用户名: 密码: 验证码:
西藏野生大麦铝毒耐性机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
铝(A1)毒是酸性土壤抑制作物生长和产量形成的主要因子,解决土壤酸害铝毒问题,对充分利用土地和促进全球作物生产具有重大意义。因此,开展作物耐酸铝胁迫的生理生化与分子机理研究,揭示作物酸铝耐性机制,具有重要的理论和实践价值。青藏高原一年生野生大麦(Hordeum vulgare subsp. spontaneum)是我国特有的珍稀大麦种质,遗传多样性丰富,蕴藏有优异的抗逆等位基因。本研究以青藏高原野生大麦为主要研究材料,研究其耐铝的生理与遗传特性,取得的主要结果如下:
     1.酸土胁迫对大麦离子组的影响
     以90个大麦基因型为材料,测定根和地上部离子组响应酸土胁迫的变化。酸土(pH<4.5)胁迫下,根系铝含量与对照(施石灰)无显著差异,而地上部铝含量显著高于对照;地上部铝含量耐铝品种低于敏感品种。载荷分析表明,地上部铝含量是响应酸土胁迫的主要组分。酸土胁迫显著增加根系磷含量,而降低地上部磷含量,这可能与根表大量形成Al-磷酸盐沉淀有关,阻碍了磷向地上部的转运。酸铝胁迫扰乱地上部硫、钾和锌与其它元素之间的关系,打破地上部组织的离子平衡。
     2.西藏野生大麦与栽培大麦酸铝耐性的全基因组关联分析
     对110份野生大麦和56份栽培大麦在苗期进行耐铝性鉴定,并结合469个均匀分布于所有大麦染色体上的DArT标记,分别对野生群体、栽培群体和所有供试材料进行耐铝性全基因组关联分析(GWAS)。群体结构和聚类分析表明,野生大麦具有较丰富的遗传多样性,与栽培大麦(11.52cM)相比,野生大麦(9.30cM)的LD衰减较快。因此,利用野生大麦进行关联作图具有相对较高的分辨率。在野生群体中鉴定到两个新的耐铝位点,bpb-9458和bpb-8524,它们与相对最长根伸长率(RLRG)相关联,分别位于2H和7H染色体上,可分别解释12.9%和9.7%的表型变异。此外,在整个群体和栽培群体中鉴定到一个耐铝位点bpb-6949,它与铝胁迫下最长根绝对伸长量(TRG)相关联,与已报道的候选基因HvMATE相距较近(0.8cM)。以上研究结果充分显示野生大麦是大麦耐铝研究和遗传改良的优异种质资源。
     3.酸铝胁迫对大麦根系结构、抗氧化系统和有机酸分泌的影响
     从根系形态、抗氧化系统和根系有机酸分泌等特性上研究了野生大麦X29(耐铝)、X9(铝敏感)和栽培大麦品种Dayton (耐铝)对铝浓度和处理的响应。结果表明,铝胁迫下,X9的根伸长受到显著抑制,变粗,根表面积减少;而X29和Dayton的根系形态受影响较小。铝胁迫影响抗氧化酶活性,增加丙二醛含量,以X9受影响最大。X29与X9在铝诱导的根系柠檬酸分泌量和(?)HvMATE基因表达量上差异不大,且HvMATE基因表达量均远低于Dayton。与X9相比,铝诱导X29根系分泌较多的草酸和磷酸。结果显示,铝诱导并不显著影响X29的根系柠檬酸分泌,但影响根系草酸和磷酸的分泌,这可以认为是X29的潜在耐铝机制,但需作进一步研究验证。
     4.大麦响应酸铝胁迫的代谢组学分析
     采用气相色谱-质谱联用技术(GC-MS)测定了X29、X9和Dayton在对照(不加铝)、5μM Al和25μM Al处理6天后根系中79种代谢物的相对含量,并绘制了代谢通路。高铝胁迫下,Dayton通过提高氧自由基清除剂含量,如脯氨酸、阿魏酸、4-羟基-苯甲酸和4-羟基-3-甲基-苯甲酸,减轻膜脂过氧化程度,缓解铝毒造成的氧化胁迫。铝胁迫下,X29能维持较高的糖类代谢中间产物含量,如6-磷酸-葡萄糖和6-磷酸-果糖,这可能是其表现耐铝的生理基础。同时,X29在铝胁迫下根系维持着高水平的磷酸盐和草酸,并向外分泌,螯合根际铝离子,这可能是这一野生大麦材料耐铝的一种主要机制。
Aluminum (Al) toxicity is a main constraint of crop growth and yield formation in acid soils. Overcoming of the problem caused by Al toxicity is quite important for fully utilizing land resource and increasing crop production in the world. Therefore, Understanding of physiological and molecular mechanisms of Al tolerance in crops is imperative. Tibetan annual wild barley(Hordeum vulgare subsp. spontaneum), recognized as one of the ancestors of cultivated barley, is a previous plant germplasm, rich in genetic diversity and elite stress-tolerant alleles. In the present study, the physiological and genetic characteristics of Tibetan wild barley were investigated to make sight into the Al3+-tolerant mechanisms. The main findings were summarized as follows:
     1. The effect of acid soil stress on ionomic change in barley
     90barley genotypes, including wild and cultivated barleys, were planted in the acid soil with pH below4.5and limed soil, to determine growth and ionomic difference among genotypes under the two soil conditions. There was no significant difference in root aluminum (A1) concentration between the plants on the acid and limed soils. However, the plants grew in the acid soil had higher shoot Al concentration than those grew in the limed soil. Moreover, the genotypes tolerant to acid soil showed lower shoot Al concentration than sensitive ones. Loading analysis indicated that shoot Al concentration is the main factor contributed to shoot ionomic change under Al stress. Root phosphorus (P) concentration was higher for the plants subjected to acid soil than those to limed soil, but opposite was true for shoot P concentration. It may be suggested that Al-phosphate complex was formed in root surface for plants in response to Al stress, preventing P transportation from roots to shoots. Al stress disordered the relationships between S, K, Zn and other elements in shoots, resulting in disturbance of shoot ionic homostesis.
     2. Genome-wide association analysis of aluminum tolerance in cultivated and Tibetan wild barley
     A genome-wide association analysis (GWAS) was performed by using four root parameters reflecting Al tolerance and469DArT markers distributed evenly on all7barley chromosomes after making evaluation of A1tolerance of110Tibetan wild accessions and56cultivated cultivars. Population structure and cluster analysis revealed that a wider genetic diversity was present in Tibetan wild barley. Linkage disequilibrium (LD) decayed more rapidly in Tibetan wild barley (9.30cM) than in cultivated barley (11.52cM), indicating that GWAS may provide higher resolution in Tibetan group. Two novel Tibetan group-specific loci, bpb-9458and bpb-8524were identified. They were associated with relative longest root growth (RLRG), and located on chromosomes2H and7H, and could explain12.9%and9.7%of the phenotypic variation, respectively. Moreover, a common locus bpb-6949, localized at0.8cM away from a candidate gene HvMATE, was detected in both wild and cultivated barleys, and it was significantly associated with total root growth (TRG). The present results showed that Tibetan wild barley could provide elite germplasm and novel genes for barley Al-tolerant improvement.
     3. The effect of A1stress on root morphology, antioxidative enzymes and organic acid secretion in barley
     The responses of root morphology, antioxidative enzymes and organic acid secretion of wild barley accessions X29, X9and cultivated cultivar Dayton to Al stress were examined. More inhibition of root elongation, larger root diameter and smaller root surface area were observed for X9in comparison with other two genotypes. Under Al stress, the activities of antioxidative enzymes were greatly affected, and malondialdehyde (MDA) content was greatly increased in X9. There was no significant difference in Al3+-induced citrate secretion or HvMATE expression between X29and X9, but Dayton showed much higher HvMATE expression level. The amount of oxalate and phosphate secreted in X29was higher than that in X9under Al stress. It may be suggested that Al3+-induced oxalate and phosphate efflux could be a possible Al3+-resistant mechanism, which need to be proved by more evidences.
     4. Metabolites and metabolic pathway in response to Al stress
     Using gas chromatography-mass spectrometry (GC-MS), we investigated the metabolites levels of X29, X9and Dayton under Al stress. A total of79key metabolites were identified and the adaptive metabolic pathway was constructed. The concentrations of ROS cleaners, such as proline, Ferulic acid,4-hydroxy-benzoic acid and4-hydroxy-3-methyl benzoic acid, increased greatly in Dayton roots, in response to increased membrane lipid peroxidation. Higher concentrtions of carbohydrate metabolic intermediates, such as glucose-6-P and fructose-6-P in X29could be a physilogical basis for Al tolerance. Maintainance of high level in root phosphate and oxalate concentrations, which are then secreted into rhizophere and cultrue solution, alleviating Al stress, could be a Al3+-tolerant mechanism in X29. But the hypothesis should be confirmed by further study.
引文
Aebi H. (1984) Catalase in vitro. Methods in Enzymology 105:121-126.
    Alia KV, Prasad SK, Pardha SP. (1995) Effect of zinc on free radical and proline in Brassica juncea and Cajanus cajan. Phytochemistry 39:45-47.
    Allen R. (1995) Dissection of oxidative stress tolerance using transgenic plants. Plant Physiol 107:1049-1054.
    Alvarez S, Marsh EL, Schroeder SG, Schachtman DP. (2008) Metabolomic and proteomic changes in the xylem sap of maize under drought. Plant Cell Environ 31:325-340.
    Angelika S, Inga S, Dejene E, Gisela O, Horst J, Walter JH. (2008) The significance of organic-anion exudation for the aluminum resistance of primary triticale derived from wheat and rye parents differing in aluminum resistance. J Plant Nut SoilSci 171:634-642.
    Archambault DJ, Zhang G, Taylor GJ. (1996) Accumulation of Al in root mucilage of an Al-resistant and an Al-sensitive cultivar of wheat. Plant Physiol 112: 1471-1478.
    Arroyave C, Barcelo J, Poschenrieder C, Tolra R。(2011) Aluminium-induced changes in root epidermal cell patterning, a distinctive feature of hyperresistance to Al in Brachiaria decumbens. J Inorg Biochem 105:1477-1483.
    Arsenault JL, Pouleur S, Messier C, Guay R. (1995) WinRHIZOTM, a root-measuring system with a unique overlap correction method. Hort Sci 30:906.
    Ashraf M, Foolad MR. (2007) Roles of glycine betaine and proline in improving plant abiotic stress resistance. Environ Exp Bot 59:206-216.
    Azhaguvel P, Komatsuda TA. (2007) A phylogenetic analysis based on nucleotide sequence of a marker linked to the brittle rachis locus indicates a diphyletic origin of barley. Ann Bot (Lond) 100:1009-1015.
    Baier AC, Somers DJ, Gustafson JP. (1995) Aluminium tolerance in wheat: correlating hydroponic evaluations with field and soil performances. Plant Breed 114:291-296.
    Baker DE, Amacher MC. (1982) Nickel, copper, zinc, and cadmium. In Methods of Soil Analysis. Part 2:Chemical and Microbiological Properties (Spec. Pub. No.9, 2nd Ed.), Ed. AL Page et al., p.323-336. American Society of Agronomy and Soil Science Society of America, Madison, WI.
    Baligar VC, Fageria NK. (1997) Nutrient use efficiency in acid soils:nutrient management and plant use efficiency. In:Moniz, A.C., Furlani, A. M. C. Schaffert, R. E., Fageria, N. K., Rosolem, C. A., Cantarella, H., editors. Plant-Soil Interactions at Low pH:Sustainable Agriculture and Forestry Production. Campinas:Brazilian Soil Science Society, p.79-95.
    Baligar VC, Pitta GVE, Gama EEG, Schaffert RE, BahiaFilho AFD, Clark RB. (1997) Soil acidity effects on nutrient use efficiency in exotic maize genotypes. Plant Soil:192:9-13.
    Barnhisel R, Bertsch PM. (1982) Aluminum. In Methods of Soil Analysis. Part 2: Chemical and Microbiological Properties (Spec. Pub. No.9,2nd Ed.), Ed. AL Page et al., p.275-300, American Society of Agronomy and Soil Science Society of America, Madison, WI.
    Baxter Ⅰ. (2009) Ionomics:studying the social network of mineral nutrients. Curr Opin Plant Biol 12:381-386.
    Baxter Ⅰ. (2010) Ionomics:The functional genomics of elements. Brief Func Genomics 9:149-156.
    Baxter IR, Vitek O, Lahner B, Muthukumar B, Borghi M, Morrissey J, Guerinot ML, Salt DE. (2008) The leaf ionome as a multivariable system to detect a plant's physiological status. Proc Nati Acad Sci USA 105:12081-12086.
    Beauchamp C, Fridovich, I, (1971) Superoxide dismutase:improved assays and an assay applicable to acrylamide gels. Analytical Biochemistry 44:276-287.
    Benjamini Y, Hochberg Y. (1995) Controlling the false discovery rate:a practical and powerful approach to multiple testing. J Roy Stat Soc B 57:289-300.
    Bethke PC, Jones RL. (2001) Cell death of barley aleurone protoplasts is mediated by reactive oxygen species. Plant J 25(1):19-29
    Bhuja P, McLachlan K, Stephens J, Taylor G. (2004) Accumulation of 1,3-β-D-glucans, in response to aluminum and cytosolic calcium in Triticum aestivum. Plant Cell Physiol 45:543-549
    Blarney FPC, Edwards DG, Asher CJ. (1983) Effects of aluminium, OH:A1 and P:A1 molar ratios, and ionic strength on soybean root elongation in solution culture. Soil Sci 136:197-207.
    Blancaflor EB, Jones DL, Gilroy S. (1998) Alterations in the cytoskeleton accompany aluminum induced growth inhibition and morphological changes in primary roots of maize. Plant Physiol 118:159-172
    Boscolo PRS, Menossi M, Jorge RA. (2003) Aluminum-induced oxidative stress in maize. Phytochemistry 62:181-189.
    Bouche N, Fait A, Bouchez D. (2003) Mitochondrial succinicsemialdehyde dehydrogenase of the γ-aminobutyrate shunt is required to restrict levels of reactive oxygen intermediates in plants. Proc Nati Acad Sci USA 100 (11): 6843-6848.
    Bowne JB, Erwin TA, Juttner J, Schnurbusch T, Langridge P, Bacic A, Roessner U. (2012) Drought responses of leaf tissues from wheat cultivars of differing drought tolerance at the metabolite level. Mol Plant 5(2):418-429
    Bradbury PJ, Zhang ZW, Kroon DE, Casstevens RM, Ramdoss Y. (2007) TASSEL: software for association mapping of complex traits in diverse samples. Bioinformatics 23(19):2633-2635.
    Cancado GMA, Loguercio LL, Martins PR, Parentoni SN, Paiva E, Borem A, Lopes MA. (1999) Hematoxylin staining as a phenotypic index for aluminum tolerance selection in tropical maize(Zea mays L.). Theor Appl Genet 99:747-754.
    Caniato FF, Guimaraes CT, Hamblin M, Billot C, Rami JF. (2011) The relationship between population structure and aluminum tolerance in cultivated sorghum. PLoS One 6(6):e20830.
    Carpita NC, Gibeaut DM. (1993) Structural models of primary cell walls in flowering plants:Consistency of molecular structure with the physical properties of the walls during growth. Plant J 3:1-30.
    Carver BF, Ownby JD. (1995) Acid soil tolerance in wheat. Adv Agron.54:117-173
    Chen RF, Zhang FL, Zhang QM, Sun QB, Dong XY, Shen RF. (2012) Aluminum-phosphorus interactions in plants growing on acid soils:does phosphorus always alleviate aluminium toxicity? J Sci Food Agri 92:995-1000.
    Chen Z, Watanabe T, Shanano T, Ezawa T, Wasaki J, Kimura K, Osaki M, Zhu YG. (2009) Element interconnections in Lotus japonicus:A systematic study of the effects of element additions on different natural variants. Soil Sci Plant Nutr 55: 91-101.
    Christian PA, Paul TR. (1991) Stress interactions and mycorrhizal plant response: understanding carbon allocation priorities. Eviron Pollut 73:217-244.
    Ciamporova M. (2002) Morphological and structural response of plant roots to aluminum at organ, tissue and cellular levels. Biologia Plantarum 45:161-171
    Cohen SS. (1971) Introduction to the polyamines. Prentice Hall Inc., Englewood Cliffs, N.J.
    Collins NC, Shirley NJ, Saeed M, Pallotta M, Gustafson JP. (2008) An ALMT1 gene cluster controlling aluminum tolerance at the AIt4 locus of rye (Secale cereale L.). Genetics 179:669-682
    Cuenca G,Herrera ME. (1991) Distribution of aluminium in accumulator plants by X-ray microanalysis in Richeria grandis Vahl leaves from a cloud forest in Venezuela. Plant Cell Envi ron 14:437-441.
    Dai F, Nevo E, Wu D, Comadran J, Zhou M. (2012) Tibet is one of the centers of domestication of cultivated barley. Proc Nati Acad Sci USA 109(42): 16969-16973.
    Darko Eva; Ambrus, Helga; Stefanovits-Banyai, Eva; Fodor, Jozsef; Bakos, Ferenc; Barnabas, Beata. (2004) Aluminium toxicity. Al tolerance and oxidative stress in an Al-sensitive wheat genotype and in Al-tolerant lines developed by in vitro microspore selection. Plant Sci 166:583-591.
    Degenhardt J, Larsen PB, Howell SH, Kochian LV. (1998) Aluminum resistance in the Arabidopsis mutant a/r-104 is caused by an aluminum-induced increase in rhizosphere pH. Plant Physiol 117:19-27.
    Delhaize E, Craig S, Beaton CD. (1993a) Aluminium tolerance in wheat (Triticum aestivum L). Plant Physiol 103:685-693.
    Delhaize E, Gruber BD, Ryan PR. (2007) The roles of organic anion permeases in aluminum resistance and mineral nutrition. FEBS Lett 581(12):2255-2262.
    Delhaize E, Ma JF, Ryan PR. (2012) Transcriptional regulation of aluminium tolerance genes. Trends Plant Sci 17 (6):341-348.
    Delhaize E, Ryan PR, Hebb DM, Yamamoto Y, Sasaki T, Matsumoto H. (2004) Engineering high-level aluminum tolerance in barley with the ALMT1 gene. Proc Nati Acad Sci U S A 101:15249-15254
    Delhaize E, Ryan PR, Randall PJ. (1993b). Aluminium tolerance in wheat (Triticum aestivum L.) Ⅱ. Aluminium-stimulated excretion of malic acid from root apices. Plant Physiol 103:695-702.
    Delhaize E, Ryan PR. (1995) Aluminium toxicity and tolerance in plants. Plant Physiol 107:315-321
    Deng PY, Tian LF, Chen J. (2007) Functional analysis of AtMGT3 transport in Arabidopsis. Life Sciences Research 11:328-333.
    Dighton J, Jansen AE. (1991) Atmospheric pollutants and ectomycorrhizae:more questions than answers? Environ Pollut 73:179-204.
    Duressa D, Soliman K, Taylor R, Senwo Z. (2011) Proteomic Analysis of Soybean Roots under Aluminum Stress. Int J Plant Genomics 282531.
    Echart CL, Barbosa-Neto JF, Garvin DF, Cavalli-Molina S. (2002) Aluminum tolerance in barley:Methods for screening and genetic analysis. Euphytica 126: 309-313.
    Eticha D, Zahn M, Bremer M, Yang Z, Rangel AF, Rao IM, Horst WJ. (2010) Transcriptomic analysis reveals differential gene expression in response to aluminum in common bean (Phaseolus vulgar is) genotypes. Ann. Bot.105: 1119-1128.
    Evanno G, Regnaut S, Goudet J. (2005) Detecting the number of clusters of individuals using the software STRUCTURE:a simulation study. Mol Ecol 14: 2611-2620.
    Fageria NK, Baligar VC, Wright RJ. (1988) Aluminium toxicity in crop plants. J Plant Nutr 11:303-319.
    Fait A, Yellin A, Fromm H. (2005) GABA shunt deficiencies and accumulation of reactive oxygen intermediates:insight from Arabidopsis mutants. FEBS Lett 579: 415-420.
    Falush D, Stephens M, Pritchard JK. (2003) Inference of population structure using multilocus genotype data:linked loci and correlated allele frequencies. Genetics 164:1567-1587.
    Famoso AN, Clark RT, Shaff JE, Craft E, McCouch SR. (2010) Development of a novel aluminum tolerance phenotyping platform used for comparisons of cereal aluminum tolerance and investigations into rice aluminum tolerance mechanisms. Plant Physiol 153(4):1678-1691.
    Famoso AN, Zhao K, Clark RT, Tung CW, Wright MH. (2011) Genetic architecture of aluminum tolerance in rice(Oryza sativa) determined through genome-wide association analysis and QTL mapping. PLoS Genet 7(8):e 1002221.
    Fang W, Kao H. (2000) Enhanced peroxidase activity in rice leaves in response to excess iron, copper and zinc. Plant Science 158:71-76.
    Fiehn O. (2002) Metabolomics-the link between genotypes and phenotypes. Plant Mol Biol48:155-171.
    Fleet JC, Replogle R, Salt DE. (2011) Systems Genetics of Mineral Metabolism. Journal of Nutrition 141:520-525.
    Flores HE. (1991) Changes in polyamine metabolism in response to abiotic stress. In Biochemistry and physiology of polyamines in plants. Edited by R.D. Slocum and H.E. Flores. CRC Press, Inc., Boca Raton, Fla. pp.213-228.
    Fontecha G, Silva-Navas J, Benito C, Mestres MA, Espino FJ, Hernandez-Riquer MV, Gallego FJ. (2007) Candidate gene identification of an aluminum-activated organic acid transporter gene at the Alt4 locus for aluminum tolerance in rye (Secale cereale L.). Theor Appl Genet 114(2):249-260.
    Foy CD, Armiger WH, Briggle LW, Reid DA. (1965) Differential aluminum tolerance of wheat and barley varieties in acid soils. Agron J 57:413-417
    Foy CD, Murray JJ. (1998) Developing aluminum tolerant strains of tall fescue for acid soils. J Plant Nutr 21:1301-1325.
    Foy CD. (1984) Physiological effects of hydrogen, aluminum, and manganese toxicities in acid soils. In Soil acidity and liming,2nd ed., ed. F Adams,57-97. Madison, Wisc.:ASA.
    Foy CD. (1988) Plant adaptation to acid, aluminum-toxic soils. Commun Soil Sci Plant Anal 19:959-987.
    Fujii M, Yokosho K, Yamaji N, Saisho D, Yamane M. (2012) Acquisition of aluminum tolerance by modification of a single gene in barley. Nat Commun 3: 713.
    Furukawa J, Yamaji N, Wang H, Mitani N, Murata Y. (2007) An aluminum-activated citrate transporter in barley. Plant Cell Physiol 48:1081-1091.
    Garzon T, Gunse B, Moreno AR, Tomos AD, Barcelo J. (2011) Aluminium-induced alteration of ion homeostasis in root tip vacuoles of two maize varieties differing in Al tolerance. Plant Sci 180:709-715.
    Ghandilyan A, Barboza L, Tisne B, Granier C, Reymond M, Koornneef M, Schat H, Aarts MGM. (2009) Genetic analysis identifies quantitative trait loci controlling rosette mineral concentrations in Arabidopsis thaliana under drought. New Phytol 184:180-192.
    Giannakoulaa A, Moustakasa M, Syrosb T, Yupsanisb T. (2010) Aluminum stress induces up-regulation of an efficient antioxidant system in the Al-tolerant maize line but not in the Al-sensitive line. Environ Exp Bot 67(3):487-494
    Goodacre R, Vaidyanathan S, Dunn WB, Harrigan GG, Kell DB. (2004) Metabolomics by numbers:acquiring and understanding global metabolite data. Trends Biotechnol 22:245-252.
    Gould KS, Lamotte O, Klinguer A, Pugin A, Wendehenne D. (2003) Nitric oxide production in tobacco leaf cells:a generalized stress response? Plant Cell Environ 26:1851-1862.
    Grant JJ, Loake GJ. (2000) Role of reactive oxygen intermediates and cognate redox signaling in disease resistance. Plant Physiol 124:21-29.
    Grewal HS, Williams R. (2003) Liming and cultivars affect root growth, nodulation, leaf to stem ratio, herbage yield, and elemental composition of alfalfa on an acid soil. J Plant nutr 26:1683-1696.
    Gruber B, Ryan P, Richardson A, Hebb D, Raman H, Zhou M, Wang J, Howitt S, Delhaize E. (2006) The identification and characterisation of ALMT1 homologs in the Triticeae. Proceedings of 8th international congress of plant molecular biology, Adelaide, Australia, pp185
    Gruber BD, Delhaize E, Richardson AE, Roessner U, James RA. (2011) Characterisation of HvALMTl function in transgenic barley plants. Funct Plant Biol 38(2):163-175.
    Gruber BD, Ryan PR, Richardson AE, Tyerman SD, Ramesh S. (2010) HvALMT1 from barley is involved in the transport of organic anions. J Exp Bot 61(5): 1455-1467.
    Guo TR, Zhang GP, Zhou MX, Wu FB, Chen JX. (2004) Effect of aluminum and cadmium toxicity on growth and antioxidant enzyme activities of two barley genotypes with different Al tolerance. Plant Soil 258:241-248.
    Hardy OJ, Vekemans X. (2002) Spagedi:a versatile computer program to analyse spatial genetic structure at the individual or population levels. Mol Ecol Notes 2: 618-620.
    Heim A, Luster J, Brunner I, Frey B, Frossard E. (2000) Effects of aluminium treatment on Norway spruce roots:Aluminum binding forms, element distribution, and release of organic substances. Plant Soil 216:103-116.
    Henning SJ. (1975) Alumium toxicity in the primary meristem of wheat roots. PhD thesis. Oregon State Univ., Corvallis, Ore.
    Hirano Y, Hijii N. (1998) Effects of low pH and aluminum on root morphology of Japanese red cedar saplings. Environ Pollut 101(3):339-347
    Hodges DM, DeLong JM, Forney CF, Prange RK. (1999) Improving the thiobarbituric acid-reactive-substances assay for estimating lipid peroxidation in plant tissues containing anthocyanin and other interfering compounds. Planta 207: 604-611.
    Hoekenga OA, Maron LG, Pineros MA, Cancado GM, Shaff J, Kobayashi Y, Ryan PR, Dong B, Delhaize E, Sasaki T, Matsumoto H, Yamamoto Y, Koyama H, Kochian LV. (2006) AtALMT1, which encodes a malate transporter, is identified as one of several genes critical for aluminum tolerance in Arabidopsis. Proc. Nat. Acad. Sci. U.S.A.103,9738-9743
    Hoekenga OA, Vision TJ, Shaff JE, Monforte AJ, Lee GP, Howell SH, Kochian LV. (2003) Identification and characterization of aluminum tolerance loci in Arabidopsis (Landsberg erecta x Columbia) by quantitative trait locus mapping. A physiologically simple but genetically complex trait. Plant Physiol.132(2): 936-948.
    Horst WJ, Puschel AK, Schmohl N. (1997) Induction of callose formation is a sensitive marker for genotypic aluminium sensitivity in maize. Plant Soil 192: 23-30.
    Horst WJ, Wagner A, Marschner H. (1982) Mucilage protects root Meristems from aluminum injury. Z Pflanzenphysiol 105:435-444.
    Horst WJ. (1995) The role of the apoplast in aluminum toxicity and distance of higher plants:A review. Z Pf lanzenernahr Bodenk 158:419-428.
    Hossain AKMZ, Hossain MA, Asgar MA, Tosaki T, Koyama H, Hara T. (2006) Changes in cell wall polysaccharides and hydroxycin-namates in wheat roots by aluminum stress at higher calcium supply. J Plant nutr 29:601-613.
    Houde M, Diallo AO. (2008) Identification of genes and pathways associated with aluminum stress and tolerance using transcriptome profiling of wheat near-isogenic lines. BMC Genomics 9:400.
    Huang JW, Shaff JE, Grunes DL, Kochian LV. (1992) Aluminum effects on calcium fluxes at the root apex of aluminum-tolerant and aluminum-sensitive wheat cultivars. Plant Physiol 98:230-237.
    Huang PM, Wang MK, Kampf N, Schulze DG. (2002) Aluminum hydroxides. In: Dixon JB and Schulze DG ed. Soil Mineralogy with Enviromental Apllications. Madison, Wisconsin:Soil Sci.Soc. Am.,261-289
    Jones DL, Kochian LV. (1995) Aluminum inhibition of the inositol 1,4,5-trisphosphate signal transduction pathway in wheat roots:a role in aluminum toxicity? Plant Cell 7:1913-1922.
    Joseph S, Cetinkaya E, Drahovska H, Levican A, Figueras MJ, Forsythe SJ. (2010) Isolation and characterisation of two MATE genes in rye. Funct Plant Biol 37: 296-303.
    Kaneko M, Yoshimura E, Nishizawa NK, Mori S. (1999) Time course study of aluminum-induced callose formation in barley roots as observed by digital microscopy and low-vacuum scanning electron microcopy. Soil Sci Plant Nutr 5: 701-712.
    Kesar M, Benedict F, Hutchinson FE, Verrill DB. (1977) Differential aluminum tolerance of sugarbeet cultivars as evidenced by anatomical structure. Agron J 69: 347-350.
    Kesar M, Benedict F, Newbauer F, Hutchinson FE. (1975) Influence of aluminum ions on developmental morphology of sugarbeet roots. Agron J 67:84-88.
    Khan AA, McNeily T. (1998) Variability in aluminum and manganese tolerance among maize accessions. Genet Res Crop Evolut 45:525-531.
    Kim HK, Verpoorte R. (2010) Sample preparation for plant metabolomics. Phytochem Anal.21(1):4-13.
    Kinraide TB, Parker DR. (1989) Assessing the phytotoxicity of mononuclear hydroxy-aluminum. Plant Cell Environ 12:479-487.
    Kinraide TB. (1988) Proton extrusion by wheat roots exhibiting severe aluminum toxicity symptoms. Plant Physiol 88(2):418-423.
    Kitagawa T, Morishita T, Tachibana Y. (1986) Differential aluminum resistance of wheat varieties and organic acid secretion. Jap J Soil Sci Plant Nutr 57:352-358.
    Knudsen D, Peterson GA, Pratt PF. (1982) Lithium, sodium, and potassium. In Methods of Soil Analysis. Part 2:Chemical and Microbiological Properties (Spec. Pub. No.9,2nd Ed.), Ed. AL Page et al., p.225-246, American Society of Agronomy and Soil Science Society of America, Madison, W1.
    Kochian LV. (1995) Cellular mechanisms of aluminum toxicity and resistance in plants. Ann Rev Plant Physiol Plant Mol Bio 46:237-260.
    Kovermann P, Meyer S, Hortensteiner S, Picco C, Scholz-Starke J, Ravera S, Lee Y, Martinoia E. (2007) The Arabidopsis vacuolar malate channel is a member of the ALMT family. Plant J 52:1169-1180.
    Kuo MC, Kao CH. (2003) Aluminum effects on lipid peroxidation and antioxidative enzyme activities in rice leaves. Biologia Plantarum 46:149-152.
    Larsen PB, Cancel J, Rounds M, Ochoa V. (2007) Arabidopsis ALS1 encodes a root tip and stele localized half type ABC transporter required for root growth in an aluminum toxic environment. Planta 225(6):1447-1458.
    Larsen PB, Degenhardt J, Tai CY, Stenzler LM, Howell SH, Kochian LV. (1998) Aluminum-resistant Arabidopsis mutants that exhibit altered patterns of aluminum accumulation and organic acid release from roots. Plant Physiol 117: 9-18.
    Larsen PB, Geisler MJB, Jones CA, Williams KM, Cancel JD. (2005) ALS3 encodes a phloem-localized ABC transporter-like protein that is required for aluminum tolerance in Arabidopsis. Plant J 41:353-363.
    Li XF, Ma JF, Hiradate S. (2000a) Mucilage strongly binds aluminum but does not prevent root from aluminum injury in Zes mays. Physiol Plant 108:152-160
    Li XF, Ma JF, Matsumoto H. (2000b) Pattern of Al-induced secretion of organic acid differs between rye and wheat. Plant Physiol.123:1537-1543.
    Liang Y, Yang C. Shi H. (2001) Effects of silicon on growth and mineral composition of barley grown under toxic levels of aluminum. J Plant nutr 24:229-243.
    Liao H, Wan H, Shaff J, Wang XR, YanXL, Kochian LV. (2006) Phosphorus and aluminum interactions in soybean in relation to aluminum tolerance:exudation of specific organic acids from different regions of the intact root system. Plant Physiol 141(2):674-684.
    Ligaba A, Katsuhara M, Ryan PR, Shibasaka M, Matsumoto H. (2006) The BnALMT1 and BnALMT2 genes from rape encode aluminum-activated malate transporters that enhance the aluminum resistance of plant cells. Plant Physiol. 142:1294-1303
    Lin Z, Myhre DL. (1991) Differential response of citrus rootstocks to aluminum levels in nutrient solutions:Ⅱ. Plant mineral concentrations. J Plant nutr 14: 1239-1254.
    Lisec J, Schauer N, Kopka J, Willmitzer L, Fernie AR. (2006) Gas chromatography mass spectrometry-based metabolite profiling in plants. Nat Protoc 1(1): 387-396.
    Liu J, Magalhaes JV, Shaff J, Kochian LV. (2009) Aluminum-activated citrate and malate transporters from the MATE and ALMT families function independently to confer Arabidopsis aluminum tolerance. Plant J 57:389-399.
    Ma B, Wan J, Shen Z. (2007) H2O2 production and antioxidant responses in seeds and early seedlings of two different rice varieties exposed to aluminum. Plant Growth Regul 52:91-100.
    Ma J F,Zheng SJ,Hiradate S. (1997a) Detoxifying aluminum with buckwheat. Nature 390:569-570.
    Ma JF, Taketa S, Yang ZM. (2000a) Aluminum tolerance genes on the short arm of chromosome 3R are linked to organic acid release in triticale. Plant Physiol 122: 687-694.
    Ma JF, Furukawa J. (2003) Recent progress in the research of external Al detoxification in higher plants:a minireview. J Inorg Biochem.97(1):46-51.
    Ma JF, Hiradate S, Matsumoto H. (1998) High Aluminum Resistance in Buckwheat: II. Oxalic Acid Detoxifies Aluminum Internally. Plant Physiol.117 (3):753-759.
    Ma JF, Hiradate S, Nomoto K. (1997b) Internal detoxification mechanism of Al in Hydrangea. Identification of Al form in the leaves. Plant Physiol 113: 1033-1039.
    Ma JF, Hiradate S. (2000b) Form of aluminium for uptake and transocation in buckwheat(Fagopyrum esculentum Moench). Planta 211:355-360
    Ma JF, Nagao S, Sato K, Ito H, Furukawa J. (2004) Molecular mapping of a gene responsible for Al-activated secretion of citrate in barley. J Exp Bot 55(401): 1335-1341.
    Ma JF, Ryan PR, Delhaize E. (2001) Aluminum tolerance in plants and the complexing role of organic acids. Trends Plant Sci 6:273-278.
    Ma JF, Shen RF, Nagao S, Tanimoto E. (2004) Aluminum targets elongating cells by reducing cell wall extensibility in wheat roots. Plant Cell Physiol 45:583-589.
    Ma JF, Zheng SJ, Li XF, Takeda K, Matsumoto H. (1997c) A rapid hydroponic screening for aluminum tolerance in barley. Plant Soil 191:133-137.
    Ma JF, Zheng SJ, Matsumoto H. (1997d) Specific secretion of citric acid induced by Al stress in Cassia tor a L. Plant Cell Physiol 38:1019-1025.
    Ma JF. (2000c) Role of organic acids in detoxification of aluminum in higher plants. Plant Cell Physiol.41:383-390.
    Magalhaes JV, Garvin DF, Wang YH, Sorrells ME, Klein PE, Schaffert RE, Li L, Kochian LV. (2004) Comparative mapping of a major aluminum tolerance gene in sorghum and other species in the Poaceae. Genetics 167:1905-1914.
    Malkanthi DRR, Moritsugu M, Yokoyama K. (1995a) Effects of low pH and Al on absorption and translocation of some essential nutrients in excised barley roots. Soil Sci Plant Nutr 41:253-262.
    Malkanthi DRR, Yokoyama K, Yoshida T, Moritsugu M, Matsushita K. (1995b): Effects of low pH and A1 on growth and nutrient uptake of several plants. Soil Sci Plant Nutr 41:161-165.
    Maltais K, Houde M. (2002) A new biochemical marker for aluminum tolerance in plants. Physiol Plant 115:81-86.
    Maron LG, Kirst M, Mao C, Milner MJ, Menossi M. (2008) Transcriptional profiling of aluminum toxicity and tolerance responses in maize roots. New Phytol 179: 116-128.
    Maron LG, Pineros MA, Guimaraes CT, Magalhaes JV, Pleiman JK, Mao C, Shaff J, Belicuas SN, Kochian LV. (2010) Two functionally distinct members of the MATE (multi-drug and toxic compound extrusion) family of transporters potentially underlie two major aluminum tolerance QTLs in maize. Plant J 61: 728-740.
    Martell AE, Motekaitis RJ. (1989) Coordination chemistry and speciation of Al (Ⅲ) in aqueous solution. In Environmental Chemistry and Toxicology of Aluminum. Lewis Publishers, Chelsea Michigan. p3-17.
    Matsumoto H. (2000) Cell biology of aluminum toxicity and tolerance in higher plants. Inter Rev Cytol 200:1-46.
    Meriga, B, Reddy, BK, Rao, KR, Reddy, A. (2004) Aluminum-induced production of oxygen radicals, lipid peroxidation and DNA damage in seedlings of rice (Oryza sativa). J Plant Physiol 161:63-68.
    Meyer S, Mumm P, Imes D, Endler A, Weder B, A1-Rasheid KA, Geiger D, Marten I, Martinoia E, Hedrich R. (2010) AtALMT12 represents an R-type anion channel required for stomatal movement in Arabidopsis guard cells. Plant J 63: 1054-1062.
    Meyer S, Scholz-Starke J, De Angeli A, Kovermann P, Burla B, Gambale F, Martinoia E. (2011) Malate transport by the vacuolar AtALMT6 channel in guard cells is subject to multiple regulation. Plant J 67:247-257.
    Minella E, Sorrells ME. (1992) Aluminum tolerance in barley:genetic relationships among genotypes of diverse origin. Crop Sci 32:593-598.
    Minella E, Sorrells ME. (1997) Inheritance and chromosome location of Alp, a gene controlling aluminum tolerance in'Dayton'barley. Plant Breed 116:465-469.
    Miyasaka SC, Hawes C. (2001) Possible role of root border cells in detection and avoidance of aluminum toxicity. Plant Physiol 125:1978-1987.
    Morgante M, De Paoli E, Radovic S. (2007) Transposable elements and the plant pan-genomes. Curr Opin Plant Biol 10:149-155.
    Morrell PL, Clegg MT. (2007) Genetic evidence for a second domestication of barley (Hordeum vulgare) east of the Fertile Crescent. Proc Nat1 Acad Sci USA 104: 3289-3294.
    Nagata T, HayatsuaM, Kosuge N. (1992) Identification of aluminum forms in tea leaves by 27A1 NMR. Phytochemistry 31(4):1215-1218.
    Naidoo G, Stewart JM, Lewis RJ. (1978) Accumulation sites of Al in snapbean and cotton roots. Agron J 70:489-492.
    Nakano Y, Asada K. (1981) Hydrogen peroxide is scavenged by ascorbate-specific peroxidase in spinach chloroplasts. Plant Cell Physiol 22:867-880.
    Navakode S, Weidner A, Varshney RK, Lohwasser U, Scholz U. (2009) A QTL analysis of aluminum tolerance in barley, using gene-based markers. Cereal Res Commu 37(4):531-540.
    Negishi T, Oshima K, Hattori M, Kanai M, Mano S. (2012) Tonoplast-and plasma membrane-localized aquaporin-family transporters in blue hydrangea sepals of aluminum hyperaccumulating plant. PLoS One.7(8):e43189.
    Nei M. (1972) Genetic distance between populations. Am Nat 106:283-292.
    Nevo E, Beiles A, Zohary D. (1986) Genetic resources of wild barley in the Near East: Structure, evolution and application in breeding. Biol J Linn Soc Lond 27: 355-380.
    Nevo E, Chen GX. (2010) Drought and salt tolerances in wild relatives for wheat and barley improvement. Plant Cell Environ 33:670-685.
    Nevo E. (1997) Evolution in action across phylogeny caused by microclimatic stresses at "evolution canyon". Theor Popul Biol 52:231-243.
    Nevo E. (2006) Genome evolution of wild cereal diversity and prospects for crop improvement. Plant Genet Resour 4:36-46.
    Nicholson JK, Lindon JC, Holmes E. (1999)'Metabonomics':understanding the metabolic responses of living systems to pathophysiological stimuli via multivariate statistical analysis of biological NMR spectroscopic data. Xenobiotica 29:1181-1189.
    Olsen SR., Sommers LE. (1982) Phosphorus. In Methods of Soil Analysis. Part 2: Chemical and Microbiological Properties (Spec. Pub. No.9,2nd Ed.), Ed. AL Page et al., p.403-430, American Society of Agronomy and Soil Science Society of America, Madison, WI.
    Ouertatani S., Regaya K., Ryan J., Gharbi A. (2011) Soil liming and mineral fertilization for root nodulation and growth of Faba Beans in an acid soil in Tunsia. J Plant Nutr 34:850-860.
    Ownby JD, Popham HR. (1989) Citrate reverses the inhibition of wheat root growth caused by aluminum. J Plant Physiol 135:588-591.
    Panda SK, Choudhury S. (2005a) Changes in nitrate reductase activity and oxidative stress response in the moss Polytrichum commune subjected to chromium, copper and zinc toxicity. Braz J Plant Physiol 17:191-197.
    Patricia RSB, Marcelo M, Renato AJ. (2003) Aluminum-induced oxidative stress in maize. Phytochem 62:181-189.
    Pellet DM, Grunes DL, Kochian LV. (1995) Organic acid exudation as an aluminum tolerance mechanism in maize (Zea mays L.). Planta 196:788-795.
    Pellet DM, Papernid LA, Kochian LV. (1996) Multiple aluminum resistance mechanism in wheat:The roles of root apical phosphate and malate exudation. Plant Physiol 112:419-428.
    Pereira JF, Zhou G, Delhaize E, Richardson T, Zhou M, Ryan PR. (2010) Engineering greater aluminium resistance in wheat by over-expressing TaALMT1. Ann. Bot. 106,205-214.
    Pettersson S, Strid H. (1989) Initial uptake of aluminum in relation to temperature and phosphorus status of wheat(Triticum aestivum L.) roots. J Plant Physiol 134: 672-677.
    Pigna M, Violante A. (2003) Adsorption of sulfate and phosphate on andisols. Commun Soil Sci Plant Analysis 34:2099-2113.
    Pineros MA, Shaff JE, Manslank HS, Alves VM, Kochian LV. (2005) Aluminum resistance in maize cannot be solely explained by root organic acid exudation. A comparative physiological study. Plant Physiol 137:231.
    Pollen A. (2001) Dissecting the superoxide dismutase-ascorbate peroxidase-glutathione pathway in chloroplasts by metabolic modeling. Computer simulations as a step towards flux analysis. Plant Physiol 126: 445-462.
    Pritchard JK, Stephens M, Donnelly P. (2000) Inference of population structure using multilocus genotype data. Genetics 155:945-959.
    Putter J. (1974) Peroxidases. In:Bergmeyer HU (Ed), Methods of enzymatic analysis: II. Academic Press, New York, pp 685-690.
    Qiu L, Wu DZ, Ali S, Cai SG, Dai F, Jin XL, Wu FB, Zhang GP. (2011) Evaluation of salinity tolerance and analysis of allelic function of HvHKT1 and HvHKT2 in Tibetan wild barley. Theor Appl Genet 122:695-703.
    Quadir QF, Watanabe T, Chen Z, Osaki M, Shinano T. (2011) Ionomic response of Lotus japonicus to different root-zone temperatures. Soil Sci Plant Nutr 57: 221-232.
    Raman H, Moroni JS, Sato K, Read BJ, Scott BJ (2002) Identification of AFLP and microsatellite markers linked with an aluminum tolerance gene in barley (Hordeum vulgare L.). Theor Appl Genet 105:458-464.
    Raman H, Ryan PR, Raman R, Stodart BJ, Zhang K, Martin P, Wood R, Sasaki T, Yamamoto Y, Mackay M, Hebb DM, Delhaize E. (2008) Analysis of TaALMTl traces the transmission of aluminum resistance in cultivated common wheat (Triticum aestivum L.). Theor App Genet 116:343-354.
    Raman H, Wang JP, Read B, Zhou MX, Vengatanagappa S. (2005a) Molecular mapping of resistance to aluminum toxicity in barley. In:Proceedings of Plant and Animal Genome ⅩⅢ Conference, January 15-19, San Diego, p154.
    Raman H, Zhang K, Cakir M, Appels R, Garvin DF, Maron LG, Kochian LV, Moroni JS, Raman R, Imtiaz M, Drake-Brockman F, Waters I, Martin P, Sasaki T, Yamamoto Y, Matsumoto H, Hebb DM, Delhaize E, Ryan PR. (2005b) Molecular characterization and mapping of ALMT1, the aluminum-tolerance gene of bread wheat(Triticum aestivum L.). Genome 48:781-791.
    Randall PJ, Vose PB. (2003) Effect of aluminum on uptake & translocation of phosphorus by perennial ryegrass. Plant Physiol 38:403-409.
    Reid DA. (1970) Genetic control of reaction to aluminum in winter barley. In: Proceedings of the 2nd International Barley Genetics Symposium, Pullman, pp. 409-413.
    Rengel Z, Zhang WH. (2003) Role of dynamics of intracellular calcium in aluminum-toxicity syndrome. New Phytol 159:295-314.
    Rengel Z. (1992) Role of calcium in aluminum toxicity. New Phytol 121:499-513.
    Richards KD, Schott EJ, Sharma YK, Davis KR, and Gardner RC. (1998) Aluminum induces oxidative stress genes in Arabidopsis thaliana. Plant Physiol 116: 409-418.
    Roessner U, Patterson JH, Forbes MG, Fincher GB, Langridge P, Bacic A. (2006) An investigation of boron toxicity in barley using metabolomics. Plant Physiol 142: 1087-1101.
    Rumer S, Gupta KJ, Kaiser WM. (2009) Plant cells oxidize hydroxylamines to NO. J Exp Bot 60(7):2065-2072
    Ryan PR, Delhaize E, Randall PJ. (1995a) Malate efflux from root apices and tolerance to aluminum are highly correlated in wheat. Aust J Plant Pyhsiol 22: 531-536.
    Ryan PR, Delhaize E, Randall PJ. (1995b) Characterization of Al-stimulated efflux of malate from the apices of Al-tolerant wheat roots. Planta 196:103-110.
    Ryan PR, Delhaize E. (2010) The convergent evolution of aluminum resistance in plants exploits a convenient currency. Funct Plant Biol 37:275-284.
    Ryan PR, Ditomaso JM, Kochian LV. (1993) Aluminum toxicity in roots:An investigation of spatial sensitivity and the role of the root cap. J Exp Bot 44: 437-446.
    Ryan PR, Raman H, Gupta S, Horst WJ, Delhaize E. (2009) A second mechanism for aluminum resistance in wheat relies on the constitutive efflux of citrate from roots. Plant Physiol 149:340-351.
    Ryan PR, Raman H, Gupta S, Sasaki T, Yamamoto Y, Delhaize E. (2010) The multiple origins of aluminium resistance in hexaploid wheat include Aegilops tauschii and more recent cis mutations to TaALMTl. Plant J 64:446-455.
    Ryan PR, Skerrett M, Findlay GP. (1997) Aluminum activates an anion channel in the apical cells of wheat roots. Proc Natl Acad Sci USA 94:6547-6552
    Ryan PR, Tyerman SD, Sasaki T, Furuichi T, Yamamoto Y, Zhang WH, Delhaize E. (2011) The identification of aluminum-resistance genes provides opportunities for enhancing crop production on acid soils. J Exp Bot 62:9-20.
    Sakihama Y, Yamasaki H. (2002) Lipid peroxidation induced by phenolics in conjunction with aluminum ions. Biol Plant 45:249-254.
    Sakurai N. (1991) Cell wall functions in growth and development-A physical and chemical point of view. Journal of Plant Research,104:235-251.
    Sanchez DH, Pieckenstain FL, Escaray F, Erban A, Kraemer U, Udvardi MK, Kopka J. (2011) Comparative ionomics and metabolomics in extremophile and glycophytic Lotus species under salt stress challenge the metabolic pre-adaptation hypothesis. Plant Cell Environ 34:605-617.
    Sasaki T, Mori IC, Furuichi T, Munemasa S, Toyooka K, Matsuoka K, Murata Y, Yamamoto Y. (2010) Closing plant stomata requires a homolog of an aluminum-activated malate transporter. Plant Cell Physiol 51:354-365.
    Sasaki T, Ryan PR, Delhaize E, Hebb DM, Ogihara Y, Kawaura K, Noda K, Kojima T, Toyoda A, Matsumoto H, Yamamoto Y. (2006) Sequence upstream of the wheat (Triticum aestivum L.) ALMT1 gene and its relationship to aluminum resistance. Plant Cell Physiol 47:1343-1354.
    Sasaki T, Yamamoto Y, Ezaki B, Katsuhara M, Ahn SJ. (2004) A gene encoding an aluminum-activated malate transporter segregates with aluminum tolerance in wheat. Plant J 37:645-653.
    Schulz B, Kolukisaoglu HU. (2006) Genomics of plant ABC transporters:the alphabet of photosynthetic life forms or just holes in membranes? FEBS Lett. 580(4):1010-1016.
    Scott BJ, Fisher JA, Cullis BR. (2001) Aluminum tolerance and lime increase wheat yield on the acidic soils of central and southern New South Wales. Aust J Exp Agri 41:523-532.
    Serraj R, Shelp BJ, Sinclair TR. (1998) Accumulation of y-aminobutyric acid in nodulated soybean in response to drought stress. Physiol Plant 102:79-86.
    Shalata A, Neumann PM. (2001) Exogenous ascorbic acid (vitamin C) increases resistance to salt stress and reduces lipid peroxidation. J Exp Bot 52(364): 2207-2211.
    Shamsi IH, Wei K, Zhang G, Jilani G, Hassan, MJ. (2008) Interactive effects of cadmium and aluminum on growth and antioxidative enzymes in soybean. Biologia Plantarum 52:165-169.
    Sharma SS, Dietz KJ. (2006) The significance of amino acids and amino acid derived molecules in plant responses and adaptation to heavy metal stress. J Exp Bot 57: 711-726.
    Shen RF, Iwashita T, Ma JF. (2004) Form of Al changes with Al concentration in leaves of buckwheat. J Exp Bot 55:131-136.
    Shen RF, Ma JF, Kyo M. (2002) Compartmentation of aluminum in leaves of an Al accumulator, Fagopyrum esculentum Moench. Planta 215:394-398.
    Shulae V, Cortes D, Miller G, Mittler R. (2008) Metabolomics for plant stress response. Physiol Plantarum 132:199-208.
    Sierra J, Noel C, Dufour L, Ozier-Lafontaine H, Welcker C, Desfontaines L. (2003) Mineral nutrition and growth of tropical maize as affected by soil acidity. Plant Soil 252:215-226.
    Silva IR, Smyth TJ, Moxley DF, Carter TE, Allen NS, Rufty TW. (2000) Aluminum accumulation at nuclei of cells in the root tip. Fluorescence detection using lumogallion and confocal laser scanning microscopy. Plant Physiol 123(2): 543-52.
    Silva S, Santos C, Matos M, Pinto-Carnide O. (2012) Al toxicity mechanism in tolerant and sensitive rye genotypes. Environ Exp Bot 75:89-97.
    Simonovicova L, Tamas, J, Huttova, Mistrik I. (2004) Effect of aluminum on oxidative stress related enzymes activities in barley roots. Biologia Plantarum 48: 261-266.
    Slocum RD, Kaur-Sawhney R, Galston AW. (1984) The physiology and biochemistry of polyamines in plants. Arch Biochem Biophys 235:283-303.
    Smith E, Naik D, Cumming JR. (2011) Genotypic variation in aluminum resistance, cellular aluminum fractions, callose and pectin formation and organic acid accumulation in roots of Populus hybrids. Environ Exp Bot 72:182-193.
    Smith TA. (1985) Polyamines. Annu Rev Plant Physiol 36:117-143.
    Srinivasan M, Sudheer AR, Menon VP. (2007) Ferulic Acid:therapeutic potential through its antioxidant property. J Clin Biochem Nutr 40(2):92-100.
    Tabaldi LA, Cargnelutti D, Goncolves JF, Pereira LB, Castro GY, Rauber R, Rossato LV, Bisognin DA, Schetinger MRC, Nicoloso FT. (2009) Oxidative stress is an early symptom triggered by aluminum in Al-sensitive potato plantlets. Chemosphere 76:1402-1409.
    Tabatabai M.A. (1982) Sulfur. In Methods of Soil Analysis. Part 2:Chemical and Microbiological Properties (Spec. Pub. No.9,2nd Ed.), Ed. AL Page et al, p.501-538, American Society of Agronomy and Soil Science Society of America, Madison, WI.
    Takeda K, Kariuda M, Itoi H. (1985) Blueing of sepal colour of Hydrangea macrophylla. Phytochemistry 24(10):2251-2254.
    Tan K, Keltjens WG. (1990) Interaction between aluminum and phosphorus in sorghum plants. Plant Soil 124(1):15-23.
    Tang Y, Sorrells ME, Kochian LV, Garvin DF. (2000) Identification of RFLP markers linked to the barley aluminum tolerance gene Alp. Crop Sci 40:778-782.
    Taylor GJ, Foy CD. (1985) Mechanisms of aluminum tolerance in Triticum aestivul L. I. Diiferential pH induced by winter cultivars in nutrient solutions. Am J Bot 72: 695-701.
    Taylor GJ, McDonald-Stephens JL, Hunter DB. (2000) Direct measurement of aluminum uptake and distribution in single cells of Chara corallina. Plant Physiol 123:987-996.
    Taylor GJ. (1991) Current views of the aluminum stress response:The physiological basis of tolerance. Curr Topics Plant Biochem Physiol 10:57-93.
    Toma M, Saigusa M. (1997) Effects of phosphogypsum on amelioration of strongly acid nonallophanic andosols. Plant Soil 192:49-55.
    Urano K, Kurihara Y, Seki M, Shinozaki K. (2010)'Omics'analyses of regulatory networks in plant abiotic stress responses. Curr Opin Plant Biol 13:132-138.
    Van HL, Kuraishi S, Sakurai N. (1994) Aluminum-Induced Rapid Root Inhibition and Changes in Cell-Wall Components of Squash Seedlings. Plant Physiol 106(3): 971-976.
    Very AA, Davies JM. (2000) Hyperpolarization-activated calcium channels at the tip of Arabidopsis root hairs. Proc Natl Acad Sci USA 97(17):9801-9806.
    VonUexkull HP, Mutert E. (1995) Global extent, development, and economic impact of acid soils. Plant Soil 171:1-15.
    Wagatsuma T, Kaneko M, Hayasaka Y. (1987) Destruction process of plant root cells by aluminum. Soil Sci Plant Nutr 33:161-175.
    Wallace W, Secor J, Schrader L. (1984) Rapid accumulation of y-aminobutyric acid and alanine in soybean leaves in response to an abrupt transfer to lower temperature, darkness, or mechanical manipulation. Plant Physiol 75:170-175.
    Wang JP, Raman H, Zhang GP, Mendham N, Zhou MX. (2006) Aluminium tolerance in barley (Hordeum vulgare L.):physiological mechanisms, genetics and screening methods. J Zhejiang Univ Sci 7:769-787.
    Wang JP, Raman H, Zhou MX, Ryan PR, Delhaize E. (2007) High-resolution mapping of the Alp locus and identification of a candidate gene HvMATE controlling aluminum tolerance in barley (Hordeum vulgare L.). Theor Appl Genet 115:265-276.
    Wang JW, Kao CH. (2007) Protective effect of ascorbic acid and glutathione on AlCl3-inhibited growth of rice roots. Biologia Plantarum 51:493-500.
    Widodo, Patterson JH, Newbigin E, Tester M, Baci A (2009) Metabolic responses to salt stress of barley (Hordeum vulgare L.) cultivars, Sahara and Clipper, which differ in salinity tolerance. J Exp Bot 60:4089-4103.
    Williams L, Salt DE. (2009) The plant ionome coming into focus. Curr Opin Plant Biol 12:247-249.
    Wu D, Cai S, Chen M, Ye L, Chen Z, Zhang H, Dai F, Wu F, Zhang G. (2013) Tissue metabolic responses to salt stress in wild and cultivated barley. PLoS One 8(1): e55431.
    Wu DZ, Qiu L, Xu LL, Ye LZ, Chen MX (2011) Genetic variation of HvCBF genes and their association with salinity tolerance in Tibetan annual wild barley. PLoS One 6(7):e22938.
    Wu P, Liao CY, Hu B, Yi KK, Jin WZ. (2000) QTLs and epistatis for aluminum tolerance in rice(Oryza sativa L.) at different seedling stages. Theor Appl Genet 100:1295-1303.
    Xia J, Yamaji N, Kasai T, Ma J. (2010) Plasma membrane-localized transporter for aluminum in rice. Proc Nati Acad Sci USA 107:18381.
    Xu TW. (1975) On the origin and phylogeny of cultivated barley with preference to the discovery of Ganze wild two-rowed barley Hordeum spontaneum c. Acta Genet Sin 2:129-137.
    Xu TW. (1982) Origin and evolution of cultivated barley in China. Acta Genet Sin 9: 440-446.
    Xue Y, Jiang L, Su N, Wang JK, Deng P. (2007) The genetic basic and fine-mapping of a stable quantitative-trait loci for aluminum tolerance in rice. Planta 227: 255-262.
    Yamaguchi M, Sasaki T, Sivaguru M, Yamamoto Y, Osawa H, Ahn SJ, Matsumoto H. (2005) Evidence for the plasma membrane localization of Al-activated malate transporter (ALMT1). Plant Cell Physiol.46,812-816.
    Yamamoto Y, Kobayashi Y, Devi SR, Rikishi S, Matsumoto H. (2002) Aluminum toxicity is associated with mitochondrial dysfunction and the production of reactive oxygen species in plant cells. Plant Physiol 128:63-72.
    Yamamoto, Y, Kobayashi Y, Matsumoto H. (2001) Lipid peroxidation is an early symptom triggered by aluminum, but not the primary cause of elongation inhibition in pea roots. Plant Physiol 125:199-208.
    Yang JL, Zhang L, Li YY, You JF, Wu P, Zheng SJ. (2006) Citrate transporters play a critical role in aluminum-stimulated citrate efflux in rice bean (Vigna umbellata) roots. Ann Bot 97:579-584.
    Yang JL, Zheng SJ, He YF, Matsumoto H. (2005) Alumnum resistance requires resistant to acid stress:a case study with spinach that exudes oxalate actively when exposed to Al stress. J Exp Bot 56:1197-1203.
    Yang JL, Zhu XF, Zheng C, Zhang YJ, Zheng SJ. (2011) Genotypic differences in Al resistance and the role of cell-wall pectin in Al exclusion from the root apex in Fagopyrum tataricum. Ann Bot 107(3):371-378.
    Yang XY, Yang JL, Zhou Y, Pineros MA, Kochian LV, Li GX, Zheng SJ. (2011) A de novo synthesis citrate transporter, Vigna umbellata multidrug and toxic compound extrusion, implicates in Alactivated citrate efflux in rice bean(Vigna umbellata) root apex. Plant Cell Environ 34:2138-2148.
    Yang ZM, Sivaguru M, Matsumoto H. (2000) Aluminum tolerance is achieved by exudation of citric acid from roots of soybean (Glycine max). Physiol Plant 110: 72-77.
    Yastreb TO, Kolupaev YY, Vayner AO. (2012) Induction of heat resistance in wheat coleoptiles by 4-hydroxybenzoic acid:connection with the generation of reactive oxygenspecies. J Stress Physiol Biochem 8 (3):72-81.
    Yokosho K, Yamaji N, Ma JF. (2011) An Al-inducible MATE gene is involved in external detoxification of Al in rice. Plant J 68:1061-1069.
    You JF, He YF,Yang JL, Zheng SJ. (2005) A comparison of aluminum resistance among Polygonum species originating on strongly acidic and neutral soils. Plant Soil 276:143-151.
    Yu JM, Pressoir G, Briggs WH, Bi Ⅳ, Yamasaki M. (2006) A unified mixed-model method for association mapping that accounts for multiple levels of relatedness. Nat Genet 38:203-208.
    Zelinova V, Huttova J, Mistrik I, Pal'ove-Balang P, Tamas L. (2009) Impact of aluminum on phosphate uptake and acid phosphatase activity in root tips of Lotus Japonicus. J Plant Nutr 32:1633-1641.
    Zhang J, Zhang Y, Du Y, Chen S, Tang H. (2011) Dynamic metabonomic responses of tobacco (Nicotiana tabacum) plants to salt stress. J Proteome Res 10: 1904-1914.
    Zhang QF, Saghai MA, Yang GP. (1992) Ribosomal DNA polymorphisms and the Oriental-Occidental genetic differentiation in cultivated barley. Theor Appl Genet 84:682-687.
    Zhang QF, Yang GP, Dai XK, Su JZ. (1994) A comparative analysis of genetic polymorphism in wild and cultivated barley from Tibet using isozyme and ribosomal DNA markers. Genome 37:631-638.
    Zhang WH, Ryan PR, Sasaki T, Yamamoto Y, Sullivan W, Tyerman SD. (2008) Characterization of the TaALMT1 protein as an Al3+-activated anion channel in transformed tobacco (Nicotiana tabacum L.) cells. Plant Cell Physiol 49: 1316-1330.
    Zhao J, Sun HY, Dai HX, Zhang GP, Wu FB. (2010) Difference in response to drought stress among Tibet wild barley genotypes. Euphytica 172:395-403.
    Zhao ZQ, Ma JF, Sato K, Takeda K. (2003) Differential Al resistance and citrate secretion in barley. Planta 217:794-800.
    Zheng SJ,Ma JF,Matsumoto H. (1998) High aluminum resistance in buckwheat I Al-induced specific secretion of oxalic acid from root tips. Plant Physiol 117: 745-751.
    Zheng SJ, Yang JL, He YF, Yu XH, Zhang L, You JF, Shen RF, Matsumoto H. (2005) Immobilization of aluminum with phosphorous in roots is associated with high Al resistance in buckwheat. Plant Physiol 138:297-303.
    Zhou S, Sauve R, Thannhauser TW. (2009) Aluminum induced proteome changes in tomato cotyledons. Plant Signal Behav 4(8):769-72.
    Zhu XF, Shi YZ, Lei GJ, Fry SC, Zhang BC. (2012) XTH31, Encoding an in Vitro XEH/XET-active enzyme, regulates aluminum sensitivity by modulating in vivo XET action, cell wall xyloglucan content, and aluminum binding capacity in Arabidopsis. Plant Cell 24(11):4731-4747.
    Zohary D, Hopf M, Weiss E. (2012) Domestication of pants in the old world:The origin and spread of domesticated plants in Southwest Asia, Europe, and the Mediterranean Basin (Oxford Univ Press, Oxford).
    何龙飞,沈振国,刘友良,王爱勤.(2002)植物铝毒害机理的研究.广西农业生物科学21(3):188-194.
    刘强,郑绍建,林咸永.(2004)植物适应铝毒胁迫生理及分子生物学机理.应用生态学报15(9):1641-1649.
    孙清斌,沈仁芳,尹春芹,赵学强.(2008)铝毒胁迫下植物的响应机制.土壤40(5):691-697.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700