用户名: 密码: 验证码:
牛粪高温堆肥过程中的物质变化、微生物多样性以及腐熟度评价研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
好氧高温堆肥是一种经济、环保的农业固体有机废弃物资源化利用的手段。高温堆肥过程中的物质变化与腐熟度评价以及微生物多样性的研究一直以来都是国内外关注的热点,它们与堆肥产品的质量和堆肥发生的机理密切相关,对堆肥的生产具有指导意义。但是,文献报道的大多数堆肥腐熟度的评价指标测定起来比较复杂,不利于中小型堆肥企业的实际应用。另外,对于堆肥过程中微生物多样性的研究更多的是以实验室规模的小型发酵试验为主,而对于企业应用较多的传统条垛堆肥发酵关注较少,并且分析方法也有一定的缺陷。因此,本文以牛粪和水稻秸秆为原料进行了高温条垛堆肥的发酵,对堆肥过程中的物质变化与腐熟度评价以及微生物多样性进行了研究,主要研究结果如下:
     1.通过对堆肥过程中的部分物理指标、化学指标和生物指标的研究表明整个堆肥过程可以明显的分为升温(0-12天)、高温(22-52天)和降温腐熟(62-112天)三个不同的阶段,有机物质的降解和水分的蒸发等主要发生在堆肥的升温和高温阶段(0-52天),而硝化作用和腐殖化作用主要发生在堆肥的降温和腐熟阶段。以测得的各种理化指标进行腐熟度评价发现单个指标并不能很好的评估堆肥的腐熟程度,必须两个或两个以上的指标相结合。以发芽指数(GI)为标准进行相关性分析表明C/N、OM损失和NH4+-N/NO3-N是更为可靠的牛粪堆肥腐熟度的评价指标;各指标综合评价表明以牛粪和水稻秸秆为原料的堆肥62天以后已经达到腐熟。
     2.三维荧光光谱与荧光区域指数(EEM-FRI)的研究结果表明在牛粪高温堆肥过程中,蛋白质的含量逐渐低,而腐殖酸和富里酸的含量则逐渐上升;通过EEM-FRI与堆肥过程中的理化指标以及生物指标的相关性分析确定,EEM-FRI与大部分常用的评价堆肥腐熟度的理化指标都显著相关,因此可以用于评价牛粪堆肥的腐熟度,并且具有简单、快速的特点。红外光谱的分析结果则显示随着堆肥的进行,不同时期堆肥样品的红外光谱的峰所在的区域变化不大,只是峰的强度变化较大。
     3.分别对五种不同的堆肥DNA提取方法进行了细胞破壁效率、DNA和腐殖酸产量、PCR扩增和微生物多样性等方面的比较,建立了一种适合以牛粪和水稻秸秆为原料的堆肥样品的DNA提取和纯化方法FTSPP. FTSPP法的细胞破壁效率达到了94.6%,纯DNA的产量达到了33.19μg/g dw,并且在1μg/μ1牛血清白蛋白(BSA)存在的条件下成功的进行了PCR扩增,并且通过荧光定量PCR和DGGE分析表明,FTSPP法提取的DNA获得的细菌和放线菌的16S rRNA的拷贝数以及DGGE条带数均高于其他方法。
     4.通过平板培养技术对牛粪高温堆肥过程中的常温(30℃)和高温(55℃)微生物的数量进行了研究,结果表明无论常温还是高温可培养微生物的数量在堆肥过程中均经历了一个先增加再降低然后再增加的变化趋势,常温细菌和放线菌的数量在第22天达到最大值,分别为9.331g CFU/gdw和7.181g CFU/gdw,而常温真菌则在第12天达到最大值,为5.121g CFU/g dw;高温细菌和放线菌数量最大值出现的时间比常温微生物明显滞后,均在第32天获得最大值,1g CFU/g dw分别为7.17和5.78,而高温真菌在第22天达到最大值,1gCFU/g dw为3.24。
     根据DGGE的研究结果可将整个堆肥过程分为0-12天、22-52天和62-112天三个与根据温度划分相一致的阶段,在堆肥前期(0-12天)微生物种类变化最剧烈,但总体呈现先上升再下降最后再上升的变化趋势,并且高温阶段的样品与降温腐熟阶段的样品的相似性要高于升温阶段的样品。成功测序的DGGE条带的序列比对结果显示,Firmicutes, Bacteroidetes, Proteobacteria和Actinobacteria是堆肥过程中主要的微生物门类,条带M和条带X均与Bacillus属微生物表现出了较高相似性(99%),条带S则与Streptomyces sp.(EF012138)表现出了100%的序列相似性,另外,大部分为未培养的微生物。根据FRI参数与堆肥过程中细菌的种类变化的相关性分析发现PⅡ,n和PⅣ,n与堆肥过程中细菌的种类变化的相关系数分别达到了0.907和0.949,进一步的线性回归分析证明PⅣ,n是更可靠地评价以牛粪和水稻秸秆为原料的堆肥过程中细菌种类变化的参数。
     分别对0、12、42和112天的堆肥样品进行了16S rRNA基因克隆丈库的构建和序列分析,成功测序的779个克隆的Genebank登陆号为JQ336994-JQ337772.多样性分析表明四个时间段的Shannon-Wienner指数分别为2.64、3.25、3.18和4.05。序列分析显示Frimicutes、Proteobacteria、Bacteroidetes和Chloroflexi门的微生物在堆肥过程中普遍存在,而Actinobacteria则只存在于堆肥的高温阶段(42天),并且第一次在堆肥后期样品中(112天)发现了BCR1门的微生物。Arthrobacter属的克隆数在高温阶段的样品中(42天)含量最高,达到了21.74%;而Bacillus和Bacillus相关的属包括Soilbacillus, Aneurinibacillus, Marinibacillus和Ureibacillus的相对含量为8.70%,在第112天更是达到了10.25%;另外,第112天的样品中,伴随着新的属包括Flavobacterium, Parapedobacter, Nitrosomonas, Ochrobactrum和Rhizobium的出现;所有文库中有相当一部分序列属于未分类微生物,并且随着堆肥的进行它们所占的比例越来越高。
     5.从第82天的新鲜堆肥样品中经过富集、初筛和复筛成功的分离到两株具有较高纤维素酶活的细菌菌株T1和T2,结合生理生化和16S rRNA基因序列分析分别鉴定为Bacillus cereus和Bacillus subtilis.根据NCBI报道的Bacillus subtilis葡聚糖内切酶基因设计引物,克隆到Bacillus subtilis T2的葡聚糖内切酶基因,与报道的内切酶基因均具有99%的相似性,以PET28a为表达载体构建了重组质粒,以E. coli BL21(DE3)为表达菌株,成功的表达了Bacillus subtilis T2的葡聚糖内切酶基因,且在粗酶液检测到了较高的内切酶活性。
Aerobic thermophilic composting is an economical and environmental way for agricultural solid wastes utilization. The materials evolution, microbial diversity and maturity assessment which are related to the quality of composts and mechanism of composting are always being investigated. However, all the indices reported to evaluate the compost maturity are too complicated to be widely used by small-and-medium-sized compost plants. Moreover, many studies of microbial diversity focus on small laboratory-scale composting processes without pay attention to the windrow composting that used extensively by compost plants, and their methods applied may be a little defective too. Thus, the materials evolution, microbial diversity and maturity assessment were studied during the windrow composting of dairy manure and rice stalk, and the main results are as follows:
     1. The results of physico-chemical and biological indice shows that the whole composting process could be divided into three distinct phages including the mesophilic phase (0-12day), thermophilic phase (22-52day) and cooling phase (62-112day), and the organic matter degradation and water evaporation were more active in the mesophilic and thermophilic phases, while the nitrification and humification mainly took place during the cooling phases. It is interesting to note that compost maturity was not described by a single property and therefore was best assessed by measuring two or more parameters according to the results of physico-chemical and biological indices analysis. Using GI as the standard of correlation analysis, it is found that the indices of C/N、OM loss and NH4+-N/NO3-N were more reliable to assess the maturity of compost produced from dairy manure and rice stalk, and the compost could be considered mature62days later based on all the physico-chemical and biological indices.
     2. The result of Excitation emission matrix-fluorescence regional index (EEM-FRI) reveals that the protein-like substances decreased while the concentration of fulvic-like and humic-like matters increased during composting process; additionally, the EEM-FRI which is determined fast and simply could be used to assess the maturity of compost produced from dairy manure and rice stalk according to the correlation analysis between other maturity indices. The Fourier-transform infrared (FTIR) spectra of all the nine dairy manure compost samples from different stages of composting exhibited similar peaks and the only difference was the intensity of each peak.
     3. An effective method suitable for the DNA extraction and purification from compost produced from dairy manure and rice stalk was developed through the comparation of five different DNA extraction methods based on cell lysis efficiency, DNA and humic acid yields, PCR amplification and microbial diversity analysis; by this method, the cell lysis efficiency and the yields of purified DNA achieved were94.6%and33.19μg/g dw respectively, and the purified DNA was clean enough for successful PCR and real-time PCR amplifications in the presence of1μg/μl BSA. In addition, more DGGE bands and16S rRNA gene copies were obtained.
     4. The populations of mesophilic and thermophilic aerobic microorganisms at various stages were determined by the traditional dilution plating technique, both of the mesophilic and thermophilic populations increased after the beginning of composting, then decreased significantly with the temperature increase and increased again at the end of the thermophilic phage. The maximum populations of mesophilic bacteria and actinomycetes appeared at day22and the values of1g CFU/g were9.33and7.18respectively, while obtained at day32for the thermophilic bacteria and actinomycetes and the values of1g CFU/g dw were7.17and5.78respectively. The maximum populations of mesophilic fungi was achieved at day12, while at day22for thermophilic fungi, and the values of1g CFU/g were5.12and3.24respectively.
     Denaturing gradient gel electrophoresis (DGGE) was applied to investigate community structure and dynamics during the composting process. Continuous variation was observed with the temperature increase during the first12days, and the cluster analysis indicated that the whole composting process could be divided into three continuous phages including0-12,22-52and62-112which were in accordance with the phases divided according to temperature. Additionally, the microbial diversity of the thermophilic phase showed a higher similarity with that of the cooling phase than of the mesophilic phase. The phylum Firmicutes, Bacteroidetes, Proteobacteria and Actinobacteria were ubiquitous during composting, and the sequenc results shows that the bands M and X both affiliated with the genus of Bacillus, while the band S shows100%similarity with Streptomyces sp.(EF012138), moreover, most of other sequences were affiliated with uncultured. The EEM-FIR parameters of PH,n and PIV,n showed high correlation with the the evolution of ribotypes that indicated the bacterial community structure and dynamics from DGGE analysis, indicating their potential use for evaluating community structure and dynamics, and a further linear regression analysis demonstrated that PⅣ,n was the most suitable indictor of the community structure and dynamics during the composting process.
     Four16S rRNA clone libraries of samples from day0,12,42and112during composting were constructed and a total of779randomly selected clones were sequenced successfully, all the sequences had been deposited in the GenBank sequence database under accession numbers JQ336994-JQ337772. The Shannon-Wiener indices of the four clone libraries were2.64,3.25,3.18and4.05respectly. The phyla Firmicutes, Proteobacteria, Bacteroidetes and Chloroflexi were ubiquitous, while Actinobacteria was dominant only at the thermophilic stage (day42); moreover, sequences belonging to the candidate phylum BCR1were fist determined in sample of day112. In the library of sample day42, the genus Arthrobacter (21.74%), belonging to the phylum of Actinobacteria, and the Bacillus and Bacillus-related genera including Soilbacillus, Aneurinibacillus, Marinibacillus and Ureibacillus (8.70%), belonging to phylum of Firmicutes, showed the largest number of clones, whereas in the library of sample day112, the Bacillus and Bacillus-related genera (10.25%) became the unique dominant group. But new genera, including Flavobacterium, Parapedobacter, Nitrosomonas, Ochrobactrum and Rhizobium appeared; it is interesting to note that as composting progressed, the sequences belonging to unclassified groups continuously increased.
     5. Two strains T1, T2with high cellulase activities were isolated from the fresh compost sample of day82. Based on morphological, physiological and biochemical characteristics and16SrDNA sequences, they were identified as Bacillus cereus and Bacillus subtilis respectively. Tthrough the alignment of the endoglucanase genes of Bacillus subtilis downloaded from NCBI database, the primers were designed, and the endoglucanase gene of the isolated Bacillus subtilis T2strain was cloned, and showed99%similarity to the endoglucanase genes reported. Moreover, the endoglucanase gene was successfully expressed in the E. coli BL21(DE3) with PET28a as the expression plasmid, and high endoglucanase activity was determined in the crude enzyme solution.
引文
Amir, S., Merlina, G., Pinelli, E., Winterton, P., Revel, J.C., Hafidi, M.,2008. Microbial community dynamics during composting of sewage sludge and straw studied through phospholipid and neutral lipid analysis. J. Hazard. Mater.159,593-601.
    Barrena, R., Vazquez, F., Sanchez, A.,2008. Dehydrogenase activity as a method for monitoring the composting process. Biores. Technol.99,905-908.
    Beffa, T., Blanc, M., Marilley, L., Fischer, J.L., Lyon, P.F., Aragno, M.,1996. Taxonomic and metabolic microbial diversity during composting. In:The Science of Composting (De Bertoldi, M., Ed.), pp. 149-161. Blackie, New York.
    Bent, S.J., Forney, L.J.,2008. The tragedy of the uncommon:understanding limitations in the analysis of microbial diversity. The ISME J.2,689-695.
    Bernal, M.P., Alburquerque, J.A., Moral, R.,2009. Composting of animal manures and chemical criteria for compost maturity assessment. A review. Bioresour. Technol.100,5444-5453.
    Bernal, M.P., Lopez-Real, J.M., Scott, K.M.,1993. Application of natural zeolites for the reduction of ammonia emissions during the composting of organic wastes in a composting simulator. Bioresour. Technol.43,35-39.
    Bernal, M.P., Paredes, C., Sanchez-Monedero, M.A., Cegarra, J.,1998. Maturity and stability parameters of composts prepared with a wide range of organic wastes. Bioresour. Technol.63, 91-99.
    Cahyani, V.R., Watanabe, A., Matsuya, K., Asakawa, S., Kimura, M.,2002. Succession of microbiota estimated by phospholipids fatty acid analysis and changes in organic constituents during the composting process of rice straw. Soil Sci. Plant Nutr.48,735-743.
    Godfrey, C.,1983. Nitrogen transformation during sewage composting. Biocycle.24,34-39.
    Chanyasak, V., Kubota, H.,1981. Carbon/organic nitrogen ratio in water extract as measure of compost degradation. J. Ferment. Technol.59,215-219.
    Chen, Y., Inbar, U.,1993. Chemical and spectroscopical analyses of organic matter transformation during composting in relation to compost maturity. In:Hoitink, H.A.J., Keener, H.M. (Eds.), Science and Engineering of Composting:Design, Environmental, Microbiological and Utilization Aspects. Renaissance Publications, Worthington, OH, pp.550-600.
    Christie, W.W.,1982. Lipid Analysis, Isolation, Separation, Identification and Structural Analysis of Lipids, second ed., Pergamon Press, Oxford.
    Cooperband, L.R., Stone, A.G., Fryda, M.R., Ravet, J.L.,2003. Relating compost measures of stability and maturity to plant growth. Compost Sci. Util.11,113-124.
    Cullen, D.W., Hirsch, P.R.,1998. Simple and rapid method for direct extraction of microbial DNA from soil for PCR. Soil Biol. Biochem.30,983-993.
    Das, K., Keener, H.M.,1997. Moisture effect on compaction and permeability in composts. J. Environ. Eng.123,275-281.
    de Bertoldi, M., Vallini, G., Pera, A.,1983. The biology of composting:a review. Waste Manage. Res.1, 157-176.
    Fang, M., Wong, J.W.C.,1999. Effects of lime amendment on availability of heavy metals and maturation in sewage sludge composting. Environ. Pollut.106,83-89.
    Finstein, M.S., Miller, F.C.,1985. Principles of composting leading to maximization of decomposition rate, odor control, and cost effectiveness. In:Gasser, J.K.R. (Ed.), Composting of Agricultural and Other Wastes. Elsevier Applied Science Publications, Barking, Essex, pp.13-26.
    Gajalakshmi, S., Abbasi, S.A.,2008. Solid waste management by composting:state of the art. Crit. Rev. Environ. Sci. Technol.38,311-400.
    Franke-Whittle, I.H., Knapp, B.A., Fuchs J., Kaufmann, R., Insam, H.,2009. Application of COMPOCHIP microarray to investigate the bacterial communities of different composts. Microb. Ecol.57,510-521.
    Franke-Whittle, I.H., Susanne, T., Klammer, H., Insam, H.,2005. Design and application of an oligonucleotide microarray for the nvestigation of compost microbial communities. J. Microbiolo. Meth.62,37-45.
    Golueke, G.C.,1981. Principles of biological resource recovery. BioCycle 22,36-40.
    Keller, P.1961. Methods to evaluate maturity of compost. Compost Sci. Util.2,20-26.
    Harada, Y., Inoko, A.,1980. Relationship between cation-exchange capacity and degree of maturity of city refuse composts. Soil Sci. Plant Nutr.26,353-362.
    Howeler, M., Ghiorse, W.C., Walker, L.P.,2003. A quantitative analysis of DNA extraction and purification from compost. J. Microbiol. Meth.54,37-45.
    Hue, N.V., Liu, J.,1995. Predicting compost stability. Compost Sci. Util.3,8-15.
    Jimenez, E.I., Garcia, V.P.,1992. Determination of maturity indices for city refuse composts. Agric. Ecosyt. Environ.38,331-343.
    Klamer, M., Baath, E.,1998. Microbial community dynamics during composting of straw material studied using phospholipid fatty acid analysis. FEMS Microbiol. Ecol.27,9-20.
    Ko, H.J., Kim, K.Y., Kim, H.T., Kim, C.N., Umeda, M.,2008. Evaluation of maturity parameters and heavy metal contents in composts made from animal manure. Waste Manage.28,813-820.
    Krsek, M, Wellington, E.M.H.,1999. Comparison of different methods for the isolation and purification of total community DNA from soil. J. Microbiol. Meth.39,1-16.
    LaMontagne, M.G., Michel Jr, F.C., Holden, P.A., Reddy, C.A.,2002. Evaluation of extraction and purification methods for obtaining PCR-amplifiable DNA from compost for microbial community analysis. J. Microbiol. Meth.49,255-264.
    Mari, I., Ehaliotis, C., Kotsou, M., Chatzipavlidis, I., Georgakakis, D.,2005. Use of sulfur to control pH in composts derived from olive processing by-products. Compost Sci. Util.13,281-287
    Mathur, S.P., Owen, G., Dinel, H., Schnitzer, M.,1993. Determination of compost biomaturity. I. Literature review. Biol. Agric. Hortic.10,65-85.
    Miller, F.C.,1992. Composting as a process based on the control of ecologically selective factors. In: Metting, F.B., Jr. (Ed.), Soil Microbial Ecology, Applications in Agricultural and Environmental Management. Marcel Dekker, Inc., New York, pp.515-544.
    Miller, D.N., Bryant, J.E., Madsen, E.L., Ghiorse, W.C.,1999. Evaluation and optimization of DNA purification procedures for soil and sediment samples. Appl. Environ. Microbiol.65,4715-424
    Pare, T., Dinel, H., Schnitzer, M., Dumontet, S.,1998. Transformations of carbon and nitrogen during composting of animal manure and shredded paper. Biol. Fert. Soils 26,173-178.
    Paredes, C., Roig, A., Bemal, M.P., Sanchez-Monedero, M.A., Cegarra, J.,2000. Evolution of organic matter and nitrogen during co-composting of olive mill wastewater with solid organic wastes. Biol. Fert. Soils 32,222-227.
    Peplies, J., Oliver Glockner, F., Amann, R.,2003. Optimization trategies for DNA icroarray-based detection of bacteria with 16S rRNA-targeting oligonucleotide probes. Appl. Environ. Microbiol. 69,1397-1407.
    Peter, M.D., William, C.G.,2001. Microbial diversity in hot synthetic compost as revealed by PCR-amplified rRNA sequences from cultivated isolates and extracted DNA. FEMS Microbiol. Ecol.35,207-216.
    Peters, S., Koschinsky, S., Schwieger, F., Tebbe, C.C.,2001. Succession of Microbial Communities during Hot Composting as Detected by PCR-Single-Strand-Conformation Polymorphism-Based Genetic Profiles of Small-Subunit rRNA Genes. Appl. Environ. Microbiol.66,930-936.
    Ryckeboer, J., Mergaert, J., Coosemans, J., Deprins, K., Swings, J.,2003. Microbiological aspects of biowaste during composting in a monitored compost bin. J. Appl. Microbiol.94,127-137.
    Santamaria-Romero, S., Ferrera-Cerrato, R.,2001. Dynamics and relationships among microorganisms, C-organicand N-total during composting and vermicomposting. Agrociencia 35,377-383.
    Senesi, N.,1989. Composted materials as organic fertilisers. Sci. Total Environ. (81/82),521-542.
    Strom, P.F.,1985. Effect of Temperature on Bacterial Species Diversity in Thermophilic Solid-Waste Composting. Appl. Environ. Microbiol.50,899-905.
    Tebbe C.C., Vahjen, W.,1993. Interference of humic acids and DNA extracted directly from soil in detection and transformation of recombinant DNA from bacteria and a yeast. Appl. Environ. Microbiol.59,2657-2665.
    Tiquia, S.M., Wan, J. H.C., Tam, N.F.Y.,2001. Extracellular enzyme profiles during co-composting of poultry manure and yard trimmings. Process Biochem.36,813-820.
    Tam, N.F.Y., Tiquia, S.M.,1994. Assessing toxicity of'spent sawdust piglitter' using seed germination technique. Resour. Conserv. Recycl.11,261-274.
    Tang, J.C., Maie, N., Tada, Y., Katayama, A.,2006. Characterization of the maturing process of cattle manure compost. Process Biochem.41,380-389
    Wang, P., Changa, C.M., Watson, M.E., Dick, W.A., Chen, Y., Hoitink, H.A.J.,2004. Maturity indices for composted dairy and pig manures. Soil Biol. Biochem.36,767-776.
    White, D.C.,1988. Validation of quantitative analysis formicrobial biomass, community structure, and metabolic activity. Arch. Hydrobiol. Beih.31,1-18.
    Wong, J.W.C., Fang, M.,2000. Effects of lime addition on sewage sludge composting process. Water Res.34,3691-3698.
    Wu, L., Ma, L.Q., Martinez, G.A.,2000. Comparison of methods for evaluating stability and maturity of biosolids compost.J. Environ. Qual.29,424-429.
    Xiao, Y., Zeng, G.M., Yang, Z.H., Mac, Y.H., Huang, C., Xu, Z.Y., Huang, J., Fan., C. Z.,2011. Changes in the actinomycetal communities during continuous thermophilic composting as revealed by denaturing gradient gel electrophoresis and quantitative PCR. Bioresour. Technol.102, 1383-1388.
    Zmora-Nahum, S., Markovitch, O., Tarchitzky, J., Chen, Y.,2005. Dissolved organic carbon (DOC) as a parameter of compost maturity. Soil Biol. Biochem.37,2109-2116.
    Zucconi, F., de Bertoldi, M.,1987. Compost specifications for the production and characterization of compost from municipal solid waste. In:de Bertoldi, M., Ferranti, M.P., L'Hermite, P., Zucconi, F. (Eds.), Compost:Production, Quality and Use. Elsevier, Barking, pp.30-50.
    卞有生.生态农业中废弃物的处理与再生利用.北京:化学工业出版社,2005:441-442.
    李冰,侯纲,常亚芳.浅议秸科的综合利用.环境卫生工程,2004,12(4):235-237.
    李庆康,吴雷,刘海琴,等.我国集约化畜禽养殖场粪便处理利用现状及展望.农业环境保护,2000,19(4):251-254
    刘培军,张曰林主编.作物秸秆综合利用.济南:山东科技出版设,2008:7-10.
    温雅俐,高民.青贮饲料中乳酸菌代谢及其青贮品质影响研究进展.畜牧与饲料科学,2011,32 (9):152-154.
    吴远彬主编.农村废弃物综合利用技术.北京:中国农业技术出版设,2007:16-17.
    王洪涛,陆文静编著.农村固体废物处理处置与资源化技术.北京:中国环境科学出版设,2006:154-157.
    李国学,李玉春,李彦富.固体废物堆肥化及堆肥添加剂研究进展.农业环境科学学报,2003,22(2):252-255.
    张红骥,高亚冰,王凡,刘杰.农业废弃物转化再生饲料的研究概况.黑龙江农业科学,2007,14(1):71-73.
    朱启红.浅谈秸秆的综合利用.农机化研究,2007,6(21):236-237.
    Abid, N., Sayadi, S.,2006. Detrimental effects of olive mill wastewater on the composting process of agricultural wastes. Waste Manage.26,1099-1107.
    Ahmad, S.R., Reynolds, D.M.,1999. Monitoring of water quality using fluorescence technique:prospect of on-line process control. Water Res.33,2069-2074.
    Artinger, R., Buckau, G., Geyer, S., Fritz, P., Wolf, M., Kim, J.I.,2000. Characterization of groundwater humic substances:influence of sedimentary organic carbon. Appl. Geochem.15,97-116.
    Baker, A.,2002. Fluorescence properties of some farm wastes:implications for water quality monitoring. Water Res.36,189-194.
    Bernal, M.P., Sanchez-Monedero M.A., Paredes C., Roig A.,1998. Carbon minerlization from organic wastes at different composting stages during their incubation with soil. Agriculture Ecosystem and Environment 6,175-189.
    Bernal, M.P., Alburquerque, J.A., Moral, R.,2009. Composting of animal manures and chemical criteria for compost maturity assessment. A review. Biores. Technol.100,5444-5453
    Benito, M., Manager, A., Moliner, A., Arrigo, N., Palma, R.M.,2003. Chemical andmicrobiological parameters for the characterization of the stability and maturity of pruning waste compost. Biol. Fertil. Soils 37,184-189.
    Castaldi, P., Alberti, G., Merella, R., Melis, P.,2005. Study of the organic matter evolution during municipal solid waste composting aimed at identifying suitable parameters for the evaluation of compost maturity. Waste Manage.25,209-213.
    Cegarra, J., Alburquerque, J.A., Gonzalvez, J., Tortosa, G., Chaw, D.,2006. Effects of the forced ventilation on composting of a solid olive-mill by-product ("alperujo") managed by mechanical turning.25,1377-1383.
    Chen, W., Westerhoff, P., Leenheer, J.A., Booksh, K.,2003. Fluorescence excitation-emission matrix regional integration to quantify spectra for dissolved organic matter. Environ. Sci. Technol.37, 5701-5710.
    Chen, Y., Sensei, M., Schnitz, M.,1977. Information provided on humic substances by E4/E6 ratio. Soil Sci. Soc. Am. J.41,352-358.
    Coble, P.G., Green, S.A., Blough, N.V., Gagosian, R.B.,1990. Characterization of dissolved organic matter in the Black Sea by fluorescence spectroscopy. Nature 348,432-435.
    Coble, P.G., Schultz, C.A., Mopper, K.,1993. Fluorescence contouring analysis of DOC Intercalibration Experiment samples:a comparison of techniques. Mar. Chem.41,173-178.
    Coble, P.G.,1996. Characterization of marine and terrestrial DOM in seawater using excitation-emission matrix spectroscopy. Mar. Chem.51,325-346.
    de Bertoldi, M., Vallini, G., Pera, A.,1983. The biology of composting:a review. Waste Manage. Res.1, 157-176.
    Determann, S., Reuter, R., Wagner, P., Willkomm, R.,1994. Fluorescent matter in the eastern Atlantic Ocean. Part 1:method of measurement and near-surface distribution. Deep-Sea Res.41,659-675.
    Fukushima, M., Tanaka, S., Nakayasu, k., Sasaki, K., Tatsumi, K.,1999. Evaluation of copper(Ⅱ) binding abilities of humic substances by a continuous site-distribution model considering proton competition. Analytical Sci.15,185-188.
    Gajalakshmi, S., Abbasi, S.A.,2008. Solid waste management by composting:state of the art. Crit. Rev. Environ. Sci. Technol.38,311-400.
    Gerasimowisz, W.V., Byler, D.M.,1985. Carbon-13 CPMAS NMR and FTIR spectroscopic studies of humic acids. Soil Sc.139,270-278.
    Gomez-Brandon, M., Lazcano, C., Dominguez, J.,2008. The evaluation of stability and maturity during the composting of cattle manure. Chemosphere 70,436-444.
    Gone, D.L., Seidel, J.L., Batiot, C., Bamory, K., Ligban, R., Biemi, J.,2009. Using fluorescence spectroscopy EEM to evaluate the efficiency of organic matter removal during coagulation-flocculation of a tropical surface water (Agbo reservoir). J. Hazard. Mater.172, 693-699.
    Hao, X., Chang, C., Larney, F.J.,2004. Carbon, nitrogen balances and greenhouse gas emission during cattle feedlot manure composting. J. Environ. Qual.33,37-44.
    Hernandez, M.T., Moreno, J.I., Costa, F., Gonzalez-Vila, F.J., Frund, R.,1990. Structural features of humic acid-like substances from sewage sludge. Soil Sci.149,63-68.
    He, X.T., Logan, T.J., Traine, S.J.,1995. Physical and chemical characteristics of selected U.S. municipal solid waste composts. J. Environ. Qual.24,543-552
    Hsu, J.H., Lo, S.L.,2001. Effect of composting on characterization and leaching of copper, manganese, and zinc from swin manure. Environ. Pollut.114,1119-127.
    Inbar, Y., Chen, Y., Hadar, Y.,1991. Carbon-13 CPMAS NMR and FTIR spectroscopic analysis of organic matter transformations during composting of solid wastes from wineries. Soil Sci.152, 272-281.
    Inbar, Y., Hadar, Y. and Chen Y.,1992. Recycling of Cattle Manure:The Composting Process and Characterization of Maturity. J. Environ. Qual.22,857-863.
    Jimenez, E.I., Garcia, V.P.,1989. Evaluation of city refuse compost maturity:a review. Biol. Wastes 27, 115-142.
    Jouraiphy, A., Amir, S., Gharous, M. E., Revel, J.C., Hafidi, M.,2005. Chemical and spectroscopic analysis of organic mattertransformation during composting of sewage sludge and green plant waste. Int. Biodeter. Biodegr.56,101-108.
    Leita, L., De Nobili, M.,1991. Water-soluble fractions of heavy metalsduring composting of municipal solid waste. J. Environ. Qual.20,73-78.
    Ismaili, M.M., Belin, C., Lamotte, M., Texier, H.,1998. Distribution and characterization by fluorescence of the dissolved organic matter within the central Channel waters. Oceanol. Acta.21, 645-654.
    Ko, H.J., Kim, K.Y., Kim, H.T., Kim, C.N., Umeda, M.,2008. Evaluation of maturity parameters and heavy metal contents in composts made from animal manure. Waste Manage.28,813-820.
    Mathur, S.P., Owen, G., Dinel, H., Schnitzer, M.1993. Determination of compostbiomaturity. I. Literature review. Biol. Agric. Hortic.10,87-108
    Marhuenda-Egea, F.C., Martinez-Sabater, E., Jorda, J., Moral, R., Bustamante, M.A., Paredes, C., Perez-Murcia, M.D.,2007. Dissolved organic matter fractions formed during composting of winery and distillery residues:evaluation of the process by fluorescence excitation-emission matrix. Chemosphere 68,301-309.
    Mari, I., Ehaliotis, C., Kotsou, M., Chatzipavlidis, I., Georgakakis, D.,2005. Use of sulfur to control pH in composts derived from olive processing by-products. Compost Sci. Util.13,281-287.
    McKnight, D.M., Boyer, E.W., Westerhoff, P.K., Doran, P.T., Kulbe, T., Andersen, D.T.,2001. Spectrofluorometric characterization of dissolved organic matter for indication of precursor organic material and aromaticity. Limnol. Oceanogr.46,38-48.
    Meunchang, S., Panichsakpatana, S., Weaver, R.W.,2005. Co-composting of filter cake and bagasse; by-products from a sugar mill. Biores. Technol.96,437-442
    Miano, T., Sposito, G., Martin, J.P.,1990. Fluorescence spectroscopy of model humic acid-type polymers. Geoderma 47,349-359.
    Miller, F.C.,1992. Composting as a process based on the control of ecologically selective factors. In: Metting, F.B., Jr. (Ed.), Soil Microbial Ecology, Applications in Agricultural and Environmental Management. Marcel Dekker, Inc., New York, pp.515-544.
    Mondini, C., Abate, M.T., Leita, L., Benedetti, A. An Integrated Chemical, Thermal, and Microbiological Approach to Compost Stability Evaluation. J. Environ. Qual.2003,32,2379-2386
    Mounier, S., Braucher, R., Benaim, J.Y.,1999a. Differentiation of organic matter's properties of the Rio Negro basin by cross-flow ultrafiltration and UV-spectrofluorescence. Water Res.33,2363-2373.
    Mounier, S., Patel, N., Quilici, L., Benaim, J.Y., Benamou, C.,1999b. Three-dimensional fluorescence of the dissolved organic carbon in the Amazon River. Water Res.33,1523-1533.
    Ouatmane, A., Provenzano, M.R., Hafidi, M., Senesi, N.,2000. Compost maturity assessment using calorimetry, spectroscopy and chemical analysis. Compost Sci. Uti.8,135-146. Reynolds, D.M., Ahmad, S.R.,1997. Rapid and direct determination of wastewater BOD values using a fluorescence technique. Water Res.31,2012-2018.
    Pare, T., Dinel, H., Schnitzer, M., Dumontet, S.,1998. Transformations of carbon and nitrogen during composting of animal manure and shredded paper. Biol. Fertil. Soils.26,173-178.
    Paredes, C., Bernal, M.P., Cegarra, J., Roig, A.,2002. Bio-degradation of olive mill waste water sludge by its co-composting with agricultural wastes. Biores. Technol.85,1-8.
    Sierra, M.M.D., Giovanela, M., Parlanti, E., Soriano-Sierra, E.J.,2005. Fluorescence fingerprint of fulvic and humic acids from varied origins as viewed by single-scan and excitation/emission matrix techniques. Chemosphere 58,715-733.
    Soler-Rovira, P.A., Brunetti, G., Polo, A., Senesi, N.,2003. Effects of amendment with composted sludge on soil humic acid properties. Compost Sci. Util.11,176-184.
    Tang, Z., Yu, G.H., Liu, D.Y., Xu, D.B., Shen, Q.R.,2011. Different analysis techniques for fluorescence excitation-emission matrixspectroscopy to assess compost maturity. Chemosphere 82, 1202-1208.
    Tiquia, S.M., Tam, N.F.Y.,1998. Composting of spent pig litter in turned and forced-aerated piles. Environ. Pollut.99,329-337.
    Wong, J.W.C., Mak, K.F., Chan, N.W., Lam, A., Fang, M., Zhou, L.X., Wu, Q.T., Liao, X.D.,2001. Co-composting of soybean residues and leaves in Hong Kong. Biores. Technol.76,99-106.
    Xu, H.C., He, P.J., Wang, G.Z., Shao, L.M.,2010. Three-dimensional excitation emission matrix fluorescence spectroscopy and gel-permeating chromatography to characterize extracellular polymeric substances in aerobic granulation. Water Sci. Technol.61,2931-2942.
    Yu, G.H., Luo, Y.H., Wu, M.J., Tang, Z., Liu, D.Y., Yang, X.M., Shen, Q.R.,2010., PARAFAC modeling of fluorescence excitation-emission spectra for rapid assessment of compost maturity. Biores. Technol.101,8244-8251.
    蒋凤华,杨黄浩,黎先春,王小如,王修林,殷月芬.胶州湾海水溶解有机物三荧光特征研究.光谱学与光谱分析,2007,9(27):1765-]769.
    刘连生,朱洪涛,孟凡刚.利用牛粪生产生物有机肥实验研究.科协论坛(下半月),2008,23(1):74-75.
    陆明刚,吕小虎.分子光谱分析新法引论.合肥:中国科学技术大学出版社出版,1993:83-85.
    李承强,魏源送,樊耀波等.堆肥腐熟度的研究进展.环境科学进展,1999,7(6),1-12.
    李国学,李玉春,李彦富.固体废物堆肥化及堆肥添加剂研究进展.农业环境科学学报,2003,22(2):252-256.
    李季伦,张伟心,杨启瑞等编.微生物生理学.北京:北京农业大学出版社.1993:124-127.
    郭云霞,黄仁录,郝庆红.畜禽粪便的无害化资源化处理技术.养殖与饲料,2006,5(12):49-51.
    Adachi, M., Matsubara, T., Okamoto, R., Nishijima, T., Itakura, S.M.,2001. Inhibition of cyst formation in the toxic dinoflagellate Alexandrium (Dinophyceae) by bacteria from Hiroshima Bay. Japan Aquat. Microb. Ecol.26,223-233.
    Amann, R.I., Ludwig, W., Schleifer, K.,1995. Phylogenetic identification and in situ detection of individual microbial cells without cultivation. Microb. Rev.59,143-169.
    Beloin, R.M.,1987. The analysis of a direct counting method and the occurrence of 4-hydroxybenzoate degrading microorganisms in subsurface samples. Masters Thesis, Cornell University, Ithaca, NY.
    Chakravorty, S., Helb, D., Burday, M., Connell, N., Alland, D.,2007. A detailed analysis of 16S ribosomal RNA gene segments for the diagnosis of pathogenic bacteria. J. Microbiol. Meth.69, 330-339.
    Cullen, D.W., Hirsch, P.R.,1998. Simple and rapid method fordirect extraction of microbial DNA from soil for PCR. Soil Bio. Biochem.30,983-993.
    Fracchia, L., Dohrmann, A.B., Martinotti, M.G., Tebbe, C.C.,2006. Bacterial diversity in a finished compost and vermicompost:differences revealed by cultivation-independent analyses of PCR-amplified 16S rRNA genes. Appl. Microbiol. Biotechnol.71,942-952.
    Howeler, M., Ghiorse, W.C., Walker, L.P.,2003. A quantitative analysis of DNA extraction and purification from compost. J. Microbiol. Meth.54,37-45.
    Kozdroz, J., van Elsas, J.D.,2000. Application of polymerase chain reaction-denaturing gradient electrophoresis for comparison of direct and indirect extraction methods of soil DNA used for microbial community fingerprinting. Biol.Fertil. Soils 31,372-378.
    Krsek, M., Wellington, E.M.H.,1999. Comparison of different methods for the isolation and purification of total community DNA from soil. J. Microbio. Meth.39,1-16.
    LaMontagne, M.G., Michel, J.F.C., Holden, P.A.,2002. Evaluation of extraction and purification methods for obtaining PCR-amplifiable DNA from compost for microbial community analysis. J. Micro. Meth.49,255-264.
    Maila, M.P., Randima, P., Drogen, K.,2006. Soil microbial communities:influence of geographic location and hydrocardon pollutants. Soil Bio. Biochem.38,303-310.
    Miller, D.N., Bryant, J.E., Madsen, E.L., Ghiorse, W.C.,1999. Evaluation and optimization of DNA purification procedures for soil and sediment samples. Appl. Environ. Microbiol.65,4715-424.
    Muyzer., G., Dewaal, E.C., Uitterlinden, A.G.,1993. Profiling of complex microbial-populations by denaturing gradient gelelectrophoresis analysis of polymerase chain reaction-amplified genes coding for 16S ribosomal-RNA. Appl. Environ. Microbiol.59,695-700.
    Ograma, S.A., Ylerg, S., Barka, Y.T.,1987. The ext raction and purification of microbial DNA from sediments. J. Microbiol.7,57-66.
    Pfaller, S.L., Vesper, S.J., Moreno, H.,1994. The use of PCR to detect a pathogen in compost. Compost Sci. Util.2,48-54.
    Purdy, K.J., Embley, T.M., Takii, S., Nedwell, D.B.,1996. Rapid extraction of DNA and rRNA from sediments by a novel hydroxyapatite spin-column method. Appl. Environ. Microbiol.62, 3905-3907.
    Reuter, T., Xu, W.P., Alexander, T.W., Stanford, K., Xu, Y.P., McAllister, T.A.,2009. Purification of polymerase chain reaction (PCR)-amplifiable DNA from compost piles containing bovine mortalities. Bioresour. Technol.100,3343-3349.
    Tebbe, C.C., Vahjen, W.,1993. Interference of humic acids and DNA extracted directly from soil in detection and transformation of recombinant DNA from bacteria and a yeast. Appl. Environ.Microbiol.59,2657-2665.
    Torsvik, V.L., Goksyr, J.,1978. Determination of bacteria DNA in soil. Soil Bio. Biochem.10,57-62.
    Wikstrom, P., Wiklund, A., Andersson, A.C., Forsman, M.,1996. DNA recovery and PCR quantification of catechol 2,3-dioxygenase genes from different soil types. J. Biotech.52,107-120.
    Wu, L., Li, F.G., Deng, Ch.Y., Xu, D.Q., Jiang, S. W., Xiong, Y.Zh.,2009. A method for obtaining DNA from compost. Appl.Microbiol. Biotechnol.84,389-395.
    Yang, Zh.H., Xiao, Y., Zeng, G.M., Xu, Zh.Y., Liu, Y.Sh.,2007. Comparison of methods for total community DNA extraction and purification from compost. Appl. Microbiol. Biotechnol.74, 918-925.
    Zhou, J.Z., Bruns, M.A., Tiedje, J.M.,1996. DNA recovery from soils of diverse composition. Appl. Environ. Microbiol.62,316-322.
    唐景春,孙青,王如刚,白晓瑞.堆肥过程中腐殖酸的生成演化及应用研究进展.环境污染与防治,2010,32(5):73-77.
    Amann, R.I., Ludwig, W., Schleifer, K.,1995. Phylogenetic identification and in situ detection of individual microbial cells without cultivation. Microb. Rev.59,143-169.
    Beffa, T., Blanc, M., Marilley, L., Fischer, J.L., Lyon, P.F., Aragno, M.,1996. Taxonomic and metabolic microbial diversity during composting. In:The Science of Composting (De Bertoldi, M., Ed.), pp. 149-161. Blackie, New York.
    Bent, S.J., Forney, L.J.,2008. The tragedy of the uncommon:understanding limitations in the analysis of microbial diversity. The ISME. J.2,689-695.
    Blanc, M., Marilley, L.T., Beffa, T. Aragno, M.,1999. Thermophilic bacterial communities in hot composts as revealed by most probable number counts and molecular (16S rDNA) methods. FEMS Microbiol. Ecol.28,141-149.
    Blumel, S. Stolz, A.,2003. Cloning and characterization of the gene coding for the aerobic azoreductase from Pigmentiphaga kullae K24. Appl. Microbiol. Biotechnol.62,186-190.
    Bowman, J.P., Cavanagh, J., Austin, J.J., Sanderson, K.,1996. Novel Psychrobacter Species from Antarctic Ornithogenic Soils. Int. J. Syst. Bacteriol.46,841-848.
    Cole, J.R., Chai, B., Farris, R.J., Wang, R.J., Kulam-Syed-Mohideen, A.S., McGarrell, D.M., Bandela, A.M., Cardenas, E., Garrity, G.M., Tiedje, J.M.,2007. The ribosomal database project (RDP-Ⅱ): introducing myRDP space and quality controlled public data. Nucleic Acids Res.35,169-172.
    Coenye., T., Vanlaere, E., Samyn, E., Falsen, E., Larsson, P., Vandamme, P.,2005. Advenella incenata gen. nov., sp. nov., a novel member of the Alcaligenaceae, isolated from various clinical samples. Int. J. Syst. Bacteriol.55,251-256.
    Cross, T.,1968. Thermophilic actinomycetes. J. Appl. Bact.31,36-53.
    Danon, M., Franke-Whittle, I.H., Insam, H., Chen, Y., Hadar, Y.,2008. Molecular analysis of bacterial community succession during prolonged compost curing. FEMS Microbiol. Ecol.65,133-144.
    Das, M., Royer, T.V., and Leff, L. G.,2007. Diversity of Fungi, Bacteria, and Actinomycetes on Leaves Decomposing in a Stream. Appl. Environ. Microbiol.73,756-767.
    DeSantis, T.Z., Hugenholtz, P., Larsen, N., Rojas, M., Brodie, E.L., Keller, K., Huber, T., Dalevi D, Hu. P., Anderson, G.L.,2006. Greengenes, a chimera-checked 16S rRNA gene database and workbench compatible with ARB. Appl. Environ. Microbiol.72,5069-5072.
    Elshahed, M.S., Youssef, N.H., Spain, A.M., Sheik, C., Najar, F.Z., Sukharnikov, L.O., Roe, B.A., Davis, J.P., Schloss, P.D., Bailey, V.L., Krumholz, L.R.,2008. Novelty and Uniqueness Patterns of Rare Members of the Soil Biosphere. Appl. Environ. Microbiol.74,5422-5428.
    Fracchia, L., Dohnnann, A.B., Martinotti, M. G., Tebbe, C.C.,2006. Bacterial diversity in a finished compost and vermicompost:differences revealed by cultivation-independent analyses of PCR-amplified 16S rRNA genes. Appl. Microbiol. Biotechnol.71,942-952.
    Franke-Whittle, I.H., Knapp, B.A., Fuchs, J., Kaufmann, R., Insam, H.,2009. Application of COMPOCHIP microarray to investigate the bacterial communities of different composts. Microb. Ecol.57,510-521.
    Fuchsman, C., Srinivasan, S., Staley, J.T., Murray, J.W.,2006. Diversity and Distribution of Planctomycetes and Related Bacteria in the Suboxic Zone of the Black Sea. Appl. Environ. Microbiol.72,3079-3083.
    Garcia-de-la-Fuente, R., Cutest, G., Sanchis-Jimenez, E., Botella, S., Abad, M., Fornes. F.,2011. Bacteria involved in sulfur amendment oxidation and acidification processes of alkaline'alperujo' compost. Bioresour. Technol.102,1481-1488.
    Goyal, S., Dhull, S.K., Kapoor, K.K.,2005. Chemical and biological changes during composting of different organic wastes and assessment of compost maturity. Bioresour. Technol.96,1584-1591.
    Haas, D., Defago, G.2005. Biological control of soil-borne pathogens by fluorescent pseudomonads. Nat. Rev. Microbiol.3,307-319.
    Hassen, A., Belguit, K., Jedidi, N., Cherif, A., Cherif, M., Boudabous, A.,2001. Microbialcharacterization during composting of municipal solid waste. Bioresour. Technol.80, 217-225.
    Hold, G. L., Pryde, S.E., Russell, V.J., Furrie, E., Flint, H.J.,2002. Assessment of microbial diversity in human colonic samples by16S rDNA sequence analysis. FEMS Microbiol. Ecol.39,33-39.
    Innerebner, G., Knapp, B., Vasara, T., Romantschuk, M., Insam, H.,2006. Traceability of ammonia-oxidizing bacteria in compost-treated soils. Soil Biol. Biochem.38,1092-1100.
    Ishii, K., Fukui, M., Takii, S.,2000. Microbial succession during a composting process as evaluated by denaturing gradient gel electrophoresis analysis. J. Appl. Microbiol.89,768-777.
    Jain, R.K., Dreisbach, J.H., Spain, J.C.,1994. Biodegradation of p-Nitrophenol via 1,2,4-Benzenetriol by an Arthrobacter sp. Appl. Environ. Microbiol.60,3030-3032.
    Kemp, P.F., Aller, J.Y.,2004. Bacterial diversity in aquatic and other environments:what 16S rDNA libraries can tell us. FEMS Microbio. Ecol.47,161-177.
    Klammer, S., Mondini, C., Insam, H.,2005. Microbial community fingerprint of composts store under different conditions. Ann. Appl. Microbiol.55,299-305.
    Lalucat, J., Bennasar, A., Bosch, R., Garcia-Valdes, E., Palleroni, N.J.,2006. Biology of Pseudomonas stutzeri. Microbiol. Mol. Biol. Rev.70,510-547.
    Larkin, M.A., Blackshields, G., Brown, N.P., Chenna, R., McGettigan, P.A., McWilliam, H.,2007. Clustal W and Clustal X version 2.0. Bioinformatics 23,2947-2948.
    Macalady, J.L., Lyon, E.H., Koffman, B., Albertson, L.K., Meyer, K., Galdenzi, S., Mariani, S.,2006. Dominant Microbial Populations in Limestone-Corroding Stream Biofilms, Frasassi Cave System, Italy. Appl. Environ. Microbiol.72,5596-5609.
    Manz, W., Amann, R., Ludwig, W., Vancanneyt, M., Schleifer, K.H.,1996. Application of a suite of 16S rRNA-specific oligonucleotide probes designed to investigate bacteria of the phylum cytophaga-flavobacter-bacteroides in the natural environment. Microbiology 142,1097-1106.
    Marilley, L., Vogt, G., Blanc, M., Aragno, M.,1998. Bacterial diversity in the bulk soil and rhizosphere fractions of Loliumperenne and Trifolium repens as revealed by PCR restriction analysis of 16S rDNA. Plant and Soil 198,219-224.
    Mayende, L., Wilhelmi, B.S., Pletschke, B.I.,2006. Cellulases (CMCases) and polyphenol oxidases from thermophilic Bacillus spp. isolated from compost. Soil Biol. Biochem.38,2963-2966.
    Muyzer, G., Dewaal, E.C., Uitterlinden, A.G.,1993. Profiling of complex microbial-populations by denaturing gradient gelelectrophoresis analysis of polymerase chain reaction-amplified genes coding for 16S ribosomal-RNA. Appl. Environ. Microbiol.59,695-700.
    Peters, S., Koschinsky, S., Schwieger, F., Tebbe, C.C.,2001. Succession of Microbial Communities during Hot Composting as Detected by PCR-Single-Strand-Conformation Polymorphism-Based Genetic Profiles of Small-Subunit rRNA Genes. Appl. Environ. Microbiol.66,930-936.
    Peter, M. D., William, C.G.,2001. Microbial diversity in hot synthetic compost as revealed by PCR-amplified rRNA sequences from cultivated isolates and extracted DNA. FEMS Microbiol. Ecol.35,207-216.
    Partanen, P., Hultman, J., Paulin, L., Auvinen, P., Romantschuk, M.,2010. Bacterial diversity at different stages of the composting process. BMC Microbiol.10,94-105.
    Saitou, N., Net, M.,1987. The neighbor-joining method:a new method for reconstructing phylogenetic trees. Mol. Biol. Evol.4,406-425.
    Schloss, P.D., Handelsman, J.,2005. Introducing DOTUR, a computer program for defining operational taxonomic units and estimating species richness. Appl. Environ. Microbiol.71,1501-1506.
    Rosenberg, E., Zuckerberg, A., Rubinovitz, C., Gutnick, D.L.,1979, Emulsifier of Arthrobacter RAG-1: Isolation and Emulsifying Properties. Appl. Environ. Microbiol.37,402-408.
    Ryckeboer, J., Mergaert, J., Vaes, K., Klammer, S., De Clercq, D., Coosemans, J., Insam, H., Swings, J., 2003a. A survey of bacteria and fungi occurring during composting and self-heating processes. Ann. Microbiol.53,349-410.
    Ryckeboer, J., Mergaert, J., Coosemans, J., Deprins, K., Swings, J.,2003b. Microbiological aspects of biowaste during composting in a monitored compost bin. J. Appl. Microbiol.94,127-137.
    Sakai, K., Yokota, A., Kurokawa, H., Wakayama, M., Moriguchi, M.,1998. Purification and Characterization of Three Thermostable Endochitinases of a Noble Bacillus Strain, MH-1, Isolated from Chitin-Containing Compost. Appl. Microbiol. Biotechnol.64,3397-3402.
    Steger, K., Sjogren, A.M., Jarvis, A., Jansson, J.K., Sundh, I.,2007. Development of compost maturity and Actinobacteria populations during full-scale composting of organic household waste. J. Appl. Microbiol.103,487-498.
    Strom, P.F.,1985. Effect of Temperature on Bacterial Species Diversity in Thermophilic Solid-Waste Composting. Appl. Environ. Microbiol.50,899-905.
    Szostak-Kotowa, J.,2004. Biodeterioration of textiles. Int. Biodeterior. Biodegrad.53,165-170.
    Takaku, H., Kodaira, S., Kimoto, A., Nashimoto, M., Takagi, M.2006. Microbial Communities in the Garbage Composting with Rice Hull as an Amendment Revealed by Culture-Dependent and-Independent Approaches. J. Biosci. Bioeng.101,42-50.
    Tang, Z., Yu, G.H., Liu, D.Y., Xu, D.B., Shen, Q.R.,2011. Different analysis techniques for fluorescence excitation-emission matrixspectroscopy to assess compost maturity. Chemosphere 82, 1202-1208.
    Tiquia, S.M.,2002. Microbial transformation of nitrogen during composting. In:Insam, H., Riddech, N., Klammer, S. (Eds.), Microbiology of Composting and Other Biodegradation Processes. Springer-Verlag, Berlin, Heidelberg, pp.237-245.
    Vargas-Garcia, M.C., Suarez-Estrella, F., L6pez, M.J., Moreno, J.,2010. Microbial population dynamics and enzyme activities in composting processes with different starting materials Waste Manage.30, 771-778.
    Veglio, F., Beolchini, F., Gasbarro, A.,1996. Biosorption of toxic metals:an equilibrium study using free cells of Actinobacteria sp. Process Biochem.32,95-107.
    Watanabe, K., Nagao, T. T., Kurosawa, N.,2009. The dominant bacteria shifted from the order "Lactobacillales"to Bacillales and Actinomycetales during a start-up period of large-scale, completely-mixed composting reactor using plastic bottle flakes as bulking agent. World J. Microbiol. Biotechnol.25,803-811.
    Yamamoto, N., Otawa, K., Nakai, Y.,2010. Diversity and Abundance of Ammonia-Oxidizing Bacteria and Ammonia-Oxidizing Archaea During Cattle Manure Composting. Microb. Ecol.60,807-815.
    Yu, G.H., Luo, Y.H., Wu, M.J., Tang, Z., Liu, D.Y., Yang, X.M., Shen, Q.R.,2010. PARAFAC modeling of fluorescence excitation-emission spectra for rapid assessment of compost maturity. Bioresour. Technol.101,8244-8251.
    Castaldi, P., Garau, G., Melis, P.,2008. Maturity assessment of compost from municipal solid waste through the study of enzyme activities and water-soluble fractions. Waste Manage.28,534-540.
    Franke-Whittle, I.H., Knapp, B.A., Fuchs, J., Kaufmann, R., Insam, H.,2009. Application of COMPOCHIP microarray to investigate the bacterial communities of different composts. Microb. Ecol.57,510-521.
    Garcia, C., Ceccanti, B., Masciandaro, G.,1995. Phosphatase and (3-glucosidase activities in humic subatances from animal wastes. Biores. Technol.53,79-87.
    Godden, B., Penninckx, M.J.,1984. Biochemistry of manure composting lignin biotransformation and humification. Annale de Microbiologie (Institut Pasteur) 135B,69-78.
    Goyal, S., Dhull, S.K., Kapoor, K.K.,2005. Chemical and biological changes during omposting of different organic wastes and assessment of compost maturity. Biores. Technol.96,1584-1591.
    Gould, J. M.,1985. Studies on the mechanism of alkaline peroxide delignification of agricultural residues. Biotech, and Bioeng.26,46-72
    Han, Y. W., Yu, P. L., Smith, S. K.,1978. Alkali treatment and fermentation of straw for animal feed. Biotech, and Bioeng.20,1015-1026
    Hart, T.D., De Leij, F.A.A.M., Kinsey, G., Kelley, J., Lynch, J.M.,2002. Strategies for the isolation of cellulolytic fungi for composting of wheat straw. World J. Microb. Biot.18,471-480.
    Kasana, R.C., Salwan, R., Dhar, H., Dutt, S., Gulati, A.,2008. A rapid and easy method for the detection of microbial cellulases on agar plates using gram's iodine. Curr. Microbiol.57,503-7.
    Ko, W.H., Hora, F.K., Herlicksa, E.,1974. Isolation and identification of a volatile fungistatic substance from alkaline soil. Phytopathology 64,1398-1400.
    Lynch, J.M.,1993. Substrate availability in the production of composts. In:Hoitink, H.A.J., Keener, H.M. (Eds.), Science and Engineering of Composting:Design, Environmental, Microbiological and Utilization Aspects. Renaissanc Publications, OH, pp.24-35.
    Masciandaro, G., Ceccanti, B., Garcia, C.,1994. Anaerobic digestion of straw and piggery wastewaters: Ⅱ. Optimization of the process. Agrochimica.38,195-203.
    Mastry, H. G.,1983. Utilization of egyptian rice straw in production of cellalases and microbial protein: effect of various pretreatments on yields of protein and enzyme activity. J Sci. Food Agric.34, 725-732.
    Mckinley, V.L., Vestal, J.R., Eralp, A.E.,1985. Microbial activity in composting. Biocycle 26,39-43.
    Miller, G.L.,1959. Use of dinitrosalicylic acid reagent for determination of reducing sugar. Analytical Chemistry 31,426-428.
    M.Mandels., Andreotti, R.E.,1978. Problem and challenges in cellulose to glucose fermentation. Proc. Biochem.13,265-275.
    Novagen.1999. pET System manual. In:8T, editor. United States Canada.
    Partanen, P., Hultman, J., Paulin, L., Auvinen, P., Romantschuk, M.,2010. Bacterial diversity at different stages of the composting process. BMC Microbiol.10,94-105.
    Peters, S., Koschinsky, S., Schwieger, F., Tebbe, C.C.,2001. Succession of Microbial Communities during Hot Composting as Detected by PCR-Single-Strand-Conformation Polymorphism-Based Genetic Profiles of Small-Subunit rRNA Genes. Appl. Environ. Microbiol.66,930-936.
    Poincelot, R.P., Day, P.R.,1973. Rates of cellulose decomposition during the composting of leaves combined with several municipal and industrial wastes and other additives. Compost Sci.14,23-25.
    Ryckeboer, J., Mergaert, J., Coosemans, J., Deprins, K., Swings, J.,2003. Microbiological aspects of biowaste during composting in a monitored compost bin. J. Appl. Microbiol.94,127-137.
    Takaku, H., Kodaira, S., Kimoto, A., Nashimoto, M., Takagi, M.,2006. Microbial Communities in the Garbage Composting with Rice Hull as an Amendment Revealed by Culture-Dependent and-Independent Approaches. J. Biosci. Bioeng.101,42-50.
    Tassinari, T., Macy, C., Spano, L.,1980. Energy requirements and process design consideration in compression milling pretreatof cellulosic wastes for enzymatic hyprolepsis. Biotech, and Bioeng. 22,1689-1705
    Tiquia, S.M., Wan, J.H.C., Tam, N.F.Y.,2002. Dynamics of yard termmings composting as determined by dehydrogenase activity, ATP content, arginine ammonification, and nitrification potential. Pro. Biochem.37,1057-1066.
    Saddler, J. N., Broanell, H. H., Clermont, L. P.,1982. Enzymatic hydrolysis of cellulost and vairous pretreated wood fractions. Biotech, and Bioeng.24,1389-1402
    Strom, P.F.,1985. Effect of Temperature on Bacterial Species Diversity in Thermophilic Solid-Waste Composting. Appl. Environ. Microbiol.50,899-905.
    Szostak-Kotowa, J.,2004. Biodeterioration of textiles. Int. Biodeterior. Biodegrad.53,165-170.
    Zhang, L.P., Chen, Ch., Yin, T.T.,2010. Review of current research on immobilized xylanase. Chem. World 11,697-700.
    东秀珠,蔡妙英.常见细菌系统鉴定手册.北京:科学出版社,2001,97-100.
    顾方媛,陈朝银,石家骥,等.纤维素酶的研究进展与发展趋势.微生物学杂志,2008,28(1):83-87.
    刘德海,陈小鸽,杨玉华,等.纤维素酶酶活的测定方法.中国饲料,2002(17):27-28.
    孙晓华,罗安程.纤维素分解菌的分离、筛选及其环境适应性初步研究。科技通报,2005,21(2):236-241.
    王小韦,李秀金,刘新春,等.秸秆厌氧消化的预处理技术研究进展.环境科学与技术,2009,32(120):177-180.
    王玉万,徐文玉.木质纤维素基质发酵物中半纤维素、纤维素和木质素的定量分析程序.微生物学通报,1987,13(2):82-84.
    汪家政,范明.蛋白质技术手册.北京:科学出版社.2000:210-215.
    韦雪芳,王冬梅,刘思,周鹏.信号肽及其在蛋白质表达中的应用.生物技术通报,2006,6(3):38-42.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700