用户名: 密码: 验证码:
不同类型作物种子对系统性荧光化合物吸收的特性及防伪研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
种子质量对农业生产起着至关重要的作用,但市场上假冒种子不断出现,给农业生产的优质高产带来了严重的危害,同时也损害了种子产业和农民的利益。目前,种子防伪技术多集中在外包装防伪等易被复制和淘汰的技术上,单纯针对种子本身且比较稳定的防伪手段目前国内外鲜有报道。采用荧光化合物种子标记防伪至今国内外研究甚少。因此,本文利用种子常用处理方法,对不同类型种子进行荧光化合物标记,通过幼苗生理变化和荧光表现,筛选出适宜的荧光标记化合物;针对生产上种子普遍进行包衣的特点,探讨了荧光防伪在种子包衣技术上的应用生理效应和动力学特性,并对标记后包衣种子进行贮藏,探讨贮藏时间与荧光标记物有效性之间的关系;同时研究了荧光物质在土壤中的吸附和降解行为,为种子荧光防伪的田间实际应用提供理论依据。本研究对不同类型作物种子提出了有效的防伪理论和技术体系,研究结果填补了国内外主要农作物种子荧光防伪研究的空白。也为其他林木、牧草种子的防伪提供理论借鉴。得到的主要结果如下:
     1、筛选了荧光标记方法和适用的荧光标记物。选取不同种类的荧光化合物采用浸种、引发方法对不同类型作物种子进行荧光标记,结果表明,荧光化合物浸种处理后的荧光表现显著高于引发处理后的效果,且筛选出的荧光化合物在0.1mg/ml浓度浸种处理时对种子活力和幼苗生长均无不良影响,荧光表现明显。不同类型作物种子适宜采用的荧光化合物分别为:油菜为罗丹明B(RB)、丽丝胺罗丹明B(LRB)臧红T(ST);花椰菜为罗丹明B(RB)、丽丝胺罗丹明B (LRB)葱为罗丹明B(RB)、丽丝胺罗丹明B (LRB)臧红T(ST);洋葱为罗丹明B(RB)、丽丝胺罗丹明B (LRB)臧红T(ST):水稻为罗丹明B(RB)、硫酸二氨基吖啶黄(DH)、臧红T(ST);玉米为罗丹明B(RB)、硫酸二氨基吖啶黄(DH)、臧红T(ST);豌豆为罗丹明B(RB)、丽丝胺罗丹明B(LRB)臧红T(ST);蚕豆为罗丹明B(RB)、丽丝胺罗丹明B(LRB)臧红T(ST)。
     2、确定了荧光标记物进入种子的途径。荧光标记物进入种子的途径因种子类型的不同而存在差异,其中受种子结构的影响较大。荧光标记物主要通过发芽口进入油菜和花椰菜种子,豌豆和玉米主要是通过种皮渗透的方式进入,蚕豆种子主要是通过种脐和发芽口进入,水稻种子可通过稃壳、稃尖和护颖渗透进入。洋葱和葱种子呈棱形,种皮坚硬,荧光标记物难以进入种子内部:荧光标记物在种子及幼苗中的荧光表现因种皮颜色和种子类型不同而存在差异。豌豆、蚕豆、玉米、水稻果种皮颜色较浅,荧光表现显著。油菜、花椰菜、葱和洋葱种皮颜色较深,荧光表现相对较弱;一些双子叶作物种子如油菜、花椰菜、豌豆和蚕豆幼苗的根、茎、叶均可观察到明显的荧光,一些单子叶百合科植物如葱和洋葱在幼苗根,茎可观察到荧光,某些单子叶禾本科植物如水稻、玉米等不易在茎和叶片观察到荧光。
     3、研究了荧光标记防伪在包衣种子上的可行性。采用种子包膜技术,将RB分别标记在不同类型作物种子上,通过种子萌发和幼苗生长期间的生理变化及荧光表现,筛选与不同类型作物种子包膜处理相适宜的荧光标记剂量。结果表明,水稻、玉米、葱,洋葱种子经RB药种比1:10包膜处理后,幼苗干重和苗高均受到一定程度的伤害,药种比1:20和1:30包膜处理后,种子萌发和幼苗生长均未受到不良影响。油菜、花椰菜、蚕豆种子经RB药种比1:10、1:20和1:30药种比包膜处理后,种子萌发和幼苗生长均未受到伤害。豌豆种子经RB药种比1:10和1:20包膜处理后,幼苗干重、苗高、POD、SOD活性显著降低,1:30药种比包膜处理对种子萌发和幼苗生长等均无不良影响;RB标记后的包衣种子及幼苗的荧光表现与浸种处理结果相一致,表明RB荧光表现未受包衣材料显著影响,为包衣种子荧光标记防伪提供了理论依据。
     4、探讨了不同贮藏时间与荧光效果的关系。每隔一个月对不同条件下贮藏的荧光标记包衣种子进行RB含量测定和荧光观察,结果表明:1:10和1:20药种比处理后的玉米和豌豆种子,贮藏5个月后的RB含量显著低于贮藏1个月的RB含量,1:30药种比处理后种子上的RB含量在贮藏期间无显著差异。水稻和葱种子在1:10、1:20、1:30药种比处理后的RB含量在贮藏期内均无显著差异。蚕豆种子1:10包膜贮藏6个月后,与贮藏1个月种子RB含量存在显著差异,1:20和1:30包膜处理的种子RB含量在贮藏期间无显著差异。花椰菜种子1:30包膜贮藏6个月后,与贮藏1个月种子RB含量存在显著差异,1:10和1:20包膜处理的种子RB含量在贮藏期间无显著差异。洋葱和油菜种子在1:10、1:20、1:30药种比处理后贮藏6个月后的RB含量均与其贮藏1个月含量存在显著差异;相同种子同等药种比处理时,每个月在常温和15℃条件下贮藏后的荧光量均无显著差异,说明经荧光标记物包膜处理的种子未受温度显著影响,为荧光标记物种子防伪研究的实际应用提供了理论指导;贮藏期间,不同药种比处理的种子荧光表现均比对照明显,相同药种比处理的种子荧光表现随着贮藏时间的延长,并没有显著的区别。豌豆、玉米、水稻、蚕豆等种皮颜色较浅的种子荧光表现最为明显;油菜和花椰菜种皮颜色呈深褐色,荧光表现也较为明显;葱和洋葱种子为棱形,种皮呈黑色,坚硬,荧光表现最弱。
     5、研究了荧光标记包衣种子贮藏后在田间土壤中的生理特性和荧光表现。经荧光标记物包膜处理后的不同类型作物种子在土壤中种植时,不同药种比处理条件下,种子萌发和幼苗生长情况有所不同。结果表明,油菜种子在1:20和1:30药种比处理后,幼苗根长和苗高显著增加,花椰菜种子在1:20药种比处理后幼苗根长、苗高和叶绿素含量显著提高,蚕豆种子在1:30药种比处理后,幼苗干重、根长和苗高均显著高于裸种。豌豆种子在1:30处理后种子发芽率和发芽势显著高于裸种。葱和洋葱种子经荧光标记物1:10药种比处理后,幼苗苗高显著低于裸种。水稻种子在荧光标记物1:10药种比处理后,幼苗根长和苗高显著低于裸种,1:20药种比处理后,幼苗苗高显著提高。玉米种子经荧光标记物1:10药种比处理后,叶绿素含量和POD活性显著低于裸种,1:30药种比处理后,幼苗苗高显著提高。油菜种子萌发第7天可在幼苗根部、叶片、茎部纵切面维管束组织观察到明显的荧光。花椰菜种子萌发第10天在根部、叶片、叶脉、茎部纵切面维管束组织可观察到明亮的荧光。葱和洋葱分别从荧光标记至种子萌发第8天和第10天时根部和茎部维管束组织均可观察到明显荧光。水稻仅在种子上荧光表现强烈,茎部和叶片均无荧光表现,种子上的荧光表现持续到第16天时与对照无差异。玉米仅在种子和根部荧光表现强烈,持续到第14天时,荧光表现减弱至对照水平,且叶片和茎部均无荧光表现。蚕豆和豌豆种子、茎部维管束组织、根部、叶片、叶脉处均可观察到明显的荧光,但幼苗分别发育至第16天和15天时,各部位荧光表现与对照相比无明显差异。
     6、探讨了罗丹明B在田间土壤中的吸附和降解。田间土壤能有效的吸附荧光化合物RB,吸附遵循Langmuir等温吸附方程,饱和吸附量是1.716mg/g,吸附平衡常数为0.042L/mg。吸附的罗丹明B可有效的进行光-Fenton降解反应(通过光氧化与催化技术)。土壤中存在与光-Fenton降解反应类似的条件,因此,吸附在土壤中的的罗丹明B能够通过光氧化与催化技术进行有效降解。同时,种子包衣上使用的罗丹明B量极少,所以罗丹明B的使用不会对土壤带来污染。可作为各种种子的防伪标记使用。
Seed quality plays a crucial role in seed production. Fake and shoddy seeds in market were often found, which brought great harm for high quality and high yield of agricultural production, and damage the benefits of farmers and seed enterprises. Nowadays, the anti-counterfeiting technologies of seed are mainly focus on seed packaging, which are easy to be reproducibility and immitigability. A new seed anti-counterfeiting technology, aiming at seed itself rather than the packing are barely reported at home and broad. Meanwhile, there were few studies on seed anti-counterfeiting by using fluorescent compounds. Therefore, fundamental research on fluorescence anti-counterfeiting methods was carried out in present study. Different types of crop seeds were marked by fluorescent compounds with seed treatment methods, and the suitable fluorescent dyes and methods were selected according the physiological changes and fluorescence of seedling. Film coating seeds with fluorescent compounds were stored for various time, their physiological effects of application and dynamics feature of fluorescence anti-counterfeiting were studied aiming at relationship of storage time and fluorescence effects. Moreover, the absorption and degradation of fluorescent compound in soil were also studied in order to provide theoretical basis for field reality. Thus, this study provides an effective anti-counterfeiting theory and a integrate technical system for different types of crop seeds, and the results fill up the vacant of fluorescent anti-counterfeiting for field crop seeds at home and abroad. Meanwhile, the results also supplied theoretical references for anti-counterfeiting of forest and forage seeds. Achieved main results were as follows:
     1. Suitable fluorescent compounds and their labling methods were selected. After treated with soaking and priming methods, the suitable soaking concentration0.1mg/ml for different types crop seeds was selected out. Seed vigor and seedling performance were not affected when seeds soaking in solution of0.1mg/ml Rhodamine B (RB), and the fluorescence of seed and seedling were both stronger than that of others and controls. The optimum fluorescence dyes for different crop seeds were:rape (RB. Lissamine RB. Safranine T); cauliflower (RB. Lissamine RB); chive (RB, Lissamine RB, Safranine T); onion (RB, Lissamine RB, Safranine T); rice (RB.3,6-Diamincacridine Hulmisulfate. Safranine T):maize (RB.3,6-Diamincacridine Hulmisulfate, Safranine T):pea (RB. Lissamine RB, Safranine T); broad bean (RB. Lissamine RB, Safranine T).
     2. The paths of fluorescent compound entering seeds were determined. The path of fluorescent compound enters seeds varied in crop seed, which were mainly affected by seed coat. Fluorescent compound entered into seeds of rape and cauliflower through micropyle; fluorescent compound penetrated into pea and maize seeds through seed coat; fluorescent dye entered broad bean seed through hilum and micropyle; fluorescent compound entered rice seed through lemma, apiculus and glume. Fluorescent compound was difficult to enter chive and onion seeds as their seed coats were really hard. In addition, fluorescence was observed obviously in root, stem, leaf and vain in some dicotyledonous such as rape, cauliflower, pea and broad bean.'Fluorescence was also observed obviously in root and stem of some monocotvledon such as chive and onion. Fluorescence was not observed in leaf and stem of some grass such as maize and rice.
     3. The feasibility of fluorescence anti-counterfeiting in coated seed was studied. RB was marked in different crop seeds by seed film coating, and the suitable doses of RB were selected according to the physiological changes and fluorescence during seed germination and seedling growth. The results showed that the seedling dry weight and height of rice, maize, chive, and onion seedlings were injured at the ratio of1:10(RB to seeds), and seed germination and seedling growth were not affected with the ratio of1:20and1:30. After seeds of rape, cauliflower and broad bean were treated with ratio of1:10,1:20and1:30. germination and seedling growth were not affected significantly. After treated with ratio of1:10and1:20. seedling dry weight, height. POD and SOD activity of pea decreased significantly, and1:30were no harm for seed germination and seedling growth. The fluorescence of seedling when seeds coated with RB were consistent to the result of seeds soaked with RB. indicating that the fluorescence of RB were not affected significantly by the coating materials, so,the results provide theoretical basis for fluorescence anti-counterfeiting of coated seeds.
     4. The relationship of storage time and the fluorescence of RB were researched. The content and fluorescence of RB marked on coated seeds were measured each mouth during six-month storage for studying the effect of RB fluorescence. The results showed that, for seeds of maize and pea coated with1:10and1:20. the RB content of seeds stored for5months was lower significantly than that of stored for1month, and the RB content from pea seeds coated with1:30had no differences among different storage times. The RB content of rice and chive seeds coated with1:10,1:20and1:30had no significant differences among different storage times. For broad bean seeds coated with1:10. the RB content of6month storage was lower significantly than that of stored for1month, and the RB content of seeds coated with1:20and1:30had no differences among different storage times. For cauliflower seeds coated with1:30, the RB content of seeds stored for6month was lower significantly than that of stored for1month, and the RB content of seeds coated with1:10and1:20had no differences among different storage times. The RB content of rice and chive seeds coated with1:10,1:20and1:30stored for6months were lower significantly than that of stored for1month. Meanwhile, the RB content of the same crop seeds coated with the same ratio had no signifigent difference between normal temperature and15℃, indicating that the content of RB were not affected significantly by the temperature, which supplied theoretical basis for field application of fluorescence anti-counterfeiting. Fluorescence of seeds coated with different ratio was significantly higher than that of the control seeds, and for seeds with the same ratio, the fluorescence had no obvious differences among different storage time. The seed fluorescence of pea. maize, rice and broad bean were stronger because of having light seed coat. For rape, cauliflower, chive and onion, the fluorescence was weak as the seed coat color was depth.
     5. Their physiological characteristics and the fluorescence in soil were researched after seeds coated with RB were stored for6months. The results showed that root length and seedling height of rape were higher significantly than those of the control after the seeds coated with1:20and1:30, and the root length, seedling height and chlorophyll content of cauliflower were improved significantly after seeds coated with1:20. After broad bean seeds coated with1:30, the root length, dry weight and height of seedling, germination percentage and germination energy of pea seeds were higher significantly than those of the control. The shoot length of chive and onion was significantly decreased. The root and shoot length of rice were decreased significantly after seed coated with1:10, however, the shoot length was increased significantly after seed coated with1:20. For maize seed coated with1:10. chlorophyll content and POD activity were lower significantly than those of the control, and shoot height increased significantly after seeds coated with1:30. When rape seeds coated with RB germinated for7days, the fluorescence was observed in root, leaf, vain and vascular of stern. When cauliflower seeds coated with RB germinated for10days, the fluorescence was observed in root, leaf, vain and vascular of stem. When chive and onion seeds with RB germinated for8,10days respectively, the fluorescence was observed in root and vascular of stem. When rice seeds coated with RB germinated for16days, the fluorescence was only showed in seeds and not found in stem and leaf. The fluorescence was only showed in seed and root, and not found in stem and leaf when maize seed coated with RB germinated for14days. For pea and broad bean seeds coated with RB, when germinated for16,15days respectively, the fluorescence was observed in root, leaf, vain and vascular of stem.
     6. The absorption and degradation of RB in soil were studied. The fluorescent compound of RB could be absorbed by field soil effectively and the absorption process in accordance with the Langmuir isotherm, in which the amount of saturated absorption was1.716mg/g and the adsorption equilibrium constant, was0.042L/mg. Then the adsorptive RB was degraded effectively under light-Fenton condition. There are similar conditions to light-Fenton in soil, therefore, RB absorbed by field soil can be degraded. Meanwhile, dose of RB in coated treatment was less, so the RB could not pollute soil and be used as an anti-counterfeiting marker for different crop seeds.
引文
1.常瑶,李明,姚东伟,吴凌云,朱月林.PEG引发对不结球白菜种子萌发和幼苗生长的影响.种子,2012,31(9):21-25.
    2. 陈必成,昌盛,杜敦峰,唐莉,张鑫,袁劲,周洁,陈忠华.羧基荧光素乙酰乙酸在移植免疫研究中的应用.医学研究生学报,2005,12(2):121-124.
    3. 陈华军,万琳,席晓晶.太阳光下Fenton试剂降解有机染料的研究.洛阳理工学院学报(自然科学版),2010,20(1):8-10.
    4. 陈瑶.莴苣种子PEG引发后种子活力试验.山西农业大学学报(自然科学版),2009,29(2):123-125.
    5.丁丽.沼液浸种时间及其用量对水稻秧苗的效应研究.南方农业,2012,6(3)8-10.
    6. 董昌金,赵斌.缩球囊霉孢子萌发及细胞核在孢子和芽管中分布的研究.菌物系统,2003,22(4):599-603.
    7.甘剑英,陈子元.放射性同位素示踪法研究农药代谢中的几个问题.核农学通报,1988,9((2)):251-254.
    8. 高晗,周荣.种子防伪包装发展趋势.种子世界,2005,(9):6-7.
    9. 高甲友.罗丹明6G荧光光度法测定痕量铁(Ⅲ).理化检验-化学分册,2007,43(5):405-407.
    10.高志宇,刘燕刚.生物荧光标记菁染料的研究进展.影像技术,2002,13(2):10-16.
    11.桂智彬,乔立民,杨建雄,余小平.直流电场处理对油松种子萌发的影响.陕西师范大学学报(自然科学版),1997,25(4):118-120.
    12.郭学民,徐兴友,高荣孚,左照江,韩雪峰.合欢硬实种子的萌发特性及种皮微形态特征.河北科技师范学院学报,2005,19(4):24-27.
    13.何士敏,秦家顺,吴刚.硒浸种对大豆种子萌发的生理生化效应.大豆科学,2011,30(1):158-163.
    14.胡晋.种子生物学.北京:高等教育出版社,2006.
    15.胡晋.种子贮藏加工学.北京:中国农业大学出版社,2010.
    16.黄丽华.水杨酸浸种对玉米种子萌发及其生理生化的影响.肇庆学院学报,2005, 26(2):35-37.
    17.黄应平,刘德富,张水英,张德莉,马万红,赵进才.可见光/Fenton光催化降解有机染料.高等学校化学学报,2005,26(12):2273-2278.
    18.吉玉玲.基质引发对辣椒种子发芽的影响.北方园艺,2010,12(1):33-35.
    19.姜霞.马铃薯实生种子丸化包衣技术.农技服务,2009,26(9):10-11.
    20.亢敏,别之龙,黄远.PEG引发对葫芦种子活力和抗氧化酶活性的影响.长江蔬菜,2010(8):39-41.
    21.李合生,孙群,赵世杰等.植物生理生化试验原理与技术.北京:高等教育出版社,2001.
    22.李锦江,熊远福,熊海蓉,邹应斌,文祝友,刘薇.丸化型水稻种衣剂对直播稻秧苗生长及酶活性的影响.湖南农业大学学报(自然科学版),2006,32(2):120-123.
    23.李兴美,何胜江,何勇.白刺花硬实种子不同处理方法的探讨.贵州农业科学,2010,38(5):70-72.
    24.李玉静,宋宪亮,杨兴洪,刘娟,李学刚,朱玉庆,孙学振,王振林.甜菜碱浸种对棉苗耐盐性的影响.作物学报,2008,34(2):305-310.
    25.李媛媛,孙海燕,刘华,王冰林.PEG浸种对潍县萝卜陈种子活力及幼苗抗逆性的影响.种子,2011,30(1):45-48.
    26.李智军,李春艳,周伟松,骆焕彬,卢文佳,龙卫平.辣椒一代杂种广椒6号种子纯度的RAPD鉴定.安徽农业科学,2008,36(15):6216-6219.
    27.梁明山,刘煜,侯留记,李霞.聚丙烯酰胺凝胶电泳鉴定烟草品种.种子,2001,6(1):9-11.
    28.梁帅克,樊宏,张文明,姚大年.无机盐溶液引发对紫花苜蓿种子活力及幼苗抗逆性的影响.草原与草坪,2010,30(3):61-65,69.
    29.梁喜龙,方淑梅,胡百兴,孔祥森,郑殿峰.烯效唑与胺鲜酯复配浸种对水稻秧苗生长的影响.湖北农业科学,2011,50(7):1325-1329.
    30.刘国宏.荧光素及罗丹明类衍生物荧光探针及其应用.2006,23(5):17-21.
    31.刘慧霞,王彦荣.水引发对紫花苜蓿种子萌发及其生理活动的影响.草业科学,2008,17(4):78-84.
    32.刘丽莎,姬可平.秦艽种子发芽特性的研究.中草药,2003,33(3):269-271.
    33.刘敏轩,韩建国,王赟文,周青平,乔安海.超薄层等电聚焦电泳技术检验燕麦种 子的真实性.草地学报,2007a,15(1):7-12.
    34.刘敏轩,王赞文,韩建国.过氧化物酶UTLIEF电泳对苏丹草、高梁及其杂交种品种的真实性鉴定研究.草叶与畜牧,2007b,12(6):9-12,18.
    35.刘荣华,卢敏,龙忠富,杨义成,孟军江.水引发对百喜草萌发与幼苗生长的影响.种子,2012,31(5):95-97.
    36.卢荔,曹利霞,乔洋洋,静景,戴思慧,马凌珂,黄智,孙小武.PEG引发三倍体无籽西瓜萌芽研究初报,2011,24(2):34-37.
    37.穆瑞霞,阮云飞,王吉庆,杨林超,李阳,宗伟芳.不同浓度水杨酸浸种对大葱种子萌发及生理特性的影响.中国农学通报,2008,24(6):370-373.
    38.潘建菁,谢昌发,刘冬霞,王雪仁.三种药剂浸种对提高烟草种子活力的效应.种子科技,2004,22(3):158-159.
    39.潘九林,朱旺冲,吕远刚,蒋小军,王松柏,张湘辉.不同浸种时间和催芽温度对甜玉米种子发芽影响.中国农村小康科技,2011,1(1):9-9.
    40.丘凌,何珊,黄瑞,张雁云.荧光染料CFSE检测淋巴细胞增殖的研究.中国血液流变学杂志,2005,15(1):22-24.
    41.任磊,程实,刘守清.高岭土对罗丹明B的吸附及光-Fenton降解研究.苏州科技学院学报(工程技术版),2009,22(3):17-21.
    42.沈晓贤,曹栋栋,胡晋,宋文坚,胡伟民.应用A-PAGE电泳方法鉴定豇豆品种.种子,2006,25(3):19-21.
    43.时予新..利用荧光染色跟踪水分在润麦时进入小麦颗粒的路径.郑州工程学院学报,200],22(2):17-20.
    44.宋慧,应泉盛,王迎儿,姚杰,贺文强,王毓洪.温汤浸种与嗑种对瓠瓜种子发芽能力的影响.中国种业,2010增刊.
    45.隋方功,王运华.植物碳素营养研究中碳同位素示踪技术的应用及进展.莱阳农学院学报,2001,18(2):107-111.
    46.孙建华,王彦荣,余玲.聚乙二醇引发对几种牧草种子发芽率和活力的影响.草业学报,1999,8(2):34-42.
    47.孙建华.苜蓿与草木犀种子鉴别技术的研究.草地科学,1996,4(2):121-125.
    48.孙柳青,朱永良,程英.PEG引发对番茄种子萌发的影响.上海蔬菜,2010,23(2):68-69.
    49.孙小妹,雷虎,刘勇,陈年来.黑籽南瓜种子基质引发适宜条件研究.中国瓜菜,2010,9(2):8-11.
    50.孙玉河,李怀智,霍振荣,庞金安.温汤浸种对华北型黄瓜种子休眠的影响.天津农业科学,2002,8(3):14-15.
    51.孙育平,马瑜静,孙杰,邓克俭。可见光照下过氧化氢分解罗丹明B.中南民族大学学报,2007,,2(1):14-16.
    52.王继东,王丽秋.菁染料的研究进展.广东化工,2007,34(2):34-36.
    53.王建成,胡晋,张新觉,徐群,周胜利,徐盛春.盐引发对不同水分条件下油菜种子发芽成苗的影响.种子,2004,23(1):6-8.
    54.王鹏,韦月平.水杨酸浸种对蚕豆种子萌发的影响.吉林特产高等专科学校学报,2004,13(3):4-6.
    55.王素蓉,周晓丽,周峰,华春.氯化胆碱浸种对菠菜种子萌发,幼苗某些生理特性的影响.安徽农业科学,2011,39(3):1295-1297.
    56.王玮,史雨刚,王曙光.PEG引发对老化大豆种子发芽及活力的影响.山西农业科学,2011,39(7):650-654.
    57.王小波,王艳,卢树昌,桂枝,苏霄倩.包膜复合肥料对芹菜产量和品质的影响.江苏农业科学,2009,21(3):335-337.
    58.王晓多,陆远柱,杨九英.水杨酸浸种对豌豆种子萌发及幼苗生长的影响.种子2007,26(8):42-44.
    59.魏素珍,达仓,边巴吉巴.沼液浸种对油菜种子萌发的影响.现代农业科技,2012,21(16):13-14.
    60.文亦蒂,周显垠,毛华明.打破多花木兰种子硬实特性的效果研究.种子,2007,26(6):34-35
    61.吴策,张语迟,宋凤瑞,刘志强.等离子体光辐射-磁场综合作用处理种子对妊娠中皂苷含量的影响.应用化学,2009,26(3):311-315.
    62.吴国平,毛忠良,姚悦梅,潘跃军,张振超.福尔马林浸种对葫芦传病害和种子活力的影响.江西农业学报,2009,21(8):101-102.
    63.吴萍,宋顺华,郑晓鹰.一种先进的种子防伪技术及其应用前景.蔬菜,2007,23(11):34-35.
    64.吴文林,唐银宗,朱菲,黄俊波,孙光闻.不同浸种方式对辣椒种子萌发及幼苗生长的影响.长江农业(学术版),2011(12):29-30.
    65.阎旭东,王益清.黑麦草类牧草种子的荧光反应鉴别试验.中国草地,1999,21(1):26-28.
    66.颜启传,邓光联,支巨振.农作物品种电泳鉴定手册.上海:上海科学技术出版社,1998.
    67.颜启传,黄亚军.农作物品种鉴定手册.北京:中国农业出版社,1996.
    68.颜启传.种子学.北京:中国农学出版社,2001.
    69.杨文清,张颖,叶吉松,张胜,胡晋.2,4-D包膜处理对黄瓜种子发芽、幼苗生长和生理特性的影响.种子,2007,26(1):43-45.
    70.杨祥宇,宋健,冯秀荣.荧光标记染料.化学通报,2003,66(9):615-618.
    71.杨小环,马金虎,郭数进,李新基,李盛.种子引发对盐胁迫下高梁种子萌发及幼苗生长的影响.中国生态农业学报,2011,19(1):103-109.
    72.杨小环,杨文秀,李卫东,马金虎.稀土浸种对玉米萌发和幼苗生长的影响.山西农业科学,2011,39(2):116-119.
    73.叶利民,夏瑾华,徐芬芬,吴高燕.壳聚糖浸种对水稻种子萌发及幼苗生长的影响.广东农业科学,2010,31(6):21-23.
    74.曾万学,陈萍,郑德水.多甲川键菁染料光氧化机理研究.感光科学与光化学,1995,13(2):136-143
    75.张鲁刚,张静.几种芸薹属作物的温汤浸种试验.长江农业,2006,5(6):40-41.
    76.张树国.天然防伪稻种在皖培育成功.农产品市场周刊,2005,12(40):20-20.
    77.张玉明,孙卫永,许明.防伪包装在种业中的运用.中国种业,2007,(11):16-17.
    78.赵德丰,高欣钦.荧光与分子结构的关系.染料工业,1995,32(6):1-5.
    79.郑怀礼,相欣奕.光助Fenton氧化反应降解染料罗丹明B.光谱学与光谱分析,2004,24(6):726-729.
    80.朱志华,王文真,刘三才,李为喜,张晓芳,刘方,李燕.近红外漫反射光谱分析技术在作物种质资源品质性状鉴定中的应用.现代科学仪器,2006,21(1):63-66.
    81. Batley J, Mogg R and Gororo N. Assessing genetic diversity within Brassica napus and Brassica junceagea germplasm collections [A]. Plant and Animal Genomes XI Conference [C]. San Diego, California:Scherago International.2003.
    82. Gale MD. Genetic maps of hexapod wheat. Wheat Genetics Symposium,1993, (8): 29-31.
    83. Husain A. Dissemination of cultivars of lentil by electrophoresis of seed Protein. Canadian. Journal of Plant Science,1989,69(1):243-246.
    84. Livneh O, Nagle Y, Tal V, Harush S, Gafni Y, Beckmann J and Sela I. RFLP analysis of a hybrid cultivar of pepper (Capsicum annuum) and its use in distinguishing between parental lines and in hybrid identification. Seed Science and Technology,1990,18(2): 209-214.
    85. Alvarado AD, Bradford KJ and Hewitt JD. Osmotic priming of tomato seeds, Effects on germination, field emergence, seedling growth and fruit yield. Journal of American Society of Horticultural Science,1987,112:427-432.
    86. Amarjits SB, Rewa D and Malik CP. Influence of seed pre-treatments with plant growth regulators on metablic alterations of germinating maize embryos under stressing temperature regimes. Annals of Botany,1989,64:37-41.
    87. Beresniewicz MB, Taylor AG, Goffinet MC and Erhune BT. Seed coat integrity in relation to amino acid leakage in onion and leek. Plant Varieties and Seeds,1995a,8(2): 87-96.
    88. Beresniewicz MB, Taylor AG, Goffinet MC and Koeller WD. Chemical nature of a semipermeable layer in seed coats of leek, onion, tomato and pepper. Seed Science and Technology,1995b,23(1):135-145.
    89. Bevilaequa LR and Fosati DG. Cellose in the inpermeable seed coat of Sesbania punicca. Annals of botany,1987,59:335-341.
    90. Briggs GG. Bromilow RH and Evans AA. Relationships between lipophilicity and root uptake and translocation of non-ionised chemicals by barley. Pesticide Science.1982, 13(5):495-504.
    91. Briggs GG, Bromilow RH, Evans AA and Willians M. Relationships between lipophilicity and the distribution of non-ionized chemicals in barley shoots following uptake by the root. Pesticide Science,1983,14(5):492-500.
    92. Brocklehurst PA and Dearman J. A comparison of different chemicals for osmotic treatment of vegetable seed. Annals of Applied Biology,1984,105:391-398.
    93. Calero E, West SH and Hinson K. Water absorption of soybean seed and associated causal factor. Crop Science,1981,21:926-933.
    94. Cao DD, Hu J, Gao CH, Guan YJ, Zhang S and Xiao JF. Chilling tolerance of maize (zea mays L.) can be improved by seed soaking in putrescence. Seed Science and Technology, 2008,36(1):191-197.
    95. Cao DD, Hu J, Zhu SJ, Hu WM and Knapp A. Relationship between changes in endogenous polyamines and seed quality during development of sh2 sweet corn (zea mays L.) seed. Sciatica Horticulture,2010.123(3):301-307.
    96. Chachalis D and Smith ML. Seed coat regulation of water uptake during imbibitions in soybeans (Glycine max L.Merr.) Seed Science technology,2001,29:401-402.
    97. Cook H and Oparka KJ. Movement of fluorescein into isolated caryopses of wheat and barley. Plant, Cell and Environment,1993,6:239-246.
    98. Desouza FHD and Marcos-Filho J. The seedcoat as a modulator of seed-environment relationships in Fabaceae. Revism Irasileira Dehoeanica,2001,24(4):365-375.
    99. Ferriol M, Pico B and Nuez F. Genetic diverdity of a germplasm collection of Cucurbita pepo using SRAP and AFLP markes. Theoretical and Applied Geneties,2003,107(2): 271-282.
    100.Guan YJ, Wang XJ and Shao CX. Seed priming with chatoyant improves maize germination and seedling growth in relation to physiological changes under low temperature stress. Journal of Zhejiang University-SCIENCE B,2009,10(6):427-433.
    101.Guan YJ, Hu J, Li YP and Zheng YY. A new anti-counterfeiting method:fluorescent labeling by safranine T in tobacco seed. Acta Physiologiae Plantarum,2011, 33, 1271-1276.
    102.Guo DL and Luo ZR. Genetic relationships of some PCNA persimmons (Diospyros kaki Thunb) from China and Japan revealed by SRAP analysis. Genetic Resources and Crop Evolution,2006.53(8):1597-1603.
    103.Haigh AM and Barlow EW. Germination and priming of tomato, carrot, onion, and sorghum seeds in a range of osmotica. Journal of the American Society of Horticultural Science,1987,112:202-208.
    104.Hapner SJ and Hapner KD. Rhoda mine immunohisto fluorescence applied to plant tissue. Journal of Histochemistry and Cytochemistry,1978,26(6):478-482.
    105.Harris WM. Comparative ultrasructure of developing seed coats of hard-seeded and soft-seeded cultivar of soybean. Botanical gazette,1987,148(3):324-331.
    106.Hu J, Zhu ZY, Song WJ, Wang JC and Hu WM. Effects of sand priming on germination and field performance in direct-sown rice (Oryza sativa L.). Seed Science and Technology,2005,33:243-248.
    107.Hu J, Seiler GJ, Jan CC and Vick BA. Assessing genetic variability among sixteen perennial Helianthus species using PCR-based TRAP markers. Proceedings Sunflower Research Workshop, Fargo, ND,2003,16-17.
    108.Hyde EOC. The function of the hilum in some Papilioanceae in relation to the ripening of the seed and permeability of the testa. Ann Bot,1954,18(2):241-256.
    109.ISTA, International Rules for Seed Testing,2004.
    110.James C. Environmental impacts of powder track King using fluorescent pigment, Journal of Mammalogy,1992,73(3):680-682.
    111.Jike L, Batzli GO and Getz LL. Home ranges of prairie voles as determined by radio track King and by powder track King. Journal of Mamma logy,1988,69(1):183-190.
    112.Joost T and Amkie MH. Structure of the developing Pea seed coat and the post-phloem transport pathway of nutrient. Annals of botany,2003,91(6):729-737.
    113.Kazuhiro S, Kohjir H and Nahoko M. Photosensitization of a porous TiO2 electrode withmerocyanine containing a carboxyl group and a long alkyl chain. Chem. Common., 2000,1173-1174.
    114.Kim SH and Taylor AG. Germ inability of film-coated snap bean seed as affected by oxygen diffusion rate under different soil moisture contents. Korean J of Crop Sci.2004, 49:46-51.
    115.Lee SS, Taylor AG, Beresniewicz MB and Paine DH. Sugar leakage from aged leek, onion and cabbage seeds. Plant Varieties and Seeds,1995,8(2):81-86.
    116.Lerbner MG. Brassinosteroids and gibberellins promote tobacco seed germination by distinct pathways. Planta,2001,213(5):758-763.
    117.Leubner MG, Frundt C and Meins F. Effects of gibberellins, darkness and osmotic an endosperm rupture and class Ⅰ beta-1,3-glucanase induction in tobacco seed germination. Planta,1996,199(2):282-288
    118.Li HS. Theory and technology of plant physiological and biochemical experiment,2001, pp.260-261, Higher Education Press, Beijing.
    119.Ma F, Cholewa E, Mohamed T, Peterson CA and Gijzen G. Cracks in the palisade cuticle of soybean seed coats sorrelate with their permeability to water. Annals of Botany,2004, 94(2):213-228.
    120.Marbach I and Mayer AM. Changes in catechlo oxidize end permeability to water in seed coats of elations during seed development and maturation. Plant physiology,1975,56(1): 93-96.
    121.McDonald MB, Elliot LJ and Sweeney PM. DNA extraction from dry seeds for RAPD analyses in varietal identification studies. Seed Science and Technology,1994,22(1): 171-176.
    122.Naohiro Ak, Graham N, Scofield XD, Christina E, Offler JWP and Robert TF. Pathway of Sugar Transport in Germinating Wheat Seeds. Plant Physiol,2006.141:1255-1263.
    123.Nascirnento WM and West SH. Microorganism growth during muskmelon seed priming. Seed Sci.& Tech.1998,26:531-534.
    124.Nakano EA. Ultrastructural observations of extranuclear temperature-sensitive lethality in Nicoliana tabacum L. Botanical Gazette.1980.141:9-14.
    125.Nayyar H, Wallia DP and Kaistha BL. Performance of bread wheat (Triticum aestivum) seed primed with growth regulators and inorganic salts. Indian Journal of Agricultural Science,1995,65(2):112-116.
    126.Nickolas MW and Mary VP. A comparison of pollen and fluorescent dye carry-over by natural pollinators of Ipomopsis Aggregate. Ecology,1982,63(4):1168-1172.
    127.Noga EJ and Udomkusonsri P. Fluorescein:A Rapid, Sensitive, Nonlethal Method for Detecting Skin Ulcetation in Fish. Vet Pathol,2002,39(6):726-731.
    128.Parera CA and Cantliffe DJ. Presowing seed priming. Horticultural Reviews,1994,16: 109-141.
    129.Peterson CA. Physiochemical factors governing the transport of xenobiotic chemicals in plants:movement into roots and partitioning between xylem and phloem. Acta Horticultural,1989,239(6):43-54.
    130.Qiu J, Wang RM, Yan JZ and Hu J. Seed film pelleting with uniconazole improves rape seedling growth in relation to physiological changes under water logging stress. Plant Growth Regulation,2005,47(1):75-81.
    131.Safford HA. The metabolism of aromatic compound. Annuals review of plant physiology, 1974,25(3):459-486.
    132.Sellei J. Futher growth experiments with fluorescent dyes. Growth,1941, (5):27-52.
    133.Sellei J. The Effect of fluorescent dyes on the Growth of Plant. Growth,1940, (4): 145-156.
    134.Sellei J, Sellei H, Mayer A and Went FW. Effects of fluoresce in plant growth. American Journal of Botany,1942,29(7):513-522.
    135.Sharon J, Hapner, AR and Kenneth DH. Rhodamine immunohistofluorescence applied to plant tissue. Journal of Histochemistry and Cytochemistry,1978,26(6):478-482
    136.Shewry PR, Ellis JRS, Prant HM and Miflin BJ. A comparison of methods for the extraction and separation of horde in fractions from 29 barley varieties. Journal of the Science of Food and Agriculture,1978,29(5):433-441.
    137.Shin AD, Rundle PA and Ronnie I. Retinal Vascular Tumors. Ophthalmic Cline North Am, 2005,18(1):167-176.
    138.Shin JS and Kim YS. Changes of fatty acid during germination by seed pretreatment, SMP, in tobacco. Korean Journal of Crop Science,2005,50(3):156-160.
    139.Taylor AG. Seed treatments. In:Thomas BDJ. Murphy and BG. Murray. Encyclopedia of Applied Plant Sciences. Elsevier Acad. Press.2003,1291-1298.
    140.Taylor AG., Beresniewicz MB and Goffnet MC. Semi-permeable layer in seeds. In:Ellis. RH Black. Murdoch AJ and Hong TD. Basic and applied aspects of seed biology: Proceedings of the Fifth International Workshop on Seeds. Reading,1995. Kluwer Academia Publishers.1997, pp:429-436.
    141.Taylor AG, Lee SS, Beresniewicz MB and Paine DH. Amino acid leakage from aged vegetable seeds. Seed Science and Technology,1995,23(1):113-122.
    142.Taylor AG, Allen MA, Bennett KJ, Bradford JS. Seed enhancements. Seed Science Research.1998,245-256.
    143.Trevor E, Kraus R and Austin F. Paclobutrazol protect wheat seedlings from heat and parquets injury is detoxification of active oxygen involved. Plant Cell Physiology,1994, 35:45-52.
    144.Tylkowska K and Biniek A. Fungi and germination of carrot and parsley seeds under osmoconditioning and fungicide treatment. Phytopathol.1996,12:51-61.
    145.Upadhya PC, Shen YC, Davies AG and Linfield EH. Terahertz time-domain spectroscopy of glucose and uric acid. Journal of Biological Physics,2003,29(23):117-121.
    146.Wang HL, Offler CE and Patrick JW. The cellular pathway of photosynthate transfer in the developing wheat grain. Delineation of a potential transfer pathway using fluorescent dyes. Plant, Cell and Environment,1994,17:257-266.
    147.Wei YH, Dorna H and Tylkowska K. Effects of chemical and biological treatments on germination of onion (Allium cepa L.) seeds. Jour. of Northwest Sci-Tech Univ. of Agri. and For.2003,31(5):51-55
    148.William S. Use of fluorescent pigments in studies of seed caching by rodents. Journal of Mamma logy,1995,76(4):1260-1266.
    149. Wu FS. Localization of mitochondria in plant cells by vital staining with rhodamine 123. Planta,1987,171:346-357.
    150.Wu FB, Zhang GP and Dominy P. Four barley genotypes respond differently to cadmium: lipid peroxidation and activities of antioxidant capacity. Environmental and Experimental Botany,2003,50:67-78.
    151.Zhang S, Hu J, Zhang CY, Xie XJ and Kano A. Seed priming with brassinolide improves Lucerne (Medicago saliva L.) seed germination and seedling growth in relation to physiological changes under salinity stress. Australian Journal of Agricultural Research. 2007,58(8):811-815.
    152.Zhang XC. Terahertz wave imaging:Horizons and hurdles. Physics in Medicine and Biology,2002,47(21):3667-3677.
    153.Zhu GL and Zhong WH. Experimental handbook of plant physiology.1990. Peking University Press, Peking.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700