用户名: 密码: 验证码:
棉(Gossypium hirsutum L.)纤维比强度的形成与棉铃对位叶氮浓度关系的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
棉纤维比强度是衡量原棉品质的重要指标之一,其形成与纤维次生壁的建成质量和纤维素的沉淀累积特性密切相关。氮素是棉花高产优质的主要调控因素之一,研究氮素调控棉纤维比强度形成的生理机制,探讨纤维比强度形成的适宜棉花氮素营养状况,可为实现高强纤维棉花栽培的氮素调控提供依据。本文选择棉纤维比强度差异明显的德夏棉1号(平均比强度26.2cN.tex-1)、科棉1号(平均比强度35cN·tex-1)和美棉33B(平均比强度32cN·tex-1)为试验材料,于2008-2009年在江苏南京(118°50'E,32°02'N,长江流域下游棉区)江苏省农业科学院设置施氮量试验,研究了:(1)棉纤维发育相关酶(蔗糖酶、蔗糖合成酶、磷酸蔗糖合成酶和β-1,3-葡聚糖酶)活性对棉铃对位叶氮浓度的响应及对纤维比强度形成的影响;(2)棉纤维发育相关物质(蔗糖、β-1,3-葡聚糖、纤维素)含量变化对棉铃对位叶氮浓度的响应及对纤维比强度形成的影响;(3)棉花不同果枝部位铃纤维发育相关酶活性和相关物质变化对棉铃对位叶氮浓度的响应差异及对纤维比强度形成的影响;(4)棉花源库强度对棉铃对位叶氮浓度的响应机制;(5)棉铃对位叶碳水化合物与叶氮浓度的关系及影响纤维比强度形成的机理。
     主要研究结果如下:
     1.棉纤维发育相关酶(蔗糖酶、蔗糖合成酶、磷酸蔗糖合成酶、p-1,3-葡聚糖酶)活性对棉铃对位叶氮浓度的响应及对纤维比强度形成的影响
     棉铃对位叶氮浓度显著影响棉纤维发育过程中相关酶活性和纤维比强度的形成。在花后同一时期,各相关酶活性和纤维比强度均随棉铃对位叶氮浓度的升高呈先升高后降低的抛物线变化。花后不同时期各指标对应的适宜对位叶氮浓度差异较小,且随花后天数的变化趋势符合幂函数关系,德夏棉1号、科棉1号、美棉33B纤维发育的适宜棉铃对位叶氮浓度分别为:NDexiamianl=7.2841DPA-0.2771(R2=0.9860**). Nkemianl=7.1807DPA-0.2989(R2=0.9879**)、NNuCON33B一7.1467DPA-0.2819(R2=0.975**),据此可诊断棉花氮素营养状况,指导氮肥施用进而调控纤维发育相关酶活性和比强度达到或接近最优。
     2.棉纤维发育相关物质(蔗糖、β-1,3-葡聚糖、纤维素)含量变化对棉铃对位叶氮浓度的响应及对纤维比强度形成的影响
     棉铃对位叶氮浓度显著影响棉纤维发育相关物质含量和纤维比强度的形成。在花后同一时期,各相关物质和纤维比强度与棉铃对位叶氮浓度之间均符合抛物线关系,在38DPA前蔗糖和p-1,3-葡聚糖含量随对位叶氮浓度升高呈先升高后降低的趋势,45DPA后趋势相反,纤维素含量和纤维比强度随对位叶氮浓度升高均呈先升高后降低的趋势。花后不同时期各指标对应的适宜棉铃对位叶氮浓度差异较小,且随花后天数的变化趋势符合幂函数关系,德夏棉1号、科棉1号、美棉33B纤维发育适宜的棉铃对位叶氮浓度分别为:NDexiamianl=7.6649DPA-0.2974(R2=0.9758**): Nkemianl=7.2945DPA-0.3086(R2=0.9816**);NNuCOTN33B=7.3418DPA-0.2948(R2=0.9684**)。
     3.棉花不同果枝部位铃纤维发育相关酶活性和相关物质变化对棉铃对位叶氮浓度的响应差异及对纤维比强度形成的影响
     纤维发育相关酶(蔗糖酶、蔗糖合成酶、磷酸蔗糖合成酶和β-1,3-葡聚糖酶)活性和相关物质(蔗糖、p-1,3-葡聚糖、纤维素)含量变化对棉铃对位叶氮浓度的响应在棉花不同果枝部位铃之间趋势一致,但上部果枝铃纤维相关酶活性和相关物质含量高于下部果枝铃。在花后同一时期,各指标与棉铃对位叶氮浓度之间的关系符合抛物线型变化,表明不同果枝部位间均存在适宜的对位叶氮浓度使纤维发育相关酶活性和相关物质含量利于纤维素的合成累积以及纤维比强度的形成,且棉花相同果枝部位铃各指标对应的适宜对位叶氮浓度差异较小。棉花不同果枝部位间以上部果枝铃纤维发育对应的适宜氮浓度高于下部果枝。
     4.棉花源库强度对棉铃对位叶氮浓度的响应机制
     棉铃对位叶氮浓度显著影响棉花的源库强度。在花后同一时期,棉花源强度(可溶性糖、蔗糖、磷酸蔗糖合成酶)和库强度(蔗糖、蔗糖合成酶)各指标均随对位叶氮浓度的上升呈先升高后降低(45-52DPA的纤维蔗糖含量呈先降低后升高)的抛物线型变化趋势。在45DPA(德夏棉1号38DPA)前上述各指标所对应的最佳对位叶氮浓度差异较小,通过调节对位叶氮浓度可调控源、库强度达到最优,在本试验条件下棉花中部果枝铃源、库强度达到最优的适宜叶氮浓度分别为:NDexiamianl=7.2383t-0.2759(R2=0.9829**)、NKemianl=7.236t-0.3026(R2=0.9876**).NNuCOTN33B=7.1706t-0.284(R2=0.978*)。
     5.棉铃对位叶碳水化合物与叶氮浓度的关系及影响纤维比强度形成的机理
     棉铃对位叶氮浓度较叶片SPAD值和游离氨基酸浓度更能够反映棉株氮素营养状况;棉铃对位叶蔗糖和非结构性碳水化合物含量与棉铃对位叶氮浓度之间的关系符合抛物线关系(P<0.01);纤维发育的适宜对位叶氮浓度约为2.50%,且随着花后天数的增加呈幂函数降低;24-38DPA纤维蔗糖含量与对位叶蔗糖、非结构性碳水化合物显著正相关(P<0.05),与棉铃对位叶淀粉和可溶性糖含量的相关性未达到显著水平(P>0.05);纤维比强度与38DPA前的纤维蔗糖含量极显著正相关,且较纤维长度、细度和成熟度更易受纤维蔗糖变化的影响。因此,24-38DPA是决定纤维品质主要性状形成的关键时期,棉铃对位叶蔗糖和非结构性碳水化合物含量可作为检测纤维蔗糖含量的指标,用以预测纤维最终品质。
Fiber strength is one of the most important index to evaluate fiber quality, which associates with secondary wall thickening stage and cellulose deposition characters. Nitrogen is one of the regulating factors to the production and fiber quality of cotton. To study the regular mechanism of nitrogen on cotton fiber formation and clarify the optimal nitrogen status for fiber strength could provide a basement in field to improve fiber quality by regulate nitrogen status. A2-year (2008and2009) study was conducted outdoors in Nanjing (118°50'E,32°02'N), which was located in the middle-lower reaches of Yangtze River Valley, China. Cotton cultivars Dexiamian1, Kemian1and NuCOTN33B, that were quite different in fiber strength were used as materials, and different nitrogen rates were applied to carry out different leaf (the subtending leaf of boll) nitrogen concentration condition in the experiment. The objectives in this study were (1) to analyze the effects of leaf nitrogen concentration on related enzymes and fiber strength in cotton fiber during fiber development,(2) to analyze the effects of leaf nitrogen concentration on related substances and fiber strength in cotton fiber during fiber development,(3) to analyze the response of related enzymes and related substances in fiber on leaf nitrogen concentration during fiber development,(4) to analyze the response of source-sink activity on leaf nitrogen concentration during boll growth,(5) to analyze the relationship between nitrogen status and carbohydrates content and the effect of this relationship on fiber quality.
     The main results were as follows:
     1. Effects of leaf nitrogen concentration on related enzymes (Invertase, Sucrose synthase, Sucrose phosphate synthase andβ-1,3-glucanase) activity and fiber strength formation
     By studying the response of characteristics of nitrogen concentration in subtending leaf of cotton boll to nitrogen application rates and the response of related enzymes'activity to leaf nitrogen concentration, to analyze the mechanism of nitrogen on fiber strength formation and clarify the optimal nitrogen status on fiber strength. The results indicated that the leaf nitrogen concentration was increased with the increasing of nitrogen rates; and the changes of leaf nitrogen concentration followed the equation:YN=αt(YN is nitrogen concentration in the subtending leaf of cotton boll(%); t is days post anthesis(d); a and β are parameters); The enzymes activity and fiber strength all changed following the parabolic equation (Y=ax2+bx+c, Y is enzyme activity or fiber strength, x is leaf nitrogen concentration (%), a, b and c are parameters) with the increasing of leaf nitrogen concentration. The leaf nitrogen concentration also had a significant effect on related enzymes activity and fiber strength, and there was little difference between the optimal leaf nitrogen concentrations that were for acquiring the highest related enzymes and for acquiring the highest fiber strength respectively in each sampling time. And the equations of the optimal leaf nitrogen concentration to the time course of days post anthesis were NDexiamianl=7.2841DPA-0.2771(R2=0.9860,P<0.01), NKemianl=7.1807DPA-0.2989(R2=0.9879, P<0.01), NNUCOTN33B=7.1467DPA-0.2819(R2=0.9755, P<0.01) for Dexiamian1, Kemian1and NuCOTN33B。 So, it is believed that higher fiber strength, accompany with the related enzymes activity could be acquired by regulating the leaf nitrogen concentration to a better level in cotton cultivation.
     2. Effects of leaf nitrogen concentration on related substances (Sucrose, β-1,3-glucance and cellulose) content and fiber strength formation
     By studying the response of related substance content to leaf nitrogen concentration, to analyze the mechanism of nitrogen on fiber strength formation and clarify the optimal nitrogen status on fiber strength. The results indicated that the leaf nitrogen concentration was increased with the increasing of nitrogen rates; and the changes of leaf nitrogen concentration followed the equation:Yn=αt-β (YN is nitrogen concentration in the subtending leaf of cotton boll(%);t is days post anthesis (d); a and β are parameters); The substances'content and fiber strength all changed following the parabolic equation (Y=ax2+bx+c,Y is enzyme activity or fiber strength, x is leaf nitrogen concentration (%), a, b and c are parameters) with the increasing of leaf nitrogen concentration. The leaf nitrogen concentration also had a significant effect on related substances content and fiber strength, and there was little difference between the optimal leaf nitrogen concentrations that were for acquiring the highest related substances and for acquiring the highest fiber strength respectively in each sampling time. And the equations of the optimal leaf nitrogen concentration to the time course of days post anthesis were NdeXiamianl=7.6649DPA-02974(R2=0.9758), Nkemianl=7.2945DPA-0.3086(R2=0.9816) and NNUCOTN33B=7.3418DPA-0.2948(R2=0.9684) for Dexiamian1, Kemian1and NuCOTN33B. So, it is believed that higher fiber strength, accompany with the related substances content could be acquired by regulating the leaf nitrogen concentration to a better level in cotton cultivation.
     3. The mechanism of leaf nitrogen concentration on related enzymes and related substances in fiber at different fruit branch position
     By studying the response of related enzymes activity and related substance content to leaf nitrogen concentration in lower and upper fruit branch position, to analyze the mechanism of nitrogen on fiber strength formation and clarify the optimal nitrogen status on fiber strength. The results showed that the related enzymes'activity and fiber strength all changed following the parabolic equation (Y=ax2+bx+c, Y is enzyme activity or fiber strength, x is leaf nitrogen concentration (%), a, b and c are parameters) with the increasing of leaf nitrogen concentration, and leaf nitrogen concentration had no significant effect on fiber growth process, and there were similar trend among different fruit branch position. There was little difference between the optimal leaf nitrogen concentrations that were for acquiring the highest related enzymes and for acquiring the highest fiber strength respectively in each sampling time in same fruit branch position. However, there were significant difference of optimal leaf nitrogen concentration between lower and upper fruit branch position, and upper leaf nitrogen concentration was higher than lower. So, it is believed that higher fiber strength, accompany with the related enzymes activity could be acquired by regulating the leaf nitrogen concentration to a better level in cotton cultivation, and the necessity of nitrogen fertilizer, the time and amount of nitrogen fertilizer application should consider the needing rule of fertilization.
     4. Effects of leaf nitrogen concentration on source-sink activity between the subtending leaf of boll and cotton fiber
     This study was conducted to explore the effects of subtending leaf nitrogen concentration on leaf source activity (soluble sugar content, sucrose content and sucrose phosphate synthase activity) and fiber sink activity (sucrose content and sucrose synthase activity) during the development of cotton boll. The results showed that leaf nitrogen concentration have significant effects on leaf source strength and fiber sink strength during the development of cotton boll. At the same days post anthesis(DPA), leaf source activity and fiber sink activity all changed following parabolic equation (Y=ax2+bx+c, Y is leaf source activity or fiber sink activity, x is leaf nitrogen concentration, a, b and c are parameters) with the increasing of the subtending leaf nitrogen concentration. Before45DPA(38DPA for Dexiamian1), there was a tiny difference among optimal leaf nitrogen concentration of above mentioned index. So, we could change the leaf nitrogen concentration and further to improve leaf source strength and fiber sink strength to best status and was benefit in cotton boll. The equation of optimal leaf nitrogen concentration to days post anthesis for Dexiamian1, Kemian1and NuCOTN33B during the development of cotton boll were NDexiamianl=7.2383DPA-02759(R2=0.9829**), NKemianl=7.236DPA-0.3026(R2=0.9876**)、 NNUCOTN33B=7.1706DPA-0.284(R2=0.9788**). After45DPA, there was a bigger difference among index, and leaf source activity and fiber sucrose phosphate synthase need a higher leaf nitrogen concentration than fiber sucrose.
     5. The relationship between nitrogen status and carbohydrates in the subtending leaf and effect of above relationship on fiber quality
     This study was to explore the relationship between nitrogen status and carbohydrate, and carbohydrate content and fiber quality. The results indicated that leaf (the subtending leaf of boll) N concentration can be more accurately to reflect the N status of the subtending leaves of boll than SPAD reading or free amino acid. Sucrose and non-structural carbohydrate had a quadratic relation with leaf N concentration (P<0.01). The optimal leaf N concentration is around2.50%, and it follows a typical dilution curve. During24-38days post-anthesis (DPA), sucrose in fiber was positively related to sucrose or non-structural carbohydrate of the subtending leaves of boll (P<0.05), while was not correlated with starch or soluble sugar of the leaf (P>0.05). Fiber sucrose had a positive correlation with fiber strength before38days post-anthesis (DPA)(P<0.05), and it is more susceptible than fiber length, fineness and maturity to fiber sucrose. These suggested that (1)24-38DPA is a crucial period for fiber development which might be significant influenced by physiological and ecological factors,(2) sucrose or non-structural carbohydrate in the subtending leaf of boll could be taken as monitoring indices to evaluate sucrose level in the developing fiber, and then to estimate the final fiber quality.
引文
[1]喻树迅,宋美珍,范术丽,等.短季棉早熟不早衰生化辅助育种技术研究[J].中国农业科学,2005,38(4):664-670.
    [2]李伶俐,房卫平,马宗斌,等.施氮量对杂交棉氮、磷、钾吸收利用和产量及品质的影响[J].植物营养与肥料学报,2010,16(3):663-667.
    [3]朱新开,郭凯泉,郭文善,等.氮肥运筹比例对稻田套播强筋小麦子粒品质和产量的影响[J].植物营养与肥料学报,2010,16(3):515-521.
    [4]杨恩琼,黄建国,何腾兵,等.氮肥用量对普通玉米产量和营养品质的影响[J].植物营养与肥料学报,2009,15(3):509-513.
    [5]马溶慧,周治国,王友华,等.棉铃对位叶氮浓度与纤维品质指标的关系[J].中国农业科学,2009,42(3):833-842.
    [6]马溶慧,许乃银,张传喜,等.氮素对不同开花期棉铃纤维比强度形成的生理基础的影响[J].应用生态学报,2008,19(12):2618-2626.
    [7]Mackenzin A J, Van Schaik P H. Effects of nitrogen on yield, boll, and fiber properties of four varieties of irrigated cotton [J]. Agronomy Journal,1963,55:345-347.
    [8]Bradow J M, Davidonis G H. Quantitation of fiber quality and the cotton production-processing interface:a physiologist's perspective [J]. The Journal of Cotton Science,2000,4:34-64.
    [9]Haigler C H, Datcheva M I, Hogan P S, et al.. Carbon partitioning to cellulose synthesis [J]. Plant Molecule Biology,2001,47:29-51
    [10]束红梅,王友华,陈兵林,等.棉花纤维素累积特性的基因型差异及与纤维比强度形成的关系[J].作物学报,2007,33(6):921-926.
    [11]凌启鸿.作物群体质量[M].上海:上海科学技术出版社,2000:307.
    [12]Basra A S, Malik C P. Development of the cotton fiber [J]. International review of cytology-a survey of cell biology,1984,89:65-112.
    [13]Schuber A M, Benedict C R. Cotton fiber development kinetics of cell elongation and secondary wall thickening [J]. Crop Science,1973,13:704-709.
    [14]张天真,孙敬,潘家驹.陆地棉无絮棉突变体纤维初始发育的体外诱导[J].棉花学报,1992,(增刊):122-128.
    [15]Joshi P C, Wadhwani A M, Johri B M. Morphological and embryological studies of Gossypium [J]. Proceedings of the National Institute of Science-India,1967,33:37-93.
    [16]Beasley C A. Ovule culture:fundamental and pragmatic research for the cotton industry [M]. New York:Springer-Verlag,1977:160-178.
    [17]董合忠,徐楚年,余炳生.陆地棉与海岛棉纤维发育的比较研究:Ⅱ.棉纤维的伸长、加厚与纤维品质[J].北京农业大学学报,1990,16(2):137-141.
    [18]柏长青.棉花胚珠培养的研究[D].北京农业大学硕士研究生毕业论文,1993.
    [19]Ferguson D L, Turley R B. Comparison of protein during cotton (Gossypium hirsutuml L.) fiber cell development with partial sequences of two proteins [J]. Agricultural Food Chemistry,1996,44: 4022-4027.
    [20]Saxena I M, Brown R M, Dandekar T. Structure-function characterization of cellulose synthase: relationship to other glycosyltransferases [J]. Phytochemistry,2001,7(57):135-148.
    [21]丁振乾.棉纤维发育的超微结构研究[D].南京农业大学硕士学位论文,2004
    [22]杜雄明,潘家驹,汪若海.棉纤维细胞分化和发育[J].棉花学报,2000,12(4):212-217.
    [23]Bowman D T, Gutierrez O A. Breeding and genetics-sources of fiber strength in the U.S. Upland cotton crop from 1980 to 2000 [J]. Journal of Cotton Science,2003,7(4):164-169.
    [24]Willins T A. Vacuolar H+-ATPase 69 KD catalytic subunit cDNA from developing cotton ovules [J]. Plant Physiology,1993,102:679-68.
    [25]Carnachan S M, Harris P J. Polysaccharide compositions of primary cell walls of the palms phoenix canariensis and Rhopalostylis sapida [J]. Plant Physiology and Biochemistry,2000,38: 699-708.
    [26]Maureen M C, Delemer D P. Change in biochemical composition of the cell wall of the cotton fiber during development [J]. Plant Physiology,1997,59:1088-1097.
    [27]Marx F M. Comparison of the biosynthesis of cellulose in vitro and in vivo cotton boll [J]. Nature, 1966,210:754-755.
    [28]Kimura S, Kondo T. Recent progress in cellulose biosynthesis [J]. Journal of Plant Research,2002, 115:297-302.
    [29]Delmer D P, Amor Y. Cellulose biosynthesis [J]. The Plant Cell,1995,7:987-1000.
    [30]Amor Y, Haigler C H, Johnson S, et al. A membrane-associated form of sucrose synthase and its potential role in synthesis of cellulose and callose in plant [J]. Proceedings of the National Academy of Sciences of the United States of America,1995,92:9353-9357.
    [31]Ruan Y L, Chourey P S, Delmer D P, et al. The differential expression of sucrose synthase in relation to diverse patterns of carbon partitioning in developing cotton seed [J]. Plant Physiology, 1997,115:375-385.
    [32]Ruan Y L, Lewellyn D J, Furbank R T. Suppression of Sucrose Synthase Gene expression Represses Cotton Fiber Cell Initiation, Elongation, and Seed Development [J]. The Plant Cell,2003, 15:952-964.
    [33]Tang G Q, Luscher M, Sturm A. Antisense repression of vacuolar and cell wall invertase in transgenic carrot alters early plant development and sucrose partitioning [J]. Plant Cell,1999,11: 177-189.
    [34]Konishi T, Ohmiyal Y, Hayashi T. Evidence that sucrose loaded into the phloem of a poplar leaf is used directly by sucrose synthase associated with various-glucan synthases in the stem [J]. Plant Physiology,2004,134:1146-1152.
    [35]Winter H, Huber S C. Regulation of sucrose metabolism in higher plants:Localization and regulation of activity of key enzymes [J]. Criv Rev Plant Sci,2000,19:31-67.
    [36]Delmer D P. Cellulose biosynthesis in developing cotton fibers [M]. New York:Food Products Press,1999:85-112.
    [37]Sadras V O, Bange M P, Milroy S P. Reproductive allocation of cotton in response to plant and environmental factors [J]. Annals of Botany,1997,80:75-81.
    [38]Michelle B V, Haigler C H. Sucrose-phosphate synthase activity rises in correlation with high-rate cellulose synthesis in three heterotrophic systems [J]. Plant Physiology,2001,127(3):1234-1242.
    [39]Hearn A B. OZCOT:A simulation model for cotton crop management [J]. Agricultural Systems, 1994,44:257-299.
    [40]高玉龙,郭旺珍,王磊,等.一个棉花β-1,3-葡聚糖酶基因全长cDNA的克隆与特征分析[J].作物学报,2007,33(8):1310-1315.
    [41]张文静,胡宏标,王友华,等.棉纤维发育相关酶活性的基因型差异与纤维比强度的关系[J].中国农业科学,2007,40(10):2177-2184.
    [42]蒋光华,孟亚利,陈兵林,等.低温对棉纤维比强度形成的生理机制影响[J].植物生态学报,2006,30:335-343.
    [43]Shimizu Y, Aotsuka S, Hasegawa O, et al.. Changes in levels of mRNAs for cell wall-related enzymes in growing cotton fiber cells [J]. Plant Cell Physiology,1997,38(3):375-378.
    [44]Doblin M S, Kurek I, Jacok-wilk D, et al.. Drought effects on the water relations of cotton fruits, bracts, and leaves during ontogeny [J]. Plant and Cell Physiology,2002,43(12):1407-1420.
    [45]Ruan Y L, Chourey P S. A fiberless seed mutation in cotton is associated with lack of fiber cell initiation in ovule epidermis and alterations in sucrose synthase expression and carbon partitioning in developing seeds [J]. Plant Physiology,1998,118:399-406.
    [46]Cutler S, Somerville C. Cellulose synthesis:Cloning in silico [J]. Current Biology,1997,7: 108-111.
    [47]Pear J R, Kawagoe Y, Schreckengost W E. Higher plants contain hom clogs of the bacterial CelA genes encoding the catalytic subunit of cellulose synthase [J]. Proceedings of the National Academy of Sciences of the United States of America,1996,93:12637-12642.
    [48]胡宏标,张文静,王友华,等.棉纤维加厚发育相关物质对纤维比强度的影响[J].西北植物学报,2007,27(4):726-733.
    [49]Haigler C H, Babb V M, Hwang S, et al.. Regulation of cellulose biosynthesis in developing xylem [J]. Progress in Biotechnology,2001,18:1-9.
    [50]Martin L K, Haigler C H. Cool temperature hinders flux from glucose to sucrose during cellulose synthesis in secondary wall stage cotton fibers [J]. Cellulose,2004,11:339-349.
    [51]蒋光华,周治国,陈兵林,等.棉株生理年龄对纤维加厚发育及纤维比强度形成的影响[J].中国农业科学,2006,39(2):265-273.
    [52]Masahiro I, Donald N. Regulation of cell wall glucanase activities by non-enzymic proteins in maize coleoptiles [J]. International Journal of Biological Macromolecules,1997,21:15-20.
    [53]Maltby D, Carpita N C, Montezinos D, et al.β-1,3-Glucan in developing cotton fibers [J]. Plant Physiology,1979,63:1158-1164.
    [54]Tucker M R, Paech N A, Willemse M T M, et al.. Dynamics of callose deposition and (3-1,3-glucanase expression during reproductive events in sexual and apomictic Hieracium [J]. Planta,2001,212:487-498.
    [55]Meier H, Buchs L, Buchala A J, et al.. (1→3)-β-D-Glucan (callose) is a probable intermediate in biosynthesis of cellulose of cotton fibres [J]. Nature,1981,289:821-822.
    [56]Shu H M, Zhou Z G, Xu N Y, et al.. Sucrose metabolism in cotton (Gossypium hirsutum L.) fibre under low temperature during fibre development [J]. European Journal of Agronomy,2009, 31(2):61-68.
    [57]杨佑明,徐楚年.棉纤维发育的生理机制[J].植物学通报,2003,20(1):1-9.
    [58]陈良兵,李永起.棉花纤维发育的分子研究进展[J].分子植物育种,2004,2(1):105-111
    [59]Meredith W R Jr. Minimum number of genes controlling cotton fiber strength in a backcross population [J]. Crop Science,2005,45(3):1114-1119.
    [60]Green C C, Culp T W. Simultaneous improvements of yield, fiber quality, and yarn strength in upland cotton [J]. Crop Science,1990,30:66-69.
    [61]May O L. Genetic variation in fiber quality [M]. In A.S. Basra(ed) Cotton fiber, Food Products Press, New York, NY.183-229.
    [62]Wang Y H, Shu H M, Chen B L, et al.. The rate of cellulose increase is highly related to cotton fiber strength and is significantly determined by its genetic background and boll period temperature [J]. Plant Growth Regulation,2009,57:203-209.
    [63]卞海云,王友华,陈兵林,等.低温条件下相关关键酶活性对棉纤维比强度形成的影响[J].中国农业科学,2008,41(4):1235-1241.
    [64]郝敬虹,李天来,孟思达,等.夜间低温对薄皮甜瓜果实糖积累及代谢相关酶活性的影响[J].中国农业科学,2009,42(10):3592-3599.
    [65]成善汉,苏振洪,谢从华,等.淀粉-糖代谢酶活性变化对马铃薯块茎还原糖积累及加工品质的影响[J].中国农业科学,2004,37(12):1904-1910.
    [66]Rosa M, Miraa H, Gonzalez J A, et al.. Low-temperature effect on enzyme activities involved in sucrose-starch partitioning in salt-stressed and salt-acclimated cotyledons of quinoa (Chenopodium quinoa Willd.) seedlings [J].Plant Physiology and Biochemistry,2009,47:300-307.
    [67]张文静,胡宏标,陈兵林,等.棉花季节桃加厚发育生理特性的差异及与纤维比强度的关系[J].作物学报,2008,34(5):859-869.
    [68]马溶慧,许乃银,张传喜,等.氮素水平对棉铃干物质积累分配好纤维品质性状的影响.棉花学报,2009,21(2):115-120.
    [69]王庆材,王振林,宋宪亮,等.花铃期遮荫对棉纤维品质的影响[J].应用生态学报,2005,16(8):1465-1468
    [70]韩慧君.气候生态因素对棉花产量与纤维品质的影响[J].中国农业科学,1991,24(5):23-29.
    [71]Pettigrew W T. Low light condition compromise the quality of fiber produced [C]. Process Beltwide Cotton Conference,1996.
    [72]Zhao D, Oosterhuis D M. Cotton responses to shade at different growth stages:growth, lint yield and fibre quality [J]. Experimental Agriculture,2000,36:27-39
    [73]周治国,孟亚利,施培,等.日照时数时间分布对麦套棉铃主要品质性状的影响[J].中国农业科学,1999,32(1):40-45
    [74]周治国,孟亚利,施培,等.苗期遮荫对棉花产量与品质形成的影响[J].应用生态学报,2002,13(8):997-1000.
    [75]王庆材,孙学振,宋宪亮,等.不同棉铃发育时期遮荫对棉纤维品质性状的影响[J].作物学报,2006,32(5):671-675.
    [76]马富裕,曹卫星,周治国,等.田间条件下遮光对棉花棉铃发育及纤维品质的影响[J].棉花学报,2004,16(5):270-274.
    [77]Sahay R K. Photosynthetic and stomatal responses of cotton to drought stress and waterlogging [J]. Agriculture Science,1989,9:198-200.
    [78]Terazawa K, Maruyama Y, Morikawa Y. Photosynthetic and stomatal responses of Larix kaempferi seedlings to short-term waterlogging [J]. Ecology Research,1992,7:193-197.
    [79]Bange M P, Milroy S P, Thongbai P. Growth and yield of cotton in response to waterlogging [J]. Field Crops Research,2004,88:129-142.
    [80]Constable G A, Hearn A B. Irrigation for crops in a subhumid environment. Ⅵ. Effect of irrigation and nitrogen fertilizer on growth, yield and quality of cotton [J]. Irrigation Science,1981,3:17-28.
    [81]刘瑞显,陈兵林,王友华,等.氮素对花铃期干旱再复水后棉花根系生长的影响[J].植物生态学报,2009,33(2):405-413.
    [82]郭文琦,陈兵林,刘瑞显,等.施氮量对花铃期短期渍水棉花叶片抗氧化酶活性和内源激素含量的影响[J].应用生态学报,2010,21(1):53-60.
    [83]Seagull R W, Oliveri V, Murphy K Binder A, et al.. Cotton fiber growth and development:2. Changes in cell wall diameter and wall birefringence [J]. Cotton Science,2000,4:97-104.
    [84]Reddy K R, Koti S, Davidonis G H, et al.. Interactive effects of carbon dioxide and nitrogen nutrition on cotton growth, development, yield, and fiber quality [J]. Agroclimatology,2004,96: 1148-1157.
    [85]Ebelhar M W, Welch R A. Nitrogen rates and mepiquat chloride effects on cotton lint yield and quality. Proceedings of Beltwide Cotton Conferences, Nashville, Tennessee [C]. National Cotton Council of America, Memphis, Tennessee,1996,1373-1378.
    [86]Jambunathan L R, Mehta N P, Sanandia C J, et al.. Study of the effects of the application of nitrogen, phosphorus and potash on the economic and quality characteristics of the cotton-Hybrid [J]. Journal of the Indian society cotton improvement,1986,11:260-29.
    [87]Phipps B J, Stevens W E, Ward J N, et al.. The influence of mepiquat chloride and nitrogen rate upon the maturity and fiber quality of upland cotton [C]. New Orleans:Dugger and D.A. Richter (ed.) Proc. Beltwide cotton conferences,1997:1471-1472.
    [88]Elayan S E D. Acomparative study on yield, some yield components and nitrogen fertilization of some Egyptian cotton varieties [J]. Assiut journal of agricultural science,1992,23:153-165.
    [89]Singh V, Nagwekar S N. Effect of weed control and nitrogen levels on quality characters in cotton [J]. Journal of the Indian society cotton improvement,1989,14:60-64.
    [90]Tewolde H, Fernandez C J, Foss D C. Maturity and lint yield of nitrogen and phosphorus deficient Pima cotton [J]. Agronomy Journal,1994,86:303-309.
    [91]Rochester I J, Peoples M B, Constable G A. Estimation of the N fertilizer requirement of cotton grown after legume crops [J]. Field Crops Research,2001,70:43-53.
    [92]Constable G A, Hearn A B. Irrigation for crops in a subhumid environment. VI. Effect of irrigation and nitrogen fertilizer on growth, yield and quality of cotton [J]. Irrigation science,1981,3:17-28.
    [93]Hansen S, Jensen H E, Nielsen N E, et al. Simulation of nitrogen dynamics and biomass production in winter wheat using the Danish simulation model DAISY [J]. Fertilizer Research,1991,27: 245-259.
    [94]Read J J, Reddy K R, Jenkins J N. Yield and fiber quality of upland cotton as influenced by nitrogen and potassium nutrition [J]. European Journal of Agronomy,2006,24:282-290.
    [95]马溶慧,许乃银,张传喜,等.氮素调控棉花纤维蔗糖代谢及纤维比强度的生理机制[J].作物学报,2008,34(12):2143-2151.
    [96]马溶慧,周治国,王友华,等.棉铃对位叶氮浓度与纤维品质指标的关系[J].中国农业科学,2009,42(3):833-842.
    [97]冯营,赵新华,王友华,等.棉纤维发育过程中糖代谢生理特征对氮素的响应及其与纤维比强度形成的关系[J].中国农业科学,2009,42(1):93-102.
    [98]战秀梅,韩晓日,王帅,等.不同施肥对春玉米源库特征及其关系的影响[J].土壤通报,2008,39(4):887-891.
    [99]曹显祖,朱庆森.水稻品种的源库特征及其类型划分的研究[J].作物学报,1987,13(4):265-272.
    [100]Djisbar A. Heterosis for embryo size and source and sink components of maize [J]. Crop Science, 1989,29:985-991.
    [101]Jones R J, Simmons S R. Effect of altered source sink ratio on growth of maize kernels [J]. Crop Science,1983,23:129-134.
    [102 Takeda T. The research of rice varieties'production of warm material [J]. Diary,1984,53:12-21.
    [103]陆卫平,陈国平,郭景伦,等.不同生态条件下玉米产量源库关系的研究[J].作物学报,1997,23(6):727-733.
    [104]刘伟,吕鹏,苏凯,等.种植密度对夏玉米产量和源库特性的影响[J].应用生态学报,2010,21(7):1737-1743.
    [105]Heuvelink E, Buiskool R P M. In fluence of sink2s ource interaction on dry matter production in tomato [J]. Annals of Botany,1995,75:381-389.
    [106]Wilkens R T. Resource availability and the trichome defenses of tomato plants [J]. Oecologia, 1996,106:181-191.
    [107]Sinclair T R, Horie T. Leaf nitrogen photosynthesis and crop radiation use efficiency:A review [J]. Crop Science,1989,29:90-98.
    [108]Tei F, Battistelli A, Guiducci M, et al.. The effect of nitrogen fertilization on the principle photosynthetic parameters in Capsicum annuum L [J]. Riv. di Agron.,1993,27 (4):434-437.
    [109]段留生,何钟佩.DPC对棉花叶片发育及活性氧代谢的影响[J].棉花学报,1996,8(6):312-315.
    [110]Thomas W R Jr, Phillip S K, Huber S C. Characterization of diurnal changes in activities of involved in sucrose biosynthesis. Plant Physiology,1983,73:428-433.
    [111]Wang F, Smith A G, Brenner ML. Temporal and spatial expression pattern of sucrose synthase during tomato fruit development [J]. Plant Physiology,1994,104:535-540.
    [112]吕英民,张大鹏.果实发育过程中糖的积累[J].植物生理学通讯,2000,36(3):258-265.
    [113]曾骧.果树生理学[M].北京:北京农业大学出版社,1990.
    [114]卞海云,陈兵林,周治国,等.低温条件下外源生理活性物质对棉铃发育的影响[J].西北植物学报,2005,25(9):1785-1790.
    [115]Delmer D P, Haigler C H. The regulation of metabolic flux to cellulose, a major sink for carbon in plants. Metabolic Engineering,2002,4:22-28.
    [116]Evans L T, Crop Physiology [M]. New Y ork:Cambridge Univ Press,1975.
    [117]Guinn G, Brummett D L. In fluence of de fruiting on the abscisic acid and indole-3-acetic acid contents of cotton leaves [J]. Field Crops Research,1992,28:257-262.
    [118]Khafoga E R. Correlation between bud sprouting and the levels of endogenous hormones on cotton plants(Gossipium L. spp) [J]. Angewandte Botanik,1983,57 (1/2):1-8.
    [119]Peoples T R, Matthews M A. In fluence of boll removal on assimilate partitioning in cotton [J]. Crop Science,1981,21 (2):283-286.
    [120]Benedilt C R, K ohel R J. Export of C assimilates in cotton leaves [J].Crop Science,1975,15: 367-372.
    [121]Bhardwajs N. Physiology parameters for higher productivity in upland cotton [J]. Indian Journal of Agricultural Science,45(3):124-127.
    [122]Gordon W B. Tillage and nitr ogen effects on growth, nitrogn content, and yield of corn [J]. Commun. Soil Science and Plant Analysis,1993,24(5&6):421-442.
    [123]战秀梅,韩晓日,杨劲峰,等.不同氮、磷、钾肥用量对玉米源、库干物质积累动态变化的影响[J].土壤通报,2007,38(3):495-499.
    [124]Eaton F M, Ergle D R. Effects of shade and partial defoliation on carbohydrate levels and the growth, fruting, and fiber properties of cotton plants [J]. Plant Physiology,1954,27:541-562.
    [125]Dusserre J, Crozat Y, Warembourg F R, et al. Effects of shading on sink capacity and yield components of cotton in controlled environments [J]. Agronomy,2002,22:307-320.
    [126]ZHAO D L, Oosterhui D. Cotton responses to shade at different growth stages:Nonstructural carbohydrate composition [J]. Crop Science,1998,38:1196-1203.
    [127]孙红春,冯丽肖,谢志霞,等.不同氮素水平对棉花不同部位-铃叶系统生理特性及铃重空间分布的影响[J].中国农业科学,2007,40(8):1638-1645.
    [128]Gwathmey C O, Clement J D. Alteration of cotton source-sink relations with plant population density and mepiquat chloride. Field Crop Research,2010,116:101-107.
    [129]张祥,张丽,王书红,等.棉花源库调节对铃叶光合产物运输分配的影响[J].作物学报,2007,33(5):843-848.
    [130]Chapin F S, Bloom A J, Field C B. Plant responses to multiple environmental factors [J]. Bioscience,1987,37:49-57.
    [131]Sugiharto B, Miyata K, Nakamoto H, et al. Regulation of expression of carbon-assimilating enzymes by nitrogen in maize leaf [J]. Plant Physiology,1990,92:963-969.
    [132]张旺锋,王振林,余松烈,等.氮肥对新疆高产棉花群体光合性能和产量形成的影响[J].作物学报,2002,28(6):789-796.
    [133]张旺锋,勾玲,王振林,等.氮肥对新疆高产棉花叶片叶绿素荧光动力学参数的影响[J].中国农业科学,2003,36(8):893-898.
    [134]Li C D, Xie Z X, Wang W X, et al.. Source and sink characteristics of various genotypes with different boll weight in cot ton [C].Australian Center for International Agricultural Research 4th International Crop Science Congress,2004,223.
    [1]Amor Y, Haigler CH, Wainscott M, et al. A membrance-associated form of sucrose synthase and its potential role in synthesis of cellulose and callose in plants [J]. Proc Natl Acad Sci USA 1995, 92(20):9353-9357.
    [2]Ramey Jr., H.H.. Stress influences on fiber development [M]. In:Mauney, J.R., Stewart, J.McD. (Eds.), Cotton Physiology. The Cotton Foundation, Memphis, TN, USA,1986,315-359.
    [3]Reddy K R, Davidonis, et al. Temperature regime and carbon dioxide enrichment alter cotton boll development and fiber properties [J]. Agronomy Journal,1999,91:851-858.
    [4]李伶俐,房卫平,马宗斌,等.施氮量对杂交棉氮、磷、钾吸收利用和产量及品质的影响[J].植物营养与肥料学报,2010,16(3):663-667.
    [5]朱新开,郭凯泉,郭文善,等.氮肥运筹比例对稻田套播强筋小麦子粒品质和产量的影响[J].植物营养与肥料学报,2010,16(3):515-521.
    [6]杨恩琼,黄建国,何腾兵,等.氮肥用量对普通玉米产量和营养品质的影响[J].植物营养与肥料学报,2009,15(3):509-513.
    [7]Reddy K R, Koti S, Davidonis G H, Reddy V R. Interactive effects of carbon dioxide and nitrogen nutrition on cotton growth, development, yield, and fiber quality [J]. Agroclimatology,2004,96: 1148-1157.
    [8]Rochester I J, Peoples M B, Constable G A. Estimation of the N fertilizer requirement of cotton grown after legume crops [J]. Field Crops Research,2001,70:43-53.
    [9]Pettigrew W T. Environmental effects on cotton fiber carbohydrate concentration and quality [J]. Crop Science,2001,41:1108-1113.
    [10]Read J J, Reddy K R, Jenkins J N. Yield and fiber quality of upland cotton as influenced by nitrogen and potassium nutrition [J]. European Journal of Agronomy,2006,24:282-290.
    [11]凌启鸿.作物群体质量[M].上海:上海科学技术出版社,2000:307.
    [12]孙红春,冯丽肖,谢志霞,等.不同氮素水平对棉花不同部位—铃叶系统生理特性及铃重空间分布的影响[J].中国农业科学,2007,40(8):1638-1645.
    [13]束红梅,王友华,陈兵林,等.棉花纤维素累积特性的基因型差异及与纤维比强度形成的关系[J].作物学报,2007,33(6):921-926.
    [14]Haigler C H, Ivanova-Datcheva M, Hogan P S. Carbon partitioning to cellulose synthesis [J]. Plant Molecular Biology,2001,47:29-51.
    [15]Martin L K, Haigler C H. Cool temperature hingders flux from glucose to sucrose during cellulose synthesis in secondary wall stage cotton fiber [J]. Cellulose,2004,11:339-349.
    [16]张文静,胡宏标,王友华,等.棉纤维发育相关酶活性的基因型差异与纤维比强度的关系[J].中国农业科学,2007,40(10):2177-2184.
    [17]蒋光华,孟亚利,陈兵林,等.低温对棉纤维比强度形成的生理机制影响[J].植物生态学报,2006,30:335-343.
    [18]Stitt M. Control analysis of photosynthetic sucrose synthesis:assignment of elasticity coefficients and fluxcontrol coefficients to the cytosolic fructose 1,6-bisphosphatase and sucrose-phosphate synthase [J]. Phil Trans R. Soc. Lond,1989,323:327-338.
    [19]Meier H, Buchs L, Buchala A J, et al. (1-3)-β-D-Glucan (callose) is a probable intermediate in biosynthesis of cellulose of cotton fibers [J]. Nature,1981,289:821-822.
    [20]马溶慧,许乃银,张传喜,等.氮素调控棉花纤维蔗糖代谢及纤维比强度的生理机制[J].作物学报,2008,34(12):2143-2151.
    [21]冯营,赵新华,王友华,等.棉纤维发育过程中糖代谢生理特性对氮素的响应及其与纤维比强度形成的关系[J].中国农业科学,2009,42(1):93-102.
    [22]薛晓萍,周治国,张丽娟,等.棉花花后临界氮浓度稀释模型的建立及在施氮量调控中的应用[J].生态学报,2006,26(6):1781-1791.
    [23]上海植物生理研究所.现代植物生理学实验指南[M].北京:科学出版社,1999.
    [24]Konishi T, Nakai T, Sakai F, et al. Formation of callose from sucrose in cotton fiber microsomal membranes [J]. Japan Wood Research Society,2001,47:331-335.
    [25]张艳霞,丁艳锋,王强盛,等.氮素穗肥对不同品种稻米品质性状的影响[J].植物营养与肥料学报,2007,13(6):1080-1085.
    [26]石玉,张永丽,于振文.施氮量对不同品质类型小麦子粒蛋白质组分含量及加工品质的影响[J].植物营养与肥料学报,2010,16(1):33-40.
    [27]Gerik T J, Ooterhuis D M, Torbert H.A. Managing cotton nitrogen supply [J]. Advanced Agronomy, 1998,64:115-147.
    [28]郭文琦,陈兵林,刘瑞显,等.施氮量对花铃期短期渍水棉花叶片抗氧化酶活性和内源激素含量的影响[J].应用生态学报,2010,21(1):53-60.
    [29]刘瑞显,陈兵林,王友华,等.氮素对花铃期干旱再复水后棉花根系生长的影响[J].植物生态学报,2009,33(2):405-413.
    [1]Basra A S, Malik C P, Development of the cotton fiber [J]. International review of cytology-a survey of cell biology,1984,89:65-112.
    [2]Schuber A M, Benedict C R. Cotton fiber development kinetics of cell elongation and secondary wall thickening [J]. Crop Science,1973,13:704-709.
    [3]Willins T A. Vacuolar H+-ATPase 69 KD catalytic subunit cDNA from developing cotton ovules [J]. Plant Physiology,1993,102:679-68.
    [4]Carnachan S M, Harris P J. Polysaccharide compositions of primary cell walls of the palms phoenix canariensis and Rhopalostylis sapida [J]. Plant Physiology and Biochemistry,2000,38: 699-708.
    [5]束红梅,王友华,陈兵林,等.棉花纤维素累积特性的基因型差异及与纤维比强度形成的关系[J].作物学报,2007,33(6):921-926.
    [6]Haigler C H, Ivanova-Datcheva M, Hogan P S. Carbon partitioning to cellulose synthesis [J]. Plant Molecular Biology,2001,47:29-51.
    [7]马溶慧,周治国,王友华,等.棉铃对位叶氮浓度与纤维品质指标的关系[J].中国农业科学,2009,42(3):833-842.
    [8]冯营,赵新华,王友华,等.棉纤维发育过程中糖代谢生理特征对氮素的响应及其与纤维比强度形成的关系[J].中国农业科学,2009,42(1):93-102.
    [9]Brown R M Jr, Saxena I M. Cellulose biosynthesis:A modle for understanding the assembly of biopolymers [J]. Plant Physiol Biochemistry,2000,38:57-67.
    [10]Mei Y J, Ye Z H, Xu Z. Genetic impacts of fiber sugar content on fiber characters in sea island cotton, Gossypium barbadense L [J]. Euphytica,2007,154:29-39.
    [11]Wang Y H, Shu H M, Chen B L, et al.. The rate of cellulose increase is highly related to cotton fiber strength and is significantly determined by its genetic background and boll period temperature [J]. Journal of Plant Growth Regulation,2009,57:203-209.
    [12]Shu H M, Zhou Z G, Xu N Y, et al.. Sucrose metabolism in cotton (Gossypium hirsutum L.) fibre under low temperature during fibre development [J]. European Journal of Agronomy,2009,31: 61-68.
    [13]Delmer D P, Haigler C H. The regulation of metabolic flux to cellulose, a major sink for carbon in plants [J]. Metabolism Engineering,2002,4(1):22-28.
    [14]Meser H, Bueh L, Buehala A J, et al.. (1-3)-β-D-Gluean(callose) is a probable intermediate in biosynthesis of cellulose of cotton fibers [J]. Nature,1981,289:821-822.
    [15]Salnikov V V, Grimson M J, Seagull R W, et al.. Localization of sucrose synthase and callose in freeze-substituted secondary secondary-wall-stage cotton fibers [J]. Protoplasma,2003,221(3-4): 175-184.
    [16]上海植物生理研究所.现代植物生理学实验指南[M].上海科学出版社,1999:127.
    [17]KOhle H, Jeblick W, Poten F, et al.. Chitosan-elicited callose synthesis in soybean cells as a Ca2+ -dependent process [J]. Plant Physiology,1985,77(3):544-551.
    [18]李伶俐,房卫平,谢德意,等.施氮量对杂交棉光合生理特性及产量、品质的影响[J].植物营养与肥料学报,2010,16(5):1183-1189.
    [19]戴云云,丁艳峰,王强盛,等.不同施氮水平下稻米品质对日间增温响应的差异[J].植物营养与肥料学报,2009,15(2):276-282.
    [20]高辉,马群,李国业,等.氮肥水平对不同生育类型粳稻稻米蒸煮食味品质的影响[J].中国农业科学,2010,43(21):4543-4552.
    [21]赵海波,林琪,刘义国,等.氮磷配施对“济麦22"小麦产量及品质的影响[J].植物营养与肥料学报,2010,16(6):1325-1332.
    [22]张学林,王群,赵亚丽,等.施氮水平和收获时期对夏玉米产量和籽粒品质的影响[J].应用生态学报,2010,21(10):2565-2572.
    [23]凌启鸿.作物群体质量[M].上海:上海科学技术出版社,2000:307.
    [24]孙红春,冯丽肖,谢志霞,等.不同氮素水平对棉花不同部位一铃叶系统生理特性及铃重空间分布的影响[J].中国农业科学,2007,40(8):1638-1645.
    [25]胡宏标,张文静,王友华,等.棉纤维加厚发育相关物质对纤维比强度的影响[J].西北植物学报,2007,27(4):0726-0733.
    [1]陈兵林,曹卫星,周治国.棉花单铃干物质积累分配的分期动态模拟及检验[J].中国农业科学,2006,39(3):487-493.
    [2]周可金,江厚旺,吴宁,等.不同开花期棉铃干物质累积规律研究[J].棉花学报,1996,8(3):145-150.
    [3]蒋光华,周治国,陈兵林,等.棉株生理年龄对纤维加厚发育及纤维比强度形成的影响[J].中国农业科学,2006,39(2):265-273.
    [4]单世华,施培,孙学振,等.开花期和果枝部位对短季棉纤维品质及超分子结构的影响[J].中国农业科学,2002,35(2):163-168.
    [5]于振文.作物栽培学各论[M].北京:中国农业出版社,2003:388.
    [6]李伶俐,房卫平,马宗斌,等.施氮量对杂交棉氮、磷、钾吸收利用和产量及品质的影响[J].植物营养与肥料学报,2010,16(3):663-667.
    [7]朱新开,郭凯泉,郭文善,等.氮肥运筹比例对稻田套播强筋小麦子粒品质和产量的影响[J].植物营养与肥料学报,2010,16(3):515-521.
    [8]杨恩琼,黄建国,何腾兵,等.氮肥用量对普通玉米产量和营养品质的影响[J].植物营养与肥料学报,2009,15(3):509-513.
    [9]马溶慧,周治国,王友华,等.棉铃对位叶氮浓度与纤维品质指标的关系[J].中国农业科学,2009,42(3):833-842.
    [10]马溶慧,许乃银,张传喜,等.氮素对不同开花期棉铃纤维比强度形成的生理基础的影响[J].应用生态学报,2008,19(12):2618-2626.
    [11]冯营,赵新华,王友华,等.棉纤维发育过程中糖代谢生理特征对氮素的响应及其与纤维比强度形成的关系[J].中国农业科学,2009,42(1):93-102.
    [12]束红梅,王友华,陈兵林,等.棉花纤维素累积特性的基因型差异及与纤维比强度形成的关系[J].作物学报,2007,33(6):921-926.
    [13]Haigler C H, Ivanova-Datcheva M, Hogan P S. Carbon partitioning to cellulose synthesis [J]. Plant Molecular Biology,2001,47:29-51.
    [14]Martin L K, Haigler C H. Cool temperature hingders flux from glucose to sucrose during cellulose synthesis in secondary wall stage cotton fiber [J]. Cellulose,2004,11:339-349.
    [15]张文静,胡宏标,王友华,等.棉纤维发育相关酶活性的基因型差异与纤维比强度的关系[J].中国农业科学,2007,40(10):2177-2184.
    [16]蒋光华,孟亚利,陈兵林,等.低温对棉纤维比强度形成的生理机制影响[J].植物生态学报,2006,30:335-343.
    [17]Stitt M. Control analysis of photosynthetic sucrose synthesis:assignment of elasticity coefficients and fluxcontrol coefficients to the cytosolic fructose 1,6-bisphosphatase and sucrose-phosphate synthase [J]. Phil Trans R. Soc. Lond.1989,323:327-338.
    [18]Ebelhar M W, Welch R A. Nitrogen rates and mepiquat chloride effects on cotton lint yield and quality [C]. Proceedings of Beltwide Cotton Conferences, Nashville, Tennessee. National Cotton Council of America, Memphis, Tennessee,1996,1373-1378.
    [19]Phipps B J, Stevens W E, Ward J N, et al.. The influences of mepiquat chloride and nitrogen rate upon the maturity and fiber quality of upland cotton [C]. New Orleans:Dugger and D.A. Richter (ed) Proc. Beltwide Cotton Conferences,1997,1471-1472.
    [20]Tewode H, Fernandez C J, Foss D C. Maturity and lint yield of nitrogen and phosphorus deficient Pima cotton [J]. Agronomy Journal,1994,86:303-309.
    [21]Rochester I J, Peoples M B, Constable G A. Estimation of the N fertilizer requirement of cotton grown after legume crops [J]. Field Crops Research,2001,70:43-53.
    [22]刘连涛,李存东,孙红春,等.氮素营养水平对棉花不同部位叶片衰老的生理效应[J].植物营养与肥料学报,2007,13(5):910-914.
    [23]王友华,陈兵林,卞海云,等.温度与棉株生理年龄的协同效应对棉纤维发育的影响[J].作物学报,2006,32(11):1671-1677.
    [24]王友华,束红梅,陈兵林,等.不同棉花品种纤维比强度形成的时空差异及其与温度的关系[J].中国农业科学,2008,41(11):3865-3871.
    [25]马溶慧,许乃银,张传喜,等.氮素水平对棉铃干物质积累分配和纤维品质性状的影响[J].棉花学报,2009,21(2):115-120.
    [1]凌启鸿.作物群体质量[M].上海:上海科学技术出版社,2000:307.
    [2]Krieg D R, Sung J F M. Source-sink relations as affected by water stress during boll development [J]. In:Mauney, J.R.,Stewart, J.M.(Eds.), Cotton Physiology. The Cotton Foundation, Memphis, TN, 1986,73-77.
    [3]孙红春,冯丽肖,谢志霞,等.不同氮素水平对棉花不同部位铃叶系统生理特性及铃重空间分布的影响[J].中国农业科学,2007,40(8):1638-1645.
    [4]Ho L C, Grange R I, Shaw A F. Source/sink regulaton. In:Baker, D.A., Milburn, J.A. Jr(Eds.), Transport of Photoassimilates. Wiley, New York,1989,306-343.
    [5]Zhao D, Oosterhuis D M. Dynamics of non-structural carbohydrates in developing leaves, bracts and floral buds of cotton [J]. Environmental and Experimental Botany,2000,43:185-195.
    [6]Thomas W R Jr, Phillip S K, Huber S C. Characterization of diurnal changes in activities of involved in sucrose biosynthesis [J]. Plant Physiology,1983,73:428-433.
    [7]Jenner C F. Effects of exposure of wheat ears to high temperature on dry matter accumulation and carbohydrate metabolism in the grain of two cultivars. I. Immediate response [J]. Australia Journal of Plant Physiology,1991,18:165-177.
    [8]蒋光华,孟亚利,陈兵林,等.低温对棉纤维比强度形成的生理机制影响[J].植物生态学报,2006,30:335-343.
    [9]Farrar J, Pollock C, Gallaghet J. Sucrose and the integration of metabolism in vascular plants [J]. Plant Science,2000,154:1-11.
    [10]Wang F, Sanz A, Brenner M L, et al.. Sucrose synthase, starch accumulation, and tomato fruit sink strength [J]. Plant Physiology,1993,101:321-327.
    [11]Gwathmey C O, Clement J D. Alteration of cotton source-sink relations with plant population density and mepiquat chloride [J]. Field Crops Research,2010,116:101-107.
    [12]董合忠,牛日华,李维江,等.不同整枝方式对棉花源库关系的调节效应[J].应用生态学报,2008,19(4):819-824.
    [13]Bradow J M, Davidonis G H. Quantitation of fiber quality and the cotton production-processing interface:a physiologist's perspective [J]. The Journal of Cotton Science,2000,4:34-64.
    [14]Reddy K R, Koti S, Davidonis G H, et al.. Interactive effects of carbon dioxide and nitrogen nutrition on cotton growth, development, yield and fiber quality [J]. Agronomy Journal,2004,96(4): 1148-1157.
    [15]Read J J, Reddy K R, Jenkins J N. Yield and fiber quality of upland cotton as influenced by nitrogen and potassium nutrition [J]. European Journal of Agronomy,2006,24:282-290.
    [16]Moser S B, Feil B, Jampatong S, et al.. Effects of pre-anthesis drought, nitrogen fertilizer rate, and variety on grain yield, yield components, and harvest index of tropical maize [J]. Agticultural Water Management,2006,81:41-58.
    [17]Ramasmy S, Berge H F M ten, Purushothaman S. Yield formation in rice in response to drainage and nitrogen application [J]. Field Crops Research,1997,51:65-82.
    [18]Salvagiotti F, Miralles D J. Radiation interception, biomass production and grain yield as affected by the interaction of nitrogen and sulfur fertilization in wheat [J]. European Journal of Agronomy, 2008,28:282-290.
    [19]薛晓萍,周治国,张丽娟,等.棉花花后临界氮浓度稀释模型的建立及在施氮量调控中的应用[J].生态学报,2008,19(4):819-824.
    [20]高俊风.植物生理学实验技术[M].广州:世界图书出版社,2000:141-228.
    [21]上海植物生理研究所.现代植物生理学实验指南[M].上海科学出版社,1999:127.
    [22]Konishi T, Nakai T, Sakai F, et al.. Formation of callose from sucrose in cotton fiber microsomal membranes [J]. Japan Wood Research Society,2001,47:331-335.
    [23]马溶慧,许乃银,张传喜,等.氮素调控棉花纤维蔗糖代谢及纤维比强度的生理机制[J].作物学报,2008,34(12):2143-2155.
    [24]冯营,赵新华,王友华,等.棉纤维发育过程中糖代谢生理特征对氮素的响应及其与纤维比强度形成的关系[J].中国农业科学,2009,42(1):93-102.
    [25]Wopereis-Pura M M, Watanabe H, Moreira J, et al.. Effect of late nitrogen application on rice yield, grain quality and profitability in the Senegal River valley [J]. European Journal of Agronomy,2002, 17:191-198.
    [26]Ramos T B, Goncalves M C, Castanheira N L, et al.. Effect of sodium and nitrogenon yield function of irrigated maize in southern Portugal [J]. Agticultural Water Management,2009,96:585-594.
    [27]姜东,于振文,李永庚,等.施氮水平对高产小麦蔗糖含量和光合产物分配及籽粒淀粉积累的影响[J].中国农业科学,2002,35(2):157-162.
    [28]Wang S, Zhu Y, Jiang H D, et al.. Positional differences in nitrogen and concentration of upper leaves relate to plant N status in rice under different N rates [J]. Field Crops Research,2006,96: 224-234.
    [29]孙虎,王月福,李尚霞,等.施氮量对不同类型花生蔗糖合成及产量的影响[J].植物营养与肥料学报,2008,14(2):398-402.
    [1]冯营,赵新华,王友华,等.棉纤维发育过程中糖代谢生理特征对氮素的响应及其与纤维比强度形成的关系[J].中国农业科学,2009,42(1):93-102.
    [2]朱新开,郭凯泉,郭文善,等.氮肥运筹比例对稻田套播强筋小麦子粒品质和产量的影响[J].植物营养与肥料学报,2010,16(3):515-521.
    [3]杨恩琼,黄建国,何腾兵,等.氮肥用量对普通玉米产量和营养品质的影响[J].植物营养与肥料学报,2009,15(3):509-513.
    [4]马溶慧,周治国,王友华,等.棉铃对位叶氮浓度与纤维品质指标的关系[J].中国农业科学,2009,42(3):833-842.
    [5]Singh V, Nagwekar S N. Effect of weed control and nitrogen levels on quality characters in cotton [J]. Journal of the Indian society cotton improvement,1989,14:60-64.
    [6]Tewolde H, Fernandez C J, Foss D C. Maturity and lint yield of nitrogen and phosphorus deficient Pima cotton [J]. Agronomy Journal,1994,86:303-309.
    [7]Rochester I J, Peoples M B, Constable G A. Estimation of the N fertilizer requirement of cotton grown after legume crops [J]. Field Crops Research,2001,70:43-53.
    [8]Constable G A, Hearn A B. Irrigation for crops in a subhumid environment. VI. Effect of irrigation and nitrogen fertilizer on growth, yield and quality of cotton [J]. Irrigation Science,1981,3:17-28.
    [9]Farrar J, Pollock C, Gallagher J. Sucrose and the integration of metabolism in vascular plants [J]. Plant Sci.2000,154:1-11.
    [10]Wang F, Sanz A, Brenner M L, et al.. Sucrose synthase, starch accumulation, and tomato fruit sink strength [J]. Plant Physiology,1993,101:321-327.
    [11]Haigler C H, Babb V M, Hwang S, et al.. Regulation of cellulose biosynthesis in developing xylem [J]. Progross in Biotechnology,2001,18:1-9.
    [12]Mei Y J, Ye Z H, Xu Z. Genetic impacts of fiber sugar content on fiber characters in sea island cotton, Gossypium barbadense L [J]. Euphytica,2007,154:29-39.
    [13]Shu H M, Zhou Z G, Xu N Y, et al.. Sucrose metabolism in cotton(Gossypium hirsutum L.) fibre under low temperature during fibre development [J]. European Journal of Agronomy,2009,31: 61-68.
    [14]Wang Y H, Shu H M, Chen B L, et al.. The rate of cellulose increase is highly related to cotton fiber strength and is significantly determined by its genetic background and boll period temperature [J]. Journal of Plant Growth Regulation,2009,57:203-209.
    [15]Ho L C, Grange R I, Shaw A F. Source/sink regulation. In:Baker, D.A., Milburn, J.A. Jr (Eds.), Transport of photoassimilates. Wiley, New York,1989, pp:306-343.
    [16]姜东,于振文,李永庚,等.施氮水平对高产小麦蔗糖含量和光合产物分配及籽粒淀粉积累的影响[J].中国农业科学,2002,35(2):157-162.
    [17]Ahmadi A, Joudi M, Janmohammadi M. Late defoliation and wheat yield:Little evidence of post-anthesis source limitation [J]. Field Crops Research,2009,113(1):90-93.
    [18]张祥,张丽,王书红,等.棉花源库调节对铃叶光合产物运输分配的影响[J].2007,33(5):843-848
    [19]凌启鸿.作物群体质量[M].上海:上海科学技术出版社,2000:307.
    [20]Delmer D P, Haigler C H. The regulation of metabolic flux to cellulose, a major sink for carbon in plants [J]. Metabolic Engineering,2002,4:22-28.
    [21]Ma R H, Xu N Y, Zhang C X, et al.. Physiological mechanism of sucrose metabolism in cotton fiber and fiber strength regulated by nitrogen [J]. Acta Agronomica Sinica,2008,34:2143-2155.
    [22]Hendeix D L. Rapid extraction and analysis of non-structural carbohydrates in plant tissues [J]. Crop Science,1993,33:1306-1311.
    [23]李合生.现代植物生理学试验指导[M].北京:高等教育出版社.2000
    [24]Rosen H. A modified ninhydrin colorimetric analysis for amino acids [J]. Arch. Biochm. Biophys. 1957,67,10-5.
    [25]Wang S H, Zhu Y, Jiang H D, et al. Positional differences in nitrogen and sugar concentrations of upper leaves relate to plant nitrogen status in rice under different nitrogen rates [J]. Field Crops Research,2006,96:224-234.
    [26]Makino A, Sakashita H, Hidema J, et al.. Distinctive responses of ribulose-1,5-bisphosphate carboxylase and carbonic anhydrase in wheat leaves to nitrogen nutrition and their possible relationships to CO2 transfer resistance [J]. Plant Physiology,1992,100:1737-1743.
    [27]Makino A, Nakano H, Mae T. Responses of Ribulose-1,5-bisphosphate carboxylase, cytochrome, and sucrose synthesis enzymes in rice leaves to leaf nitrogen and their relationships to photosynthesis [J]. Plant Physiology,1994,105:173-179.
    [28]Teng Y B, Li Y J, Fang P, et al.. Characterization of nitrogen metabolism in the low-nitrogen tolerant Intl mutant of arabidopsis thaliana under nitrogen stress [J]. Pedosphere,2010,20: 623-632.
    [29]Roth G W, Fox R H. Plant tissue test for predicting nitrogen fertilizer requirement of winter wheat [J]. Agronomy Journal,1989,81:502-507.
    [30]Olga I., Kraemer G P, Marta P, et al.. Effects of nitrogen addition on nitrogen metabolism and carbon reserves in the temperate seagrass Posidonia oceanica [J]. Journal of Experimental Marine Biology and Ecology,2004,303:97-114.
    [31]Boussadia O, Steppe K, Zgallai H, et al.. Effects of nitrogen deficiency on leaf photosynthesis, carbohydrate status and biomass production in two olive cultivars 'Meski' and 'Koroneiki'[J]. Science of Horticultural,2010,123:336-342.
    [32]Williamson R E, Burn J E, Hocart C H. Towards the mechanism of cellulose synthesis [J]. Trends Plant Science,2002,7:461-467.
    [33]Champigny M L. Regulation of photosynthetic carbon assimilation at the cellular level:a review [J]. Photosynth Research,1985,6:273-286.
    [34]Lunn J E, Hatch M D. Primary partitioning and storage of photosynthate in sucrose and starch in leaves of C4 plants [J]. Planta.1995,197:385-391.
    [35]Hendrix D L, Mauney J R, Kimball B A, et al.. Influence of elevated CO2 and mild water stress on nonstructural carbohydrates in field-grown cotton tissues [J]. Agricultural and Forest Meteorology, 1994,70:153-162.
    [36]Stitt M, Heldt H W. Simultaneous synthesis and degradation of starch in spinach chloroplasts in the light [J]. Biochimica Biophysica Acta,1981,638:1-11.
    [37]Zhao D, Oosterhuis D M. Dynamics of non-structural carbohydrates in developing leaves, bracts and floral buds of cotton [J]. Environmental of Expriement Botany,2000,43:185-195.
    [38]Reddy K R, Koti S, Davidonis G H, et al.. Interactive effects of carbon dioxide and nitrogen nutrition on cotton growth, development, yield, and fiber quality [J]. Agronomy Journal,2004,96: 1148-1157.
    [39]Bradow J M, Davidonis G H. Quantitation of fiber quality and the cotton production-processing interface:a physiologist's perspective [J]. Journal of Cotton Science,2000,4:34-64.
    [40]Irena R, Matthijs T. Source:sink ratio and leaf senescence in maize:I. Dry matter accumulation and partitioning during grain filling [J]. Field Crop Research,1999,60:245-253
    [41]Wang R C, Tischner R, Gutierrez R A, et al.. Genomic analysis of the nitrate response using a nitrate reductase-null mutant of Arabidopsis [J]. Plant Physiology,2004,136:2512-2522.
    [42]Chen D H, Ye G Y, Yang C Q, et al.. Effect after introducing Bacillus thuringiensis gene on N metabolism in cotton [J]. Field Crops Research,2004,87:235-244.
    [43]Wu F B, Wu L H, Xu F H. Chlorophyll meter to predict nitrogen sidedress requirements for short-season cotton (Gossypium hirsutum L.) [J]. Field Crops Research,1998,56:309-314.
    [44]Gwathmey C O, Clement J D. Alteration of cotton source-sink relations with plant population density and mepiquat chloride [J]. Field Crops Research,2010,116:101-107.
    [49]Peng S B, Garcia F V, Laza C R, et al.. Adjustment for specific leaf weight improves chlorophyll meter's estimate of rice leaf nitrogen concentration [J]. Agronomy Journal,1993,85:987-990.
    [46]Invers O, Kraemer G P, Perez M, et al.. Effects of nitrogen addition on nitrogen metabolism and carbon reserves in the temperate seagrass posidonia oceanica [J] Journal of Experimenrtal Marine and Ecology,2004,303:97-114.
    [47]Gerik T T, Oosterhuis D M, Tolbert H A. Managing cotton N supply [J]. Advanced Agronomy,1998, 64:115-147.
    [48]Read J J, Reddy K R, Jenkins J N. Yield and fiber quality of cotton as influenced by nitrogen and potassium nutrition [J]. European Journal of Agronomy,2006,24:282-290.
    [1]Basra A S, Malik C P. Development of the cotton fiber [J]. International review of cytology-asurvey of cell biology,1984,89:65-112.
    [2]Schuber A M, Benedict C R. Cotton fiber development kinetics of cell elongation and secondary wall thickening [J]. Crop Science,1973,13:704-709.
    [3]Willins T A. Vacuolar H+-ATPase 69 KD catalytic subunit cDNA from developing cotton ovules [J]. Plant Physiology,1993,102:679-68.
    [4]Carnachan S M, Harris P J. Polysaccharide compositions of primary cell walls of the palms phoenix canariensis and Rhopalostylis sapida [J]. Plant Physiology and Biochemistry,2000,38: 699-708.
    [5]Haigler C H, Datcheva M I, Hogan P S, et al. Carbon partitioning to cellulose synthesis [J]. Plant Molecule Biology,2001,47:29-51
    [6]Amor Y, Haigler C H, Johnson S. A membrane-associated form of sucrose synthase and its potential role in synthesis of cellulose and callose in plant [J]. Plant Biology,1995,92:9353-9357
    [7]Martin L K, Haigler C H. Cool temperature hingders flux from glucose to sucrose during cellulose synthesis in secondary wall stage cotton fiber [J]. Cellulose,2004,11:339-349.
    [8]张文静,胡宏标,王友华,等.棉纤维发育相关酶活性的基因型差异与纤维比强度的关系[J].中国农业科学,2007,40(10):2177-21 84.
    [9]蒋光华,孟亚利,陈兵林,等.低温对棉纤维比强度形成的生理机制影响[J].植物生态学报,2006,30:335-343.
    [10]Stitt M. Control analysis of photosynthetic sucrose synthesis:assignment of elasticity coefficients and fluxcontrol coefficients to the cytosolic fructose 1,6-bisphosphatase and sucrose-phosphate synthase [J]. Phil Trans R. Soc. Lond.1989,323:327-338.
    [11]Brown J R M, Saxena I M, Kudlicka K. Cellulose biosynthesis in higher plants [J]. Trends in Plant Science,1996,5(1):149-155.
    [12]薛晓萍,王以琳,郭文琦,等.基于临界氮浓度稀释模型的棉花开花后氮动态需求定量诊断研究[J].作物学报,2006,32(10):1579-1585.
    [13]束红梅,王友华,陈兵林,等.棉花纤维素累积特性的基因型差异及与纤维比强度形成的关系[J].作物学报,2007,33(6):92 1-926.
    [14]Brown R M Jr, Saxena I M. Cellulose biosynthesis:A model for understanding the assembly of biopolymers [J]. Plant Physiology Biochemistry,2000,38:57-67.
    [15]凌启鸿.作物群体质量[M].上海:上海科学技术出版社,2000:307.
    [16]马溶慧,周治国,王友华,等.棉铃对位叶氮浓度与纤维品质指标的关系[J].中国农业科学,2009,42(3):833-842.
    [17]张文静,胡宏标,陈兵林,等.棉花季节桃加厚发育生理特性的差异及与纤维比强度的关系[J].作物学报,2008,34(5):859-869
    [18]王友华,陈兵林,卞海云,等.温度与棉株生理年龄的协同效应对棉纤维发育的影响.作物学报,2006,32(11):1671-1677.
    [19]陈兵林,曹卫星,周治国.棉花单铃干物质积累分配的分期动态模拟及检验[J].中国农业科学,2006,39(3):487-493.
    [20]周可金,江厚旺,吴宁,等.不同开花期棉铃干物质累积规律研究[J].棉花学报,1996,8(3):145-150.
    [21]蒋光华,周治国,陈兵林,等.棉株生理年龄对纤维加厚发育及纤维比强度形成的影响[J].中国农业科学,2006,39(2):265-273.
    [22]单世华,施培,孙学振,等.开花期和果枝部位对短季棉纤维品质及超分子结构的影响[J].中国农业科学,2002,35(2):163-168.
    [23]于振文.作物栽培学各论[M].北京:中国农业出版社,2003:388.
    [24]马溶慧,许乃银,张传喜,等.氮素水平的对面临干物质积累分配和纤维品质性状的影响[J].棉花学报,2009,115-120.
    [25]刘连涛,李存东,孙红春,等.氮素营养水平对棉花不同部位叶片衰老的生理效应[J].植物营养与肥料学报,2007,13(5):910-914.
    [26]王友华,束红梅,陈兵林,等.不同棉花品种纤维比强度形成的时空差异及其与温度的关系[J].中国农业科学,2008,41(11):3865-3871.
    [27]张洋,翟丙年.水分胁迫条件下氮素营养对不同冬小麦基因型的生理效应[J].麦类作物学报,2010,30(3):492-495.
    [28]薛吉全,张仁和,马国胜,等.种植密度、氮肥和水分胁迫对玉米产量形成的影响[J].作物学报,2010,36(6):1022-1029.
    [29]王闯,郭修武,胡艳丽,等.淹水条件下硝态氮对甜樱桃根系抗氧化酶活性和活性氧含量的影响[J].植物营养与肥料学报,2008,14(1):167-172.
    [30]Krieg,D.R.,Sung,J.F.M.. Source-sink relations as affected by water stress during boll development. In-.Mauney, J.R.,Stewart, J.M.(Eds.), Cotton Physiology. The Cotton Foundation, Memphis, TN, 1986,73-77.
    [31]孙红春,冯丽肖,谢志霞,李存东,李金才.不同氮素水平对棉花不同部位铃叶系统生理特性及铃重空间分布的影响[J].中国农业科学,2007,40(8):1638-1645.
    [32]Ho L C, Grange R I, Shaw A F. Source/sink regulaton. In:Baker, D.A., Milburn, J.A. Jr(Eds.), Transport of Photoassimilates. Wiley, New York,1989,306-343.
    [33]Zhao D, Oosterhuis D M. Dynamics of non-structural carbohydrates in developing leaves, bracts and floral buds of cotton [J]. Environmental and Experimental Botany,2000,43:185-195.
    [34]Thomas W R Jr, Phillip S K, Huber S C. Characterization of diurnal changes in activities of involved in sucrose biosynthesis [J]. Plant Physiology,1983,73:428-433.
    [35]Jenner, C. F. Effects of exposure of wheat ears to high temperature on dry matter accumulation and carbohydrate metabolism in the grain of two cultivars. I. Immediate response [J]. Australia Journal of Plant Physiology,1991,18:165-177.
    [36]Farrar J, Pollock C, Gallaghet J. Sucrose and the integration of metabolism in vascular plants [J]. Plant Science,2000,154:1-11.
    [37]Wang F, Sanz A, Brenner M L, et al.. Sucrose synthase, starch accumulation, and tomato fruit sink strength. Plant Physiology,1993,101:321-327.
    [38]Gwathmey C O, Clement J D. Alteration of cotton source-sink relations with plant population density and mepiquat chloride [J]. Field Crop Research,2010,116:101-107.
    [39]Bradow J M, Davidonis G H. Quantitation of fiber quality and the cotton production-processing interface:a physiologist's perspective [J]. The Journal of Cotton Science,2000,4:34-64.
    [40]Reddy K R, Koti S, Davidonis G H, et al.. Interactive effects of carbon dioxide and nitrogen nutrition on cotton growth, development, yield and fiber quality [J]. Agronomy Journal,2004,96(4): 1148-1157.
    [41]Delmer D P, Haigler C H. The regulation of metabolic flux to cellulose, a major sink for carbon in plants [J]. Metabolic Engineering,2002,4:22-28.
    [42]Haigler C H, Babb V M, Hwang S, et al.. Regulation cellulose biosynthesis in developing xylem [J]. Progross in Biotechnology,2001,18:1-9.
    [43]孙虎,王月福,李尚霞,等.施氮量对不同类型花生蔗糖合成及产量的影响.植物营养与肥料学报,2008,14(2):398-402.
    [44]Gong Y H, Ji X H, Gao J F. Grain sink strength related to carbon staying in the leaves of hybrid wheat XN901 [J]. Agricultural Sciences in China,2009,8(5):546-555.
    [45]姜东,于振文,李永康,等.施氮水平对高产小麦蔗糖含量和光合产物分配及籽粒淀粉积累的影响.中国农业科学,2002,35(2):157-162.
    [46]张祥,张丽,王书红,等.棉花源库调节对铃叶光合产物运输分配的影响[J].2007,33(5):843-848
    [47]Hendrix D L, Mauney J R, Kimball B A, et al.. Influence of elevated CO2 and mild water stress on nonstructural carbohydrates in field-grown cotton tissues [J]. Agric.For.Meteorol.1994.70: 153-162.
    [48]Irena R, Matthijs T. Source:sink ratio and leaf senescence in maize:I. Dry matter accumulation and partitioning during grain filling [J]. Field Crop Research,1999,60:245-253.
    [49]Wang S H, Zhu Y, Jiang H D, et al.. Positional differences in nitrogen and sugar concentrations of upper leaves relate to plant nitrogen status in rice under different nitrogen rates [J]. Field Crops Research,2006,96:224-234.
    [50]Chen D H, Ye G Y, Yang C Q, et al.. Effect after introducing Bacillus thuringiensis gene on N metabolism in cotton [J]. Field Crops Research,2004,87:235-244.
    [51]Wu F B, Wu L H, Xu F H. Chlorophyll meter to predict nitrogen sidedress requirements for short-season cotton (Gossypium hirsutum L.) [J]. Field Crops Research,1998,56:309-314.
    [52]Peng S B, Garcia F V, Laza C R, et al.. Adjustment for specific leaf weight improves chlorophyll meter's estimate of rice leaf nitrogen concentration [J]. Journal of Agronomy,1993,85:987-990.
    [53]Invers O, Kraemer G P, Perez M, et al.. Effects of nitrogen addition on nitrogen metabolism and carbon reserves in the temperate seagrass posidonia oceanica [J]. Journal of Experimental Marine Biology and Ecology,2004,303:97-114.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700