用户名: 密码: 验证码:
作物品种分子标记鉴定及指纹图谱构建研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
种子是农业生产中最基本的生产资料。快速、准确、高效的作物品种鉴定及指纹图谱构建方法研究及其应用,可以满足农业生产中不同条件下品种鉴定的需要,对保证农业生产中种子质量具有重要的意义。选择适宜的分子标记及其配套检测技术,建立一套简便、经济、准确而高效的作物品种鉴定和指纹图谱构建技术体系,是打击假冒伪劣种子、保护作物遗传育种家、种子生产经营企业和农民的合法权益、规范我国种子市场和提高我国种子产业国际市场竞争力的迫切需要。本研究以我国主要农作物水稻、棉花、小麦、玉米及烟草为研究对象,研究其品种分子标记鉴定及指纹图谱构建方法,主要结果如下
     1.利用均匀设计方法对水稻、棉花、烟草、小麦和玉米的ISSR-PCR反应体系分别进行优化,得到每种作物各自适宜的扩增结果稳定的ISSR-PCR反应体系,并对24个水稻品种、12个烟草品种、10个棉花品种、8个小麦品种和18个玉米品种分别进行品种鉴定。结果显示,PCR反应体系中Taq酶Mg2-、dNTPs及引物浓度或用量的差异均会不同程度影响ISSR-PCR扩增效果;不同作物各自适宜的ISSR-PCR反应体系不同;2条ISSR引物(UBC900和UBC825)组合可以成功鉴别24个水稻品种,3条ISSR引物(UBC848, UBC841和UBC830)组合可以将12个烟草品种鉴别出来,ISSR引物UBC849可以成功鉴别出8个近亲小麦品种,3条ISSR引物(UBC807,UBC811和UBC820)组合可以将10个棉花品种鉴别出来、3条引物(UBC807, UBC811和UBC822)组合可以成功鉴别出18个玉米品种。本试验研究结果表明,均匀设计是一种有效的ISSR-PCR反应体系优化方法,ISSR可以用于室内水稻、棉花、烟草、小麦和玉米品种的快速鉴定,是一种很有潜力的作物品种鉴定和指纹图谱构建技术。
     2.构建了利用琼脂糖凝胶电泳检测SSR和ISSR分子标记进行作物品种鉴定和指纹图谱构建的新方法。该方法包括以下步骤:用改进的CTAB法提取种子或幼苗DNA;以提取的DNA为模板进行SSR或ISSR-PCR扩增;琼脂糖凝胶电泳检测(GelRed染色)PCR扩增产物,并在全自动凝胶成像系统紫外光下拍照:对电泳图谱进行数据分析。采用新方法构建的DNA指纹图谱,即以品种编号、扩增谱带带型编号、每条谱带的编号及“0”“1”阵列为基本信息,分别制得每种作物所有参试品种特定单一SSR或ISSR引物扩增所得的DNA指纹图谱,根据指纹差异进行品种鉴定。该方法与以往指纹图谱构建方法相比,检索更加方便、快捷、更适合农作物品种快速鉴定的要求。
     3.利用多态性信息含量(PIC)、平均位点信息含量(Ibav)、引物分辨能力(R)、标记指数(MI)、引物鉴别力(D)和极限引物鉴别力(DL)作为评价指标,比较了SSR和ISSR两种分子标记在水稻品种鉴定中的效率。结果显示,SSR分子标记的PIC(0.33)和Ibav(0.47)比ISSR分子标记(0.28和0.41)略高,而ISSR分子标记的D值(0.642)和DL值(0.636)比SSR分子标记(0.614和0.606)略高。但是,ISSR分子标记的R值和MI(2.41和1.63)均比SSR(1.03和0.72)高1倍以上。因此,根据本试验结果推测ISSR较SSR分子标记具有更高的水稻品种鉴定效率。但是,多次重复试验表明,ISSR适用于水稻品种快速鉴别,但该技术还需要进一步改进以提高其稳定性。SSR比ISSR扩增结果更稳定,且SSR扩增产物更适用于现代分子标记自动化检测技术。因此,选择SSR作为理想分子标记用于本论文作物品种分子标记鉴定和指纹图谱构建方法的深入研究。
     4.利用SSR分子标记技术成功构建浙江省48个主栽水稻品种的DNA指纹图谱。18对多态性SSR引物在48个水稻品种中共扩增出42条电泳谱带,其中41(97.6%)条是多态性谱带,其中每对引物检测出多态性谱带的数目从1条(RM210)到4条(RM16)不等,平均每对引物2.28条。每对引物扩增的谱带带型数目最少为2种,最多5种,平均每对引物2.88种。根据每对引物的扩增图谱,分别构建18对引物对48个水稻品种的DNA指纹图谱,根据指纹图谱鉴定结果,48个水稻品种中的40个品种可以被——鉴别出来。根据指纹图谱对8组近亲品种进行品种鉴别,除了秀水114和秀水09两个品种无法鉴别外,其他7组近亲品种都可以——鉴别出来。18对SSR引物的UPGMA聚类结果分为两组:第一组包含34个籼稻品种,第二组则聚集了14个粳稻品种。其中,引物RM249和RM250可以分别将粳稻和籼稻品种鉴别出来。研究结果表明,SSR分子标记和琼脂糖凝胶电泳(GelRed染色)检测相结合的方法可以用于常规室内便捷、经济的水稻品种鉴定以及粳稻和籼稻种质间的鉴别。
     5. TP-M13-SSR技术是基于毛细管电泳荧光检测的高通量低成本SSR扩增产物检测分析技术。利用TP-M13-SSR技术构建130个陆地棉品种的DNA指纹图谱。以来自10个国家的130个陆地棉品种为材料,利用TP-M13-SSR毛细管电泳荧光检测方法对初步筛选出的在陆地棉种质资源遗传多样性分析中具有多态性的100对SSR引物进行分析,其中60组TP-M13-SSR引物具有稳定、清晰且多态性的扩增片段,扩增片段大小在102bp到388bp之间。根据毛细管电泳荧光检测分析结果,选用其中50组扩增稳定且多态性丰富的TP-M13-SSR引物用于130个陆地棉品种的DNA指纹图谱构建。50组TP-M13-SSR引物共扩增出368条核苷酸片段,平均每组引物7.36条。根据每组引物扩增的核苷酸片段数目和长度信息,利用品种鉴定系统软件V1.0构建130个陆地棉品种的DNA指纹图谱数据库。根据构建的DNA指纹数据,可以将130个品种鉴别出来。该数据库可以用于SSR指纹数据的查询及品种鉴定中待测品种与标准样品的指纹比对。研究结果表明,TP-M13-SSR毛细管电泳荧光检测方法适用于陆地棉品种标准DNA指纹图谱构建和品种鉴定,且更适合于大量样品指纹图谱构建。TP-M13-SSR毛细管电泳荧光检测方法与传统凝胶电泳方法和作物品种DNA分子标记指纹图谱数据库相结合,应该是作物品种分子标记快速、准确鉴定的有效方法之一
     6.高分辨率熔解曲线分析是基于实时荧光定量PCR技术发展起来的新型基因分型技术。利用SSR高分辨率熔解曲线分析检测方法,成功构建了浙江省3个主栽水稻杂交种及其亲本的DNA指纹图谱。研究结果表明,SSR高分辨率熔解曲线分析检测方法适用于水稻品种高效鉴定,具有高通量、高灵敏度、自动化、快速、直观等特点,满足大小不同规模样品快速、准确鉴别的要求。
     7.比较了三种基于SSR分子标记的指纹图谱构建方法,即琼脂糖凝胶电泳检测、TP-M13-SSR毛细管电泳荧光检测和SSR高分辨率熔解曲线分析检测的优劣,提出高效农作物品种鉴定和指纹图谱构建的策略。首先,利用高浓度琼脂糖凝胶电泳检测方法,以小样本品种为测试目标,检测引物扩增片段的大小和数量及其扩增效果,筛选出扩增结果清晰、稳定且具有多态性的引1物;然后,用TP-M13-SSR毛细管电泳荧光检测方法构建大量品种的标准DNA指纹图谱;最后,以标准DNA指纹图谱为参考进行作物品种鉴定。扩增片段大小相差大于10bp的引物,可以选用高浓度琼脂糖凝胶电泳检测方法;检测扩增片段大小相差较小的引物,若待测品种数目很大,选用高通量的TP-M13-SSR毛细管电泳荧光检测或者SSR高分辨率熔解曲线分析的方法,如果只有少量品种,可优先选用SSR高分辨率熔解曲线分析的方法。
Seed was the most basic means of agricultural production. Fast, accurate and high efficient crop cultivar identification and DNA fingerprinting methods and their application were of great importance in seed quality control. Combining suitable molecular markers with detection techniques to invent simple, low cost, accurate and high efficient technical system for cultivar identification and fingerprinting was urgent need to crack down on counterfeit and shoddy seeds, protect the legitimate rights and interests of the breeder, seed company and farmers, standardize seed market and improve the international competitiveness of Chinese seed industry. In present study, rice, cotton, wheat, maize and tobacco were selected to study the cultivar identification and fingerprinting methods. The achieved results were as follows:
     1. Uniform design was applied to optimize ISSR-PCR reaction system for rice. cotton, tobacco, wheat and maize, and the optimal ISSR-PCR reaction systems for each crop were established, respectively.24rice cultivars.12tobacco cultivars.10cotton cultivars.8wheat cultivars and18maize cultivars were identified using the optimal PCR reaction systems, respectively. The results showed that variations of Mg2-, dNTPs. primer, and Taq polymerase concentrations changed the fingerprinting patterns; each crop had different optimal ISSR-PCR reaction system. Combination of2ISSR primers (UBC900and UBC825) was able to identify24rice cultivars.3ISSR primers (UBC848. UBC841and UBC830) were able to identify12tobacco cultivars. Combination of3ISSR primers (UBC807. UBC811and UBC820) could identify10cotton cultivars. ISSR primer UBC849was able to discriminate8close-related wheat cultivars. A group of3ISSR primers (UBC807. UBC811and UBC822) were able to identify18maize cultivars. The results showed that uniform design was an efficient method for optimization of ISSR-PCR reaction systems. ISSR molecular markers could be used in rapid cultivar identification of rice, cotton, tobacco, wheat and maize, which might be a potential technique for crop cultivar identification and fingerprinting.
     2. New method for crop variety identification and fingerprinting based on SSR and ISSR molecular markerswas constructed. The new method included the following steps:extracting DNA of seedlings with improved CTAB method; SSR and ISSR PCR amplification with the genomic DNA as the template; detecting PCR products by agarose gel electrophoresis (staining with GelRed) and take pictures in the automated gel imaging system under UV light:analyzing the data of electrophoresis bands. DNA fingerprinting constructed by the new method was based on cultivar number, type of amplified bands, band number and'0'and'1'array as the basic information. DNA fingerprinting was prepared for each tested cultivars based on each SSR or ISSR primers. The method was prior to the previous methods, which was more convenient, faster and more suitable for the rapid identification of crop cultivar.
     3. Comparing the discriminating efficiency between SSR and ISSR markers on rice fingerprinting and cultivar identification based on PIC (polymorphic information content), Ibav (average band informativeness), R (Resolving Power). MI (Marker Index), D (Discriminating Power Calculated) and D□(Discriminating Power Estimated). The results showed that average PIC and Ibav values of SSR (0.33,0.47) were higher than ISSR (0.28.0.41). respectively, and the average D, DL, R and MI values of ISSR (0.642,0.636,2.41.1.63) were higher compared with SSR (0.614,0.606,1.03.0.72), respectively. It was indicated that both SSR and ISSR molecular markers were suitable for rapid rice cultivar identification, and ISSR might have a higher discriminating efficiency in rice cultivar identification compared with SSR marker system. Combination of SSR and ISSR markers might be a capable strategy in fingerprinting and cultivar identification of rice in further study. However, the stability of ISSR technique might be improved in further study, and SSR molecular markers were much steadier and more suitable for automatic analysis. So, SSR molecular markers were selected as the ideal marker for further study of crop cultivar identification and fingerprinting in present paper.
     4. DNA fingerprinting of the48main rice cultivars in Zhejiang province were constructed based on SSR molecular markers. A total of42bands were produced with the18polymorphic SSR primer pairs,41(97.6%) of which were polymorphic. The number of polymorphic bands detected by each SSR primer pair ranged from1(RM210) to4(RM16), with an average of2.28bands per primer pair. The number of band patterns produced by each primer pair ranged from2to5, with an average of2.88. DNA fingerprinting of48rice cultivars based on each primer pair were constructed, which were able to identify40out of the48rice cultivars.7of the8groups of close-related cultivars were able to be identified based on the fingerprinting. UPGMA clustering results based on18polymorphic SSR primer pairs divided the48rice cultivars into two groups: the first group consists of34indica rice cultivars, and the second group gathered14japonica rice cultivars. And the primer pairs RM249and RM250could identify japonica from indica rice cultivars. The results showed that combination of SSR molecular markers and agarose gel electrophoresis (staining with GelRed) detection method could be used for convenient, economy rice cultivar identification, and japonica and indica germplasm identification.
     5. TP-M13-SSR technique was a high throughput and low cost analysis method of SSR product based on fluorescence detection of capillary electrophoresis. DNA fingerprinting of130upland cotton were constructed with TP-M13-SSR method.130cotton cultivars from10countries were selected as the test materials to analyze the100SSR primer pairs which showed good polymorphic among upland cotton in previous study. Among the100groups of TP-M13-SSR primers,60sets of primers showed steady, clear and polymorphic amplification results, and the length of produced fragments ranged from102bp to388bp.50sets of steady and polymorphic TP-M13-SSR primers were selected for fingerprinting of130cotton cultivars. A total of368DNA fragments were produced with the50sets of primers, with an average of7.36. DNA fingerprinting database of130cotton cultivars were constructed using the cultivar identification system software (V1.0) based on the number and length information of the nucleotide fragment produced.130cotton cultivars were able to be identified based on the fingerprinting. The fingerprinting database could be used for fingerprinting data query and match between tested material and standard cultivar. The results showed that TP-M13-SSR method was suitable for standard fingerprinting and cultivar identification of upland cotton, especially for a large number of samples. Combination of TP-M13-SSR technique, conventional gel electrophoresis. and DNA fingerprinting database of crop cultivars might be an efficient strategy for rapid and accurate crop cultivar identification based on molecular markers.
     6. High resolution melting curve analysis (HRM) was a new genotyping method developed based on real-time fluorescence quantitative PCR technology, and its principle was that the melting temperatures of nucleotide fragments were different base on their different base composition or sequence. SSR molecular markers combining high resolution melting curve analysis method were used to construct the DNA fingerprinting of3main cultivated rice hybrids and their parents in Zhejiang province. The results showed that the method based on combination of SSR molecular markers with high resolution melting curve analysis (SSR-HRM) was suitable for rice cultivar identification and had the characteristics of high throughput, high sensitivity, automatic, fast, and intuitive.
     7. The advantages and disadvantages of agarose gel electrophoresis, TP-M13-SSR capillary fluorescence detection and SSR high resolution melting curve analysis were compared. A suitable strategy for crop cultivar identification and fingerprinting was proposed. Firstly, high concentration agarose gel electrophoresis was used to detect the sizes, numbers and amplification effect of the produced fragments to screen out SSR primers with clear, stable and polymorphic bands. Secondly, standard DNA fingerprinting was constructed by the TP-M13-SSR capillary electrophoresis with fluorescence detection method. Finally, the fingerprinting was used for cultivar identification. If the difference among fragment sizes of the primer was greater than10bp. high concentration of agarose gel electrophoresis detection method could be selected. If the difference among fragment sizes was smaller than10bp. capillary electrophoresis with fluorescence detection or high resolution melting curve analysis should be selected if there were a large number of tested cultivars. or high resolution melting curve analysis should be given priority with only a small number of samples.
引文
1. 程本义.SSR荧光标记毛细管电泳检测法在水稻DNA指纹鉴定中的应用.中国水稻科学,2011,25(6):672-676.
    2. 戴剑,陈敏,张继红.两系法杂交稻两优培九种子纯度幼苗鉴定方法初探.杂交水稻,2002,17(4):25-26.
    3.杜欣,董玉芝,陈虹.均匀设计优化喜盐鸢尾ISSR-PCR体系.新疆农业科学,2008,45(3):386-392.
    4. 方开泰,马长兴.正交与均匀试验设计.北京:科学出版社,2001.
    5. 冯尚国,赵红燕,胡旭,施农农,应奇才,王慧中SRAP与TRAP分子标记及其在植物研究中的应用.杭州师范大学学报(自然科学版),2010,9(3):178-184.
    6. 富昊伟.利用芽鞘及不完全叶颜色的差别鉴定水稻特定杂交组合种子纯度.杂交水稻,2002,17(4):27.
    7. 盖树鹏,盖伟玲,黄进勇.SSR与SRAP标记在玉米品种鉴定中的比较研究.植物遗传资源学报,2011,12(3):468-472.
    8. 高源,王昆,田路明,曹玉芬,刘凤之.应用TP-M13-SSR技术鉴定苹果品种.果树学报,2010,27(5):833-837.
    9. 高源,王昆,田路明,曹玉芬,刘凤之TP-M13-SSR技术及其在苹果种质资源遗传多样性研究中的应用.植物遗传资源学报,2011,12(2):228-233.
    10.甘四明,李发根,翁启杰.高分辨率熔解及其在植物DNA变异检测中的应用.基因组学与应用生物学(网络版),2010,29:1-6.
    11.郭艳.陕油10号种子纯度鉴定的研究.西北农林科技大学硕士学位论文,2007.
    12.关荣霞,刘燕,刘章雄,刘章雄,常汝镇,邱丽娟.利用SSR方法鉴定大豆品种纯度.分子植物育种,2003,3(1):357-360.
    13.关强,张月学,徐香玲,孙德全,李绥艳,林红,潘丽艳,马延华.DNA分子标记的研究进展及几种新型分子标记技术.黑龙江农业科学,2008,(1):102-104.
    14.关亚静.烟草种子防伪研究.浙江大学博士学位论文,2011.
    15.郝晨阳,王兰芬,贾继增,等.SSR荧光标记和银染技术的比较分析.作物学报,2005,131(12):144-149.
    16.何新华,李杨瑞,郭永泽,欧世金,李荣柏.ISSR鉴定亲缘关系非常近的芒果栽培品种.广西植物,2007,27(1):44-47.
    17.侯振春.杂交玉米种子纯度室内简易鉴定方法试验.种子世界,2010,(6):27-28.
    18.黄歆贤ISSR和SSR标记在大豆、油菜、西瓜种子真实性和纯度鉴定中的比较.浙江大学硕士学位论文,2011.
    19.黄艳艳,朱丽伟,马晗煦,李军会,孙宝启,孙群.应用近红外光谱技术定量分析杂交玉米纯度的研究.光谱学与光谱分析,2011,31(10):2706-2710.
    20.焦仁海,孙发明,刘兴二,徐艳荣.玉米DNA分子标记及其研究进展.中国农学通报,2006,22(4):48-51.
    21.梁亮,刘志霄,杨敏华,张佑祥,汪承华.基于可见/近红外反射光谱的程米品种与真伪鉴别.红外与毫米波学报,2009,28(5):353-391.
    22.李菊芬,许玲,马国斌.利用分子标记技术鉴定西瓜杂交种纯度.上海农业学报,2009,25(1):72-75.
    23.李蓉,烟彬,邢惠梅,茹鲜.品种纯度鉴定技术及其发展.新疆农业科技,2007,20(6):20-20.
    24.李淑娟.种子纯度鉴定方法概述.青海大学学报(自然科学版),2003,21(1):16-19.
    25.李潇,卢瑶.高分辨率熔解曲线分析技术及其应用进展.中国医学装备,2010,7(8):57-60.
    26.李晓丽,唐月明,何勇,应霞芳.基于可见/近红外光谱的水稻品种快速鉴别研究. 光谱学与光谱分析,2008,28(3):578-581.
    27.李智军,李春艳,周伟松,骆焕彬,卢文佳,龙卫平.辣椒一代杂种广椒6号种子纯度的RAPD鉴定.安徽农业科学,2008,36(15):6216-6219.
    28.黎茵,黄上志,傅家瑞.不同品种花生种子蛋白质的电泳分析.植物学报,1998,40(6):534-541.
    29.梁勇,李焕秀,何艳.几种DNA分子标记在种子纯度鉴定上的应用进展.广西农业科学,2008,39(1):17-20
    30.刘杰,刘公社,李殿荣RAPD方法鉴定油菜“杂油59"种子纯度的研究.应用与环境生物学报,2000,6(6):526-529.
    31.刘敏轩,王簧文,韩建国.种子真实性及品种纯度蛋白质电泳鉴定技术研究进展.种子,2006,2(7):54-57.
    32.柳李旺,龚义勤,黄浩,朱献文.新型分子标记SRAP与TRAP及其应用.遗传,2004,26(5):777-781.
    33.逯美红,沈京玲,郭景伦,张存林.太赫兹成像技术对玉米种子的鉴定和识别.光学技术,2006,32(3):361-366.
    34.马晓峰.贵州省部分主要甘蓝型油菜杂交种及其亲本指纹图谱构建与纯度鉴定.贵州大学硕士学位论文,2006.
    35.梅眉,陆璐.DNA分子标记技术在农作物种子质量检验中的应用.分子植物育种,2005,3(1):129-134.
    36.沈晓贤.曹栋栋,胡晋,宋文坚,胡伟民.应用A-PAGE电泳方法鉴定豇豆品种.种子,2006,25(3):19-21.
    37.盛新颖,詹少华,樊洪泓,蔡永萍,林毅.利用SSR分子标记鉴定“梅桥”大豆种质纯度.大豆科学,2010,29(2):210-214.
    38.孙义伟.氯甲酸反应法在籼粳杂种种子真实性检验中的应用.种子,1991.(3): 56-57
    39.谭昌渊,罗九甫,任兆瑞.高分辨率熔解曲线分析-分子诊断的新技术.生命科学研究,2009,13(3):268-271.
    40.唐容,吴有祥,田筑萍,张敏,王通强.利用SSR标记对甘蓝型黄籽油菜贵油519杂种纯度鉴定.贵州农业科学,2007,35(3):10-11.
    41.唐立群,肖层林,王伟平.SNP分子标记的研究及其应用进展.中国农学通报,2012,28(12):154-158.
    42.汤天泽、肖小余,税红霞.SSR标记与形态学方法鉴定杂交油菜纯度的比较研究.分子植物育种,2008,6(2):377-380
    43.杨秀英.利用幼苗芽鞘颜色鉴定玉米杂交种种子纯度.杂粮作物,2001,21(1):51-52.
    44.姚艳梅,徐亮,胡琼,杜德志.青海省几个主要春性甘蓝型油菜杂交种的SSR分析.中国油料作物学报,2008,30(4):406-410.
    45.王从彦,李晓慧,胡小丽,胡颖,郭二辉,田朝阳.SRAP技术在西瓜种子纯度鉴定中的应用.河南农业大学学报,2008,42(5):491-495.
    46.三沛政,朱文彬,李冰,赵军,俞中平,邹斌,武贵生,赵宝光.RAPD方法在向日葵品种鉴定及杂交种纯度鉴定上的应用.新疆农业大学学报,2003,26(3):40-42.
    47.王晓峰,黄惠玲.超薄等电聚焦电泳技术在水稻品种鉴定上的应用.种子,2000,110(4):6-8.
    48.三印肖,徐秀琴,韩宏伟.分子标记在品种鉴定中的应用及前景.河北林业科技,2006(21):46-56.
    49.王州飞,胡晋.毛细管电泳及其在种子科学领域的应用.种子,2005,24(1):36-38.
    50.文方德,李卓杰,傅家瑞.用ACP及ADH同工酶等电聚焦快速鉴定番茄杂种纯度.园艺学报,1996,23(2):202-204.
    51.吴大鹏,房嫌嫌,崔润根,陈进红,祝水金.国内外陆地棉品种资源的亲缘关系和遗传多样性研究.棉花学报,2011,23(4):291-299.
    52.谢甫绨.利用ISSR分子标记进行不同来源大豆品种的分类.大豆科学,2005,24(3):161-165.
    53.谢小玉,王鸣.蔬菜种子纯度鉴定方法及其应用.陕西农业科学,1999,(6):38-40.
    54.谢宗铭,陈福隆,孙宝启.向日葵品种纯度检验的方法和技术.种子,1999,2:38-44.
    55.辛景树,郭景伦,张软斌.几种常用分子标记技术在种子纯度和品种真实性鉴定方面的比较与分析.种子,2005,24(1):58-10.
    56.颜启传.种子学.北京:中国农学出版社,2001.
    57.颜启传,黄亚军.农作物品种鉴定手册.北京:中国农业出版社,1996.
    58.杨占烈,黄宗洪.葛必庆,向关伦,甘雨,潘建慧.两优363海南田间纯度鉴定方法探讨.贵州农业科学,2004,32(2):8-9.
    59.易成新,张元真.分子标记用于棉花杂交种种子纯度检测的初步研究.棉花学报,1999,11(6):318-320.
    60.易红梅,王凤格,赵久然,王璐,郭景伦,原亚萍.玉米品种SSR标记毛细管电泳荧光检测法与变性PAGE银染检测法的比较研究.华北农学报,2006,21(5):64-67.
    61.俞蔚,雍克岚.辣椒的三维荧光光谱指纹特征研究.食品研究与开发,2003,24(6):143-145.
    62.宇文强,叶雨盛,戴保威,彭义,曾桂萍.DNA分子标记与玉米种子纯度检验.种子,2005,24(126):38-42.
    63.赵洪锟,李启云,王玉民RAPD标记在大豆品种鉴定中的应用初探.吉林农业学1998,4:6-8.
    64.张春庆,尹燕枰,高荣岐,贾继增.棉花种子蛋白多态性与品种鉴定方法的研究.中国农业科学,1998,31(4):16-19.
    65.张颖.应用DNA分子标记鉴定几种蔬菜作物种子纯度和真实性的研究.浙江大学硕士学位论文,2008a.
    66.张颖,曹栋栋,黄欲贤,屈长荣,关亚静,胡晋.应用分子标记进行蔬菜品种和种子纯度鉴定的研究进展.种子,2008b,27(5):51-55.
    67.张守润.利用幼苗及籽粒形态鉴定玉米品种真实性和纯度研究.甘肃农业科技,2010,4:11-14.
    68.钟光跃,于小军.同工酶电泳法在籼型杂交水稻种子纯度测定中的应用研究.试验研究,2009,5:35-36.
    69.张曼,胡建斌,孙守如,李永鑫.DNA分子标记及其在作物品种鉴定上的应用.河南科学,2()11,29(11):1335-1338.
    70.张谊寒.杂种小麦种子纯度鉴定技术的研究.西北农林科技大学硕士学位论文.2005.
    71.朱岩芳,祝水金,三洋,李永平,马文广,胡晋.均匀设计优化棉花ISSR-PCR反应体系.棉花学报.2010,(3):202-208.
    72.朱岩芳,祝水金,李永平,马文广,郑昀哗,胡晋ISSR分子标记技术在植物种质资源研究中的应用.种子,2010,29(2):55-59.
    73.邹伟,方慧,刘飞,周康韵,鲍一丹,何勇.基于高光谱成像的油菜品种鉴别方法研究.浙江大学学报(农业与生命科学版),2011,37(2):175-180.
    74. Archak S. Gaikwad AB. Gautam D, Rat EVVB, Swamy KRM, Karihaloo JL. Comparative assessment of DNA fingerprintingtechniques (RAPD, ISSR and AFLP) for genetic analysis of cashew (Anacardium occidentale L.) accessions of India. Genome, 2003,46(3):362-369.
    75. Ashwani K, Lalit A. Vipin K. Shailendra S. Inter-simple sequence repeat (ISSR) analysis of cytoplasmic male sterile, male fertile lines and hybrids of pearlmillet [Pennisetum glaucum (L.) R.Br.]. Indian Journal of Crop Science,2006,1(1/2):117-119.
    76. Anisimova IN. Gavrilyuck IP. Konarev CG. Identification of sunflower lines and varieties by helianthinin electrophoresis. Plant Varieties and Seeds,1991,4(3):133-141.
    77. Bao J, Corke H, Sun M. Analysis of genetic diversity and relationships in waxy rice (Oryza sativa L.) using AFLP and ISSR markers. Genet. Resour. Crop Evolution,2006. 53:323-330.
    78. Bietz J A, Bumouf J, Aeobb L. Cereal Chemisyrt.1984,61(2):129-135.
    79. Biswas, MK, Xu Q, Deng X. Utility of RAPD, ISSR, IRAP and REMAP markers for the genetic analysis of Citrus spp. Scientia Horticulturae,2010,124:254-261.
    80. Castro I. Effectiveness of AFLPs and retrotransposon-based markers for the identification of Portuguese grapevine cultivars and clones. Molecular Biotechnology. 2012,52:26-39.
    81. Charters YM, Robertson A, Wilkinson MJ. PCR analysis of oilseed rape cultivars {Brassica napus) using 5'-anchored simple sequence repeatas (SSR) primers. Theoretical and Applied Geneties,1996,92(3/4):442-447.
    82. Chun H.S. Mansor CM, Chee YC, Idris S. Transferability of SSR markers from lychee (Litchi chinensis Sonn.) to pulasan (Nephelium ramboutan-ake L.). Fruits,2005,60(6): 379-385.
    83. Dje Y, Tahi G C, Zoro B I, Malice M, Baudom J P, Bertin P. Optimization of ISSR marker for African edible-seeded Cucurbitaceae species genetic diversity analysis. African Journal of Biotechnology,2006.5 (1):83-87.
    84. Diwan N. Cregan PR. Automated sizing of fluorescent-labeled simple sequence repeat (SSR) markers to assay genetic variation in soybean. Theoretical and Applied Genetics, 1997.95(5/6):723-733.
    85. Faivre-Rampant O, Bruschi G, Abbruscato P, Cavigiolo S. Picco AM. Borgo L, Lupotto E. Piffanelli P. Assessment of genetic diversity in Italian rice germplasm related to agronomic traits and blast resistance [Magnaporthe oryzae). Molecular Breeding.2011. 27(2):233-246.
    86. Fang DQ. Roose ML. Identification of closely related citrus cultivars with inter-simple sequence repeat markers. Theoretical and Applied Genetics,1997,95(3):408-417.
    87. Ferriol M. Pico B, Nuez F. Genetic diversity of a germplasm collection of Cucurbita pepo using SRAP and AFLP markers. Theoretical and Applied Geneties,2003,107(2): 271-282.
    88. Ferriol M, Pico B, Nuez F. Molecular Diversity of a Germplasm Collection of Squash (Cucurbita moschata) Determined by SRAP and AFLP Markers. Crop Science,2004. 44(2):653-664.
    89. Fujita Y, Fukuoka H. Yano H. Identification of wheat cultivars using EST-SSR markers. Breeding Science.2009,59:159-167.
    90. Ganopoulos I. Argiriou A, Tsaftaris A. Microsatellite high resolution melting (SSR-HRM) analysis for authenticity testing of protected designation of origin (PDO) sweet cherry products. Food Control,2011.22(3-4):532-541.
    91. Ganopoulos 1, Bosmali 1, Madesis P. Tsaftaris A. Microsatellite genotyping with HRM (High Resolution Melting) analysis for identification of the PGI common bean variety Plake Megalosperma Prespon. European Food Research and Technology,2012,234: 501-508.
    92. Gebhardt C. Ritter E, Debener T, Schachtschabel U, Walkemeier B, Uhrig H, Salamini F. RFLP analysis and linkage mapping in Solanumtuber osum. Theoretical and Applied Geneties.1989,78(1):65-75.
    93. Gilbert JE. Lewis RV, Wilkinson MJ. Caligari PDS. Developing an appropriate strategy to assess genetic variability in plant germplasm collections. Theoretical and Applied Genetics.1999.98(6/7):1125-1131.
    94. Gorji AM, Poczai P. Polgar Z, Taller J. Efficiency of arbitrarily amplified dominant markers (SCOT, ISSR and RAPD) for diagnostic fingerprinting in tetraploid potato. American Journal of Potato Research,2011.88:226-237.
    95. Guo DL, Luo ZR. Genetic relationships of some PCNA persimmons(Diospyros kaki Thunb.) from China and Japan revealed by SRAP analysis. Genetic Resources and Crop Evolution,2006,53:1597-1603.
    96. Herrmann MG, Durtschi JD, Bromley K, Wittwer CT. Voelkerding KV. Amplicon DNA melting analysis for mutation scanning and genotyping:Cross-platform comparison of instruments and dyes. Clinical Chemistry,2006.52(3):494-503.
    97. Hofinger BJ, Jing HC, Harnmond-Kosack KE, Kanyuka K. High-resolution melting analysis of cDNA-derived PCR amplicons for rapid and cost-effective identification of novel alleles in barley. Theoretical and Applied Genetics.2009.119(5):851-869.
    98. Hongtrakul V, Huestis GM, Knapp SJ. AFLP as a tool for DNAfingerprinting sunflower gemrplasm:genetic diversity among oil seed inbred lines. Theoretical and Applied Geneties,1997,95(3):400-407.
    99. Huang XX, Hu J, Wang Y, Song SD, Zhu YF, Zhu SJ. Optimization of ISSR-PCR system for cultivar identification in watermelon (Citrullus lanatus var. lanatus). Seed Science and Technology,2011,39(2):293-302
    100.Hu J, Vick B A. Target region amplification polymorphism:a novel marker technique for plant genotyping. Plant Molecular Biology Reporter,2003a.21(3):289-294.
    101.Hu J, Seiler GJ, Jan CC, Vick BA. Assessing genetic variability among sixteen perennial Helianthus species using PCR-based TRAP markers. Procedings 25th Sunflower Research Workshop, Fargo, ND,2003b,16-17.
    102.Hu J, Ochoa O E, Truco MJ. Vick BA. Application of the TRAP technique to lettuce (Lactuca sativa L.) genotyping. Euphytica.2005,144(3):225-235.
    103.Hulya L. RAPD markers assisted varietal identification and genetic purity test in pepper. Capsicum annuum. Scientia Horticulturae.2003,97(3):211-218.
    104.Hussain A. Diserimination of cultivars of lentil by elecrtophoresis of seed Portein Cnadaina. Junral of Palnt Science,1989,69(1):243-246.
    ]05.Hussain M. Park HW, Farooq M. Jabran K, Lee DJ. Morphological and physiological basis of salt resistance in different rice genotypes. International Journal of Agricultrue and Biology.2013,15:113-118.
    106.Kuleung C, Baenziger P S, Dweikat I. Transferability of SSR markers among wheat, rye, and triticale. Theoretical and Applied Genetics,2004,108(6):1147-1150.
    107.Kumar A, Bimolata W, Laha GS. Ghazi A. Comparative analysis of the genomic regions flanking Xa21 locus in indica and japonica ssp. of rice (Oryza sativa L.). Plant Omics, 2011.4(5):239-249.
    108.Levi A. Claude ET, Joobeur T, Zhang X, Davis A. A genetic linkage map for watermelon derived from a testcross population:(Citrullus lanatus var. citroides x C. lanatus var. lanatus)×Citrullus colocynihis Theoretical and Applied. Genetics.2002.105(4): 555-563.
    109.Livneh O, Nagle Y, Tal V, Harush S, Garni Y, Beckmann J, Sela I. RFLP analysis of a hybrid cultivar of pepper (Capsicum annuum) and its use in distinguishing between parental lines and in hybrid identification. Seed Science and Technology.1990.18(2): 209-214.
    110.Liu LW, Wang Y, Gong YQ, Zhao TM. Liu G. Li XY, Yu FM. Assessment of genetic purity of tomato (Lycopersicon esculentum L.) hybrid using molecular markers. Scientia Horticulturae,2007,115(1):7-12.
    111.Lu JY. Zhang WL. Xue H, Pan Y, Zhang CH, He XH. Liu M. Changes in AFLP and SSR DNA polymorphisms induced by short-term space flight of rice seeds. Biologia Plantarum,2010,54(1):112-116.
    112.Mackay JF, Wright CD, Bonfiglioli RG. A new approach to varietal identification in plants by microsatellite high resolution melting analysis:application to the verification of grapevine and olive cultivars. Plant Methods,2008,4(1):8.
    113.MacRitchie D, Sun GL. Evaluating the potential of barley and wheat microsatellite markers or genetic analysis of Elymus trachycaulus complex species. Theoretical and Applied Genetics,2004,108:720-724.
    114.Martin JP, Sanchez-Yelamo MD. Genentic relationships among species of the genus Diplotaxis (Brassiceae) using inter-simple sequences repeat markers. Theoretical and Applied Genetics,2000,101:1234-1241.
    115.Mcdonald MB. Elliot LJ. Sweeney PM. DNA extraction from dry seeds for RAPD analyses in varietal identification studies. Seed Science and Technology,1994,22(1): 171-176.
    116.Matsuura S. Saito A. Fujita Y. An approach for rapid checking of seed purity by RFLP analysis of nuclear DMA in F1 bybird of cucumber. Journal of the Japanese Society for Horticural Science,1994,63(2):379-383.
    117.Moore SS, Sergeant LL, King TJ, Mattick JS, Georges M, Hetzel JS. The conservation of dinucleotide microsatellites among mammalian genomes allows the use of heterologous PCR primer pairs in closely related species. Genomics.1991,3(10):654-660.
    118.Moreno S, Martin JP, Ortiz JM. Inter-simple sequence repeats PCR for characterization of closely related grape vine germplasm. Euphytiea,1998,101(1):117-125.
    119.Nagaoka T, Ogihara Y. Applicability of inter-simple sequence repeat polymorphisms in wheat for use as DNA markers in comprison to RFLP and RAPD markers. Theoretical and Applied Geneties,1997,94(5):597-602.
    120.Nybom H, Ramser J, Kaemmer D, Kahl G, Weising K. Oligonucleotide DNA fingerprinting detects a multiallelic locus in box elder (Acer negundo). Molecular Ecology.1992,1(1):65-67.
    121.Ohtsubo K, Nakamura S. Cultivar identification of rice (Oryza sativa L.) by polymerase chain reaction method and its application to processed rice products. Journal of Agriculture and Food Chemistry,2007,55:1501-1509.
    122.Pasqualone A. Montemurro C, CaponioF, Blanco A. Identification of virgin olive oil from different cultivars by analysis of DNA microsatellites. Journal of Agricultural and Food Chemistry,2004,52(5):1068-1071.
    123.Paran I. Michelmore RW. Development of reliable PCR based markers linked to downy mildew resistance genes in lettuce. Theoretical and Applied Geneties,1993, 85(8):985-993.
    124.Paterson AH-Brubaker CL, Wendel JF. A rapid method for extraction of cotton (Gossypium spp.) genomic DNA suitable for RFLP or PCR analysis. Plant Molecular Biology Reporter.1993.11(2):122-127.
    125.Perovic J. Silvar C. Koenig J, Peng Y. Jin J. Wu C. Yang J. Li X. Orthogonal array design in optimizing ER1C-PCR system for fingerprinting rat's intestinal microflora. Journal of Applied Microbiology,2007,103(6):2095-2101.
    126.Powell W, Morgante M. Andre C, Hanafey M. Vogel J. Tingey S, Rafalski A. The comparison of RFLP, RAPD, AFLP and SSR (microsatellite) markers for gerrnplasm analysis. Moleculur Breeding.1996,2(3):225-238.
    127.Powell W, Machamy G C, Provan J. Polymorphism revealed by simple sequence repeats. Trends in Plant Science.1996.1(7):215-222.
    128.Prevost A, Wilkinson MJ. A new system of comparing PCR primers applied to ISSR fingerprinting of potato cultivars. Theoretical and Applied Genetics,1999.98:107-112.
    129.Purchase L V. RAPD indentification of barley varieties by machine vision examination of seed. HGCA Project Report.1991,33:65.
    130.Quillet MC, Vear F, Branrard G. The use of isozyme polymorphism for identification sunflower inbred lines. Journal of Genetics and Breeding,1992.46(4):295-304.
    131.Rahman MS, Molla MR, Alam MS, Rahman L. DNA fingerprinting of rice(Oryza sativa L.) cultivars using microsatellite markers. Australian Journal of Crop Science,2009,3(3): 122-128.
    132.Rampant OF, Bruschi G, Abbruscato P, Cavigiolo S, Picco AM, Borgo L, Lupotto E, Piffanelli P. Assessment of genetic diversity in Italian rice germplasm related to agronomic traits and blast resistance(Magnaporthe oryzae). Molecular Breeding,2011, 27:233-246.
    133.Reddy MP, Sarla N, Siddiq EA. Inter-simple sequence repeat (ISSR) polymorphism and its application in plant breeding. Euphytica,2002,128(1):9-17.
    134.Reddy CS. Babu AP, Swamy MBP. Kaladhar K, Sarla N. ISSR markers based on GA and AG repeats reveal genetic relationship among rice varieties tolerant to drought, flood, or salinity. Journal of Zhejiang University-Science B,2009,10(2):133-141.
    135.Sarwat M, Das S, Srivastava PS. Analysis of genetic diversity through AFLP, SAMPL, ISSR and RAPD markers in Tribulus terrestris, a medicinal herb. Plant Cell Reports. 2008.27:519-528.
    136.Stein N, Perovic D. Ordon F. Stein N. Perovic D, Ordon F. A versatile fluorescence-based multiplexing assay for CAPS genotyping on capillary electrophoresis systems. Molecular breeding,2013, DOI 10.1007/s11032-013-9852-x
    137.Sato H, Endol T. Shiokai S, Nishioand T, Yamaguchi. M. Identification of 205 current rice cultivars in Japan by dot-blot-SNP analysis. Breeding Science,2010.60:447-453.
    138.Sundaram RM. Naveenkumar B, Biradar SK, Balachandran SM, Mishra B. IlyasAhmed M, Viraktamath BC, Ramesha MS, Sarma NP. Identification of informative SSR markers capable of distinguishing hybrid rice parental lines and their utilization in seed purity assessment. Euphytica.2008.163:215-224.
    139.Scarano M T, Abbate L. Ferrante S. Lucretti S. Tusa N. ISSR-PCR technique:a useful method for characterizing new allotetraploid somatic hybrids of mandarin. Plant Cell Report,2002,20(12):1162-1166.
    140.Schuelke M. An economic method for the fluorescent labeling of PCR fragments. Nature Biotechnology.2000.18:233-234
    141.Sasaki T. Abstract of plant Genome Ⅲ. San Diego USA.1995.
    142.Song YC.The physical location of 14 RFLP markers in rice. Theoretical and Applied Geneties.1995.90(1):113-119.
    143.Shewry PR. Ellis JRS. Pratt HM. Miflin BJ. A comparison of methods for the extraction and separation of hordein fractions from 29 barley varieties. Journal of the Science of Food and Agriculture,1978,29(5):433-441.
    144.Tanksley SD, Jones RA. Application of Alcohol Dehydrogenase Allozymes in testing the genetic purity of Fi hybrids of tomato. HortScience.1981.16(2):179-181.
    145.Tessier C, David J. This P. Boursiquot JM, Charrier A. Optimization of the choice of molecular markers for varietal identification in Vitis vinifera L. Theoretical and Applied Genetics,1999.98:171-177.
    146.Thomsen N, Ali RG, Ahmed JN, Arkell RM. High resolution melt analysis (HRMA):a viable alternative to agarose gel electrophoresis for mouse genotyping. PLoS ONE,2012, 7(9):e45252.
    147.Thomson MJ. Septiningsh EM. Suwardjo F. Santoso TJ. Silitonga TS. McCouch SR. Genetic diversity analysis of traditional and improved Indonesian rice (Oiyza sativa L.) germplasm using microsatellite markers. Theoretical and Applied Genetics,2007.114: 559-568.
    148.Tonk FA, Giachino RRA, Sonmez C, Yiice S. Bayram E, Telci I, Furan MA. Characterization of various Hypericum perforatum clones by hypericin and RAPD analyses. International Journal of Agriculture and Biology,2011.13:31-37
    149.Ulvin O. Handbook of seed Testing-Testing for Gennineness of Cultivar. ISTA Secretary. 1973.
    150.Upadhya PC, Shen YC, Davies AG, Linfield EH. Terahertz time-domain spectroscopy of glucose and uric acid. Journal of Biological Physics,2003,29(23):117-121.
    151.Vos P R, Hogers M, Zabeau. AFLP:a new technique for DNA fingerprinting. Nucleic Acids Research,1995,23(21):4407-4414.
    152.Walker CA, Werner DJ. Isozyme and randomly amplified polymorphic DNA (RAPD) analyses of Cherokee rose and its putative hybrids'Silver Moon and 'Anemone'. American Society for Horticultural Science,1997,112(5):659-664.
    153.Welsh J, Clelland M. Fingerprinting genomes using PCR with arbitrary primers. Nucleic Acids Research.1990.18(24):7213-7218.
    154.Williams JG, Kubelik AR, Livak JL, Rafalski JA, Tingey SV. DNA polymorphisms amplified by arbitrary primers are useful as genetic markers. Nucleic Acids Research. 1990,18(22):6531-6535.
    155.Wittwer CT, Reed GH, Gundry CN, Vandersteen JG. Pryor RJ. High-Resolution Genotyping by Amplicon Melting Analysis Using LC Green. Clinical Chemistry,2003, 49(6):853-860.
    156.Wu SB, Wirthensohn M, Hunt P, Gibson JP. Sedgley M. High resolution melting analysis of almond SNPs derived from ESTs. Theoretical and Applied Genetics,2008.118(1): 1-14.
    157.Xie RJ, Zhou J, Wang GY, Zhang SM. Chen L. Gao ZS. Cultivar identification and genetic diversity of chinese bayberry(Myrica rubra) accessions based on fluorescent SSR markers. Plant Molecular Biology Reporter,2011,29(3):554-562.
    158.Zhang XC. Terahertz wave imaging:Horizons and hurdles. Physics in Medicine and Biology,2002,47(21):3667-3677.
    159.Zhu YF, Hu J, Han R, Wang Y, Zhu SJ. Fingerprinting and identification of closely related wheat(Triticum aestivum L.) cultivars using ISSR and fluorescence-labeled TP-M13-SSR markers. Australian Journal of Crop Science,2011,5(7):846-850.
    160.Zhu YF, Hu J, Zhang Y, Guan YJ, Huang XX, Zhu SJ. Transferability of SSR markers derived from cowpea (Vigna unguiculata L. Walp.) in variety identification. Seed Science and Technology,2010,38(3):730-740.
    161.Zhu YF, Qin GC. Hu J. Wang Y, Wang JC, Zhu SJ. Fingerprinting and variety identification of rice(Oryza sativa L.) based on simple sequence repeat markers. Plant Omics,2012.5(4):421-426.
    162.Zietldewicz E, Rafalski A, Labuda D. Genome fingerprinting by simple sequence repeat (SSR)-anchored polymerase chain reaction amplification. Genomies,1994,20(2): 176-183.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700