2for Kemian1and NuCOTN33B, respectively, in cotton fiber secondary wall synthesis period. Range of1.60-1.75for cotton fiber maturity was obtained at PTI range of211.5-299.7MJ m-2for Kemian1and233.2-301.4MJ m-2for NuCOTN33B. Range of3.7-4.2for cotton fiber micronaire was obtained at PTI range of14.8-103.8MJ m-2for Kemian1and58.7-127.8MJ m-2for NuCOTN33B. N fertilization affects cotton fiber fineness, maturity, and micronaire by influencing subtending leaf N per unit area (NA). And there exists an interaction between NA and PTI. When PTI was less than63.1,144.3,61.5MJ m2,480kg N ha-1was more appropriate for cotton fiber fineness, maturity, and micronaire formation.
     4. Modeling cotton fiber quality formation
     The simulation of cotton (Gossypium hirsutum L.) fiber quality is still an area of great uncertainty, especially in their formation process. The aim of this study was to develop a model for simulating cotton fiber quality formation for explaining the effect of genotype, weather (temperature and solar radiation), and crop management N supply. The duration of fiber elongation for fiber length formation and secondary wall synthesis for fiber strength, fineness, maturity and micronaire formation were determined as proportional to the boll physiological developmental time (PDT), which was simulated as a function of temperature, radiation, and N. The interactive effect of temperature and radiation on cotton fiber quality was modeled as a function of the integrated photo-thermal index, the product of thermal effectiveness and radiation (PTI). The subtending leaf N concentration per unit area of cotton boll (NA) was used as the indicator of boll N nutrition. The changes of NA with boll development, N application rate, and boll position were simulated by a semi-empirical formula. Based on the relations between the actual and critical NA, the nitrogen response functions for the formation of different fiber quality parameters were quantified, accounting for the interactive effects of N nutrition and PTI on fiber quality. Calibration and validation of the model were made using fiber quality data obtained from three years with two sowing dates and three or four N application rates at three locations in China. The average RMSE for fiber length, strength, fineness, maturity, and micronaire predictions were1.03mm,2.20cN tex-1,372m g-1,0.11and0.3, respectively. The proposed model well explained the observed genotypic and environmental variations in fiber length, strength, fineness, maturity and micronaire formation of cotton in China.
     5. Cotton fiber quality regional distribution and appraisal system based on model and GIS
     In order to predict and access the cotton fiber quality formation and their spatial distribution, taking MapObjects as investigative platform, using C#, then based on process-based model of the cotton fiber quality (CFQ), the regional distribution and appraisal System of CFQ is developed. By inputting the parameters of cotton species characteristic, climate and nitrogen application rate, it can analysis and estimate cotton fiber quality formation and their spatial interpolation. In the same time, each station of224 cotton lords in the Yellow River reaches and the Yangtze River reaches and eco-sites of Jiangsu province can be calculated and predicted for that year and next year a lord to cotton fiber length,strength, micromaire and integrated fiber quality. Showing the result by using the form, carve and chart, and automatically make the matic map. The case study of the system with the datasets in33eco-sites of Jiangsu province indicated that the system operates easily, runs reliably, estimates the space expression of result accurately and chooses the stations flexibly. This system can provide science basis for economy sustainable development in the cotton district.
引文
[1]Bradow J M, Hinojosa O, Wartelle L H, et al. Applications of AFIS fineness and maturity module and x-ray fluorescence spectroscopy in fiber maturity evaluation [J]. Textile Research Journal, 1996,66(9):545-554.
    [2]Mishra R, Yadav N R, Wilkin T A. Manipulation of fiber quality in transgenic cotton via ectopic expression of fibre gene. In, Proceedings of Beltwide Cotton Conference; 2001:1437-1439
    [3]Meredith W R, Bridge R R. Heterosis and gene action in cotton(Gossypium hirsutum L) [J]. Crop Science,1972,12:304-310.
    [4]Patil N B, Singh M. Development of medium-staple high-strength cotton suitable for rotor spinning systems. In, G A Constable and NW Forrester (eds) Challenging the Future Proceedings of World Cotton Conference I, CSIRO, Australia; 1995:264-267
    [5]Richard G P, Roy G C, Jinfa Z. Genetic Variation for Agronomic and Fiber Properties in an Introgressed Recombinant Inbred Population of Cotton [J]. Crop Science,2006,46(3):1311-1317.
    [6]Yeates S J, Constable G A, McCumstie T. Irrigated cotton in the tropical dry season. Ⅲ:Impact of temperature, cultivar and sowing date on fibre quality [J]. Field Crops Research,2010,116(3): 300-307.
    [7]Zhao D, Oosterhuis D M. Cotton responses to shade at different growth stages:growth, lint yield and fibre quality [J]. Experimental Agriculture,2000,36(1):27-39.
    [8]Pettigrew W T. Environmental effects on cotton fiber carbohydrate concentration and quality [J]. Crop Science,2001,41:1108-1113.
    [9]Liakatas A, Roussopoulos D, Whittington W J. Controlled-temperature effects on cotton yield and fibre properties [J]. Journal of Agricultural Science, Cambridge,1998,130:463-471.
    [10]Read J J, Reddy K R, Jenkins J N. Yield and fiber quality of Upland cotton as influenced by nitrogen and potassium nutrition [J]. European Journal of Agronomy,2006,24(3):282-290.
    [11]Pettigrew W T, Adamczyk J. Nitrogen Fertility and Planting Date Effects on Lint Yield and CrylAc (Bt) Endotoxin Production [J]. Agronomy Journal,2006,98(3):691-697
    [12]Girma K, Teal R K, Freeman K W, et al. Cotton lint yield and quality as affected by applications of N, P, and K fertilizers [J]. The Journal of Cotton Science,2007,11(1):12-19.
    [13]Meredith W R. Improving fiber strength through genetics and breeding. In, Proceedings from Cotton Fiber Cellulose Structure, Function and Utilization Conference Memphis, Tennessee: National Cotton Council of American; 1992:289-302
    [14]Campbell B T, Jones M A. Assessment of genotype× environment interactions for yield and fiber quality in cotton performance trials [J]. Euphytica,2005,144(1-2):69-78.
    [15]Davidonis G H, Johnson A S, Landivar J A, et al. Cotton fiber quality is related to boll location and planting date [J]. Agronomy Journal,2004,96(1):42-47.
    [16]Bradow J M, Bauer P J, Hinojosa O, et al. Quantitation of cotton fibre-quality variations arising from boll and plant growth environments [J]. European Journal of Agronomy,1997,6(3-4): 191-204.
    [17]Jamieson P D, Semenov M A. Modelling nitrogen uptake and redistribution in wheat [J]. Field Crops Research,2000,68(1):21-29.
    [18]Rinaldi M, Losavio N, Flagella Z. Evaluation and application of the OILCROP-SUN model for sunflower in southern Italy [J]. Agricultural Systems,2003,78(1):17-30.
    [19]赖童飞,杜雄明.棉纤维分化起始的分子生物学研究进展[J].西北植物学报,2008,28(2):416-424.
    [20]Michailidis G, Argiriou A, Darzentas N, et al. Analysis of xyloglucan endotransglycosylase/ hydrolase (XTH) genes from allotetraploid (Gossypium hirsutwn) cotton and its diploid progenitors expressed during fiber elongation [J]. Journal of Plant Physiology,2009,166(4): 403-416.
    [21]Gokani S J, Thaker V S. Physiological and biochemical changes associated with cotton fiber development:Ⅸ. Role of IAA and PAA [J]. Field Crops Research,2002,77(2-3):127-136.
    [22]张文静,周治国.次生壁加厚过程中影响棉纤维素合成的主要生理机制[J].中国农学通报,2008,24(9):117-121.
    [23]Delmer D P, Haigler C H. The Regulation of Metabolic Flux to Cellulose, a Major Sink for Carbon in Plants [J]. Metabolic Engineering,2002,4(1):22-28.
    [24]Joshi P C, Wadhwani A M, Johri B M. Morphological and embryological studies of Gossypium [J]. Proceedings of the National Institute of Science-India,1967,33:37-93.
    [25]Beasley C A. Ovule culture:fundamental and pragmatic research for the cotton industry [M]:New York:Springer-Verlag; 1977.
    [26]Joshi P A, Stewart J M, Graham E T. Localization of β-glycerophosphatase activity in cotton fiber during differentiation [J]. Protoplasma,1985,125:75-85.
    [27]杜雄明,潘家驹,汪若海.棉纤维细胞分化和发育[J].棉花学报,2000,12(4):212-217.
    [28]董合忠,徐楚年,余炳生.陆地棉与海岛棉纤维发育的比较研究Ⅱ.棉纤维的伸长、加厚和纤维品质[J].中国农业大学学报,1990,16(2):137-141.
    [29]Kim H J, Triplett B A. Cotton Fiber Growth in Planta and in Vitro. Models for Plant Cell Elongation and Cell Wall Biogenesis [J]. plant Physiology,2001,127(4):1361-1366.
    [30]束红梅,王友华,张文静,等.两个棉花品种纤维发育关键酶活性变化特征及其与纤维比强度的关系[J].作物学报,2008,34(3):437-446.
    [31]Schuber A M, Benedict C R. Cotton fiber development kinetics of cell elongation and secondary wall thickening [J]. Crop Science,1973,13:704-709.
    [32]Basra A S, Malik C P, Bourne G H, et al. Development of the Cotton Fiber. In, International Review of Cytology:Academic Press,1984:65-113.
    [33]Ruan Y L, Chourey P S, Delmer D P, et al. The differential expression of sucrose synthase in relation to diverse patterns of carbon partitioning in developing cotton seed [J]. plant Physiology, 1997,115(2):375-385.
    [34]Bange M P, Milroy S P. Growth and dry matter partitioning of diverse cotton genotypes data analysis [J]. Field Crops Research,2004,87:73-87.
    [35]徐楚年.棉花纤维发育学[M].北京:北京农业大学出版社;1988.
    [36]Ferguson D L, Turley R B, Triplett B A, et al. Comparison of protein profiles during cotton (Gossypium hirsutum L.) fiber cell development with partial sequences of two proteins [J]. Agricultural Food Chemistry,1996,44(12):4022-4027.
    [37]Haigler C H, Ivanova-Datcheva M, Hogan P S. Carbon partitioning to cellulose synthesis [J]. Plant Molecular Biology,2001,47:29-51.
    [38]Kimura S, Kondo T. Recent progresss in cellulose biosynthesis [J]. Journal of Plant Research, 2002,115:297-302.
    [39]Delmer D P, Haigler C H. The regulation of metabolic flux to cellulose, a major sink for carbon in plants [J]. Metabolic Engineering,2002,4:22-28.
    [40]Carnachan S M, Harris P J. Polysaccharide compositions of primary cell walls of the palms Phoenix canariensis and Rhopalostylis sapida [J]. Plant Physiology and Biochemistry,2000,38: 699-708.
    [41]Willision H M. Cell wall biosynthesis in the cotton fiber. In,176th ACS National Meeting Cellulose, Paper and textile chemistry Division, American chemical Society; 1978
    [42]Meinert M C, Delmer D P. Changes in biochemical composition of the cell wall of the cotton fiber during development [J]. plant Physiology,1977,59:1088-1097.
    [43]刘继华,尹承佾,于凤英.棉花纤维强度的形成机理与改良途径[J].中国农业科学,1994,27(5):10-16.
    [44]束红梅,王友华,陈兵林,等.棉花纤维素累积特性的基因型差异及与纤维比强度形成的关系[J].作物学报,2007,33(6):921-926.
    [45]卞海云,周治国,陈兵林,等.棉纤维加厚发育期间纤维素生物合成研究进展[J].棉花学报,2004,16(6):374-378.
    [46]Bradow J M, Johnson R M, Bauer P J, et al. Site-specific management of cotton fiber quality. In, Precision Agriculture Cotton Council; 1999:677-686
    [47]Bradow J M, Bauer P J. Fiber quality variation related to cotton planting date and temperature. In, Proceedings of Beltwide Cotton Conference; 1997:1491-1495
    [48]蒋光华,周治国,陈兵林,等.棉株生理年龄对纤维加厚发育及纤维比强度形成的影响[J].中国农业科学,2006,39(2):265-273.
    [49]卞海云,周治国.低温条件下外源物质对棉株不同部位果枝棉铃纤维比强度的影响[J].西北植物学报,2006,26(7):1390-1394.
    [50]Reddy K R, Hodges H F, Mckinion J M. A temperature model for cotton phenology [J]. Biotronics Journal,1993,2:47-59.
    [51]马富裕.棉铃发育及纤维品质形成的生态效应与模拟研究[D].2004.
    [52]尹志成,蔺万煌,蒋建雄,萧浪涛.影响棉纤维分化和发育的因素[J].生命科学研究,2005,9(S2):121-124.
    [53]Sequeira R A, Cochran M, El-Zik K M, et al. Inclusion of plant structure and fiber quality into a distributed delay cotton model to improve management and optimize profit [J]. Ecological Modelling,1994,71(1-3):161-186.
    [54]Braden C A, Smith C W. Fiber length development in near-long staple Upland cotton [J]. Crop Science,2004,44(5):1553-1559.
    [55]Thaker V S, Saroop S, Vaishnav P P, et al. Genotypic variations and influence of diurnal temperature on cotton fibre development [J]. Field Crops Research,1989,22(2):129-141.
    [56]Stewart J M D, Oosterhuis D M, Heitholt J J, et al. Physiology of Cotton[M]. New York; 2010.
    [57]杨佑明,贾君镇,徐楚年,李海燕,郭玉海.棉花纤维细胞起始及温度、植物生长物质对其影响[J].中国农业大学学报,1999,4(3):15-22.
    [58]Gipson J R, Joham H E. Influence of Night Temperature on Growth and Development of Cotton (Gossypium hirsutum L.). III. Fiber Elongation [J]. Crop Science,1969,9:127-129.
    [59]Xie W, Trolinder N L, Haigler C H. Cool temparature effects on cotton fiber initiation and elongation clarified using In vitro cultures [J]. Crop Science,1993,33:1258-1264.
    [60]Gipson J R, Ray L L. Fiber elongation rates in five varieties of cotton(Gossypium hirsutum L.) as influenced by night temperature [J]. Crop Science,1969,9:339-341.
    [61]Quisenberry J E, Kohel R J. Growth and development of fiber and seed in upland cotton [J]. Crop Science,1975,15:463-467.
    [62]Bauer P J, Bradow J M. Cotton genotype response to early-season cold temperatures [J]. Crop Science,1996,36:1602-1606.
    [63]Bradow J M, Bauer P J, Sassenrath-Cole G F, Johnson R. M. Modulations of fiber properties by growth environment that persist as variations of fiber and yarn quality. In, Proceedings of Beltwide Cotton Conference, National Cotton Council of America. Memphis, Tennessee; 1997:1351-1360.
    [64]O'Kelly Y J, Carr C. Elongation of the cotton fiber [J].1953:55-68.
    [65]马富裕,曹卫星,李少昆,等.棉花纤维品质与气象因子的定量分析[J].应用生态学报,2005,16(11):2102-2107.
    [66]张丽娟,熊宗伟,陈兵林,等.气候条件变化对棉纤维品质的影响[J].自然灾害学报,2006,15(2):79-84.
    [67]周青,王友华,许乃银,等.温度对棉纤维糖代谢相关酶活性的影响[J].应用生态学报,2009,20(1):149-156.
    [68]Gipson J R, Joham H E. Influence of Night Temperature on Growth and Development of Cotton (Gossypium birsutum L.). II Fiber Properties [J]. Agronomy Journal,1968,60:296-298.
    [69]Davidonis G, Hinojosa O. Influence of seed location on cotton fiber development in planta and in vitro [J]. Plant Science,1994,103(1):107-113.
    [70]Hanson R G, Ewing E C. Effect of Environmental Factors on Fiber Properties and Yield of Deltapine Cottons [J]. Agronomy Journal,1956,48:573-581.
    [71]Pettigrew W T. Low light condition compromise the quality of fiber produced. In, Proc Beltwide Cotton Conference; 1996:1238-1239
    [72]周治国,孟亚利,施培,等.日照时数时间分布对麦套棉铃主要品质性状的影响[J].中国农业科学,1999,32(1):40-45.
    [73]Hearn A. Response of cotton to nitrogen and water in a tropical environment. III. Fibre quality [J]. The Journal of Agricultural Science,1976,86(2):257-269.
    [74]Buttar G S, Aujla M S, Thind H S, et al. Effect of timing of first and last irrigation on the yield and water use efficiency in cotton [J]. Agricultural Water Management,2007,89(3):236-242.
    [75]Grimes D W. Relation of Cotton Growth and Yield to Minimum Leaf Water Potential [J]. Crop Science,1982,22(1):134.
    [76]李乐农,彭克勤,孙福增,等.洪涝对棉花产量及其品质的影响[J].作物学报,1999,25(1):109-115.
    [77]Dagdelen N, Basal H, Yilmaz E, et al. Different drip irrigation regimes affect cotton yield, water use efficiency and fiber quality in western Turkey [J]. Agricultural Water Management,2009, 96(2009):111-120
    [78]Balkcom K S, Reeves D W, Shaw J N, et al. Cotton yield and fiber quality from irrigated tillage systems in the Tennessee Valley [J]. Agronomy Journal,2006,98(3):596-602.
    [79]Ertek A, Kanber R. Effects of different irrigation programs on the quality properties of drip-irrigated cotton [J]. KSU J Sci Eng,2002,5:118-130.
    [80]Balkcom K S, Reeves D W, Shaw J N. Cotton yield and fiber quality from irrigated tillage systems in the Tennessee Valley [J]. Agronomy Journal,2006,98:596-602.
    [81]Hearn A B. The principles of cotton water relations and their application in management. In:GA Constable and NW Forrester C., Melbourne ed, Challenging the future:Proceedings of the World Cotton Research Conference-1. Brisbane, Australia; 1994:66-92
    [82]潘学标.作物模型原理[M].北京:气象出版社,2003.
    [83]杨志彬,陈兵林,周治国.花铃期棉田速效养分时空变异特征及对棉花产量品质的影响[J].作物学报,2008,34(8):1393-1402.
    [84]马溶慧,周治国,王友华,等.棉铃对位叶氮浓度与纤维品质指标的关系[J].中国农业科学,2009,42(3):833-842.
    [85]马溶慧,许乃银,张传喜,等.氮素水平对棉铃干物质积累分配和纤维品质性状的影响[J].棉花学报,2009,21(2):115-120.
    [86]Bradow J., Davidonis G H. Quantitation of fiber quality and the cotton production-processing interface:a physiologist's perspective [J]. The Journal of Cotton Science,2000,4:34-64.
    [87]Bowman D T, Gutierrez O A. Breeding and genetics-sources of fiber strength in the U.S. Upland cotton crop from 1980 to 2000 [J]. Journal of Cotton Science,2003,7(4):164-169.
    [88]Meredith W R. Minimum Number of Genes Controlling Cotton Fiber Strength in a Backcross Population [J]. Crop Science,2005,45(3):1114-1119.
    [89]Mert M, Aslan E, Akiscan Y, et al. Response of cotton (Gossypium hirsutum L.) to different tillage systems and intra-row spacing [J]. Soil and Tillage Research,2006,85(1-2):221-228.
    [90]蒋光华,孟亚利,陈兵林,等.低温对棉纤维比强度形成的生理机制影响[J].植物生态学报,2006,30(2):335-343.
    [91]刘继华,尹承佾,于凤英,等.棉花纤维强度的形成机理与改良途径[J].中国农业科学,1994,27(5):10-16.
    [92]刘继华,杨洪博,曹鸿鸣.棉纤维的加厚发育与脱水成熟[J].中国棉花,1995,22(8):37-39.
    [93]张文静,胡宏标,王友华,等.棉纤维发育相关酶活性的基因型差异与纤维比强度的关系[J].中国农业科学,2007,40(10):2177-2184.
    [94]张文静,胡宏标,陈兵林,等.棉纤维加厚发育生理特性的基因型差异及对纤维比强度的影响[J].作物学报,2007,33(4):531-538.
    [95]Hanson R G, Ewing E C. Effect of Environmental Factors on Fiber Properties and Yield of Deltapine Cottons [J]. Agronomy Journal,1956,48(12):576-581.
    [96]束红梅,周治国,郑密,等.不同温度敏感性棉花纤维发育相关酶活性变化对低温的响应[J].应用生态学报,2009,20(9):2157-2165.
    [97]蒋光华.低温和棉株生理年龄对棉纤维加厚发育及纤维比强度的影响[D].2005.作物栽培学与耕作学.
    [98]Johnson R M, Sassenrath-cole G F, Bradow J M. Prediction of cotton fiber maturity from environmental parameters. In, Process of Beltwide Cotton Conference; 1997
    [99]张文静,周治国,胡宏标,等.棉花季节桃纤维发育相关酶活性变化与纤维比强度形成的关系[J].棉花学报,2008,20(5):342-347.
    [100]Kasperbauer M J. Cotton fiber length is affected by far-red light impinging on developing bolls [J]. Crop Science,2000,40:1673-1678.
    [101]周治国,孟亚利,施培,等.棉麦两熟棉纤维强度与铃期气象因子关系研究[J].棉花学报,1999,11(3):134-140.
    [102]王庆材.花铃期遮荫对棉纤维发育及叶片生理特性的影响[D].2005,博士.
    [103]郭文琦,张思平,陈兵林,等.水氮运筹对棉花花后生物量和氮素利用率的影响[J].西北植 物学报,2008,28(11):2270-2277.
    [104]Booker J D, Bordovsky J R, Lascano J, et al. Variable rate irrigation on cotton lint yield and fiber quality. In, Beltwide Cotton Conferences, San Antonio, Texas; 2006:1768-1776
    [105]刘瑞显,郭文琦,陈兵林,等.氮素对花铃期干旱再复水后棉花纤维比强度形成的影响[J].植物营养与肥料学报,2009,15(3):662-669.
    [106]冯营,赵新华,王友华,等.棉纤维发育过程中糖代谢生理特征对氮素的响应及其与纤维比强度形成的关系[J].中国农业科学,2009,42(1):93-102.
    [107]Bauer P S, Roof M E. Nitrogen, aldicarb, and cover crop effects on cotton yield and fiber properties [J]. Agronomy Journal,2004,96(2):369-376.
    [108]Jost P. Cotton fiber quality and the issues in Georgia [J]. Cooperative Extension Service,2005: 1-20.
    [109]Ramey H H. The meaning and assessment of cotton fibre fineness [M]:International Institute for Cotton, Technical Research Division; 1982.
    [110]Matic-Leigh R, Cauthen D A. Determining Cotton Fiber Maturity by Image Analysis [J]. Textile Research Journal,1994,64(9):534-544.
    [111]Ryser U. Cell wall biosynthesis in differentiating cotton fibres [J]. European journal of cell biology, 1985,39(1):236-256.
    [112]Sassenrath-Cole G F. Dependence of canopy light distribution on leaf and canopy structure for two cotton (Gossypium) species [J]. Agricultural and Forest Meteorology,1995,77(1-2):55-72.
    [113]Bradow J M, Sassenrath-Cole G F, Hinojosa O, et al. Cotton fiber physical and physiological maturity variation in response to genotype and environment. In, Proceedings of Beltwide Cotton Conference, National Cotton Council of America. Memphis, Tennessee; 1996:1251-1254
    [114]Johnson R M, Sassenrath-Cole G F, Bradow J M. Prediction of cotton fiber maturity from environmental parameters. In, Proceedings of Beltwide Cotton Conference, National Cotton Council of America. Memphis, Tennessee; 1997:1454-1455
    [115]Haigler C H. Relationship between polymerization and crystallization in microfibril biogenesis. In, Biosynthesis and biodegradation of cellulose. New York,1991:99-124.
    [116]Haigler C H., Taylor J G, Martin L K. Temperature dependence of fiber cellulose biosynthesis: Impact on fiber maturity and strength. In, Proceedings of the Biochemistry of Cotton Workshop, Galveston, TX, September 28-30 Cotton Inc, Raleigh, NC; 1994:95-100
    [117]Murray A K, Brown J. Glycoconjugate profiles of developing fibers from different fruiting branches on the same plant. In, Proceedings of Beltwide Cotton Conference, National Cotton Council of America, Memphis, Tennessee; 1997:1496-1499
    [118]Davidonis G H, Johnson A, Landivar J, et al. Influence of low-weight seeds and motes on the fiber properties of other cotton seeds [J]. Field Crops Research,1996,48(2-3):141-153.
    [119]Pettigrew W T. Source-to-Sink Manipulation Effects on Cotton Fiber Quality [J]. Agronomy Journal,1995,87:947-952.
    [120]Porter P M, Sullivan M J, Harvey L H. Cotton Cultivar Response to Planting Date on the Southeastern Coastal Plain [J]. Journal of production agriculture,1996,9(2):223-227.
    [121]Dong H, Li W, Tang W, et al. Yield, quality and leaf senescence of cotton grown at varying planting dates and plant densities in the Yellow River Valley of China [J]. Field Crops Research, 2006,98(2-3):106-115.
    [122]Reddy K, Davidonis G, Johnson A, et al. Temperature regime and carbon dioxide enrichment alter cotton boll development and fiber properties [J]. Agronomy Journal,1999,91(5):851-858.
    [123]王庆材,王振林,宋宪亮,等.花铃期遮荫对棉纤维品质的影响[J].应用生态学报,2005,16(8):1465-1468.
    [124]许玉璋,许萱,李中东.土壤水分对棉纤维发育的影响[J].西北农业学报,1994,3(3):18-22.
    [125]Blaise D, Singh J V, Bonde A N, et al. Effects of farmyard manure and fertilizers on yield, fibre quality and nutrient balance of rainfed cotton (Gossypium hirsutum) [J]. Bioresource Technology, 2005,96(3):345-349.
    [126]Boquet D J, Hutchinson R L, Breitenbeck G A. Long-term tillage, cover crop, and nitrogen rate effects on cotton:yield and fiber properties [J]. Agronomy Journal,2004,96(5):1436-1442.
    [127]Fritschi F B, Roberts B A, Travis R L, et al. Response of irrigated Acala and Pima cotton to nitrogen fertilization:grwoth, dry matter partitioning, and yield [J]. Agronomy Journal,2003, 95(1):133-146.
    [128]Reddy K R, Koti S, Davidonis G H, et al. Interactive effects of carbon dioxide and nitrogen nutrition on cotton growth, development, yield, and fiber quality [J]. Agronomy Journal,2004, 96(4):1148-1157.
    [129]Tewolde H, Fernandez C J. Fiber quality response of Pima cotton to nitrogen and phosphorus deficiency [J]. Journal of Plant Nutrition,2003,26(1):223-235.
    [130]Singh V, Nagwekar S N. Effect of weed control and nitrogen levels on quality characters in cotton [J]. Indian Society Cotton Improvement,1989,14:60-64.
    [131]Constable G A, Hearn A B. Irrigation for crops in a subhumid environment. VI. Effect of irrigation and nitrogen fertilizer on growth, yield and quality of cotton [J]. Irrigation Science,1981,3: 17-28.
    [132]Rochester I J, Peoples M B, Constable G A. Estimation of the N fertilizer requirement of cotton grown after legume crops [J]. Field Crops Research,2001,70:43-53.
    [133]Wrather J A, Phipps B J, Stevens W E, et al. Cotton planting date and plant population effects on yield and fiber quality in the Mississippi Delta [J]. The Journal of Cotton Science,2008,12:1-7.
    [134]Pettigrew W T. The Effect of Higher Temperatures on Cotton Lint Yield Production and Fiber Quality [J]. Crop Science,2008,48(1):278-285.
    [135]王庆材,孙学振,宋宪亮,等.不同棉铃发育时期遮荫对棉纤维品质性状的影响[J].作物学报,2006,32(5):671-675.
    [136]马溶慧,许乃银,张传喜,等.氮素对不同开花期棉铃纤维比强度形成的生理基础的影响[J].应用生态学报,2008,19(12):2618-2626.
    [137]赵新华,王友华,束红梅,等.棉(Gossypium hirsutum L.)株生理年龄对棉铃生物量和氮素累积的影响[J].中国农业科学,2010,43(22):4605-4613.
    [138]Jones M A, Wells R. Fiber yield and quality of cotton grown at two divergent population densities [J]. Crop Science,1998,38:1190-1195.
    [139]陈冠文,余渝.棉铃发育温光效应的初步研究[J].棉花学报,2001,13(1):63-64.
    [140]Roussopoulos D, Liakatas A, Whittington W J. Cotton responses to different light-temperature regimes [J]. Journal of Agricultural Science,1998,131:277-283.
    [141]张旺锋,王振林,余松烈,等.氮肥对新疆高产棉花群体光合性能和产量形成的影响[J].作物学报,2002,28(6):789-796.
    [142]Hikosaka K. Leaf canopy as a dynamic system:Ecophysiology and optimality in leaf turnover [J]. Annals of Botany,2005,95(3):521-533.
    [143]孙红春,冯丽肖,谢志霞,等.不同氮素水平对棉花不同部位-铃叶系统生理特性及铃重空间分布的影响[J].中国农业科学,2007,40(8):1638-1645.
    [144]Milroy S P, Bange M P. Nitrogen and Light Responses of Cotton Photosynthesis and Implications for Crop Growth [J]. Crop Science,2003,43(3):904-913.
    [145]Evans J R. Photosynthetic acclimation and nitrogen partitioning within a lucerne canopy I. Canopy characteristics [J]. Australian Journal of Plant Physiology,1990,20:55-67.
    [146]Bondada B R, Osterhuis D M, Norman R J, et al. Canopy photosynthesis, growth, yield and boll 15N accumulation under nitrogen stress in cotton [J]. Crop Science,1996,36(1):127-133.
    [147]Ma R H, Xu N Y, Zhang C X, et al. Physiological Mechanism of Sucrose Metabolism in Cotton Fiber and Fiber Strength Regulated by Nitrogen [J]. Acta Agronomica Sinica,2008,34(12): 2143-2151.
    [148]Wall G W, Amthor J S, Kimball B A. COTCO2:a cotton growth simulation model for global change [J]. Agricultural and Forest Meteorology,1994,70(1-4):289-342.
    [149]Baker D N, Lambert J R, Mckinion D M. GOSSYM, a simulator of cotton crop growth and yield [J]. South Cordlina Agricultural Experiment Station Technical Bulletin,1983,
    [150]Mutsaers H J W. KUTUN:A morphogenetic model for cotton (Gossypium hirsutum L.) [J]. Agricultural Systems,1984,14(4):229-257.
    [151]Hearn A B. OZCOT:a simulation model for cotton crop management [J]. Agricultural Systems, 1994,44(1994):257-299.
    [152]潘学标,韩湘玲,石元春.一个可用于栽培管理的棉花生长发育模拟模型——COTGROW[J].中国农业科学,1996,29(1):94-96.
    [153]Reddy K R, Hodges H F, McKinion J M, et al. Crop Modeling and Applications:A Cotton Example. In, Advances in Agronomy:Academic Press,1997:225-290.
    [154]Fye R E, Reddy V R, Baker D N. The validation of GOSSYM:Part 1-Arizona conditions [J]. Agricultural Systems,1984,14(2):85-105.
    [155]Reddy V R, Baker D N, Jenkins J N. Validation of GOSSYM:Part II. Mississippi conditions [J]. Agricultural Systems,1985,17(3):133-154.
    [156]Hearn A B, Da Roza G D. A simple model for crop management applications for cotton (Gossypium hirsutum L.) [J]. Field Crops Research,1985,12:49-69.
    [157]Jackson B S, Arkin G F, Hearn A B. The Cotton Simulation Model "COTTAM":Fruiting Model Calibration and Testing [J]. American Society of Agricultural and Biological Engineers,1988, 31(3):846-854.
    [158]Hanan J S, Hearn A B. Linking physiological and architectural models of cotton [J]. Agricultural Systems,2003,75(1):47-77.
    [159]Larson J A, Mapp H P, Verhalen L M, et al. Adapting a cotton model for decision analyses:a yield-response evaluation [J]. Agricultural Systems,1996,50(2):145-167.
    [160]Zhang L, Werf W V D, Cao W, et al. Development and validation of SUCROS-Cotton:a potential crop growth simulation model for cotton [J]. NJAS-Wageningen Journal of Life Sciences,2008, 56(1-2):59-83.
    [161]Viator R P, Nuti R C, Edmisten K L, et al. Predicting cotton boll maturation period using degree days and other climatic factors [J]. Agronomy Journal,2005,97:494-499.
    [162]潘学标,韩湘玲,董占山,等.棉花生长发育模拟模型COTGROW的建立Ⅰ光合作用和干物质生产与分配[J].棉花学报,1997,9(3):132-141.
    [163]Hearn A B, Bange M P. SIRATAC and CottonLOGIC:persevering with DSSs in the Australian cotton industry [J]. Agricultural Systems,2002,74(2002):27-56.
    [164]Wanjura D F, Barker G L. Cotton lint yield accumulation rate and quality development [J]. Field Crops Research,1985,10:205-218.
    [165]Muhidong J. A cotton fiber quality model [D]. Agricultural and Biological Engineering,1996, Doctor of philosophy.
    [166]Bernhardt J L, Phillips J R. Fruiting position influence on yield components of cotton bolls. I. Fiber properties In, Beltwide cotton production research conferences. Las Vegas; 1986:113-115
    [167]Heskenth J D, Low A. The effect of temperature on components of yield and fiber quality of yield and fiber quality of cotton varieties of diverse origin [J]. Cotton Growing Review,1968,45: 243-257.
    [168]胡廷馨,陈国平,顾立美,等.气象因子在时间分布上对棉纤维品质影响效应初探[J].中国纤检,1991,10:11-13.
    [169]周治国.黄河中下游地区棉麦两熟棉铃发育及棉铃品质气候生态基础研究[D].1997,西北农业大学博士论文.
    [170]余隆新,唐仕芳,王少华,等.湖北省棉纤维品质生态区划及研究[J].棉花学报,1993,5(2):15-20.
    [171]张丽娟.棉纤维综合品种模型构建及地域分异评价系统的研究[D].2006,南京农业大学博士论文.
    [172]韩慧君.气候生态因素对棉花产量与纤维品质的影响[J].中国农业科学,1991,24(5):23-29.
    [173]陈金湘,李曼瑞,刘海荷,等.气象因子对棉花产量和品级影响的灰色关联分析[J].棉花学报,1996,8(2):88-91.
    [174]马富裕,朱艳,曹卫星,等.棉纤维品质指标形成的动态模拟[J].作物学报,2006,32(3):442-448.
    [175]陈兵林,曹卫星,周治国,等.棉花纤维品质指标的时空分布模型研究[J].作物学报,2007,33(5):763-770.
    [176]Iyengar R L N, Gupta A K. Some functions involving fiber properties for estimating yarn tenacity [J]. Textile Research Journal,1974,44(7):492-494.
    [177]Bogdan J F. The Prediction of Cotton Yarn Strengths [J]. Textile Research Journal,1967,37(6): 536-537.
    [178]Koo H J, Suh M W. Maximizing yarn and fabric strength through variance of HVI elongation [J]. Textile Research Journal,1999,69(6):447-456.
    [179]郑芝奖,刘从九.原棉品级与棉纤维主要品质指标关系的关系[J].棉纺织技术,2002,8:234-236.
    [180]Smith B, Waters B. Extending applicable ranges of regression equations for yam strength forecasting [J]. Textile Research Journal,1985,55(12):713-717.
    [181]Cheng L, Adams D L. Yarn strength prediction using neural networks [J]. Textile Research Journal, 1995,65(9):495-500.
    [182]Pynckels F, Kiekens P, Sette S, et al. The use of neural nets to simulate the spinning process [J]. Journal of the Textile Institute,1997,88(4):440-447.
    [183]董奎勇,杨萍.棉纺成纱质量预报的BP神经网络方法[J].棉纺织技术,2002,6:39-40.
    [184]Lord E. The Characteristics of raw cotton (manual of cotton spinning, VOL. Ⅱ,Part I) In, the Textile Institute and Butterworths, Manchester and London,1961:301,311,313.
    [185]Subramanian A, Ganese K, Bandy O, et al. A generalized equation for predicting the lea strength of ring-Spun cotton yarns [J]. Journal of the Textile Institute,1974,65:307-313.
    [186]张丽娟,孟亚利,薛晓萍,等.棉纤维综合品质指数模型构建[J].中国农业科学,2006,39(6):1130-1137.
    [187]Xu Z, Kohel R J, Song G, et al. Gene-rich islands for fiber development in the cotton genome [J]. Genomics,2008,92(3):173-183.
    [188]程海涛,马富裕,慕彩芸.北疆棉纤维品质气候生态位适宜度研究[J].棉花学报,2009,21(1):28-33.
    [1]蒋光华,周治国,陈兵林,等.棉株生理年龄对纤维加厚发育及纤维比强度形成的影响[J].中国农业科学,2006,39(2):265-273.
    [2]张文静,周治国,胡宏标,等.棉花季节桃纤维发育相关酶活性变化与纤维比强度形成的关系[J].棉花学报,2008,20(5):342-347.
    [31马溶慧,许乃银,张传喜,等.氮素对不同开花期棉铃纤维比强度形成的生理基础的影响[J].应用生态学报,2008,19(12):2618-2626.
    [4]冯营,赵新华,王友华,等.棉纤维发育过程中糖代谢生理特征对氮素的响应及其与纤维比强度形成的关系[J].中国农业科学,2009,42(1):93-102.
    [5]马溶慧,周治国,王友华,等.棉铃对位叶氮浓度与纤维品质指标的关系[J].中国农业科学,2009,42(3):833-842.
    [6]赵新华,王友华,束红梅,等.棉((?)Gossypium hirsutum L.)株生理年龄对棉铃生物量和氮素累积的影响[J].中国农业科学,2010,43(22):4605-4613.
    [7]Braden C A, Smith C W. Fiber length development in near-long staple Upland cotton [J]. Crop Science,2004,44(5):1553-1559.
    [8]Thaker V S, Saroop S, Vaishnav P P, et al. Genotypic variations and influence of diurnal temperature on cotton fibre development [J]. Field Crops Research,1989,22(2):129-141.
    [9]Haigler C H, Zhang D, Wilkerson C G Biotechnological improvement of cotton fibre maturity [J]. Physiologia Plantarum,2005,124(3):285-294.
    [10]Delmer D P, Haigler C H. The Regulation of Metabolic Flux to Cellulose, a Major Sink for Carbon in Plants [J]. Metabolic Engineering,2002,4(1):22-28.
    [11]Li W, Zhou Z, Meng Y, et al. Modeling boll maturation period, seed growth, protein, and oil content of cotton(Gossypium hirsutum L.) in China [J]. Field Crops Research,2009,112(2-3): 131-140.
    [12]张丽娟,孟亚利,薛晓萍,等.棉纤维综合品质指数模型构建[J].中国农业科学,2006,39(6):1130-1137.
    [13]张丽娟.棉纤维综合品种模型构建及地域分异评价系统的研究[D].作物栽培学与耕作学,2006.
    [14]薛晓萍,周治国,张丽娟,等.棉花花后临界氮浓度稀释模型的建立及在施氮量调控中的应用[J].生态学报,2006,26(6):1781-1791.
    [15]Xu R, Dai J, Luo W, et al. A photothermal model of leaf area index for greenhouse crops [J]. Agricultural and Forest Meteorology,2010,150(4):541-552.
    [16]陈兵林,曹卫星,周治国.棉花单铃干物质积累分配的分期动态模拟及检验[J].中国农业科学,2006,39(3):487-493.
    [1]Braden C A, Smith C W. Fiber elongation in near-long staple Upland cotton [J]. Crop Science,2004, 44(5):1553-1559.
    [2]Thaker V S, Saroop S, Vaishnav P P, et al. Genotypic variations and influence of diurnal temperature on cotton fibre development [J]. Field Crops Research,1989,22(2):129-141.
    [3]Davidonis G H, Johnson A S, Landivar J A, et al. Cotton fiber quality is related to boll location and planting date [J]. Agronomy Journal,2004,96(1):42-47.
    [4]Yeates S J, Constable G A, McCumstie T. Irrigated cotton in the tropical dry season. Ⅲ:Impact of temperature, cultivar and sowing date on fibre quality [J]. Field Crops Research,2010,116(3): 300-307.
    [5]Jones M A, Wells R. Fiber yield and quality of cotton grown at two divergent population densities [J]. Crop Science,1998,38:1190-1195.
    [6]Liakatas A, Roussopoulos D, Whittington W J. Controlled-temperature effects on cotton yield and fibre properties [J]. Journal of Agricultural Science, Cambridge,1998,130:463-471.
    [7]Pettigrew W T. The Effect of Higher Temperatures on cotton lint yield production and fiber quality [J]. Crop Science,2008,48(1):278-285.
    [8]Reddy K, Davidonis G, Johnson A, et al. Temperature regime and carbon dioxide enrichment alter cotton boll development and fiber properties [J]. Agronomy Journal,1999,91(5):851-858.
    [9]Pettigrew W. T. Environmental effects on cotton fiber carbohydrate concentration and quality [J]. Crop Science,2001,41:1108-1113.
    [10]王庆材,孙学振,宋宪亮,等.不同棉铃发育时期遮荫对棉纤维品质性状的影响[J].作物学报,2006,32(5):671-675.
    [11]Pettigrew W T. Source-to-Sink Manipulation Effects on Cotton Fiber Quality [J]. Agronomy Journal,1995,87:947-952.
    [12]Zhao D, Oosterhuis D M. Cotton responses to shade at different growth stages:growth, lint yield and fibre quality [J]. Experimental Agriculture,2000,36(1):27-39.
    [13]Bauer P J, Foulk J A, Gamble G R, et al. A comparison of two cotton cultivars differing in maturity for within-canopy fiber property variation [J]. Crop Science,2008,49(2):651-657.
    [14]单世华,施培,孙学振,等.开花期和果枝部位对短季棉纤维品质及超分子结构的影响[J].中国农业科学,2002,35(2):163-168.
    [15]Girma K, Teal R K, Freeman K W, et al. Cotton lint yield and quality as affected by applications of N, P, and K fertilizers [J]. The Journal of Cotton Science,2007,11(1):12-19.
    [16]Read J J, Reddy K R, Jenkins J N. Yield and fiber quality of Upland cotton as influenced by nitrogen and potassium nutrition [J]. European Journal of Agronomy,2006,24(3):282-290.
    [17]凌启鸿.作物群体质量[M].上海:上海科学技术出版社;2000.
    [18]马溶慧,周治国,王友华,等.棉铃对位叶氮浓度与纤维品质指标的关系[J].中国农业科学,2009,42(3):833-842.
    [19]张文静,胡宏标,陈兵林,等.棉铃对位叶生理特性的基因型差异及其与铃重形成的关系[J].棉花学报,2007,19(4):296-303.
    [20]周青,王友华,许乃银,等.温度对棉纤维糖代谢相关酶活性的影响[J].应用生态学报,2009,20(1):149-156.
    [21]陈冠文,余渝.棉铃发育温光效应的初步研究[J].棉花学报,2001,13(1):63-64.
    [1]蒋光华,周治国,陈兵林,等.棉株生理年龄对纤维加厚发育及纤维比强度形成的影响[J].中国农业科学,2006,39(2):265-273.
    [2]张文静,周治国,胡宏标,等.棉花季节桃纤维发育相关酶活性变化与纤维比强度形成的关系[J].棉花学报,2008,20(5):342-347.
    [3]马溶慧,许乃银,张传喜,等.氮素对不同开花期棉铃纤维比强度形成的生理基础的影响[J].应用生态学报,2008,19(12):2618-2626.
    [4]冯营,赵新华,王友华,等.棉纤维发育过程中糖代谢生理特征对氮素的响应及其与纤维比强度形成的关系[J].中国农业科学,2009,42(1):93-102.
    [5]马溶慧,周治国,王友华,等.棉铃对位叶氮浓度与纤维品质指标的关系[J].中国农业科学,2009,42(3):833-842.
    [6]赵新华,王友华,束红梅,等.棉(Gossypium hirsutum L.)株生理年龄对棉铃生物量和氮素累积的影响[J].中国农业科学,2010,43(22):4605-4613.
    [7]Davidonis G H, Johnson A S, Landivar J A, et al. Cotton fiber quality is related to boll location and planting date [J]. Agronomy Journal,2004,96(1):42-47.
    [8]Wrather J A, Phipps B J, Stevens W E, et al. Cotton planting date and plant population effects on yield and fiber quality in the Mississippi Delta [J]. The Journal of Cotton Science,2008,12:1-7.
    [9]Yeates S J, Constable G A, McCumstie T. Irrigated cotton in the tropical dry season. Ⅲ:Impact of temperature, cultivar and sowing date on fibre quality [J]. Field Crops Research,2010,116(3): 300-307.
    [10]Liakatas A, Roussopoulos D, Whittington W J. Controlled-temperature effects on cotton yield and fibre properties [J]. Journal of Agricultural Science, Cambridge,1998,130:463-471.
    [11]Reddy K, Davidonis G, Johnson A, et al. Temperature regime and carbon dioxide enrichment alter cotton boll development and fiber properties [J]. Agronomy Journal,1999,91(5):851-858.
    [12]Pettigrew W T. The Effect of Higher Temperatures on Cotton Lint Yield Production and Fiber Quality [J]. Crop Science,2008,48(1):278-285.
    [13]Pettigrew W T. Environmental effects on cotton fiber carbohydrate concentration and quality [J]. Crop Science,2001,41:1108-1113.
    [14]王庆材,孙学振,宋宪亮,等.不同棉铃发育时期遮荫对棉纤维品质性状的影响[J].作物学报Acta Agronomica Sinica,2006,32(5):671-675.
    [15]Pettigrew W T. Source-to-Sink Manipulation Effects on Cotton Fiber Quality [J]. Agronomy Journal,1995,87:947-952.
    [16]Zhao D, Oosterhuis D M. Cotton responses to shade at different growth stages:growth, lint yield and fibre quality [J]. Experimental Agriculture,2000,36(1):27-39.
    [17]束红梅,周治国,郑密,等.不同温度敏感性棉花纤维发育相关酶活性变化对低温的响应[J].应用生态学报,2009,20(9):2157-2165.
    [18]张文静,胡宏标,王友华,等.棉纤维发育相关酶活性的基因型差异与纤维比强度的关系[J].中国农业科学,2007,40(10):2177-2184.
    [19]束红梅,王友华,张文静,等.两个棉花品种纤维发育关键酶活性变化特征及其与纤维比强度的关系[J].作物学报,2008,34(3):437-446.
    [20]Evans J R. Photosynthetic acclimation and nitrogen partitioning within a lucerne canopy I. Canopy characteristics [J]. Australian Journal of Plant Physiology,1990,20:55-67.
    [21]Bondada B R, Osterhuis D M, Norman R J, et al. Canopy photosynthesis, growth, yield and boll 15N accumulation under nitrogen stress in cotton [J]. Crop Science,1996,36(1):127-133.
    [22]Girma K, Teal R K, Freeman K W, et al. Cotton lint yield and quality as affected by applications of N, P, and K fertilizers [J]. The Journal of Cotton Science,2007,11(1):12-19.
    [23]Ma R H, Xu N Y, Zhang C X, et al. Physiological Mechanism of Sucrose Metabolism in Cotton Fiber and Fiber Strength Regulated by Nitrogen [J]. Acta Agronomica Sinica,2008,34(12): 2143-2151.
    [24]Xue X P, Sha Y Z, Guo W Q, et al. Accumulation characteristics of biomass and nitrogen and critical nitrogen concentration dilution model of cotton reproductive organ [J]. Acta Ecologica Sinica,2008,28(12):6204-6211.
    [25]Haigler C H, Rao N R, Roberts E M, et al. Cultured ovules as models for cotton fiber development under low temperatures [J]. plant Physiology,1991,95(1):88-96.
    [26]陈兵林,曹卫星,周治国.棉花单铃干物质积累分配的分期动态模拟及检验[J].中国农业科学,2006,39(3):487-493.
    [27]陈冠文,余渝.棉铃发育温光效应的初步研究[J].棉花学报,2001,13(1):63-64.
    [1]Bradow J M, Davidonis G H. Quantitation of fiber quality and the cotton production-processing interface:a physiologist's perspective [J]. The Journal of Cotton Science,2000,4:34-64.
    [2]Jost P. Cotton fiber quality and the issues in Georgia [J]. Cooperative Extension Service,2005: 1-20.
    [3]张瑞增,陈崇兴.正确衡量棉纤维成熟度[J].中国棉花加工,2005,2:27-28.
    [4]Bradow J M, Sassenrath-Cole G F, Hinojosa O, et al. Cotton fiber physical and physiological maturity variation in response to genotype and environment. In, Proceedings of Beltwide Cotton Conference, National Cotton Council of America. Memphis, Tennessee; 1996:1251-1254
    [5]Bauer P J, Frederick J R, Bradow J M, et al. Canopy photosynthesis and fiber properties of normal-and late-planted cotton [J]. Agronomy Journal,2000,92(3):518-523.
    [6]Pettigrew W T. Environmental effects on cotton fiber carbohydrate concentration and quality [J]. Crop Science,2001,41:1108-1113.
    [7]Murray A K, Brown J. Glycoconjugate profiles of developing fibers from different fruiting branches on the same plant. In, Proceedings of Beltwide Cotton Conference, National Cotton Council of America, Memphis, Tennessee; 1997:1496-1499
    [8]Bauer P J, Bradow J M. Cotton genotype response to early-season cold temperatures [J]. Crop Science,1996,36:1602-1606.
    [9]Davidonis G H, Johnson A, Landivar J, et al. Influence of low-weight seeds and motes on the fiber properties of other cotton seeds [J]. Field Crops Research,1996,48(2-3):141-153.
    [10]Pettigrew W T. Source-to-Sink Manipulation Effects on Cotton Fiber Quality [J]. Agronomy Journal,1995,87:947-952.
    [11]Haigler C H. Relationship between polymerization and crystallization in microfibril biogenesis. In, Biosynthesis and biodegradation of cellulose. New York,1991:99-124.
    [12]Haigler C H, Taylor J G, Martin L K. Temperature dependence of fiber cellulose biosynthesis: Impact on fiber maturity and strength. In, Proceedings of the Biochemistry of Cotton Workshop, Galveston, TX, September 28-30 Cotton Inc, Raleigh, NC; 1994:95-100
    [13]周治国,孟亚利,施培,等.日照时数时间分布对麦套棉铃主要品质性状的影响[J].中国农业科学,1999,32(1):40-45.
    [14]Davidonis G H, Johnson A S, Landivar J A, et al. Cotton fiber quality is related to boll location and planting date [J]. Agronomy Journal,2004,96(1):42-47.
    [15]Porter P M, Sullivan M J, Harvey L H. Cotton Cultivar Response to Planting Date on the Southeastern Coastal Plain [J]. Journal of production agriculture,1996,9(2):223-227.
    [16]Dong H, Li W, Tang W, et al. Yield, quality and leaf senescence of cotton grown at varying planting dates and plant densities in the Yellow River Valley of China [J]. Field Crops Research, 2006,98(2-3):106-115.
    [17]王庆材,王振林,宋宪亮,等.花铃期遮荫对棉纤维品质的影响[J].应用生态学报,2005,16(8):1465-1468.
    [18]Pettigrew W T. Low light condition compromise the quality of fiber produced. In, Proc Beltwide Cotton Conference; 1996:1238-1239
    [19]张旺锋,王振林,余松烈,等.氮肥对新疆高产棉花群体光合性能和产量形成的影响[J].作 物学报,2002,28(6):789-796.
    [20]Pettigrew W T, Adamczyk J. Nitrogen Fertility and Planting Date Effects on Lint Yield and CrylAc (Bt) Endotoxin Production [J]. Agronomy Journal,2006,98(3):691-697
    [21]Blaise D, Singh J V, Bonde A N, et al. Effects of farmyard manure and fertilizers on yield, fibre quality and nutrient balance of rainfed cotton (Gossypium hirsutum) [J]. Bioresource Technology, 2005,96(3):345-349.
    [22]Boquet D J, Hutchinson R L, Breitenbeck G A. Long-Term Tillage, Cover Crop, and Nitrogen Rate Effects on Cotton:Yield and Fiber Properties [J]. Agronomy Journal,2004,96(5): 1436-1442.
    [23]Fritschi F B, Roberts B A, Travis R L, et al. Response of irrigated Acala and Pima cotton to nitrogen fertilization:grwoth, dry matter partitioning, and yield [J]. Agronomy Journal,2003, 95(1):133-146.
    [24]Bauer P S, Roof M E. Nitrogen, aldicarb, and cover crop effects on cotton yield and fiber properties [J]. Agronomy Journal,2004,96(2):369-376.
    [25]Reddy K R, Koti S, Davidonis G H, et al. Interactive effects of carbon dioxide and nitrogen nutrition on cotton growth, development, yield, and fiber quality [J]. Agronomy Journal,2004, 96(4):1148-1157.
    [26]Tewolde H, Fernandez C J. Fiber quality response of Pima cotton to nitrogen and phosphorus deficiency [J]. Journal of Plant Nutrition,2003,26(1):223-235.
    [27]Singh V, Nagwekar S N. Effect of weed control and nitrogen levels on quality characters in cotton [J]. Indian Society Cotton Improvement,1989,14:60-64.
    [28]Girma K, Teal R K, Freeman K W, et al. Cotton lint yield and quality as affected by applications of N, P, and K fertilizers [J]. The Journal of Cotton Science,2007,11(1):12-19.
    [29]Constable G A, Hearn A B. Irrigation for crops in a subhumid environment. VI. Effect of irrigation and nitrogen fertilizer on growth, yield and quality of cotton [J]. Irrigation Science,1981,3: 17-28.
    [30]Rochester I J, Peoples M B, Constable G A. Estimation of the N fertilizer requirement of cotton grown after legume crops [J]. Field Crops Research,2001,70:43-53.
    [31]Read J J, Reddy K R, Jenkins J N. Yield and fiber quality of Upland cotton as influenced by nitrogen and potassium nutrition [J]. European Journal of Agronomy,2006,24(3):282-290.
    [32]Hikosaka K. Leaf canopy as a dynamic system:Ecophysiology and optimality in leaf turnover [J]. Annals of Botany,2005,95(3):521-533.
    [33]孙红春,冯丽肖,谢志霞,等.不同氮素水平对棉花不同部位-铃叶系统生理特性及铃重空间 分布的影响[J].中国农业科学,2007,40(8):1638-1645.
    [34]Milroy S P, Bange M P. Nitrogen and Light Responses of Cotton Photosynthesis and Implications for Crop Growth [J]. Crop Science,2003,43(3):904-913.
    [35]凌启鸿.作物群体质量[M].上海:上海科学技术出版社;2000.
    [36]马溶慧,周治国,王友华,等.棉铃对位叶氮浓度与纤维品质指标的关系[J].中国农业科学,2009,42(3):833-842.
    [37]张文静,胡宏标,陈兵林,等.棉铃对位叶生理特性的基因型差异及其与铃重形成的关系[J].棉花学报,2007,19(4):296-303.
    [38]Bondada B R, Osterhuis D M, Norman R J, et al. Canopy photosynthesis, growth, yield and boll 15N accumulation under nitrogen stress in cotton [J]. Crop Science,1996,36(1):127-133.
    [1]Richard G P, Roy G C, Jinfa Z. Genetic Variation for Agronomic and Fiber Properties in an Introgressed Recombinant Inbred Population of Cotton [J]. Crop Science,2006,46(3):1311-1317.
    [2]Yeates S J, Constable G A, McCumstie T. Irrigated cotton in the tropical dry season. Ⅲ:Impact of temperature, cultivar and sowing date on fibre quality [J]. Field Crops Research,2010,116(3): 300-307.
    [3]Zhao D, Oosterhuis D M. Cotton responses to shade at different growth stages:growth, lint yield and fibre quality [J]. Experimental Agriculture,2000,36(1):27-39.
    [4]Pettigrew W T. Environmental effects on cotton fiber carbohydrate concentration and quality [J]. Crop Science,2001,41:1108-1113.
    [5]Liakatas A, Roussopoulos D, Whittington W J. Controlled-temperature effects on cotton yield and fibre properties [J]. Journal of Agricultural Science, Cambridge,1998,130:463-471.
    [6]Read J J, Reddy K R, Jenkins J N. Yield and fiber quality of Upland cotton as influenced by nitrogen and potassium nutrition [J]. European Journal of Agronomy,2006,24(3):282-290.
    [7]Pettigrew W T, Adamczyk J. Nitrogen Fertility and Planting Date Effects on Lint Yield and Cry 1 Ac (Bt) Endotoxin Production [J]. Agronomy Journal,2006,98(3):691-697
    [8]Girma K, Teal R K, Freeman K W, et al. Cotton lint yield and quality as affected by applications of N, P, and K fertilizers [J]. The Journal of Cotton Science,2007,11(1):12-19.
    [9]杨红旗,崔卫国.我国棉花产业形势分析与发展策略[J].作物杂志,2010,5:13-17.
    [10]Jamieson P D, Semenov M A. Modelling nitrogen uptake and redistribution in wheat [J]. Field Crops Research,2000,68(1):21-29.
    [11]Rinaldi M, Losavio N, Flagella Z. Evaluation and application of the OILCROP-SUN model for sunflower in southern Italy [J]. Agricultural Systems,2003,78(1):17-30.
    [12]Wall G W, Amthor J S, Kimball B A. COTCO2:a cotton growth simulation model for global change [J]. Agricultural and Forest Meteorology,1994,70(1-4):289-342.
    [13]Baker D N, Lambert J R, Mckinion D M. GOSSYM, a simulator of cotton crop growth and yield [J]. South Cordlina Agricultural Experiment Station Technical Bulletin,1983:
    [14]Mutsaers H J W. KUTUN:A morphogenetic model for cotton(Gossypium hirsutum L.) [J]. Agricultural Systems,1984,14(4):229-257.
    [15]Hearn A B. OZCOT:a simulation model for cotton crop management [J]. Agricultural Systems, 1994,44(1994):257-299.
    [16]潘学标,韩湘玲,石元春.一个可用于栽培管理的棉花生长发育模拟模型——COTGROW[J].中国农业科学,1996,29(1):94-96.
    [17]Zhang L, Werf W V D, Cao W, et al. Development and validation of SUCROS-Cotton:a potential crop growth simulation model for cotton [J]. NJAS-Wageningen Journal of Life Sciences,2008, 56(1-2):59-83.
    [18]潘学标.作物模型原理[M].北京:气象出版社;2003.
    [19]Sequeira R A, Cochran M, El-Zik K M, et al. Inclusion of plant structure and fiber quality into a distributed delay cotton model to improve management and optimize profit [J]. Ecological Modelling,1994,71(1-3):161-186.
    [20]Muhidong J. A cotton fiber quality model [D]. Agricultural and Biological Engineering,1996, Doctor of philosophy.
    [21]陈兵林,曹卫星,周治国,等.棉花纤维品质指标的时空分布模型研究[J].作物学报,2007,33(5):763-770.
    [22]马富裕,朱艳,曹卫星,等.棉纤维品质指标形成的动态模拟[J].作物学报,2006,32(3):442-448.
    [23]Goynes W R, Ingber B F, Triplett B A. Cotton fiber secondary wall development-time versus thickness [J]. Textile Research Journal,1995,65(7):400-408.
    [24]Li W, Zhou Z, Meng Y, et al. Modeling boll maturation period, seed growth, protein, and oil content of cotton(Gossypium hirsutum L.) in China [J]. Field Crops Research,2009,112(2-3):131-140.
    [25]高亮之.农业模型学基础[M].香港:天马图书有限公司,2004.
    [26]马溶慧,周治国,王友华,等.棉铃对位叶氮浓度与纤维品质指标的关系[J].中国农业科学,2009,42(3):833-842.
    [1]曹卫星,周治国,周勇,等.农业信息学[M].北京:中国农业出版社;2005.
    [2]McKinion J M, Baker D N, Whisler F D, et al. Application of the GOSSYM/COMAX system to cotton crop management [J]. Agricultural Systems,1989,31(1):55-65.
    [3]Jones J W, Hoogenboom G, Porter C H, et al. The DSSAT cropping system model [J]. European Journal of Agronomy,2003,18(3-4):235-265.
    [4]Richards Q D, Bange M P, Johnston S B. HydroLOGIC:An irrigation management system for Australian cotton [J]. Agricultural Systems,2008,98(1):40-49.
    [5]Larson J A, Mapp H P, Verhalen L M, et al. Adapting a cotton model for decision analyses:a yield-response evaluation [J]. Agricultural Systems,1996,50(2):145-167.
    [6]Yang J Y, Huffman E C. EasyGrapher:software for graphical and statistical validation of DSSAT outputs [J]. Computers and Electronics in Agriculture,2004,45(1-3):125-132.
    [7]Liu J. A GIS-based tool for modelling large-scale crop-water relations [J]. Environmental Modelling & Software,2009,24(3):411-422.
    [8]Lant C L, Kraft S E, Beaulieu J, et al. Using GIS-based ecological-economic modeling to evaluate policies affecting agricultural watersheds [J]. Ecological Economics,2005,55(4):467-484.
    [9]Chen N, Li H, Wang L. A GIS-based approach for mapping direct use value of ecosystem services at a county scale:Management implications [J]. Ecological Economics,2009,68(11):2768-2776.
    [10]张丽娟,孟亚利,薛晓萍,等.棉纤维综合品质指数模型构建[J].中国农业科学,2006,39(6):1130-1137.
    [11]潘学标.基于GIS的中国县域棉花生产空间分布与变异研究[J].中国农业科学,2003,36(4):382-386.
    [12]周留根,周治国,曹卫星,等.基于知识模型和GIS的棉花生产潜力评价系统[J].棉花学报,2005,17(2):117-121.
    [13]郭银巧.棉花形态建成模型与基于模型和GIS的数字棉作系统研究[D].作物安全生产调控工程,2008,博士.
    [14]张丽娟.棉纤维综合品种模型构建及地域分异评价系统的研究[D].作物栽培学与耕作学,2006.
    [15]王飞飞,陈兵林,周治国,等.基于模型和GIS的棉铃品质地域分异评价系统[J].棉花学报,2010,22(6):561-567.
    [16]张瑞增,陈崇兴.正确衡量棉纤维成熟度[J].中国棉花加工,2005,2:27-28.
    [17]Bradow J M, Davidonis G H. Quantitation of fiber quality and the cotton production-processing interface:a physiologist's perspective [J]. The Journal of Cotton Science,2000,4:34-64.
    [1]Joshi P A, Stewart J M, Graham E T. Localization of β-glycerophosphatase activity in cotton fiber during differentiation [J]. Protoplasma,1985,125:75-85.
    [2]Schuber A M, Benedict C R. Cotton fiber development kinetics of cell elongation and secondary wall thickening [J]. Crop Science,1973,13:704-709.
    [3]Kim H J, Triplett B A. Cotton Fiber Growth in Planta and in Vitro. Models for Plant Cell Elongation and Cell Wall Biogenesis [J]. plant Physiology,2001,127(4):1361-1366.
    [4]束红梅,王友华,张文静,等.两个棉花品种纤维发育关键酶活性变化特征及其与纤维比强度的关系[J].作物学报,2008,34(3):437-446.
    [5]单世华,施培,孙学振,等.开花期和果枝部位对短季棉纤维品质及超分子结构的影响[J].中国农业科学,2002,35(2):163-168.
    [6]Sequeira R A, Cochran M, El-Zik K M, et al. Inclusion of plant structure and fiber quality into a distributed delay cotton model to improve management and optimize profit [J]. Ecological Modelling,1994,71(1-3):161-186.
    [7]李永秀,罗卫红,倪纪恒,等.基于辐射和温度热效应的温室水果黄瓜叶面积模型[J].植物生态学报,2006,30(5):861-867.
    [8]陈冠文,余渝.棉铃发育温光效应的初步研究[J].棉花学报,2001,13(1):63-64.
    [9]Roussopoulos D, Liakatas A, Whittington W J. Cotton responses to different light-temperature regimes [J]. Journal of Agricultural Science,1998,131:277-283.
    [10]马溶慧,周治国,王友华,等.棉铃对位叶氮浓度与纤维品质指标的关系[J].中国农业科学,2009,42(3):833-842.
    [11]冯营,赵新华,王友华,等.棉纤维发育过程中糖代谢生理特征对氮素的响应及其与纤维比强度形成的关系[J].中国农业科学,2009,42(1):93-102.
    [12]马溶慧,许乃银,张传喜,等.氮素调控棉花纤维蔗糖代谢及纤维比强度的生理机制[J].作物学报,2008,34(12):2143-2151.
    [13]Grindlay D J C. Towards an explanation of crop nitrogen demand based on the optimization of leaf nitrogen per unit leaf area [J]. Journal of Agricultural Science,1997,128:377-396.
    [14]赵新华,王友华,束红梅,等.棉(Gossypium hirsutum L.)株生理年龄对棉铃生物量和氮素累积的影响[J].中国农业科学,2010,43(22):4605-4613.
    [15]蒋光华,周治国,陈兵林,等.棉株生理年龄对纤维加厚发育及纤维比强度形成的影响[J].中国农业科学,2006,39(2):265-273.
    [16]王友华,陈兵林,卞海云,等.温度与棉株生理年龄的协同效应对棉纤维发育的影响[J].作物学报,2006,32(11):1671-1677.
    [17]卞海云,周治国,陈兵林,等.棉纤维加厚发育期间纤维素生物合成研究进展[J].棉花学报,2004,16(6):374-378.
    [18]蒋光华,孟亚利,陈兵林,等.低温对棉纤维比强度形成的生理机制影响[J].植物生态学报,2006,30(2):335-343.
    [19]Haigler C H, Zhang D, Wilkerson C G, Biotechnological improvement of cotton fibre maturity [J]. Physiologia Plantarum,2005,124(3):285-294.
    [20]卞海云,王友华,陈兵林,等.低温条件下相关关键酶活性对棉纤维比强度形成的影响[J].中国农业科学,2008,41(4):1235-1241.
    [21]周青,王友华,许乃银,等.温度对棉纤维糖代谢相关酶活性的影响[J].应用生态学报,2009,20(1):149-156.
    [22]王庆材,孙学振,宋宪亮,等.不同棉铃发育时期遮荫对棉纤维品质性状的影响[J].作物学报,2006,32(5):671-675.
    [23]Pettigrew W T. Source-to-Sink Manipulation Effects on Cotton Fiber Quality [J]. Agronomy Journal,1995,87:947-952.
    [24]Zhao D, Oosterhuis D M. Cotton responses to shade at different growth stages:growth, lint yield and fibre quality [J]. Experimental Agriculture,2000,36(1):27-39.
    [25]马溶慧,许乃银,张传喜,等.氮素对不同开花期棉铃纤维比强度形成的生理基础的影响[J].应用生态学报,2008,19(12):2618-2626.
    [26]Ma R H, Xu N Y, Zhang C X, et al. Physiological Mechanism of Sucrose Metabolism in Cotton Fiber and Fiber Strength Regulated by Nitrogen [J]. Acta Agronomica Sinica,2008,34(12): 2143-2151.
    [27]Bauer P J, Foulk J A, Gamble G R, et al. A comparison of two cotton cultivars differing in maturity for within-canopy fiber property variation [J]. Crop Science,2008,49(2):651-657.
    [28]Bauer P J, Frederick J R, Bradow J M, et al. Canopy photosynthesis and fiber properties of normal-and late-planted cotton [J]. Agronomy Journal,2000,92(3):518-523.
    [29]Pettigrew W T. Environmental effects on cotton fiber carbohydrate concentration and quality [J]. Crop Science,2001,41:1108-1113.
    [30]Reddy K, Davidonis G, Johnson A, et al. Temperature regime and carbon dioxide enrichment alter cotton boll development and fiber properties [J]. Agronomy Journal,1999,91(5):851-858.
    [31]黄骏麒.中国棉作学[M].北京:北京农业科技出版社;1998.
    [32]Pettigrew W T, Adamczyk J. Nitrogen Fertility and Planting Date Effects on Lint Yield and CrylAc (Bt) Endotoxin Production [J]. Agronomy Journal,2006,98(3):691-697
    [33]Blaise D, Singh J V, Bonde A N, et al. Effects of farmyard manure and fertilizers on yield, fibre quality and nutrient balance of rainfed cotton(Gossypium hirsutum) [J]. Bioresource Technology, 2005,96(3):345-349.
    [34]Boquet D J, Hutchinson R L, Breitenbeck G A. Long-Term Tillage, Cover Crop, and Nitrogen Rate Effects on Cotton:Yield and Fiber Properties [J]. Agronomy Journal,2004,96(5): 1436-1442.
    [35]Fritschi F B, Roberts B A, Travis R L, et al. Response of irrigated Acala and Pima cotton to nitrogen fertilization:grwoth, dry matter partitioning, and yield [J]. Agronomy Journal,2003, 95(1):133-146.
    [36]Bauer P S, Roof M E. Nitrogen, aldicarb, and cover crop effects on cotton yield and fiber properties [J]. Agronomy Journal,2004,96(2):369-376.
    [37]Reddy K R, Koti S, Davidonis G H, et al. Interactive effects of carbon dioxide and nitrogen nutrition on cotton growth, development, yield, and fiber quality [J]. Agronomy Journal,2004, 96(4):1148-1157.
    [38]Tewolde H, Fernandez C J. Fiber quality response of Pima cotton to nitrogen and phosphorus deficiency [J]. Journal of Plant Nutrition,2003,26(1):223-235.
    [39]Singh V, Nagwekar S N. Effect of weed control and nitrogen levels on quality characters in cotton [J]. Indian Society Cotton Improvement,1989,14:60-64.
    [40]Girma K, Teal R K, Freeman K W, et al. Cotton lint yield and quality as affected by applications of N, P, and K fertilizers [J]. The Journal of Cotton Science,2007,11(1):12-19.
    [41]Constable G A, Hearn A B. Irrigation for crops in a subhumid environment. VI. Effect of irrigation and nitrogen fertilizer on growth, yield and quality of cotton [J]. Irrigation Science,1981,3: 17-28.
    [42]Rochester I J, Peoples M B, Constable G A. Estimation of the N fertilizer requirement of cotton grown after legume crops [J]. Field Crops Research,2001,70:43-53.
    [43]Read J J, Reddy K R, Jenkins J N. Yield and fiber quality of Upland cotton as influenced by nitrogen and potassium nutrition [J]. European Journal of Agronomy,2006,24(3):282-290.
    [44]Gokani S J, Thaker V S. Physiological and biochemical changes associated with cotton fiber development:IX. Role of IAA and PAA [J]. Field Crops Research,2002,77(2-3):127-136.
    [45]Braden C A, Smith C W. Fiber length development in near-long staple Upland cotton [J]. Crop Science,2004,44(5):1553-1559.
    [46]Thaker V S, Saroop S, Vaishnav P P, et al. Genotypic variations and influence of diurnal temperature on cotton fibre development [J]. Field Crops Research,1989,22(2):129-141.
    [47]张立祯,曹卫星,张思平,等.基于生理发育时间的棉花生育期模拟模型[J].棉花学报,2003,15(2):97-103.
    [48]Li W, Zhou Z, Meng Y, et al. Modeling boll maturation period, seed growth, protein, and oil content of cotton (Gossypium hirsutum L.) in China [J]. Field Crops Research,2009,112(2-3): 131-140.
    [49]马富裕,朱艳,曹卫星,等.棉纤维品质指标形成的动态模拟[J].作物学报,2006,32(3):442-448.
    [50]Wanjura D F, Barker G L. Cotton lint yield accumulation rate and quality development [J]. Field Crops Research,1985,10:205-218.
    [51]Muhidong J. A cotton fiber quality model [D]. Agricultural and Biological Engineering,1996, Doctor of philosophy.
    [52]Yeates S J, Constable G A, McCumstie T. Irrigated cotton in the tropical dry season. Ⅲ:Impact of temperature, cultivar and sowing date on fibre quality [J]. Field Crops Research,2010,116(3): 300-307.
    [53]陈兵林,曹卫星,周治国,等.棉花纤维品质指标的时空分布模型研究[J].作物学报,2007,33(5):763-770.
    [54]Hikosaka K. Leaf canopy as a dynamic system:Ecophysiology and optimality in leaf turnover [J]. Annals of Botany,2005,95(3):521-533.
    [55]孙红春,冯丽肖,谢志霞,等.不同氮素水平对棉花不同部位-铃叶系统生理特性及铃重空间分布的影响[J].中国农业科学,2007,40(8):1638-1645.
    [56]Milroy S P, Bange M P. Nitrogen and Light Responses of Cotton Photosynthesis and Implications for Crop Growth [J]. Crop Science,2003,43(3):904-913.
    [57]Bondada B R, Osterhuis D M, Norman R J, et al. Canopy photosynthesis, growth, yield and boll 15N accumulation under nitrogen stress in cotton [J]. Crop Science,1996,36(1):127-133.
    [58]Stockle C O, Debaeke P. Modeling crop nitrogen requirements:a critical analysis [J]. European Journal of Agronomy,1997,7:161-169.
    [59]Dagdelen N, Basal H, Yilmaz E, et al. Different drip irrigation regimes affect cotton yield, water use efficiency and fiber quality in western Turkey [J]. Agricultural Water Management,2009, 96(1):111-120.
    [60]Balkcom K S, Reeves D W, Shaw J N, et al. Cotton yield and fiber quality from irrigated tillage systems in the Tennessee Valley [J]. Agronomy Journal,2006,98(3):596-602.
    [61]张丽娟,孟亚利,薛晓萍,等.棉纤维综合品质指数模型构建[J].中国农业科学,2006,39(6):1130-1137.
    [62]王飞飞,陈兵林,周治国,等.基于模型和GIS的棉铃品质地域分异评价系统[J].棉花学报,2010,22(6):561-567.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700