用户名: 密码: 验证码:
两种Bt毒素单链抗体制备与抗体检测技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
苏云金芽孢杆菌(Bacillus thuringiensis,简称Bt)合成的杀虫晶体蛋白和用Bt基因改造的转基因植物对多种害虫具有特异性毒杀作用,是环境友好型生物农药,因此被广泛地用于防治农业和卫生害虫。杀虫晶体蛋白进入昆虫的中肠被消化酶转化为活性分子,与昆虫中肠细胞膜上的高亲和性特异受体结合后插入细胞膜造成细胞膜穿孔,破坏细胞内外的渗透平衡。大量水分子进入细胞,造成细胞肿胀、破裂,导致中肠溃烂,从而使害虫死亡;另一部分没有被毒素直接杀死的昆虫,一段时间后也会因细菌感染死亡。
     Bt毒素在昆虫中肠pH=9.5的碱性环境下才能发挥作用,因此,该毒素被认为对哺乳动物基本无毒杀作用。随着大量转Bt基因植物直接或间接地进入人类的食物链后,针对Bt毒素的环境及食物安全性评价成为转基因领域中一个新的研究热点。围绕Bt毒素安全检测监控评价技术已经取得了显著的进展。生物测定法、免疫检测法(包括协同凝集反应、酶联免疫吸附、Western-blot、试纸条法、蛋白生物芯片等)、核酸检测法、仪器检测法(包括流式细胞仪、电泳、质谱等)均有研究报道,上述方法在毒素的毒力鉴定和安全检测中发挥了较好作用。但是,目前的方法中,有些方法的技术研发耗时长、费用高;有些与分子机制联系不紧、应用过程影响因素多;有些则存在仪器昂贵及对操作专业人员要求高等问题。抗体检测技术是近年来在医学以及农业技术领域快速发展的一种蛋白分析技术,具有快速、灵敏、方便、易普及的优点,在Bt毒素蛋白快速检测技术领域具有较好的应用前景。
     基因工程抗体是指继多克隆抗体和单克隆抗体之后第三代通过基因工程技术制备出的多种新型抗体,其优点是制备快速、成本低、产量大,为抗体检测技术提供了高质量的抗体。单链抗体(single chain variable fragment, scFv)是一种小分子基因工程抗体,由于低或无免疫原性、分子量小、组织穿透力强、成本低、可大规模生产等特点被广泛应用于医学诊断、治疗的研究,而目前国内外利用针对Bt毒素scFv进行免疫检测的研究鲜见报道。在此背景下,本论文利用噬菌体抗体库技术对两种Bt毒素进行亲和淘选获得单链抗体,模拟其三维结构,并以Cry1Ac为对象建立了多种基于单链抗体的免疫检测方法,将基因工程抗体应用于转基因和生物农药检测及植物保护研究领域,拓宽了其应用范围,促进了免疫分析技术在食品安全领域的发展。同时单链抗体与CrylAc结合模型也为单链抗体亲和力成熟及Bt与受体的识别机制等研究提供了参考。本研究主要包括了以下几个方面:
     1.构建了天然鼠源单链抗体噬菌体展示库
     用Trizol试剂提取未经免疫的Balb/c小鼠脾脏总RNA。利用重链可变区和轻链可变区通用引物通过RT-PCR的方法扩增VH和VL基因,并通过SOE-PCR将两个可变区基因通过连接肽连接,将拼接成功的重组噬菌粒,电转化到感受态细胞中大量增殖,经辅助噬菌体超感染,构建了库容为2.04×107的天然噬菌体抗体库。利用该抗体库筛选到的抗-Bt单链抗体亲和力较低,因此确立Tomlinson.库为筛选库源。
     2.建立了抗-Bt毒素单链抗体筛选及检验体系并获得了较高亲和力的单链抗体
     以Cry1C和CrylAc为对象,建立了基于噬菌体抗体库淘选、展示及鉴定的技术体系。选用人源Tomlinson抗体库为筛选库,主要采用胰蛋白酶洗脱方式,经过四轮筛选和阳性克隆富集的过程,完成单克隆测序鉴定与ELISA检测验证。
     抗-Cry1C的单链抗体筛选制备结果显示:竞争洗脱与胰蛋白酶处理联用的洗脱方法可以使富集率大幅提高。对表达稳定的1C6克隆进行可溶性表达,结果表明在30℃条件下添加1mM的IPTG诱导表达16h可以达到最大表达量。对1C6表达产物进行亲和纯化后用非竞争ELISA法测得亲和常数为(5.8+0.5)×106M-1。
     抗-CrylAc的单链抗体筛选制备结果显示:经过四轮亲和淘选后,有一株阳性克隆大量富集,命名为1AC6,此单链抗体在诱导物IPTG浓度为0.8nM时,25℃诱导表达18h表达量最大。1AC6经亲和纯化后测得亲和常数为(3.33±0.05)×107M-1。利用计算机模拟技术,完成了1AC6和CrylAc的分子对接模型,结果显示重链的3个CDR区和轻链的CDR3区参与了与抗原的结合。1AC6的结合区域中有部分氨基酸与氨肽醇受体相似,该结果对进一步开展抗体亲和力成熟和受体结合机制等研究具有参考价值。
     3.完成了Bt毒素抗体检测技术构建与验证测试
     可溶性1C6单链抗体建立的间接ELISA检测方法结果显示:该方法的线性范围在0.023-4.35μg/mL之间(IC80-IC20)。米粉中Cry1C的添加回收实验结果表明其回收率在89.8%到97.2%之间,变异系数小于5.0%。优于国内报道的检测限为400ng/mL兔源多抗。因此该方法有望运用于检测食品和环境样品中的CrylC毒素。
     抗-CrylAc多克隆抗体建立的时间分辨荧光免疫方法结果显示:该方法的最低检测限为0.3ng/mL,优于间接ELISA的检测方法,且检测时间比ELISA明显缩短。在实际样本测试中,黑土、黄壤、红壤、紫色土、潮土5种土壤中Cry1Ac毒素的平均回收率为75.03%,并且随着不同土壤中有机质含量的降低,Cry1Ac毒素蛋白的回收率逐渐升高,该现象对于土壤中Bt吸附的研究有一定的指导意义。
     基于融合型1AC6建立的免疫-PCR结果显示:该技术的灵敏度优于单一使用ELISA法检测,辅助荧光检测法检测限可以达到0.2ng/mL,而间接ELISA为40ng/mL。引入噬菌体抗体较好地解决了传统免疫-PCR技术中报告DNA分子的选择、用量及标记方法等干扰实验结果的问题。
     基于可溶性1AC6建立的双抗夹心ELISA结果显示:以1AC6为包被抗体,多克隆抗体为检测抗体,确定双抗夹心法工作浓度:1AC6浓度为2.5μg/mL,酶标抗体1600倍稀释时,对靶标抗原CrylAc的检测限为14ng/mL。单克隆抗体建立的此方法检测限优于单链抗体,因此后续需要利用体外亲和力成熟的方法对1AC6进行改造。
     基于可溶性1AC6建立的胶体金免疫层析法结果显示:用1AC6制备金标抗体,其最适稳定标记量为20μg/mL。通过结果判定,该快速检测试纸条对CrylAc的检测限为58ng/mL,可以对转基因棉花种子进行定性检测。
     利用1AC6单链抗体,建立的免疫-PCR、双抗夹心ELISA与胶体金免疫层析三种检测方法,在样本检测要求中均具有较好的实用价值。
As a Gram-positive, spore-forming bacterium, Bacillus thuringiensis(Bt) was initially characterized by its production of insecticidal parasporal crystals during sporulation, which has become a dominating bio-insecticide and genetic material of genetically modified (GM) crops worldwide. The Cry toxins are specifically toxic to the following insect:Lepidoptera, Coleoptera, Hymenoptera and Diptera. The toxinology study has conformed that the formation of ionic pores in the membrane of insect epithelial midgut cells after Bt toxin combining, leads to insect death. However, some reports showed that Bt toxins could infect human health and soil eco-system. For example, Bt transgenic rice could made a negative effect on bacteria and yeasts, while an active effect on actinomyces. In addition, crisis assessment need to be verified for GM crops, such as their potential allergenicity and environment residual persistence. Therefore, it is necessary to establish a convenient method for Cry toxins determination.
     Currently, the detection of Bt-GM crops and Bt residue are mainly performed by instrument analysis, DNA-based and protein-based methods. The reversed phased high-performance liquid chromatography can distinguish the Bt-transgenic and non-transgenic corps. However because of its high cost and professional requirement for its operators, this method is not suited for most testing agency. The DNA-based method like polymerase chain reaction (PCR) focuses on the Bt DNA whether inserted into crops. Although PCR assay is highly sensitive, the complicated process, high cost and difficulty for a high throughput analysis restrict its application. Especially the technology can't evaluate the level of expression or residue. On the other hand, the immunoassay has been recognized as the most successful method, such as ELISA and colloidal gold strip. Nonetheless, it requires specific antibodies for binding targets.
     Antibody phage display technology is an attractive alternative to hybridoma technology. It displays recombinant antibodies on the surface of phage particles that can be screened by enabling the phage to interact with immobilized ligands. It reduces batch to batch variation and the single chain variable fragments(scFvs) can be produced using prokaryotic or eukaryotic expression system.Under such background, this dissertation surrounding the topic of development of novel Bt toxin detection methods and has carried out the following research work.
     1. Construction and application of a naive mouse scFv phage display library
     The total RNA was extracted from spleen cells of non-immunized Balb/c mice. VH and VL were amplified using universal primers. To facilitate the display of antibody molecules in phages, the VH and VL fragments are assembled as single-chain molecules with a (Gly4Ser)3linker peptide resulting in the construction of scFv genes fused to the pⅢ gene in phagemid (pCANTAB5E) by digesting with sfi I and Not I, then transformed into competent E. coli cells via electroporation. The naive single chain antibody library contained2.04×107independent clones. Then the scFv phage library was used to pan scFv against Bt toxin. But the Kaff of functional scFv were too low to detect. So we choose the commercial human single fold scFv library for the next research.
     2. Isolation of scFv specific for Bt toxin from human single fold scFv libraries
     In this study, scFvs, which could specifically recognize and detect Cry1C, were isolated from naive phage displayed human antibody libraries (Tomlinson I+J) by iterative affinity selection procedure instead of immunization process. Following the competitive eluted phages were treated by trypsin, which disable the phages without scFvs. Meanwhile, with increasing selection pressure, after four rounds of panning,1C6individual scFv was obtained and sequenced. Thereafter, conformed novel anti-Cry1C scFv, was expressed in E. coli HB2151and purified by Ni metal ion affinity chromatography. The Kaff was (5.8±0.5)×106M-1.
     Tomlinson J phage antibody library was panned for four rounds of "adhesion-elution-amplification". The specificity of the antigen binding activity of the selected clones was identified by ELISA and the variable genes were analyzed and identified. The1AC6positive clone was obtained, which could bind Cry1Ac specifically. The1AC6was expressed in HB2151and purified by Ni metal ion affinity chromatography. The experimental results showed that the best induced express condition is culturing overnight with0.8mM IPTG, at25℃. The immuno-activities of1AC6was confirmed by competitive inhibition ELISA. The Kaff was (3.33±0.05)×107M-1.
     The3-D model of scFv-1AC6was homologically built with SWISS server. Then the interaction between scFv-lAC6and Cry1Ac was docked by GRAMM sever. The result showed that CDR involved in combination with antigen, which further implied that the1AC6could specificity bind with CrylAc.
     3. Establish the novel immuno-detection methods for Cry toxin
     Immunoassay is widely used in the area of rapid toxin detection. The research established several novel detection methods for Cry toxin based on polyclonal antibodies and scFv.
     An indirect competitive ELISA assay of1C6was developed for the determination of CrylC toxin in the range from0.023to4.35μg/mL, and50%inhibition concentration (IC50) was0.39μg/mL. This approach showed ignorable cross-reactivity with toxin CrylAc and Cry1B. The ic-ELISA approach was exploited for the determination of CrylC in spiked ground rice samples with a mean recovery rate of92.5%and coefficient of variation less than5.0%. This study proves that phage display libraries provide a valuable system for the low-cost, rapid and continuous generation of specific antibody fragments directed against Cry1C toxin target and develop a simple detection method. The results show that1C6scFv could be a valuable tool for detection of CrylC in food and agricultural samples.
     To establish a rapid detection of CrylAc residue in soil, the time-resolved fluorescence immunoassay (TRFIA) using goat anti-rabbit IgG conjugated with a Eu-N1as a tracer was developed to quantify CrylAc in five types of soil (black soil, yellow soil, red soil, purplish soil, fluvo-aquic soil). The results showed that the limit of detection of Cry1Ac achieved to0.3ng/mL by TRFIA, the detection range ranged from0.3to500.0ng/mL, and the coefficient of variations were both below10.0%. The mean recovery of CrylAc in soil was75.03%. The recovery of Cry1Ac in black soil with the highest organic matter content was the lowest, and the recoveries of CrylAc were reduction with the increase of the organic matter content in soil. The Cry1Ac residue detected by TRFIA and ELISA was a high correlation, and the coefficient of correlation was0.9967. Therefore, TRFIA was a simple, specific, highly sensitive, quantitative assay for Cry1Ac in soil.
     Phage display is a very powerful technique since the selected phages maintain a physical link between the displayed scFv (phenotype) and the encoding gene (genotype). The novel immuno-PCR detection method was set up based on the character. The immuno-PCR assay showed high sensitivity with minimum detection limit of0.2ng/mL and found to be200times more sensitive than ic-ELISA. Under the optimized assay conditions, Cry1Ac protein can be determined in the concentration ranged from0.2to100ng/mL. As results showed this assay could be a powerful tool for the detection of trace amounts of Cry1Ac protein.
     The double-antibody sandwich ELISA for detection of insecticidal protein Cry1Ac was developed. The1AC6was used as coating antibody and Cry1Ac-IgG as detecting antibody. The best working conditions were optimized for double-antibody sandwich ELISA. The results showed that the concentration of1AC6were2.5μg/mL and the dilution of IgG-HRP was1:1600are the best conditions. The sandwich ELISA has a detection limit of14ng/mL.
     With the colloidal gold labeled1AC6, immnnochromatography assay for detection of insecticidal protein CrylAc were developed. IgG coated on the nitrocellulose membrane for the test line, and goat anti-rabbit antibody was blotted on the nitrocellulose membrane for the control line. The detection can be completed within10min and has a detection limit of58ng/mL for CrylAc. These results suggest the possibility for detecting transgenic Bt-crop with simply and reliably characters.
引文
Alcantara EP, Aguda RM, Curtiss A, Dean DH, Cohen MB. Bacillus thuringiensis δ-endotoxin binding to brush border vesicles of rice stem borers[J]. Archives of insect biochemistry and physiology,2004, 55 (4):169-177
    Alcocer MJC, Doyen C, Lee HA, Morgan MRA. Properties of polyclonal, monoclonal, and recombinant antibodies recognizing the organophosphorus pesticide chlorpyrifos-ethyl[J]. Journal of Agricultural and Food Chemistry,2000,48, (9):4053-4059
    Allen RC, Rogelj S, Cordova SE, Kieft TL. An immuno-PCR method for detecting Bacillus thuringiensis CrylAc toxin[J]. Journal of Immunological Methods,2006,308:109-115
    Atwell JL, Breheney KA, Lawrence LJ, McCoy AJ, Kortt AA, Hundson PJ. scFv multimers:length of the linker between VH and VL domains dictates precisely the transition between diabodies and triabodies[J]. Protein Engineering,1999,12:597-604
    Avisar D, Eilenberg H, Kelle RM, Reznik N, Segal M, Sneh B, Zilberstein A. The Bacillus thuringiensis delta-endotoxin Cry1C as a potential bioinsecticide in plants[J]. Plant Science,2009.176 (3),315-324
    Beatty JD, Beatty B, Vlahos WG. Measurement of monoclonal antibody affinity by non-competitive enzyme immunoassay[J]. Journal of Immunological Methods,1987,100 (1-2):173-179
    Bentley KJ, Gewert R, Harris WJ. Differential efficiency of expression of humanized antibodies in transient transfected mammalian cells[J]. Hybridoma,1998,17 (6):559-567
    Brar SK, Verma M, Tyagi RD, Valero JR. Recent advances in downstream processing and formulations of Bacillus thuringiensis based biopesticides[J]. Process Biochemistry,2006,41 (2):323-342
    Bird RE, Hardman KD, Jacobson JW, Johnson S, Kaufman BM, Lee SM, Lee T, Pope SH, Riordan GS, Whitlow M. Single-chain antigen-binding proteins[J]. Science,1988,242 (4877):423-426
    Brichta J, Vesela H, Franek M,. Production of scFv recombinant fragments against 2, 4-dichlorophenoxyacetic acid hapten using naive phage library[J]. Veterinarni Medicina-UZPI, 2003,48 (9):237-247
    Carayannopoulos L, Max EE, Capra JD. Recombinant human IgA expressed in insect cells[J]. PNAS, 1994,91 (18):8348-8352
    Carozzi NB, Kramer VC, Warren GW, Evola S, Koziel MG. Prediction of insecticidal activity of Bacillus thuringiensis strains by polymerase chain reaction productprofiles[J]. Applied and Environmental Microbiology.1991,57 (11):3057-3061
    Chambers SJ, WyaR GM, Garrett SD, Morgan MRA. Alteration of the binding characteristics of a recombinant scFv anti-parathion antibody-2. Computer modeling of hapten docking and correlation with ELISA binding[J].Food and Agricultural Immunology,1999,11 (3):219-228
    Chang TC, Huang SH. A modified immuno-polymerase chain reaction for the detection of beta-glucuronidase from Escherichia coli[J].Journal of Immunological Methods,1997,208 (1):35-42
    Chen S, Wu JY, Cheng DR, Zhang RX, Huang JQ. On the enzyme-linked immunosorbent assay of Bacillus thuringiensis insecticidal protein expressed in transgenic cotton[J]. Acta Gossypii Sinica,1999,11(5):259-267
    Crameri A, Cwirla S, Stemmer WPC. Construction and evolution of antibody-phage libraries by DNA shuffling[J]. Nature Medicine,1996,2 (1):100-102
    Daly S, Dillon P, Manning B, Dunne L, Killard A, O'Kennedy R. Production and Characterization of Murine Single Chain Fv Antibodies to Aflatoxin B1 Derived From a Pre-immunized Antibody Phage Display Library System[J]. Food and Agricultural Immunology,2002,14 (4):255-274
    Davey HW, Kell DB. Flow cytometry and cell sorting of heterogeneous microbial populations:the importance of single-cell analysis[J]. Microbiology Reviews,1996,60:641-696
    De Maagd RA, Weemen-Henddks M, Stiekema W, Bosch D. Bacillus thuringiensis Delta-Endotoxin CrylC DomainⅢ Can Function as a Specificity Determinant forSpodoptera exigua in Different, but Not All, Cryl-CrylC Hybrids[J]. Applied and environmental microbiology,2000,66 (4): 1559-1563
    Durocher Y, Butler M. Expression systems for therapeutic glycoprotein production[J]. Current Opinion in Biotechology,2009,20 (6):700-707
    Edwards GM, Streuli CH. Preparing a polyclonal antibody to mouse β1 integrin with function-blocking. activity[J]. Methods and Molecular Biology,1999,129(2):135-152
    Eldin P, Pauza ME, Hieda Y, Lin GF, Murtaugh MP, Pentel PR, Pennell CA. High-level secretion of twoantibody single chain Fv fragments by Pichia pastoris[J]. Journal of Immunological Methods, 1997,20(1):67-75
    Ewert S, Huber T, Honegger A, Pluckthun A. Biophysical properties of human antibody variable domains[J]. Journal of Biological Chemistry,2003,325 (3):531-553
    Fernandez LE, Gomez I, Pacheco S, Arenas I, Gilla SS, Bravo A, Soberon M. Employing phage display to study the mode of action of Bacillus thuringiensis Cry toxins[J]. Peptides,2008,29 (2):324-329
    Fischer R, Drossard J, Commandeur U, Schillberg S, Emans N. Towards molecular farming in the future:moving from diagnostic protein and antibody production in microbes to plants[J]. Applied Biochemistry and Biotechnology,1999,30:101-108
    Fitzgerald J, Leonard P, Darcy E, Danaher M, O'Kennedy R. Light-chain shuffling from an antigen-biased phage pool allows 185-fold improvement of an anti-halofuginone single-chain variable fragment[J]. Analytical Biochemistry,2011,410 (1):27-33
    Fodey T, Leonard P, O'Mahony J, Danaher M, O'Kennedy R. Developments in the production of biological and synthetic binders for immunoassay and sensor-based detection of small molecules[J]. Trends in Analytical Chemistry,2011,30 (2):254-269
    Fujimoto H, Itoh K, Yamamoto M, Kyozuka J, Shimamoto K. Insect resistant rice generated by introduction of a modified delta-endotoxin gene of Bacillus thuringiensis[J]. Biotechnology,1993, 11:1151-1155
    Garet E, Cabado AG, Vieites JM, Gonzalez-Fernandez A. Rapid isolation of single-chain antibodies by phage display technology directed against one of the most potent marine toxins: Palytoxin[J].Toxicon,2010,55 (8):1519-1526
    Goel A, Augustine S, Baranowska-Kortylewicz J, Colcher D, Booth BJM, Pavlinkova G, Tempero M, Batra SK. Single-dose versus fractionated radioimmunotherapy of human colon carcinoma xenografts using 131I-labeled multivalent CC49 single-chain Fvs[J]. Clinical Cancer Research,2001, 7(175):175-184
    Gomez I, Arenas A, Benitez I, Miranda-Rios J, Becerril B, Grande R, Almagro JC, Bravo A, Soberon M.Specific epitopes of domains Ⅱ and Ⅲ of Bacillus thuringiensis CrylAb toxin involved in the sequential interaction with cadherin and aminopeptidase-N Receptors in Manduca sexta[J]. Journal of Biological Chemistry,2006,281 (45):34032-34039
    Grochulski P, Masson L, Borisova S, Pusztai-Carey M, Schwartz JL, Brousseau R, Cygler M. Bacillus thuringiensis CryIA (a)insecticidal toxin:crystal structure and channel formation[J], Journal of Biological Chemistry,1995,254 (3):447-464
    Guo YC, Zhou YF, Zhang XE, Zhang ZP, Qiao YM, Bi LJ, Wen JK, Liang MF, Zhang JB. Phage display mediated immuno-PCR[J]. Nucleic Acids Research 2006,34 (8):e62
    Helassa N, Quiquampoix H, Noinville S, Szponarski W, Staunton S. Adsorption and desorption of monomeric Bt(Bacillus thuringiensis) CrylA toxin on montmorillonite and kaolinite[J].Soil Biology and Biochemistry,2009,41 (3):498-504
    Hofte H, Van Rie J,Jansens S, Van Houtven A, Vanderbruggen H, Vaeck M. Monoclonal antibody analysis and insecticidal spectrum of three types of Lepdopteran-specifid insecticidal crystal proteins of Bacillus thuringiensis[J]. Applied and Environmental Microbiology,1988, 54:2010-2017
    Hofte H, Whiteley HR. Insecticidal crystal proteins of Bacillus thuringiensis[J]. Microbiological Reviews,1989,53 (2):242-55
    Hoogenboom HR, Griffiths AD, Johnson KS, Chiswell DJ, Hudson P, Winter G. Multi-subunit proteins on the surface of filamentous phage:methodologies for displaying antibody (Fab) heavy and light chains[J]. Nucleic Acids Research,1991,19 (15):4133-4137
    Hoogenboom HR, Henderikx P, De Haard H. Creating and engineering human antibodies for immunotherapy[J]. Advanced Drug Delivery Reviews,1998,31 (1-2):5-31
    Houimel M, Dellagi K. Isolation and characterization of human neutralizing antibodies to rabies virus derived from a recombinant immune antibody library[J]. Journal of Virological Methods,2009,161 (2):205-215
    Jaakohuhta S, Harma H, Tuomola M, Lovgren T. Sensitive Listeria spp. immunoassay based on europium(Ⅲ) nanoparticulate labels using time-resolved fluorescence[J]. International Journal of Food Microbiology,2007,114:288-294
    Jiang GH, Xu CG, Tu JM, Li XH, He YQ, Zhang QF. Pyramiding of insect-and disease-resistance genes inlu an elite Indicu, cytoplasm male sterile restorer line of rice,'Minghui 63"[J]. Plant Breed,2004, 123 (2):112-116
    Juarez-Perez VM, Ferrandis MD, Frutos R. PCR-based approach for detection of novel Bacillus thuringiensis cry genes[J]. Applied and Environmental Microbiology,1997,63 (8):2997-3002
    Jurat-Fuentes JL, Adang MJ. Importance of Cryl delta-endotoxin domain Ⅱ loops for binding specificity in Heliothis virescens[J]. Applied and environmental microbiology,2001,67 (1): 323-329
    Kalman S, Kiehne KL, Libs JL, Yamamoto T. Cloning of a novel crylc-type gene from a strain of Bacillus thuringiensis subsp. galleriae[J]. Applied and Environmental Microbiology,1993, 59:1131-1137
    Keith A. Expression and isolation of recombinant antibody fragments in E. coli[J]. Antibody Engineering,2004,248:245-254
    Kennel SJ, Lankford T, Foote L, Wall M, Davern S. Phage display selection of scFv to murine endothelial cell membranes[J]. Hybrid Hybridomics,2004,23 (4):205-211
    Kipriyanov SM, Moldenhauer G, Little M. High level production of soluble single chain antibodies in small-scale Escherichia coli cultures[J]. Journal of Immunological Methods,1997,200(1-2):69-77
    Knappik A, Ge L, Honegger A, Pack P, Fischer M, Wellnhofer G, Hoess A, Wolle J, Pluckthun A, Virnekas B. Fully synthetic human combinatorial antibody libraries (HuCAL) based on modular consensus frameworks and CDRs randomized with trinucleotides[J]. Journal of Biological Chemistry,2000,296 (1):57-86.
    Kohler G, Milstein C. Continuous cultures of fused cells secreting antibody of predefined specificity[J]. Nature,1975,256:495-497
    Koohapitagtam M, Rungpragayphan S, Hongprayoon R, Kositratana W, Sirinarumitr T. Efficient amplification of light and heavy chain variable regions and construction of a non-immune phage scFv library[J]. Molecular Biology Reports,2010,37 (4):1677-1683
    Kramer K, Fiedler M, Skerra A, Hock B. A generic strategy for subcloning antibody variable regions from the scFv phage display vector pCANTAB5E into pASK85 permits the economical production of Fgb fragments and leads to improved recombinant immunoglobulin stability[J]. Biosensors and Bioelectronics,2002,17:305-313
    Lee MK, Rajamohan F, Jenkins JL, Curtiss AS, Dean DH. Role of two arginine residues in domain II, loop 2 of CrylAb and Cry 1Ac Bacillus thuringiensis delta-endotoxin in toxicity and binding to Manduca sexta and Lymantria dispar aminopeptidase N[J]. Molecular Microbiology,2000,38 (2):289-98
    Li TJ, Zhang Q, Liu Y, Chen DF, Hu BS, Blake DA, Liu FQ. Production of recombinant ScFv antibodies against methamidophos from a phagedisplay library of a hyperimmunized mouse[J]. Journal of Agricultural and Food Chemistry,2006,54 (24):9085-9091
    Li Y, Cockburn W, Kilpatrick JB, Whitelam GC. High affinity ScFvs from a single rabbit immunized with multiple haptens[J]. Biochemical and Biophysical Research Communications,2000,268 (2): 398-404
    Lobova D, CiZek A, Celer V. The selection of single-chain Fv antibody fragments specific to Bhlp 29.7 protein of Brachyspira hyodysenteriae[J]. Folia Microbiologica,2008,53 (6):517-520
    Maple C, Jones CS. Time-resolved fluorometric immunoassay for rubella antibody-a useful method for serosurveillance studies[J].Vaccine,2002,20 (9-10):1378-1382
    Marx U, Embleton MJ, Fischer R, Gruber FP, Hansson U, Heuer J, de Leeuw WA, Logtenberg T, Merz W, Portetelle D, Romette JL, Straughan DW. Monoclonal antibody production[J].ATLA,1997,25: 121-137
    McCafferty J, Griffiths AD, Winter G, Chiswell DJ. Phage antibodies:filamentous phage displaying antibody variable domains[J]. Nature,1990,348:552-524
    McCullum EO, Williams BA, Zhang JL, Chaput JC. Random mutagenesis by error-prone PCR[J]. Methods in Molecular Biology,2010,634:103-109
    McElhiney J, Drever M, Lawton LA, Porter AJ. Rapid isolation of a single-chain antibody against the cyanobacterial toxin microcystin-LR by phage display and its use in the immunoaffinity concentration of microcystins from water[J]. Applied and environmental microbiology,2002,68 (11): 5288-5295
    Miler KD, Weaver-Feldhaus J, Gray SA, Siegel RW, Feldhaus MJ. Production, purification, and characterization of human scFv antibodies expressed in Saccharomyces cerevisiac, Pichia pastoris, and Escherichia coli[J]. Protein expression and purification,2005,42:255-267
    Muraki M, Honda S. Efficient production of human Fas receptor extracellular domain-human IgG1 heavy chain Fc domain fusion protein using baculovirua/silkworm expression system[J]. Protein expression and purification,2010,73 (2):209-216
    Nagumo Y, Oguri H, Shindo Y, Hirama M, Tsumuraya T, Fujii I, Tomioka Y, Mizugaki M, Kumagai I. Phage-display selection of antibodies to the left end of CTX3C using synthetic fragments[J]. Journal of Immunological Methods,2004,289 (1-2):137-146
    Neuberger MS, Williams GT, Fox RO. Recombinant antibodies possessing novel effector functions[J]. Nature,1984,312 (5995):604-608
    Ochi A, Hawley RG, Hawley T, Shulman MJ, Traunecker A, Kohler G, Hozumi N. Functional immunoglobulin M production after transfection of cloned immunoglobulin heavy and light chain genes into lymphoid cells[J]. PNAS,1983,80 (20):6351-6355
    Okamotoa T, Mukaia Y, Yoshioka Y, Shibata H, Kawamura M, Yamamoto Y, Nakagawa S, Kamada H, Hayakawa T, Mayumi T, Tsutsumi Y. Optimal construction of non-immune scFv phage display libraries from mouse bone marrow and spleen established to select specific scFvs efficiently binding to antigcn[J]. Biochemical and Diophysical Research Cou(?)is,2004,323:583-591
    Orlandi R, Gussow DH, Jones PT, Winter G Cloning immunoglobulin variable domains for expression by the polymerase chain reaction[J]. PNAS,1989,86 (10):3833-3837
    Pan K, Wang H, Zhang HB, Liu HW, Lei HT, Huang L, Sun YM. Production and characterization of single chain Fv directed against β2-agonist clenbuterol[J]. Journal of Agricultural and Food Chemistry,2006,54:6654-6659
    Park SG, Lee JS, Je EY, Kim IJ, Chung JH, Choi IH. Afnnity maturation of natural antibody using a chain shuming technique and the expression of recombinant antibodies in Escherichia coli[J]. Biochemical and Biophysical Research Communications,2000,275:553-557
    Popkov M, Rader C, Barbas CF. Isolation of human prostate cancer cell reactive antibodies using phage display technology[J].Journal of Immunological Methods,2004,291 (1-2):137-151
    Pullen GR, Fitzgerald MG, Hosking CS. Antibody avidity determination by ELISA using thioeyanate elution[J]. Journal of Immunological Methods,1986,86 (1):83-87
    Rajamohan F, Lee MK, Dean DH. Bacillus thuringiensis insecticidal proteins:molecular mode of action[J]. Progress in Nucleic Acid Research and Molecular Biology,60:1-27
    Rang C, Vachon V, de Maagd RA, Villalon M, Schwartz JL, Bosch D, Frutos R, Laprade R. Interaction between functional domains of Bacillus thuringiensis insecticidal crystal proteins[J]. Applied and Environmental Microbiology,1999,65 (7):2918-2924
    Rang C, Vachon V, Coux F, Carret C, Moar WJ, Brousseau R, Schwartz JL, Laprade R Frutos R. Exchange of domain I from Bacillus thuringiensis Cryl Toxins Influences protoxin stability and crystal formation[J]. Current microbiology,2001,43 (1):1-6
    Roda A, Mirasoli M, Guardigli M, Michelini E, Simoni P, Magliulo M. Development and validation of a sensitive and fast chemiluminescent enzyme immunoassay for the detection of genetically modified maize[J]. Analytical and Bioanalytical Chemistry,2006,384 (6):1269-1275
    Rondot S, Koch J, Breitling F, Dubel S. A helper phage to improve single-chain antibody presentation in phage display[J]. Nature Biotechnology,2001,19:75-78
    Saerens D, Conrath K, Govaert J, Muyldermans S. Disulfide bond introduction for general stabilization of immunoglobulin heavy-chain variable domains[J]. Journal of Biological Chemistry,2008,377 (2):478-488
    Sano T, Smith CL, Cantor CR. Immuno-PCR:very sensitive antigen detection by means of specific antibody-DNA conjugates[J].Science,258,5079:120-122
    Saxena D, Flores S, Stotzky G. Insecticidal toxin in root exudates from Bt corn[J]. Nature,1999,402: 480-481
    Saxena D, Stotzky G. Insecticidal toxin from Bacillus thuringiensis is released from roots of transgenic Bt corn in vitro and situ[J].FEMS Microbiology Ecology,2000,33 (1):35-39
    Schier R, Marks JD. Efficient in vitro affinity maturation of phage antibodies using BIAcore guided selections[J]. Human Antibodies and Hybridomas,1996,7 (3):97-105
    Schnepf E, Crickmore N, Van Rie J, Lereclus D, Baum J, Feitelson J, Zeigler DR, Dean DH. Bacillus thuringiensis and its pesticidal crystal proteins[J]. Microbiology and Molecular Biology Reviews, 1998,62 (3):775-806
    Schnepf HE, Tomczak K, Ortega JP, Whiteley HR. Specificity determining regions of a lepidopteran specific insecticidal protein produced by Bacillus thuringiensis[J]. Journal of biological chemistry, 1990,265 (34):20923-20930
    Schnepf HE, Whiteley HR. Cloning and expression of the Bacillus thuringiensis crystal protein gene \nEscherichia coli[J]. PNAS,1981,78 (5):2893-2897
    Schnepf HE, Whiteley HR. Delineation of a toxin-encoding segment of a Bacillus thuringiensis crystal protein gene[J]. Journal of Biological Chemistry,1985,260 (10):6273-6280
    Sepulveda J, Shoemaker CB. Design and testing of PCR primers for the construction of scFv libraries representing the immunoglobulin repertoire of rats[J]. Journal of Immunologica! Methods,2008, 332:92-102
    Shaw I, O'Reilly A, Charleton M, Kane M. Development of a high-affinity anti-domoic acid sheep scFv and its use in detection of the toxin in shellfish[J]. Analytical Chemistry,2008,80 (9):3205-3212
    Shimizu T, Morikawa K. The beta-prism:a new folding motif[J]. Trends in Biochemical Sciences,1996, 21 (1):3-6
    Skerra A, Pluckthun A. Assembly of a functional immunoglobulin Fv fragment inEscherichia coli[J]. Science,1988,240 (4855):1038-1041
    Skerra A. Bacterial expression of immunoglobulin fragments[J]. Current Opinion in Immunology,1993, 5 (2):256-262
    Smith GP. Filamentous fusion phage:novel expression vectors that display cloned antigens on the virion surface[J]. Science,1985,228 (4705):1315-1317
    Sommavilla R, Lovato V, Villa A Design and construction of a naive mouse antibody phage display library[J]. Journal of Immunological Methods,2010,353:31-43
    Song F, Zhang J, Gu AX, Wu Y, Han LL, He KL, Chen ZY, Yao J, Hu YQ, Li GX, Huang DF. Identification of cry1I-type genes from Bacillus thuringiensis strains and characterization of a novel cry1I-type gene[J]. Applied and Environmental Microbiology,2003,69:5207-5211
    Spada S, Krebber C. Selectively infective phages[J]. Biological Chemistry,1997,378 (6):445-456
    Stenroos K, West A, Raivio E, Lindqvist C. Expression of the Mouse Interleukin-2 Receptor Gamma Chain in Insect Cells Using a Baculovirus Expression Vector-Comparison with the Human Common Gamma Chain [J]. Scandinavian Journal of Immunology,1997,45:140-144
    Stotzky G. Persistence and biological activity in soil of insecticidal proteins from Bacillus thuringiensis and of bacterial DNA bound on clays and humic acids[J]. Journal of Environmental Quality,2000, 29:691-705
    Tan GH, Yusoff K, Seow HF, Tan WS. Antigenicity and immunogenicity of the immunodominant region of hepatitis B surface antigen disp layed on bacteriophage T7[J]. Journal of Medical Virology,2005, 77 (4):475-480
    Tapp H, Stotzky G. Dot Blot Enzyme-Linked Immunosorbent Assay for Monitoring the Fate of Insecticidal Toxins from Bacillus thuringiensis in Soil[J]. Applied and Environmental Microbiology, 1995,61:602-609
    Tapp H, Stotzky G. Monitoring the fate of insecticidal toxins from Bacillus thuringiensis in soil with flow cytometry[J]. Canadian Journal of Microbiology,1998,43 (11):1074-1078
    Tsumoto K, Nakaoki Y, Ueda Y, Ogasahara K, Yutani K, Watanabe K, Kumagai I. Effect of the order of antibody variable regions on the expression of the single-chain HyHEL10 Fv fragment in E.coli and the thermodynamic analysis of its antigen-binding Properties[J]. Biochemical and Biophysical Research Communications,1994,201 (2):546-551
    Vaeck M, Reynaerts A, Hofte H, Jansens S, de Beuckeleer M, Dean C, Zabeau M, Montagu MV, Leemans J. Transgenic plants protected from insect attack[J].Nature,1987, (328):33-27
    Van der Linden RH, de Geus B, Frenken LGJ, Peters H, Verrips CT. Improved production and function of llama heavy chain antibody fragments by molecular evolution[J]. Journal of Biotechnologyl, 2000,80 (3):261-270
    Venkateswerlu G, Stotzky G. Binding of the protoxin and toxin proteins of Bacillus thuringiensis subsp kurstaki on clay minerals[J]. Current Microbiology,1992,25:225-233
    Vogel V, Thomas WE, Craig D W, Krammer A, Baneyx G. Structural insights into the mechanical regulation of molecular recognition sites[J].Trends in Biotechnology,2001,19 (10):416-423
    Wang H, Yang JY, Liu XX, Liang Y, Lei HT, Shen YD, Xu XY, Sun YM, Xu ZL, He YS. Cloning, expression, and identification of anti-carbofuran single chain Fv gene[J]. Biotechnology Progress, 2009,25(4):1018-1024
    Wang LE, Radic MZ, Siegel D, Chang T, Bracy J, Galili U. Cloning of anti-gal fabs from combinatorial phage display libraries:Structural analysis and comparison of fab expression in pComb3H and pComb8 phage[J]. Molecular Immunology,1997,34 (8-9):609-618
    Wen S, Zhang X, Liu Y, Zhang QQ, Liu XJ, Liang JS. Selection of a Single Chain Variable Fragment Antibody against Ivermectin from a Phage Displayed Library [J]. Journal of Agricultural and Food Chemistry,2010,58:5387-5391
    Wiiger MT, Gehrken HB, Fodstad (?), Maelandsmo GM, Andersson Y. A novel human remombinant single-chain antibody targeting CD166/ALCAM inhibits cancer cell invasion in vitro and in vivo tumour growth[J]. Cancer Immunology Immunotherapy,2010,59(11):1665-1674
    William WGT. Phage display:practicalities and prospects[J]. Plant Molecular Biology,2002,50 (6): 837-854
    Worn A, Pluckthun A. Different equilibrium stability behavior of scFv fragments:identification, classification, and improvement by protein engineering[J]. Biochemical Journal,1999,38 (27): 8739-8750
    Wu S, Ke A, Doudna JA. A fast and efficient procedure to produce scFvs specific for large macromolecular complexes[J]. Journal of Immunological Methods,2007,318 (1-2):95-101
    Wyatt GM, Garrett SD, Lee HA. Morgan MRA. Alteration of the binding characteristics of a recombinant scFv anti-parathion antibody-1. Mutagenesis targeted at the VH CDR3 domain[J]. Food and Agricultural Immunology,1999,11:207-218
    Yamamoto T. Identification of entomocidal toxins of Bacillus thuringiensis by high performance liquid chromatography[J]. Journal of General and Applied Microbiology,1983,129 (8):2595-2603
    Yang WP, Green K, Sweeney SP, Briones AT, Burton DR, Barbas CF. CDR walking mutagenesis for the affinity maturation of a potent human anti-HIV-1 antibody into the picomolar range[J]. Journal of Biological Chemistry,1995,254 (3):392-403
    Zahnd C, Spinelli S, Luginbuhl B, Amstutz P, Cambillau C, Pluckthun A. Directed in vitro evolution and crystallographic analysis of a peptide-binding single chain antibody fragment (scFv) with low picomolar affinity[J], Journal of Biological Chemistry,2004,279:18870-18877
    Zhao SW, Shen PP, Zhou Y, Wei Y, Xin XB, Hua ZC. Selecting peptide ligands of microcystin-LR from phage displayed random libraries[J]. Environment International,2005,31 (4):535-541
    艾洪武,郭军庆,游上游.抗AIF单链抗体在大肠杆菌中的可溶性表达和鉴定中国免疫学杂志[J].2006,22:302-306
    包福祥.Aβ1-42寡聚体特异性scFv的筛选、鉴定和亲和力成熟的初步研究[D].内蒙古农业大学博士论文,2009
    陈笑芸,汪小福,周育,缪青梅,方敬,徐俊锋.转Bt基因水稻种子中Bt蛋白含量测定方法的研究[J].中国粮油学报,2012,27(3):121-124
    陈云鹏,陈火英,庄天明.Bt毒蛋白基因在转基因抗虫植物中的应用[J].生物学通报,2000,35(5):15-17
    崔金杰,李国清.Cry毒素毒杀昆虫中肠细胞的机制:穿孔细胞膜还是启动细胞死亡信号途径?[J].南京农业大学学报,2010,33(5):12-16
    崔林开.转Bt抗虫基因植物的酶联免疫检测技术研究[D].雅安:四川农业大学农学院,2004
    崔莹.二价抗虫基因cry1C*/cry24*对寒区超级稻松粳9号的遗传转化[D].黑龙江大学,2011
    代鹏,周广青,马军武.单链抗体的表达[J].生物技术通报,2011,10:60-65
    戴经元,钱江伟.协同凝集反应定量检测苏云金杆菌晶体蛋白[J].华中农业大学学报,1998,17(3):237-240
    邓鸿铃,郭新东,吴玉銮.利用PCR方法检测转BT基因水稻[J].现代食品科技,2006,23(4):71-74
    邓明俊,肖西志,昊振兴,张彦明,辛学谦,郑小龙,王群,王昌军.免疫PCR检测微量H5亚型禽流感病毒[J].畜牧兽医学报2011,42(7):1039-1045
    冯仁丰.分析灵敏度(检测限)[J].上海医学检验杂志,2002,17:133-136
    付庆灵.Bt毒素在矿物和土壤胶体上的吸附和残留研究[D].华中农业大学,2009
    高雷,黄飚,李秋萍.脱氧雪腐镰刀烯醇时间分辨免疫法的建立[J].食品科学,2009,30(20):398-402
    顾炜炜,潘家荣.Bt蛋白免疫检测技术研究进展[J].食品工业科技,2007,28(1):237-239
    顾炜炜.Bt蛋白酶联免疫分析技术研究[D].中国农业科学院硕士论文,2007
    郭小兵.CTX-M-38型超广谱p-内酰胺酶多克隆抗体的制备及应用[D].郑州大学,2010
    何光志,田维毅,王平,王文佳,奚锦,俞琦,黄高,王乾宇.抗弓形虫噬菌体单链抗体库的构建及筛选[J].湖北大学学报(自然科学版),2011,22(3):304-308
    何素平,赵静,羿国香,刘威,邓艾兴,南铁贵,李召虎,何钟佩,王保民.Bt毒蛋白免疫金标试纸条的制备与应用[A].中国棉花学会,2006,7:254-256
    何卓.日本血吸虫未成熟卵单链抗体库的构建、筛选及在疫苗研究中的应用[D].中南大学博士论文,2008
    黄必旺.苏云金芽孢杆菌的肠毒素及其安全性研究[D].福建农林大学,2005
    黄松,牛春,姜洪杰.免疫PCR实验技术条件的探讨[J].首都医科大学学报,2000,21(2):161-162
    贾士荣.植物基因工程原理与技术[M].辽宁师范人学出版社,1998,127-585
    李春华.蛋白质—蛋白质对接方法的研究[D].北京工业大学博士学位论文,2003
    李铁军.抗甲胺磷噬菌体单链抗体库[D].南京农业大学博士毕业论文,2008
    梁赤周.抗三唑磷基因工程抗体的研制及同源建模[D].浙江大学博士学位论文,2009
    林周,黎燕,沈倍奋.体外抗体亲和力成熟的几种策略[J].军事医学科学院院刊,2004,28(3):292-294
    凌媛,徐静,许丽锋,崔文禹,李媛媛,李树香.二硫键稳定的抗TNF-a单链抗体的原核表达及生物学特性鉴定[J].中国生物制品学杂志,2009,22(8):753-757
    刘德新,李小鹰,王琰.单链抗体在大肠杆菌中的分泌型表达[J].军医进修学院学报2,002,23(3):233-235
    刘涛,周广青,马军武,林密,祁淑芸,冯霞,马明仁.口蹄疫病毒单链抗体基因的构建及其推导蛋白三维结构的分子模拟[J].中国兽医科学,2009,39(12):1035-1040
    刘文森.蓖麻毒素单克隆抗体制备、检测方法及单链抗体研究[D].军事医学科学院,2010
    刘雪松,金伯泉,朱勇.用生物传感器测定重组人肿瘤坏死因子-α单克隆抗体的亲和力及抗原识别表位研究[J].中华微生物学和免疫学杂志,2000,20(3):240-243
    罗绍彬,阎建平,戴顺英,刘娥英,张用梅,胡名瑞.酶联免疫吸附测定(ELISA)检测苏云金杆菌伴孢晶体蛋白质研究[J].生物防治通报,1987,3(4):145
    马小兵.人天然Fab段噬菌体抗体库的构建及抗gp96抗体的初步筛选[D].天津医科大学博士学位论文,2006
    宓晓黎,黄丽俊,李利东.环丙沙星时间分辨荧光免疫分析方法[J].中国兽医学报,2011,31(8):1192-1195
    南清振.噬菌体抗体库的构建及筛选大肠癌相关抗原抗体的研究[D].第一军医大学,2004
    倪庚,沈金儿,热米拉,刘娜,冯劲松,郑晓冬.抗CrylC蛋白兔单克隆抗体的制备和鉴定[J].中国 食品学报,2012,12(2):131-136
    倪庚.CrylAc蛋白ELISA检测体系的建立[D].浙江大学硕士学位论文,2012
    秦崇涛,陈在杰,苏军.3种ELISA法定量检测转crylAc基因水稻CrylAc蛋白的比较研究[J].福建农业学报,2003,18(4):258-263
    曲冬梅,弓爱君,高鹤永,邱丽娜.苏云金芽孢杆菌毒力检测方法综述[J].生物技术通讯,2004,1(6):639-641
    任羽.苏云金芽孢杆菌杀虫晶体蛋白Cry1Ca7分子设计[D].中国农业科学院博士论文,2008
    邵建军.天然鼠源单链抗体库的构建及猪IgG的筛选[D].山东农业大学硕士学位论文,2004
    宋琛,徐江,张芳琳,白文涛,李柱一.抗人乙酰胆碱受体单链抗体1956#在大肠杆菌中的可溶性表达[J].细胞与分子免疫学杂志,2008,24(3):292-297
    孙昌雷.转基因植物中杀虫蛋白Cry I Ab/Ac快速免疫检测方法的研究[D].山东农业大学硕士论文,2010
    孙宪连.花生黄曲霉毒素B1单链抗体的研制及其检测[D].福建农林大学,2006
    佟敬山,李昌,金宁一,于源华,刘玉生,于芳,胡宁宁,李霄,张钰.二硫键稳定的抗HIV-1 gp41单链抗体的构建及原核表达[J].中国生物制品学杂志,2008,2(3):169-173
    王发祥,黄璠,夏立秋,赵新民,丁学知.应用计算机对比分析苏云金杆菌CrylA类晶体蛋白[J].计算机与应用化学,2007,24(7):891-894
    王建丽,郑玉玲,王保莉,郭霭光,马茹,姜永强.二硫键稳定单链抗体融合PE38免疫毒素的构建及活性分析[J].细胞与分子免疫学杂志,2006,22:74-77
    王莹,李旭,陈葳.抗人宫颈癌单链抗体的表达、结构预测和功能分析[J].南方医科大学学报.2006,26(1):16-21
    卫剑文,许新萍,陈金婷,张良佑,范云六,李宝健.Research on improving rice resistance to the pest by Bt and SBTI genes[J]生物工程学报,2000,16(5):603-608
    魏东芝,赖敏.噬菌体抗体库筛选技术[J].生命科学,2000,3:134-136
    吴瑞华.土壤中苏云金杆菌HBF-1菌株毒蛋白ELISA检测方法的建立及应用[D].河北农业大学硕士论文,2007
    吴雯峰,王双,孙志伟.噬菌体展示抗体库筛选技术研究进展[J].生物技术通讯,2007,18(3):476-479
    吴永强.天然人源噬菌体抗体库的构建和筛选[D].武汉生物制品研究所博士学位论文,2008
    夏立秋,孙运军.生物农药的发展与苏云金杆菌杀虫剂研究[C].第九届全国微生物学教学和科研及成果产业化研讨会,2003
    谢永华CEA+MAB的制备、纯化及其双抗夹心ELISA检测方法的初步建立[D].福建师范大学硕士学位论文,2010
    徐平西,肖华胜,鞠躬.一种简易的免疫PCR方法的建立[J].生物化学与生物物理进展,1999,26 (4):396-398
    徐永桂,杨亦桦,吴益东.CrylA毒素与二化螟中肠刷状缘膜囊泡受体蛋白配基结合分析[J].昆虫学报,2009,52(2):153-158
    徐宗粱,苏宁,陈颖,贾建会,吴亚君,王因霞,张青文.转基因棉子壳中Bt蛋白含量测定方法研究[J].中国棉花,2004,31(2):12-14
    薛静.苏云金芽孢杆菌杀虫晶体蛋白Cry1Ah特性及其杀虫机理的研究[D].中国农业科学院博士学位论文,2007
    严吉明,叶华智,伍光庆,张敏.转Bt抗虫基因植物中杀虫蛋白的酶联免疫检测技术研究Ⅲ.酶联免疫(ELISA)间接法检测Bt杀虫蛋白研究[J].四川农业大学学报,2005,23(3):280-284
    杨滨.HAb18G/CD147及其单抗的分子模建对接和抗体人源化设计的研究[D].第四军医大学硕士论文,2007
    杨炼.抗黄曲霉毒素B1的单链抗体的筛选、表达和改造[D].江南大学博士论文,2010
    殷幼平,李蒙,于红,吴瑜佳,王中康.柑橘溃疡病菌单链二硫键稳定重组抗体的构建、表达和特性[J].农业生物技术学报,2011,19(1):178-185
    于永辉.配体一受体相互作用与识别的研究[D].北京工业大学硕士学位论文,2003
    喻子牛.苏云金杆菌[M].北京:科学出版社,1990
    张恒.多元核-壳型荧光纳米生物标记物的制备与应用及噬菌体介导的新型免疫-PCR体系的建立[D].厦门大学硕士论文,2007
    张谦,梁革梅.营养期杀虫蛋白Vip3A与对棉铃虫中肠BBMV结合能力的杀虫活性研究[A].粮食安全与植保科技创新[C].2009
    张晓.米尔比霉素肟化物ScFv噬菌体抗体库的构建[D].南京师范大学硕士论文,2007
    郑荣,吕暾.毒素DON单链抗体的同源建模及与DON结合的分子模拟研究[J].化学学报,2011,19(23):2882-2888
    钟彦伟,成军,王刚,陈新华,李克,李莉,陈菊梅.乙肝病毒核心蛋白人源单链抗体在大肠杆菌中的表达[J].免疫学杂志,2002,18(2):85-88
    朱红裕,李强.外源蛋白在大肠杆菌中的可溶性表达策略[J].过程工程报,2006,6(1):150-155
    庄惠生,陈寒玉.环境优先污染物多氯联苯的实时荧光免疫PCR检测方法研究[J].分析实验室,2009,28卷增刊:92-93

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700