用户名: 密码: 验证码:
长期不同施肥制度下双季稻田土壤肥力与温室气体排放规律的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
粮食安全是当今全球面临的重大挑战之一,然而现代农业生产往往忽视了对土壤质量和生态环境产生的负面影响,研究农业措施的长期效果是关乎农业可持续发展的重要课题。本研究以中国科学院湖南桃源农业生态试验站始于1990年的长期定位施肥试验为研究对象,探讨长期不同施肥制度下双季稻产量和土壤肥力变化趋势、土壤固碳潜力以及温室气体CH4、N20排放与NH3挥发的规律。试验处理如下:①不施肥(CK);②施用常量化学N、P肥(NP);③施用常量化学N、K肥(NK);④施用常量化学N、P、K肥(NPK);⑤施用常量化学N、P、K肥+全量秸秆还田+绿肥(FOM);⑥2/3化学N、P肥+1/3化学K肥+1/2秸秆还田+绿肥(ROM)。具体结果如下:
     1.1990-2009年,不平衡施肥处理(NP和NK)的早稻和晚稻平均产量分别比对照处理(CK)增加9.2-64.2%和13.6-30.6%。与对照相比,NPK处理的早稻和晚稻产量增加90.2%和46.4%。有机无机配施处理(FOM和ROM)的早稻和晚稻产量分别比对照增加89.6_117.4%和47.6-53.5%。早稻和晚稻的产量均随土壤综合肥力指数的增加呈极显著线性增加的趋势。长期不施肥导致土壤综合肥力显著下降(P<0.05)。与试验前相比,2009年NPK、FOM和ROM处理的土壤综合肥力比试验前显著增加(P<0.05),并达到高肥力水平(0.723-0.787)。不平衡施肥条件下土壤综合肥力指数没有显著增加。土壤磷的有效性是限制水稻增产的关键因素,其中施磷肥处理(NP、NPK、FOM和ROM)的早稻产量呈显著增加的趋势(P<0.05),而不施磷处理(CK和NK)在早稻和晚稻季均无增加趋势。
     2.1990-1996、1997-2005和2006-2009年,除CK处理外,所有施肥处理的土壤氮素表观平衡均呈盈余状态,但是氮素盈余量在不同年份变化较大,主要受氮肥投入和作物养分吸收年际变化的影响。FOM和ROM处理氮素表观盈余量在所有年份均高于NP和NPK处理。长期不施用磷肥会导致NK处理的表观磷亏缺程度比CK更加严重。各施磷处理(NP、NPK、FOM和ROM)的土壤磷表观平衡均呈盈余状态,其中1990-2005年FOM处理的磷素盈余量最高,2006-2009年NP处理最高。NP处理在各阶段土壤磷素盈余量均高于NPK处理,主要由于不平衡施肥导致NP处理的作物养分吸收量下降。不施钾处理(NP和CK)的土壤钾素表观亏缺表现为逐渐下降的趋势,主要由于水稻植株的钾吸收量下降。施钾处理(NK、NPK、FOM和ROM)的土壤钾素表观平衡在不同年份波动较大,仅FOM处理在所有阶段均处于盈余状态,且盈余量随着钾肥施用量的不断增加而增加。ROM处理一直处于亏缺状态,但亏缺量逐渐降低。NK和NPK在1990-1996年处于亏缺状态,1997-2005和2006_2009年处于盈余状态,且盈余量逐渐增加。此外,由于NK的养分吸收量明显低于NPK处理,前者的钾素表观平衡量明显高于后者。
     3.1999_2009年双季稻系统耕层土壤有机碳(SOC)含量呈逐渐增加的趋势,其中2007-2009年SOC平均含量为0.49-0.80g C kg-1yr-1.CK和NK处理耕层SOC含量饱和值为21.1-22.1g C kg-1,NP和NPK处理为24.5-26.4g C kg-1,而有机无机配施处理(FOM和ROM)为37.5-7.2g C kg-1.2007-2009年,CK处理耕层土壤固碳速率为0.96Mg C ha-1yr-1,其他施肥处理的土壤固碳速率为1.01-1.43Mg C ha-1yr-1.2009年双季稻系统耕层土壤碳储量为36.4-48.2Mg Cha-1,比1999年高15-30%。
     4.2007-2009年早稻季和晚稻季田间NH3挥发损失平均分别为12.8-27.3kg Nha-1和17.3-32.7kg N ha-1,分别占施氮量的9.2-33.6%和17.8-32.2%。NH3挥发速率随着田间水层NH4+浓度的增加呈显著增加的趋势(P<0.01)。长期施肥可以显著增加双季稻系统NH3挥发(除早稻季ROM和CK处理间没有显著差异外)。与NPK处理相比,长期不平衡施肥导致累积NH3损失进一步增加。在平衡施用无机肥的基础上增施有机肥(FOM)也可以促进NH3挥发的增加。然而,有机肥替代部分无机化肥(ROM)条件下可以减少NH3挥发损失。NP和NK处理NH3挥发的增加与长期不平衡施肥导致水稻植株氮吸收显著下降有很大关系。
     5.2006-2009年稻田CH4排放受施肥和环境条件的影响,具有明显的季节变化规律。除晚稻生育后期外,整个双季稻种植季田间均处于淹水状态。早稻季气温逐渐升高,CH4排放在生育前期缓慢增加,生育中后期出现1_2个排放峰,到生育末期缓慢下降。晚稻季气温逐渐降低,CH4排放表现为先升高后降低的变化趋势,在生育初期CH4排放达到全年最高峰。尤其是有机无机肥配施处理(FOM和ROM)在晚稻移栽后1-2周内出现极为显著的CH4排放峰。晚稻季CH4累积排放通量比早稻季高113-157%,达到显著差异水平(P<0.01)。非水稻种植季田间无水层覆盖,加之气温较低,几乎观测不到CH4排放。CH4年累积排放通量范围为621-1175kg CH4ha-1(CK处理最低,FOM处理最高)。长期施肥可以增加稻田CH4排放通量。与对照处理相比,FOM和ROM处理下全年CH4累积排放通量分别增加89.8%和73.9%。单施化肥处理(NP、NK和NPK)全年CH4累积排放通量较低,仅比对照增加4.4_27.8%。
     6.2006-2009年水稻种植季淹水稻田表现为典型的大气N2O微弱的源或汇;非水稻种植季稻田不施肥,但没有水层覆盖,N20排放通量相对较高。N20年累积排放通量范围为1.15-4.11kg N2O-N ha-1(CK最低,FOM最高)。长期施肥对稻田N20排放的季节变化模式无明显影响,但影响其排放量。与对照相比,FOM和ROM处理的全年N20累积排放通量分别增加257%和193%。单施化肥处理的全年N20累积排放通量比对照增加68-158%。
     7.全年净综合温室效应和温室气体强度的平均变化范围分别为12587-26066kg CO2-equivalent ha-1yr-1和1.35-2.06CO2-equivalent kg-1grain yield yr-1。长期有机无机配施处理(FOM和ROM)可以显著增加全年净综合温室效应,主要由于淹水条件下有机肥的施用促进CH4的大量排放。与对照相比,NP和NPK处理具有较低的温室气体强度,而FOM和ROM处理较高。
     以上研究表明(1)双季稻产量变化趋势受施肥管理措施和土壤肥力变化的显著影响。(2)土壤养分投入和产出的动态平衡不仅受肥料运筹的影响,而且受植株养分吸收的影响,平衡施肥需要考虑生产力的变化(3)双季稻系统耕层有机碳储量呈逐渐增加的趋势。与单施化肥相比,增施秸秆和绿肥等有机物质的施用可以进一步促进土壤固碳。(4)稻田NH3挥发受施肥量和施肥方式的影响。长期平衡施肥可以促进水稻植株氮吸收,减少双季稻系统NH3挥发。(5)稻田CH4和N20排放具有明显的季节变化规律。长期施用化肥不仅可以增加水稻季CH4排放,而且促进非水稻种植季N20的排放。有机肥的施用可以显著增加淹水条件下水稻种植季的CH4排放,导致温室气体强度的增加;平衡施用化肥(尤其是磷肥的施用)可以减缓温室气体强度。因此,为同步实现较高的作物产量和较低的温室气体强度,双季稻系统可采取以下农业管理措施:平衡施肥(尤其是磷肥的施用)、水稻种植季中期烤田替代持续淹水、非水稻种植季秸秆还田替代水稻种植季施用秸秆等。但上述农业措施在双季稻系统中的实际效果,在以后研究中需要进一步验证和探讨。
Food security is one of the major challenges in the modern world. However, the possible negative impacts on soil quality and ecological environment are often ignored in modern agricultural production. Therefore, research about the long-term effects of agricultural measures concerns the sustainable development of agriculture in the future. A20-year field experiment began in1990was carried out in a long-term fertilizer experimental grid at Taoyuan Agro-ecological Experimental Station. It is located at the bottom of slope in a typical hilly agricultural area in Hunan Province, China (28°55'N,111°30'E; altitude:92.2-125.3m), where cropping regime is dominated by the double rice-cropping systems. The primary objective was to examine the effect of long-term fertilization on the trends of crop yields and soil fertility, carbon sequestration in topsoil, and characteristics of methane (CH4) and nitrous oxide (N2O) emissions and ammonia (NH3) volatilization in the typical double rice-cropping systems. In this long-term fertilizer experiment, a randomized block experiment with three replicates was established, with six different fertilizer treatments. The treatments included inorganic fertilizer [nitrogen and phosphorus fertilizer (NP), nitrogen and potassium fertilizer (NK), and balanced mineral fertilizer (NPK)], combined inorganic/organic fertilizers at full and reduced rate (FOM and ROM), and no fertilizer application as a control (CK). The detailed results were summarized as follows:
     1. Over20years, compared with control, the grain yields with imbalanced fertilizer application (NP and NK) were increased by9.2-64.2%and13.6-30.6%in early-and late-rice, respectively, while balanced fertilizer application (NPK) increased the grain yields by90.2%and46.4%. Long-term combined inorganic/organic fertilizer (FOM and ROM) application significantly increased grain yields, which enhanced by89.6-117.4%in early-rice and47.6-53.5%in late-rice as compared to CK. The mean yields in both of early-and late-rice linearly increased with increasing of integrated fertility index. Compared with the initial soil in1990, soil fertility showed a significant downward trend without any fertilizer application (CK) in double rice-cropping systems (P<0.05). The IFI averaged0.644-0.679in the plots with long-term imbalanced fertilizer application, but there was no significant difference in comparison with the initial soil. Compared with the control as well as initial soil, in contrast, long-term balanced mineral fertilizer application and combined inorganic/organic fertilizer application significantly increased IFI,0.723-0.787, which had reached up to the high grade of soil fertility. The rice yields in NP, NPK, FOM, and ROM plots showed significant and positive time trends for early rice-cropping seasons, while there were no any trends in P-omitted plots (N and NK) both in the double rice-cropping seasons. The much lower levels of available soil P in CK and NK plots suggested that soil P deficiency is an important factor limiting increased yields in double rice-cropping systems.
     2. In1990-1996,1997-2005and2006-2009, the contents of soil nitrogen in the fertilization treatments were in surplus conditions (except for CK). However, the amounts of nitrogen surplus varied from year to year, mainly associated with the input of nitrogen element through inorganic/organic fertilizer and the output through uptake by rice plants in the double rice-cropping systems. The amounts of nitrogen surplus in FOM and ROM treatments were higher than NP and NPK treatments in all stages. Compared with CK, phosphorous deficit got worse towards the end of the long-term experiment without phosphorous application in NK treatment. Instead, the apparent balances of soil phosphorous in the treatments with phosphorous application (NP, NPK, FOM and ROM) were in surplus conditions. The highest amount of phosphorous surplus was in FOM treatment from1990to2005, while it was in NP2006-2009. The amount of phosphorous surplus was higher in NP than NPK in all stages, because phosphorous uptake by rice plants declined with imbalanced fertilizer application in NP. The potassium deficits in NP and CK plots showed negative time trends in these three stages, mainly because the potassium uptake was limited in these plots. The apparent balances of soil potassium varied from year to year. The amount of potassium surplus was increased with increasing potassium input in FOM treatment in all stages. The balances of soil potassium showed deficit in ROM treatment, but the amount of deficit was decreased in the three stages. The apparent balances of soil potassium showed deficit in NK and NPK treatments in1990-1996, while they were surplus and the amount gradually increased from1997to2005. In addition, the amount of potassium surplus was much higher in NK than NPK, because potassium uptake by rice plants declined with imbalanced fertilizer application in NK.
     3. The net ecosystem carbon balance was estimated by the changes in topsoil (0-20cm) organic carbon (SOC) density over the10-yr period1999-2009. Annual increase rate of SOC averaged0.49-0.80g C kg-1yr-1. Annual topsoil SOC sequestration rate was estimated to be0.96t C ha-1yr-1for the control and1.01-1.43t C ha-1yr-1for the fertilizer plots. The topsoil SOC density averaged36.4-48.2t C ha-1in the double rice-cropping systems in2009.
     4. The cumulative NH3volatilizations in the fertilizer plots ranged between12.8and27.3kg N ha-1for early-rice season and between17.3and32.7kg N ha-1for late-rice season, or accounted for9.2-33.6%and17.8-32.2%of the applied N, respectively. The NH4+concentration in floodwater, originated mainly from urea hydrolysis, is a predominant factor to NH3losses in the double rice-cropping systems. NH3volatilization rates increased nonlinearly with an increase of NH4+contents in surface water (P<0.01). Long-term fertilization significantly increased NH3volatilization, except for no difference between the control and ROM plots in early-rice season. Compared with the NPK, the cumulative NH3volatilizations tended to be increased with long-term imbalanced mineral fertilizer application in NP and NK treatments, and also can be enhanced by additional organic fertilizer amendment in the FOM plots. Nonetheless, NH3loss was declined when part of the mineral fertilizers in NPK were substituted by organic fertilizer (ROM). The increased NH3volatilization can be ascribed to the significantly decreased N uptake by rice for the NP and NK plots.
     5. Rice paddy field is the important source of CH4. During the early-rice growing season under continuous flooding, CH4fluxes were gradually increased in the early stage and stepped down in the late stage. The CH4fluxes dramatically ascended after late-rice transplanting in July. The highest CH4fluxes were observed on days to1-week after rice transplanting then gradually decreased to background levels in the late-rice season. Particularly, a remarkable peak of CH4flux was observed approximately1-2weeks after late-rice transplanting for the plots with combined inorganic/organic fertilizer applications. Substantial CH4emission was observed in late-rice growing season,113-157%greater than those in early-rice season (paired t-test, P<0.001). In the non-rice winter seasons, all field treatment soils acted as small net sink or source of CH4to the atmosphere, which is largely due to drainage. Annual mean CH4emissions ranged from621kg CH4ha-1for the control to1175kg CH4ha-1 for the FOM plots. Long-term inorganic fertilizer application increased CH4emissions by4.4-27.8%as compared to CK. Long-term combined inorganic/organic fertilizer application remarkably increased the CH4emissions by89.8%(FOM) and73.9%(ROM) under continuous waterlogging.
     6. During the double-rice growing seasons, N2O emissions from paddy fields were negligible. Substantial N2O emission was observed in the non-rice growing period, although no fertilizer was applied in the winter season. Annual N2O emission averaged1.15-4.11kg N2O-N ha-1in the double rice-cropping systems. Seasonal dynamics of N2O fluxes were insignificantly influenced by long-term fertilizer application, while annual N2O emissions were greatly affected by fertilization. Compared to CK, annual N2O emissions were increased by257%in FOM and193%in ROM under continuous waterlogging. Long-term inorganic fertilizer application increased N2O emission by68-158%in comparison with CK.
     7. On average, the net annual global warming potential (GWP) and greenhouse gas intensity (GHGI) were estimated12587-26066kg CO2-equivalent ha-1yr-1and1.35-2.06kg CO2-equivalents kg-1grain yield yr-1in the double rice-cropping systems. Compared with the control, inorganic fertilizer application slightly increased the net annual GWP, while they were remarkably increased by combined inorganic/organic fertilizer application due to the greatly increased annual CH4emissions during the flooded rice seasons. The GHGI was lower for the NP and NPK plots and higher for the FOM and ROM plots.
     First, in conclusion, the trends of crop yield were significantly affected by long-term fertilization and soil fertility. Second, the apparent balances of soil nutrients are not only decided by the practice of fertilizer management, but also influenced by the level of nutrient uptake by plants in the long-term experiment. Third, topsoil C sequestration generally increased in the double rice-cropping systems, and it can be further enhanced by additional organic fertilizers application in comparison with inorganic fertilization. Fourth, NH3volatilizations were not only affected by the rate of fertilizer application, but also influenced by fertilization method. Nitrogen uptake by plants can be enhanced by balanced fertilization and thereby NH3losses were decreased in the double rice-cropping systems. Finally, the seasonal dynamics characteristics of CH4and N2O were identical in the double rice-cropping systems. Compared to CK, long-term inorganic fertilizer application tended to increase CH4emissions during the flooded rice season and significantly increased N2O emissions from drained soils during the non-rice season. However, GHGI can be decreased by balanced inorganic fertilizer application, particularly with P fertilizer supplement. Nonetheless, net GWP and GHGI can be remarkably increased by organic fertilizer application mainly due to the greatly increased CH4emissions during the flooded rice seasons.
     In order to simultaneously achieve high crop productivity and low greenhouse gas intensity, we proposed some agricultural management strategies in the double rice-cropping systems, including balanced fertilizer management (particularly P fertilizer supplement), midseason drainage instead of continuous waterlogging, and crop residue incorporated into soil in the non-rice drained season rather than in the flooded rice season. However, the practical results by these strategies need yet to be proved by further experiments in Chinese double rice-cropping systems.
引文
[1]Achtnich C, Bak F, Conrad R. Competition for electron donors among nitrate reducers, ferric iron reducers, sulfate reducers, and methanogens in anoxic paddy soil. Biology and Fertility of Soils, 1995,19(1):65-72
    [2]Adhya T K, Bharati K, Mohanty S R, et al. Methane emission from rice fields at Cuttack, India [J]. Nutrient Cycling in Agroecosystems,2000,58,95-105
    [3]Alan L W. Carbon and nitrogen sequestration and soil aggregation under sorghum cropping sequences [J]. Biology and Fertility of Soils,2005,41:95-100
    [4]Akiyama H, Yagi K, Yan X. Direct N2O emissions from rice paddy fields:summary of available data [J]. Global Biogeochemical Cycles,2005,19, GB105, doi:10.1029/2004GB002378
    [5]Amthor J S. Terrestrial higher-plant response to increasing atmospheric CO2 in relation to the global carbon cycle [J]. Global Change Biology,1995,1(4):243-274
    [6]Angers D A, Recous S, Aita C. Fate of carbon and nitrogen in water-stable aggregates during decomposition of 13 C15N-labelled wheat straw in situ [J]. European Journal of Soil Science,1997, 48:295-300
    [7]Asakawa S, Akagawa-Matsushita M, Koga Y, et al. Communities of methanogenic bacteria in paddy field soils with long-term application of organic matter [J]. Soil Biology and Biochemistry,1998, 30(3):299-303
    [8]Asman W A H, Sutton M A, SchjORring J K. Ammonia:emission, atmospheric transport and deposition [J]. New Phytologist,1998,139(1):27-48
    [9]Banerjee B, Pathak H, Aggarwal P K. Effects of dicyandiamide, farmyard manure and irrigation on crop yields and ammonia volatilization from an alluvial soil under a rice (Oryza sativa L.)-wheat (Triticum aestivum L.) cropping system [J]. Biology and Fertility of Soils,2002,36:207-214
    [10]Bazzaz F A. The response of natural ecosystems to the rising global CO2 levels [J]. Annual Review of Ecology Systematics,1990,21(1):167-196
    [11]Bhandari A L, Ladha J K, Pathak H, et al. Yield and soil nutrient changes in a long-term rice-wheat rotation in India [J]. Soil Science Society of America Journal,2002,66:162-170
    [12]Bi L, Zhang B, Liu G, et al. Long-term effects of organic amendments on the rice yields for double rice cropping systems in subtropical China [J]. Agriculture, Ecosystems and Environment,2009,129: 534-541
    [13]BMU (Federal Ministry for the Environment, Nature Conservation and Nuclear Safety). Climate Protection in Germany. Second Report of the Federal Republic of Germany Pursuant to the UNFCCC. Bonn:BMU,1997
    [14]Bobbink R, Heil G W, Raessen M B A G Atmospheric deposition and canopy exchange processes in heathland ecosystems [J]. Environmental Pollution,1992,75(1):29-37
    [15]Bouwman A F. Global estimates of gaseous emissions from agricultural land [C]. FAO, Rome, Italy, 2001
    [16]Bouwman A F. The role of soils and land use in the greenhouse effect [A]. Background Paper of the International Conference Soil and the Greenhouse Effect [C]. Wageningen, the Netherlands:Int Soil Ref and Into Cnt,1989,14-18
    [17]Bouwman A F, Lee D S, Asman W A H, et al. A global high-resolution emission inventory for ammonia [J]. Global Biogeochem Cycles,1997,11(4):561-587
    [18]Bouwman A F, Boumans L J M, Batjes N H. Emissions of N2O and NO from fertilized fields: summary of available measurement data [J]. Global Biogeochemical Cycles,2002,16,1058-1070
    [19]Bremner J M. Sources of nitrous oxide in soils. Nutrient Cycling in Agroecosystems,1997,29(1-3): 7-16
    [20]Burle M L, Mielniczuk J, Focchi S. Effect of cropping systems on soil chemical characteristics, with emphasis on soil acidification [J]. Plant and Soil,1997,190:309-316
    [21]Burrows E H, Bubier J L, Mosedale A, et al. Net ecosystem exchange of carbon dioxide in a temperate poor fen:a comparison of automated and manual chamber techniques [J]. Biogeoehemistry,2005,76:21-45
    [22]Cai G X, Chen D L, Ding H, et al. Nitrogen losses from fertilizers applied to maize, wheat and rice in the North China Plain [J]. Nutrient Cycling in Agroecosystems,2002,63(2):187-195
    [23]Cai G X, Zhu Z L, Trevitt A C F, et al. Nitrogen loss from ammonium bicarbonate and urea fertilizers applied to flooded rice [J]. Nutrient Cycling in Agroecosystems,1986,10(3):203-215
    [24]Cai Z C. A category for estimate of CH4 emission from rice paddy fields in China [J]. Nutrient Cycling in Agroecosystems,1997,49,171-179
    [25]Cai Z C, Tsuruta H, Gao M, et al. Options for mitigating methane emission from a permanently flooded rice field. Global Change Biology,2003,9:37-45
    [26]Cai Z C, Tsuruta H, Minami K. Methane emissions from rice fields in China:Measurements and influencing factors [J]. Journal of Geophysical Research,2000,105 P13),17231-17242
    [27]Cai Z C, Xing G X, Shen G Y. Measurements of CH4 and N2O emissions from rice fields in Fengqiu, China [J]. Soil Science and Plant Nutrition,1999,45(1):1-13
    [28]Cai Z C, Xing G, Yan X, et al. Methane and nitrous oxide emissions from rice paddy fields as affected by nitrogen fertilisers and water management [J]. Plant and Soil,1997,196:7-14
    [29]Chadwick D R, Pain B F, Brookman S K. Nitrous oxide and methane emissions following application of animal manures to grassland [J]. Journal of Enviromental Quality,2000,29,277-287
    [30]Chen Z L, Li D B. Features of CH4 emission from rice fields in Beijing and Nanjing [J]. Chemosphere,1993,26:239-245
    [31]Chidthaisong A, Obata H, Watanabe H. Methane formation and substrate utilization in anaerobic rice soils as affected by fertilization [J]. Soil Biology and Biochemistry,1999,31(1):135-143
    [32]Christopher J K, Shawn P S. Impacts of recent climate change on Wisconsin corn and soybean yield trends [J]. Environmental Research Letters,2008,3:034003
    [33]Cicerone R J, Shetter J D. Sources of atmospheric methane:measurements in rice paddies and a discussion [J]. Journal of Geophysics Research,1981,86(C8):7203-7209
    [34]Clay D E, Malzer G L, Anderson J L. Ammonia volatilization from urea as influenced by soil temperature, soil water content, and nitrification and hydrolysis inhibitors [J]. Soil Science Society of America Journal,1990,54(1):263-266
    [35]Cole C V, Flach K, Lee J, et al. Agricultural sources and sinks of carbon [J]. Water, Air, and Soil Pollution,1993,70:111-122
    [36]Dawe D, Dobermann D, Moya P, et al. How widespread are yield declines in long-term rice experiments in Asia. Field Crops Research,2000,66:175-193
    [37]Deborah A B, William R H, Randall G M et al. Methane pool and flux dynamics in a rice field following straw incorporation. Soil Biology and Biochemistry,1999,31:1313-1322
    [38]De Datta S, Buresh R, Obcemea W, et al. Nitrogen15 balances and nitrogen fertilizer use efficiency in upland rice [J]. Nutrient Cycling in Agroecosystems,1990,26(1):179-187
    [39]Dobermann A, Cassman K G, Mamaril C P, et al. Management of phosphorus, potassium, and sulfur in intensive, irrigated lowland rice [J]. Field Crops Research,1998,56:113-138
    [40]Dong Y S, Scharffe D, Qi Y C.2001. Nitrous oxide emission from cultivated soil in the North China Plain. Tellus,53B:1-9
    [41]Duan Z H, Xiao H L. Effects of soil properties on ammonia volatilization [J]. Soil Science and Plant Nutrition,2000,46(4):845-852
    [42]Dumanski J, Desjardins R L, Tarnocai C, et al. Possibilities for future carbon sequestration in Canadian agriculture in relation to included oat and alfalfa in the rotation had the greatest land use changes [J]. Climate Change,1998,40:81-103
    [43]Emmett B. Nitrogen Saturation of Terrestrial Ecosystems:Some Recent Findings and Their Implications for Our Conceptual Framework [J]. Water, Air, and Soil Pollution:Focus,2007,7(1): 99-109
    [44]Erisman J W, Bleeker A, Galloway J, et al. Reduced nitrogen in ecology and the environment [J]. Environmental Pollution,2007,150(1):140-149
    [45]Fangmeier A, Hadwiger-Fangmeier A, Van der Eerden L, et al. Effects of atmospheric ammonia on vegetation—A review [J]. Environmental Pollution,1994,86(1):43-82
    [46]FAO. FAO statistical databases [M]. Available at http://faostat.fao.org/(verified 30, May,2008)
    [47]Ferm M. Atmospheric ammonia and ammonium transport in Europe and critical loads:a review [J]. Nutrient Cycling in Agroecosystems,1998,51:5-17
    [48]Firestone M K, Dvaidson E A. Microbiological basis of NO and N2O production and consumption in soil [M]. In:Exchange of Trace Gases between Terrestrial Ecosystems and the Atmosphere (eds Andreae M O, Schimel D S).1989. pp:7-21
    [49]Follett R F. Soil management concepts and carbon sequestrations in cropland soils [J]. Soil and Tillage Research,2001,61:77-92
    [50]Follett R F, Shafer S R, Jawson M D, et al. Research and implementation needs to mitigate greenhouse gas emissions from agriculture in the USA [J]. Soil and Tillage Research,2005,83: 159-166
    [51]Freney J R, Trevitt A C F, Dedatta S K, et al. The interdependence of ammonia volatilization and denitrification as nitrogen loss processes in flooded rice fields in the Philippines [J]. Biology and Fertility of Soils,1990,9(1):31-36
    [52]Frenzel P, Rothfuss F, Conrad R. Oxygen profiles and methane turnover in a flooded rice microcosm [J]. Biology and Fertility of Soils,1992,14:84-89
    [53]Frolking S, Li C, Braswell R, et al. Short-and long-term greenhouse gas and radiative forcing impacts of changing water management in Asia rice paddies [J]. Global Change Biology,2004,10: 1180-1196
    [54]Frolking S, Qiu J, Boles S, et al. Combining remote sensing and ground census data to develop new maps of the distribution of rice agriculture in China [J]. Global Biogeochem Cycles,2002,16(4): 1091-1101
    [55]Galloway J N, Cowling E B. Reactive Nitrogen and the World:200 Years of Change [J]. AMBIO:A Journal of the Human Environment,2002,31(2):64-71
    [56]Galloway J N, Dentener F J, Capone D G, et al. Nitrogen cycles:past, present, and future [J]. Biogeochemistry,2004,70(2):153-226
    [57]Gibbons J M, Ramsden S J, Blake A. Modelling uncertainty in greenhouse gas emissions from UK agriculture at the farm level [J]. Agriculture, Ecosystems and Environment,2006,112(4):347-355
    [58]Goulding K W T, Bailey N J, Bradbury N J, et al. Nitrogen deposition and its contribution to nitrogen cycling and associated soil processes [J]. New Phytologist,1998,139(1):49-58
    [59]Goulding K W T, Willison T W, Webster C P, et al. Methane fluxes in aerobic soils [J]. Environmental Monitoring and Assessment,1996,42(1/2):175-187
    [60]Griggs B R, Norman R J, Wilson C E, et al. Ammonia volatilization and nitrogen uptake for conventional and conservation tilled dry-seeded, delayed-flood rice [J]. Soil Science Society of America Journal,2007,71(3):745-751
    [61]Gu J, Zheng X, Wang Y et al. Regulatory effects of soil properties on background N2O emissions from agricultural soils in China [J]. Plant and Soil,2007,295,53-65
    [62]Gu J, Zheng X, Zhang W. Background nitrous oxide emissions from croplands in China in the year 2000 [J]. Plant and Soil,2009,320,307-320
    [63]Gulledge J, Schimel J P. Controls on soil carbon dioxide and methane fluxes in a variety of taiga forest stands in interior Alaska [J]. Ecosystems,2000,3(3):269-282
    [64]Guo J H, Liu X J, Zhang Y, et al. Significant Acidification in Major Chinese Croplands [J]. Science, 2010,327:1008-1010
    [65]Guo L P, Lin E D. Carbon sink in crop land soils and emissions of greenhouse gases from paddy soils:A review of work in China [J]. Chemosphere-Global Change Science,2001,3:413-418
    [66]Halvorson A D, Reule C A, Follett R F. Nitrogen fertilization effects on soil carbon and nitrogen in a dryland cropping system [J]. Soil Science Society of America Journal,1999,63:912-917
    [67]Hansen J E, Lacis A A. Sun and dust versus greenhouse gases:An assessment of their relative roles in global climate changes [J]. Nature,1990,346(23):713-719
    [68]Hayashi K, Koga N, Fueki N. Limited ammonia volatilization loss from upland fields of Andosols following fertilizer applications [J]. Agriculture, Ecosystems and Environment,2011,140(3-4): 534-538
    [69]Hayashi K, Nishimura S, Yagi K. Ammonia volatilization from a paddy field following applications of urea:Rice plants are both an absorber and an emitter for atmospheric ammonia [J]. Science of the Total Environment,2008,390(2-3):485-494
    [70]Hayashi K, Nishimura S, Yagi K. Ammonia volatilization from the surface of a Japanese paddy field during rice cultivation [J]. Soil Science and Plant Nutrition,2006,52(4):545-555
    [71]Helyar K R, Porter W M. Soil acidification its measurement and the processes involved [M]. In Soil Acidity and Plant Growth, Academic Press, Sydney,1989,61-10
    [72]Holzapfel-Pschorn A, Conrad R, Seiler W. Production, oxidation and emission of methane in rice paddies [J]. Ferns Microbiology Letters,1985,31(6):343-351
    [73]Hou A X, Chen G X, Wang Z P, et al. Methane and nitrous oxide emissions from a rice field in relation to soil redox and microbiological processes [J]. Soil Science Society of America Journal, 2000,64:2180-2186
    [74]Houba V J G, Novozamsky I, Huybregts A W M, et al. Comparison of soil extraction by 0.01 mol/1 CaCl2, by EUF and by some conventional extraction procedures [J]. Plant and Soil,1986,96: 433-437
    [75]Huang S, Rui W, Peng X, et al. Organic carbon fractions affected by long-term fertilization in a subtropical paddy soil [J]. Nutrient Cycling in Agroecosystems,2010,86:153-160
    [76]Huang S, Zhang W, Yu X, et al. Effects of long-term fertilization on corn productivity and its sustainability in an Ultisol of Southern China [J]. Agriculture, Ecosystems and Environment,2010, 138:44-50
    [77]Huang Y, Sun W J. Changes in topsoil organic carbon of croplands in mainland China over the last two decades [J]. Chinese Science Bulletin,2006,51:1785-1803
    [78]Huang Y, Sun W J. Tendency of SOC change in cropland soils of China over the last 20 years [J]. Chinese Science Bulletin,2006,51(15):1785-1803
    [79]Huang Y, Zhang W, Sun W, et al. Net primary production of Chinese croplands from 1950 to 1999 [J]. Ecological Applications,2007,17:692-701
    [80]Huang Y, Zhang W, Zheng X, et al. Modeling methane emission from rice paddies with various agricultural practices [J]. Journal of Geophysics Research,2004a,109, D08113, doi: 10.1029/2003 JD004401
    [81]Huang Y, Zou J, Zheng X, et al. Nitrous oxide emissions as influenced by amendment of plant residues with different C:N ratios [J]. Soil Biology and Biochemistry,2004b,36:973-981
    [82]Humphreys E, Freney J R, Muirhead W A, et al. Loss of ammonia after application of urea at different times to dry-seeded, irrigated rice [J]. Fertilizer Research,1988,16:47-57
    [83]Hutchinson, G L, Moiser A R. Improved soil cover method for field measurement of nitrous oxide flux [J]. Soil Science Society of America Journal,1981,45:311-316
    [84]IPCC. Climate change:The supplementary report to the IPCC scientific assessment [R]. New York: Cambridge University Press,1992
    [85]IPCC. Climate Change 2001-The scientific basis. Contribution of Working Group I to the Third Assessment Report of the Intergovernmental Panel on Climate Change [R]. Cambridge:Cambridge University Press,2001
    [86]IPCC. Climate Change 2007-The Physical Science Basis [R]. Cambridge:Cambridge University Press,2007a
    [87]IPCC. Intergovernmental Panel on Climate Change Guidelines for National Greenhouse Gas Inventories [M]. Chapter4. Agriculture:Nitrous oxide from agricultural soils and manure management, OECD, Paris, France,1997
    [88]IPCC. IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories [M]. IGES, Tokyo,2000
    [89]IPCC. Special Report on Emissions Scenarios, Working Group Ⅲ, Intergovernmental Pannel on Climate Change [R]. Cambridge:Cambridge University Press,2000
    [90]IPCC. Technical Summary. In Climate Change 2007:The Physical Science Basis Contribution of working Group I to the Fourth Assessment Report of the IPCC [M]. New York:Cambridge University Press,2007b:31-34
    [91]Isermann K, Isermann R. Food production and consumption in Germany:N flows and N emissions [J]. Nutrient Cycling in Agroecosystems,1998,52:289-301
    [92]Jakobsen P, Patrick W H, Williams B G.1981. Sulfide and methane formation in soil and sediments [J]. Soil Science,132:279-287
    [93]Jastrow J D. Soil aggregation and the accrual of particulate and mineral associated organic matter [J]. Soil Sciences Society of American Journal,1996,60:801-807
    [94]Jayaweera G R, Mikkelsen D S. Assessment of ammonia volatilization from flooded soil systems [M]. In Advances in Agronomy, vol.45. Ed. Brady NC, pp.303-356, Academic Press, San Diego, 1991
    [95]Johnson J M F, Reicosky D C, Allmaras R R, et al. Greenhouse gas contributions and mitigation potential of agriculture in the central USA [J]. Soil and Tillage Research,2005,83(1):73-94
    [96]Ju X T, Xing G X, Chen X P, et al. Reducing environmental risk by improving N management in intensive Chinese agricultural systems [J]. Proceedings of the National Academy of Sciences,2009, 106(9):3041-3046
    [97]Julie D, Jastrow J E, Amonette V L, et al. Mechanisms controllig soil carbon turnover and their potential application for enhancing carbon sequestration [J]. Climatic Change,2007,80:5-23
    [98]Kang G, Cai Z, Feng X. Importance of water regime during the non-rice growing period in winter in regional variation of CH4 emissions from rice fields during following rice growing period in China. Nutrient Cycling in Agroecosystems,2002,64,95-100
    [99]Khalil M A K, Shearer M J, Rasmussen R A, et al. Methane and nitrous oxide emissions from subtropical rice agriculture in China [J]. Journal of Geophysical Research,2008,113, G00A05, doi:10.1029/2007JG000462
    [100]Khalil M R, Rasmussen M, Shearer R, et al. Factors affecting methane emissions from rice fields [J]. Journal of Geophysical Research,1998,103(D 19):25219-25231
    [101]Kiehl J T, Trenberth K E. Earth's annual global mean energy budget [J]. Bulletin of the American Meteorological Society,1997,78(2):197-208
    [102]Kirchmann H, Witter E. Ammonia volatilization during aerobic and anaerobic manure decomposition [J]. Plant and Soil,1989,115:35-41
    [103]Kissel D E, Brewer H L, Arkin G F. Design and Test of a Field Sampler for Ammonia Volatilization [J]. Soil Science Society of America Journal,1977,41(6):1133-1138
    [104]Kludze H K, DeLaune R D, Patrick W H. Aerenchyma formation and methane and oxygen exchange in rice. Soil Science Society of America Journal,1993,57(2):386-391
    [105]Kroeze C, Mosier A R, Bouwman A F. Closing the global N2O budget:a retrospective analysis 1500-1994 [J]. Global Biogeochemical Cycles,1999,13:1-8
    [106]Kriiger M, Frenzel P. Effects of N-fertilization on CH4 oxidation and production, and consequences for CH4 emissions from microcosms and rice fields [J]. Global Change Biology,2003,9,773-784
    [107]Kyuma K. Paddy soil science [M]. Kyoto University Press, Kyoto,2004
    [108]Ladha J K, Dawe D, Pathak H, et al. How extensive are yield declines in long-term rice-wheat experiments in Asia? [J]. Field Crops Research,2003,81:159-180
    [109]Lal R. Soil carbon sequestration impacts on global climate change and food security [J]. Science, 2004,304(5677):1623-1627
    [110]Lal R. Soil carbon sequestration in China through agricultural intensification, and restoration of degraded and desertified ecosystems [J]. Land Degradation & Development,2002,13(6):469-478
    [111]Lal R. Soil carbon sequestration to mitigate climate change [J]. Geoderma,2004,123:1-22
    [112]Lal R. Soil erosion and the global carbon budget [J]. Environment International,2003,29:437-450
    [113]Lashof D A, Ahuja D R. Relative contributions of green-house gas emissions to global warming [J]. Nature,1990,344:529-531
    [114]Leuning R, Denmead O T, Simpson J R, et al. Processes of ammonia loss from shallow floodwater [J]. Atmospheric Environment,1984,18(8):1583-1592
    [115]Li C, Frolking S, Xiao X, et al. Modeling impacts of farming management alternatives on CO2, CH4 and N2O emissions:a case study for water management of rice agriculture of China [J]. Global Biogeochemical Cycles,2005,19, GB3010, doi:10.1029/2004GB002341
    [116]Li C, Mosier A, Wassmann R, et al. Modeling greenhouse gas emissions from rice-based production systems:Sensitivity and upscaling [J]. Global Biogeochemical Cycles,2004,18, GB1043, doi: 10.1029/2003GB002045
    [117]Li C, Qiu J, Frolking S, et al. Reduced methane emissions from large-scale changes in water management in China's rice paddies during 1980-2000 [J]. Geophysical Research Letters,2002,29, 1972, doi:10.1029/2002GL015370
    [118]Li C, Salas W, DeAngelo B, et al. Assessing alternative for mitigating net greenhouse gas emissions and increasing yields from rice production in China over the next twenty years [J]. Journal of Environmental Quality,2006,35:1554-1565
    [119]Li C S. Modeling trace gas emissions from agricultural ecosystems [J]. Nutrient Cycling in Agroecosystems,2000,58(1-3):259-276
    [120]Li H, Liang X Q, Lian Y F, et al. Reduction of ammonia volatilization from urea by a floating duckweed in flooded rice fields [J]. Soil Science Society of America Journal,2009,73(6): 1890-1895
    [121]Li L, Li S M, Sun J H, et al. Diversity enhances agricultural productivity via rhizosphere phosphorus facilitation on phosphorus-deficient soils [J]. Proceedings of the National Academy of Sciences of the United States of America,2007,104:11192-11196
    [122]Li X L, Zhang X Y, Xu H, et al. Methane and nitrous oxide emissions from rice paddy soil as influenced by timing of application of hydroquinone and dicyandiamide [J]. Nutrient Cycling in Agroecosystems,2009,85:31-40
    [123]Li Z P, Wu D F. Organic carbon content at a steady state and the potential of C sequestration of paddy soils in subtropical China [J]. Pedologica Sinica,2006,43(1):46-52
    [124]Liao Q, Zhang X, Li Z, et al. Increase in soil organic carbon stock over the last decades in China's Jiangsu province [J]. Global Change Biology,2009,15:861-875
    [125]Lin E D, Liu Y F, Li Y. Agricultural C cycle and greenhouse gas emission in China [J]. Nutrient Cycling in Agroecosystems,1997,49:295-299
    [126]Lin D X, Fan X H, Hu F, et al. Ammonia volatilization and nitrogen utilization efficiency in response to urea application in rice fields of the Taihu Lake region, China [J]. Pedosphere,2007,17:639-645
    [127]Lindau C W, Bollich P K. Methane emissions from Louisiana first and ratoon crop rice [J]. Soil Science,1993,156:42-48
    [128]Lindau C W, Bollich P, Delaune R, et al. Effect of urea fertilizer and environmental factors on CH4 emissions from a Louisiana, USA rice field [J]. Plant and Soil,1991,136(2):195-203
    [129]Liu G, Li Y, Alva A K. High water regime can reduce ammonia volatilization from soils under potato production [J]. Communications in Soil Science and Plant Analysis,2007,38(9-10):1203-1220
    [130]Liu K X, Liao Z W, You Z L. Effect of combined application of organic and inorganic fertilizers on methane emission from paddy soil and rice growth. Pedosphere,1997,7(4):379-382
    [131]Liu Q, Shi X, Weindorf D, et al. Soil organic carbon storage of paddy soils in China using the 1:1,000,000 soil database and their implications for C sequestration [J]. Global Biogeochemical Cycles,2006,20, GB3024, doi:10.1029/2006GB002731
    [132]Liu S, Qin Y, Zou J, et al. Effects of water regime during rice-growing season on annual direct N2O emission in a paddy rice-winter wheat rotation system in southeast China [J]. Science of the Total Environment,2010,408,906-913
    [133]Lu F, Wang X, Han B, et al. Soil carbon sequestrations by nitrogen fertilizer application, straw return and no-tillage in China's cropland [J]. Global Change Biology,2009,15:281-305
    [134]Lu W, Chen W, Duan B et al. Methane emissions and mitigation options in irrigated rice fields in southeast China [J]. Nutrient Cycling in Agroecosystems,2000,58,65-73
    [135]Ma J, Ma E, Xu H, et al. Wheat straw management affects CH4 and N2O emissions from rice fields [J]. Soil Biology and Biochemistry,2009,41,1022-1028
    [136]Mandal B, Majumder B, Adhya T K, et al. Potential of double-cropped rice ecology to conserve organic carbon under subtropical climate [J]. Global Change Biology,2008,14:2139-2151
    [137]Manna M C, Swarup A, Wanjari R H, et al. Long-term fertilization, manure and liming effects on soil organic matter and crop yields [J]. Soil and Tillage Research,2007,94:397-409
    [138]Masscheleyn P H, Delaune R D, Patrick J W H. Methane and nitrous oxide emissions from laboratory measurements of rice soil suspension:Effect of soil oxidation-reduction status [J]. Chemosphere,1993,26 (1-4):251-260
    [139]Mathes K, Schriefer T H. Soil respiration during secondary succession influence of temperature and moisture [J]. Soil Biology and Biochemistry,1985,17(2):205-211
    [140]Matsushima M, Lim S S, Kwak J H, et al. Interactive effects of synthetic nitrogen fertilizer and composted manure on ammonia volatilization from soils [J]. Plant and Soil,2009,325(1-2): 187-196
    [141]McCarl B A, Sands R D. Competitiveness of terrestrial greenhouse gas offsets:are they a bridge to the future? [J]. Climatic Change,2007,80:109-126
    [142]Melillo J M, Steudler P A, Aber J D, et al. Soil warming and carbon-cycle feedbacks to the climate system [J]. Science,2002,298(5601):2173-2176
    [143]Minami K, Neue H U. Rice paddies as a methane source. Climatic change,1994,27(1):13-26
    [144]Mishra S, Rath A K, Adhya T K, et al. Effect of continuous and alternate water regimes on methane efflux from rice under greenhouse conditions [J]. Biology and Fertility of Soils,1997,24:399-405
    [145]Mohammad S. Modern concepts of agricultural research:Ripples and options for conservation agriculture and resource use efficiency [J]. Indian Journal of Agronomy,2009,54:149-158
    [146]Mosier A R. Exchange of gaseous nitrogen compounds between agricultural systems and the atmosphere [J]. Plant and Soil,2001,228(1):17-27
    [147]Mosier A R, Duxbury J M, Freney J R, et al. Mitigating agricultural emissions of methane [J]. Climatic Change,1998,40:39-80
    [148]Mosier A R, Halvorson A D, Reule C A, et al. Net global warming potential and greenhouse gas intensity in irrigated cropping systems in Northeastern Colorado [J]. Journal of Environmental Quality,2006,35,1584-1598
    [149]Murthy R, Griffin K L, Zarnoch S J, et al. Carbon dioxide efflux from a 550 m3 soil across a range of soil temperatures [J]. Forest Ecology and Management,2003,178(3):311-327
    [150]Naser H M, Nagata O, Tamura S, et al. Methane emissions from five paddy fields with different amounts of rice straw application in central Hokkaido, Japan [J]. Soil Science and Plant Nutrition, 2007,53:95-101
    [151]Nouchi I. Mechanisms of methane transport through rice plants [M]. In:CH4 and N2O:Global emissions and controls from rice fields and other agricultural and industrial sources (eds Minami, K., Mosier, A., And Sass, R.). YOKENDO Publishers, Tokyo, pp:87-104
    [152]Neue H U. Methane emission from rice fields [J]. Bioscience,1993,43(7):466-474
    [153]Ogle S M, Breidt F J, Paustian K. Agricultural management impacts on soil organic carbon storage under moist and dry climatic conditions of temperate and tropical regions [J]. Biogeochemistry, 2005,72(1):87-121
    [154]Olk D C, Brunetti G, Senesi N. Decrease in humification of organic matter with intensified lowland rice cropping:a wet chemical and spectroscopic investigation [J]. Soil Science Society of America Journal,2000,64:1337-1347
    [155]Olsen K, Collas P, Boileau P. Canada's Greenhouse Gas Inventory:1990-2000 Greenhouse Gas Division. Environment Canada, Ottawa,2002
    [156]Osher L J, Matson P A, Amundson R. Effect of land use change on soil carbon in Hawaii [J]. Biogeochemistry,2003,65:213-232
    [157]Pan G X, Li L Q, Wu L S, et al. Storage and sequestration potential of topsoil organic carbon in Chinese paddy soils [J]. Global Change Biology,2004,10:79-92
    [158]Pan G X, Li L Q, Zhang X H, et al. Soil organic carbon storage of China and the sequestration dynamics in agricultural lands [J]. Advances in Earth Science,2003,18(4):609-618
    [159]Pan G X, Zhao Q G. Study on evolution of organic carbon stock in agricultural soils of China:Facing the challenge of global change and food security [J]. Advances in Earth Science,2005,20(4): 384-393
    [160]Parton W J, Mosier A R, Ojima D S, et al. Generalized model for N2 and N2O Production from nitrification and denitrification [J]. Global Biogeochemical Cycles,1996,10:401-412
    [161]Peng S, Yang S, Xu J. Influence of controlled irrigation on CH4 and N2O emissions from Paddy fields and subsequent greenhouse effect [J]. Advances in Water Science,2010,21(2):235-240
    [162]Qi Y B, Huang B, Darilek J L. Impacts of agricultural land management on soil quality after 24 years: a case study in Zhangjiagang County, China [J]. New Zealand Journal of Agricultural Research, 2011,54(4):261-273
    [163]Qin Y, Liu S, Guo Y, et al. Methane and nitrous oxide emissions from organic and conventional rice cropping systems in Southeast China [J]. Biology and Fertility of Soils,2010,46(8):825-834
    [164]Ragasits I, Debreczeni K, Berecz K. Effect of long-term fertilization on grain yield, yield components and quality parameters of winter wheat [J]. Acta Agronomica Hungarica,2000,48(2): 155-163
    [165]Raich J W, Schlesinger W H. The global carbon dioxide fluxes in soil respiration and its relationship among different PSF of a forest soil [J]. Organic Geochemistry,2004,35:1355-1370
    [166]Rasmussen P E, Parton W J. Long-term effects of residue management in wheat-fallow:I. Inputs, yield, and soil organic matter [J]. Soil Science Society of America Journal,1994,58:523-530
    [167]Regmi A P, Ladha J K, Pathak H, et al. Yield and soil fertility trends in a 20-year rice-rice-wheat experiment in Nepal [J]. Soil Science Society of America Journal,2002,66:857-867
    [168]Reynolds C M, Wolf D C. Influence of urease activity and soil properties on ammonia volatilization from urea [J]. Soil Science,1987,143:418-425
    [169]Robertson G P, Grace P R. Greenhouse gas fluxes in tropical and temperate agriculture:the need for a full-cost accounting of global warming potentials [J]. Environment, Development and Sustainability,2004,6:51-63
    [170]Robertson G P, Paul E A, Harwood R R. Greenhouse gases in intensive agriculture:contributions of individual gases to the radiative forcing of the atmosphere [J]. Science,2000,289:1922-1925
    [171]Rochette P, Angers D, Chantigny M, et al. Reducing ammonia volatilization in a no-till soil by incorporating urea and pig slurry in shallow bands [J]. Nutrient Cycling in Agroecosystems,2009, 84(1):71-80
    [172]Rui W, Zhang W. Effect size and duration of recommended management practices on carbon sequestration in paddy field in Yangtze Delta Plain of China:A meta-analysis [J]. Agriculture, Ecosystems and Environment,2010,135:199-205
    [173]Saleque M A, Abedin M J, Bhuiyan N I, et al. Long-term effects of inorganic and organic fertilizer sources on yield and nutrient accumulation of lowland rice [J]. Field Crops Research,2004,86: 53-65
    [174]Sass R L, Fisher F M, Ding A, et al. Exchange of methane from rice fields:national, regional, and global budgets [J]. Journal of Geophysical Research,104 (D21),1999,26:943-951
    [175]Sass R L, Fisher F M, Wang Y B, et al. Methane emission from rice fields:the effect of floodwater management [J]. Global Biogeochemical Cycles,1992,6(3):249-262
    [176]Schlesinger W H, Hartley A E. A global budget for atmospheric NH3 [J]. Biogeochemistry,1992, 15(3):191-211
    [177]Schimel J. Rice, microbes and methane [J]. Nature,2000,403:375-376
    [178]Schutz H, Holzapfel-Pschorn A, Conrad R, et al. A 3-year continuous record on the influence of daytime, season, and fertilizer treatment on methane emission rates from an Italian rice paddy [J]. Journal of Geophysical Research-Atmospheres,1989,94:16405-16416
    [179]Schutz H, Seiler W, Conrad R. Processes involved in formation and emission of methane in rice paddies [J]. Biogeochemistry,1989,7(1):33-53
    [180]Sehuze H, Holzapafel P A. A 3-year continuous record on the influence of daytime, season, and fertilizer treatment on methane emission rates from an Italian rice field [J]. Journal of Geophysical Research,1989,94:16405-16416
    [181]Shang Q, Yang X, Gao C, et al. Net annual global warming potential and greenhouse gas intensity in Chinese double rice-cropping systems:a 3-year field measurement in long-term fertilizer experiments [J]. Global Change Biology,2011,17:2196-2210
    [182]Shao J A, Tang X H, Wei C F, et al. Response of CH4 emission of paddy field to land management practices at a microcosmic cultivation scale in China [J]. Journal of Environmental Sciences,2005, 17(4):691-698
    [183]Shen J, Li R, Zhang F, et al. Crop yields, soil fertility and phosphorus fractions in response to long-term fertilization under the rice monoculture system on a calcareous soil [J]. Field Crops Research,2004,86:225-238
    [184]Singh J S, Gupta S R. Plant decomposition and soil respiration in terrestrial ecosystems [J]. Botanical Review,1997,43(4):449-528
    [185]Six J, Elliot E T, Paustain K. Aggregate and soil organic matter dynamics under conventional and on-tillage system [J]. Soil Science Society of America Journal,1999,63:1350-1358
    [186]Six J, Ogle S T, Breidt F J, et al. The potential to mitigate global warming with no-tillage management is only realized when practised in the long term [J]. Global Change Biology,2004,10, 155-160
    [187]Smith K P, Wright M X, Partick J W H. The effect of soil nitrous oxide [J]. Journal of Environmental Quality,1993,12:186-188
    [188]Smith P, Martino D, Cai Z, et al. Agriculture. In:Climate Change 2007:Mitigation. Contribution of Working Group III to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change (eds Metz B, Davidson OR, Bosch PR et al.) [C]. Cambridge University Press, Cambridge, UK and New York, NY, USA,2007, pp 497-540
    [189]Smith P, Martino D, Cai Z, et al. Greenhouse gas mitigation in agriculture [J]. Philosophical Transactions of the Royal Society B,2008,363:789-813
    [190]Smith P, Martino D, Cai Z, et al. Policy and technological constraints to implementation of greenhouse gas mitigation options in agriculture [J]. Agriculture, Ecosystems and Environment, 2007,118(1-4):6-28
    [191]Smith P, Milne R, Powlson D S, et al. Revised estimates of the carbon mitigation potential of UK agricultural land [J]. Soil Use and Management,2000a,16,293-295
    [192]Smith P, Powlson D S, Smith J U, et al. Meeting Europe's climate change commitments:quantitative estimates of the potential for carbon mitigation by agriculture [J]. Global Change Biology,2000b,6, 525-539
    [193]Song G H, Li L Q, Pan G X, et al. Topsoil organic carbon storage of China and its loss by cultivation [J]. Biogeochemistry,2005,74:47-62
    [194]Stevens C J, Dise N B, Mountford J O, et al. Impact of Nitrogen Deposition on the Species Richness of Grasslands [J]. Science,2004,303(5665):1876-1879
    [195]Sun W, Huang Y, Zhang W, et al. Estimating topsoil SOC sequestration in croplands of eastern China from 1980-2000 [J]. Australia Journal of Soil Research,2009,47:261-272
    [196]Teh Y A, Dubinsky E A, Silver W, et al. Suppression of methanogensis by dissimilatory Fe(Ⅲ)-reducing bacteria in tropical rain forest soils:implications for ecosystem methane flux [J]. Global Change Biology,2008,14,413-422
    [197]Tian G, Cai Z, Cao J, et al. Factors affecting ammonia volatilisation from a rice-wheat rotation system [J]. Chemosphere,2001,42(2):123-129
    [198]Torn M S, Trumbore S E, Chadwick O A, et al. Mineral control of soil organic carbon storage and turnover [J]. Nature,1997,389:170-173
    [199]Uri N D. The Potential impact of conservation practices in US agriculture on global climate change [J]. Journal of sustainable Agriculture,2001,18:109-131
    [200]Valentini R, Mattenucci G, Dolman A J, et al. Respiration as the main determinanted carbon balance in European forest [J]. Nature,2000,404:862-864
    [201]Vance C P, Uhde-Stone C, Allan D L. Phosphorus acquisition and use:critical adaptations by plants for securing a nonrenewable resource [J]. New Phytologist,2003,157:423-447
    [202]Verma T S, Bhagat R M. Impact of rice straw management practices on yield, nitrogen uptake and soil properties in a wheat-rice rotation in northern India [J]. Nutrient Cycling in Agroecosystems, 1992,33:97-106
    [203]Vieira F C B, Bayer C, Mielniczuk J, et al. Long-term acidification of a Brazilian Acrisol as affected by no till cropping systems and nitrogen fertiliser [J]. Australian Journal of Soil Research,2008,46: 17-26
    [204]Vitousek P M, Aber J D, Howarth R W, et al. Human alternation of the global nitrogen cycle:causes and consequences [J]. Ecological Applications,1997,7(3):737-750
    [205]Vleeshouwers L M, Verhagen A. Carbon emission and sequestration by agricultural land use:a model study for Europe [J]. Global Change Biology,2002,8:519-530
    [206]Vlek P L G, Stumpe J M. Effects of solution chemistry and environmental conditions on ammonia volatilization losses from aqueous systems [J]. Soil Science Society of America Journal,1978,42(3): 416-421
    [207]Wang M, Shangguan X, Shen R, et al. Methane production, emission and possible control measures in the rice agriculture [J]. Advances in Atmospheric Sciences,1993,10,307-314
    [208]Wang S, Yu G, Zhao Q, et al. Spatial characteristics of soil organic carbon storage in China's croplands [J]. Pedosphere,2005,15:417-423
    [209]Wang Z, Delaune R D, Lindau C W, et al. Methane production from anaerobic soil amended with rice straw and nitrogen fertilizers [J]. Fertilizer Research,1992,33,115-121
    [210]Wang Z, Kludze C R and Patrick W H et al. Soil characteristics affecting methane production and emission in flooded rice. In:Peng S et al (eds), Climate Change and Rice [M]. Springer-Verlag Berlin Heidelberg,1995,81-90
    [211]Wang Z P. Soil redox and pH effects on methane production in a flooded rice soil [J]. Soil Science Society of America Journal,1993,57:382-385
    [212]Watson A, Stephen K D, Nedwell D B, et al. Oxidation of methane in peat:Kinetics of CH4 and O2 removal and the role of plant roots [J]. Soil Biology and Biochemistry,1997,29(8):1257-1267
    [213]Welch J R, Vincent J R, Auffhammer M, et al. Rice yields in tropical/subtropical Asia exhibit large but opposing sensitivities to minimum and maximum temperatures [J]. Proceedings of the National Academy of Sciences,2010,107:14562-14567
    [214]Witkamp M. Cycles of temperature and carbon dioxide evolution from litter and soil [J]. Ecology, 1969,50:922-924
    [215]Witt C, Cassman K G, Olk D C, et al. Crop rotation and residue management effects on carbon sequestration nitrogen cycling and productivity of irrigated rice systems [J]. Plant and soil,2000, 225:263-278
    [216]Xie Z, Zhu J, Liu G, et al. Soil organic carbon stocks in China and changes from 1980s to 2000s [J]. Global Change Biology,2007,13:1989-2007
    [217]Xiong Z, Xing G, Zhu Z. Nitrous oxide and methane emissions as affected by water, soil and nitrogen [J]. Pedosphere,2007,17,146-155
    [218]Xu H, Cai Z C, Jia Z J. Effect of soil water contents in the non-rice growth season on CH4 emission during the following rice-growing period [J]. Nutrient Cycling in Agroecosystems,2002,64: 101-110
    [219]Xu H, Cai Z C, Jia Z J, et al. Effect of land management in winter crop season on CH4 emission during the following flooded and rice-growing period [J]. Nutrient Cycling in Agroecosystems, 2000,58,327-332
    [220]Xu H, Cai Z, Tsuruta H. Soil moisture between rice-growing seasons affects methane emission, production, and oxidation [J]. Soil Science Society of America Journal,2003,67:1147-1157
    [221]Xu J, Peng S, Yang S, et al. Ammonia volatilization losses from a rice paddy with different irrigation and nitrogen managements [J]. Agricultural Water Management,2012,104(0):184-192
    [222]Xu R, Zhao A, Li Q, et al. Acidity regime of the Red Soils in a subtropical region of southern China under field conditions [J]. Geoderma,2003,115:75-84
    [223]Yagi K, Minami K. Emission and production of methane in the paddy fields of Japan [J]. JARQ (Japan),1991,25:165-171
    [224]Yagi K, Minami K. Effect of organic matter application on methane emission from some Japanese paddy fields [J]. Soil Science and Plant Nutrition,1990,36(4):599-610
    [225]Yagi K, Tsuruta H, Minamik K. The effect of water management on methane emission from a Japanese rice paddy field:Automate methane monitoring [J]. Global Biogeochemical Cycle,1996, 10(2):255-267
    [226]Yagi K, Tsuruta H, Minami K. Possible options for mitigating methane emission from rice cultivation [J]. Nutrient Cycling in Agroecosystems,1997,49:213-220
    [227]Yan X, Akimoto H, Ohara T. Estimation of nitrous oxide, nitric oxide and ammonia emissions from croplands in East, Southeast and South Asia [J]. Global Change Biology,2003,9,1080-1096
    [228]Yan X, Akiyama H, Yagi K, et al. Global estimations of the inventory and mitigation potential of methane emissions from rice cultivation conducted using the 2006 Intergovernmental Panel on Climate Change Guidelines [J]. Global Biogeochemical Cycles,2009,23, GB2002, doi:10.1029/2008GB003299
    [229]Yan X, Shi S, Du L, et al. Pathways of N2O emission from rice paddy soil [J]. Soil Biology and Biochemistry,2000,32:437-440
    [230]Yan X, Yagi K, Akiyama H, et al. Statistical analysis of the major variables controlling methane emission from rice fields [J]. Global Change Biology,2005,11,1131-1141
    [231]Yang X, Shang Q, Wu P, et al. Methane emissions from double rice agriculture under long-term fertilizing systems in Hunan, China [J]. Agriculture, Ecosystems and Environment,2010,137, 308-316
    [232]Yokozawa M, Shirato Y, Sakamoto T, et al. Use of the RothC model to estimate the carbon sequestration potential of organic matter application in Japanese arable soils [J]. Soil science and Plant Nutrition,2010,56:168-176
    [233]Yu K W, Wang Z P, Chen G X. Nitrous oxide and methane transport through rice plants [J]. Biology and Fertility of Soils,1997,24:341-343
    [234]Zhang H, Wang B, Xu M, et al. Crop yield and soil responses to long-term fertilization on a red soil in southern China [J]. Pedosphere,2009a,19:199-207
    [235]Zhang W, Xu M, Wang B, et al. Soil organic carbon, total nitrogen and grain yields under long-term fertilizations in the upland red soil of southern China [J]. Nutrient Cycling in Agroecosystems,2009b, 84:59-69
    [236]Zhang Y, Luan S, Chen L, et al. Estimating the volatilization of ammonia from synthetic nitrogenous fertilizers used in China [J]. Journal of Environmental Management,2011,92(3):480-493
    [237]Zheng X H, Wang M X, Wang Y S, et al. Characters of greenhouse gas (CH4, N2O, NO) emissions from crop lands of southeast China [J]. World Resource Review,1999,11(2):229-246
    [238]Zhao B Q, Li X Y, Li X P, et al. Long-term fertilizer experiment network in China:crop yields and soil nutrient trends [J]. Agronomy Journal,2010,102:216-230
    [239]Zhao X, Xie Y X, Xiong Z Q, et al. Nitrogen fate and environmental consequence in paddy soil under rice-wheat rotation in the Taihu lake region, China [J]. Plant and Soil,2009,319(1):225-234
    [240]Zheng X, Han S, Huang Y, et al. Re-quantifying the emission factors based on field measurements and estimating the direct N2O emission from Chinese croplands [J]. Global Biogeochemical Cycles, 2004,18, GB2018, doi:10.1029/2003GB002167
    [241]Zheng X H, Wang M X, Wang Y S. Characters of greenhouse gas (CH4, N2O and NO) emissions from croplands of southeast China [J]. World Resource Review,1999,11(2):229-246
    [242]Zheng X H, Wang M X, Wang Y S, et al. Impacts of soil moisture on nitrous oxide emission from croplands:a case study on rice-based agro-ecosystem in Southeast China [J]. Chemosphere-Global Change Science,2000,2:207-224
    [243]Zheng X H, Wang M X, Wang Y S, et al. Characters of greenhouse gas (CH4, N2O, NO) emission from croplands of Southeast China. World Resource Review,1999,11(2):229-246
    [244]Zheng X, Xie B, Liu C, et al. Quantifying net ecosystem carbon dioxide exchange of a short-plant cropland with intermittent chamber measurements [J]. Global Biogeoehamical Cyeles,2008,22, GB3031, doi:10.1029/2007GB003104
    [245]Zhong W, Gu T, Wang W, et al. The effects of mineral fertilizer and organic manure on soil microbial community and diversity [J]. Plant and Soil,2010,326:511-522
    [246]Zhu Z L, Cai G X, Simpson J R, et al. Processes of nitrogen loss from fertilizers applied to flooded rice fields on a calcareous soil in north-central China [J]. Nutrient Cycling in Agroecosystems,1988, 18(2):101-115
    [247]Zhu Z L, Chen D L. Nitrogen fertilizer use in China-Contributions to food production, impacts on the environment and best management strategies [J]. Nutrient Cycling in Agroecosystems,2002, 63(2):117-127
    [248]Zou J, Huang Y, Jiang J, et al. A 3-year field measurement of methane and nitrous oxide emissions from rice paddies in China:effects of water regime, crop residue, and fertilizer application [J]. Global Biogeochemcal Cycles,2005,19, GB2021, doi:10.1029/200GB002401
    [249]Zou J, Huang Y, Qin Y, et al. Changes in fertilizer-induced direct N2O emissions from paddy fields during rice-growing season in China between 1950s and 1990s [J]. Global Change Biology,2009, 15:229-242
    [250]Zou J, Huang Y, Zong L, et al. Carbon dioxide, methane and nitrous oxide emissions from a rice-wheat rotation as affected by crop residue incorporation and temperature [J]. Advances in Atmospheric Sciences,2004,21:691-698
    [251]Zou J, Liu S, Qin Y, et al. Sewage irrigation increased methane and nitrous oxide emissions from rice paddies in southeast China [J]. Agriculture, Ecosystems and Environment,2009,129:516-522
    [252]Tisdale S L, Nelson W L.土壤肥力与肥料[M].北京:科学出版社,1984
    [253]鲍士旦.土壤农化分析[M].中国农业出版社,1996
    [254]蔡崇法,丁树文,史志华.GIS支持下乡镇域土壤肥力评价与分析[J].土壤与环境,2000,9(2):99-102
    [255]蔡贵信.中国土壤氮素[M].氨挥发.见:朱兆良,文启孝主编.南京:江苏科技出版社.1992,171-194
    [256]蔡祖聪.水田甲烷排放研究进展[J].农村生态环境,1993(增刊),23-58
    [257]曹兵,李新慧,张琳,等.冬小麦不同基肥施用方式对土壤氨挥发的影响[J].华北农学报,2001,16(2):83-86
    [258]陈安磊,谢小立,王凯荣,等.长期有机物循环利用对红壤稻田土壤供磷能力的影响[J].植物营养与肥料学报,2008,14(5):874_879
    [259]陈冠雄,黄国宏,黄斌,等.稻田CH4和N20的排放及养萍和施肥的影响[J].应用生态学报,1995,6(4):378-382
    [260]陈书涛,黄耀,郑循华,等.轮作制度对农田氧化亚氮排放的影响及驱动因子[J].中国农业科学,2005,38(10):2053-2060
    [261]陈苇,卢婉芳,段彬伍.稻草还田对晚稻稻田甲烷排放的影响[J].土壤学报,2002,39(2):170-176
    [262]陈苇,卢婉芳,段彬伍.猪粪与沼气渣对双季稻田甲烷排放的影响[J].生态学报2001,21(2):265-270
    [263]陈文新.土壤和环境微生物学[M].北京:北京农业大学出版社,1990,133-151
    [264]陈玉芬,杨军,顾尉蓝,等.广州地区晚造稻田氧化亚氮排放量与施肥灌溉关系的研究[J].华南农业大学学报,1999,20(2):80_84
    [265]陈宗良,高金和,袁怡.不同农业管理方式对北京地区稻田甲烷排放的影响研究[J].环境科学研究,1992,5(4):1_7
    [266]董文旭,胡春胜,张玉铭.不同秸秆添加物对尿素氨挥发的影响[J].河北农业科学,2005,9(3):11-14
    [267]董文旭,胡春胜,张玉铭.不同施肥土壤对尿素NH3挥发的影响[J].干旱地区农业研究,2005,23(2):76-79
    [268]杜伟,遆超普,姜小三,等.长三角地区典型稻作农业小流域氮素平衡及其污染潜势[J].生态与农村环境学报,2010,26(1):9-14
    [269]段彬伍,卢婉芳,陈苇,等.种植杂交稻对甲烷排放及土壤产甲烷菌的影响[J].农业环境保护,1999,18(5):203-208
    [270]樊军,郝明德.黄土高原旱地轮作与施肥长期定位试验研究(Ⅱ)—土壤酶活性与土壤肥力[J].植物营养与肥料学报,2003,9(2):146-150
    [271]高菊生,刘更另,徐明岗,等.长期不同耕作制度对水稻生长发育的影响[M].中国农学会耕作制度分会.粮食安全与农作制度建设.长沙:湖南科学技术出版社。2004,297-299
    [272]顾荣申,文启孝.中国稻田绿肥种植与利用[A].水稻土学术研讨会论文集[C].北京:科学出版社,1980.207-209
    [273]郭李萍,林而达.减缓全球变暖与温室气体吸收汇研究进展[J].地球科学进展,1999,14(4):384-389
    [274]贺发云,尹斌,金雪霞,等.南京两种菜地土壤氨挥发的研究[J].土壤学报,2005,42(2):253-259
    [275]何同康.土壤(土地)资源评价的主要方法及其特点比较[J].土壤学进展,1983,6:1-12
    [276]侯爱新,陈冠雄,王正平,等.1997.稻田CH4和N20排放关系及其微生物学机理和一些影响因子[J].应用生态学报,8(3):270_274
    [277]侯彦林.“生态平衡施肥”的理论基础和技术体系[J].生态学报,2000,20(4):653_658
    [278]黄彬香,苏芳,丁新泉,等.田间土壤氨挥发的原位测定—风洞法[J].土壤,2006,38(6):712-716
    [279]黄耀,焦燕,宗良纲,等.土壤理化特性对麦田N20排放影响的研究[J].环境科学学报,2002,22(5):598-602
    [280]黄耀,孙文娟.近20年来中国大陆农田表土有机碳含量的变化趋势[J].科学通报,2006,51(7):750-763
    [281]黄耀,王或,张稳,等.中国农业植被净初级生产力模型(Ⅰ)—模型的建立与灵敏度分析[J].自然资源学报,2006,21(5):790-801
    [282]江长胜,王跃思,郑循华,等.川中丘陵区冬灌田甲烷和氧化亚氮排放研究[J].应用生态学报,2005,16(3):539-544
    [283]江长胜,王跃思,郑循华,等.稻田甲烷排放影响因素及其研究进展[J].土壤通报,2004,35(5):663-669
    [284]江长胜,王跃思,郑循华,等.耕作制度对川中丘陵区冬灌田CH4和N20排放的影响[J].环境科学,2006,27(2):207-213
    [285]蒋朝晖,曾清如,方至,等.不同温度下施入尿素后土壤短期内pH的变化和氨气释放特性[J].土壤通报,2004,35(3):299-302
    [286]蒋静艳,黄耀,宗良纲.水分管理与秸秆施用对稻田CH4和N20排放的影响[J].中国环境科学,2003,23(5):552-556
    [287]姜勇,庄秋丽,梁文举.农田生态系统土壤有机碳库及其影响因子[J].生态学杂志,2007,26(2):278-285
    [288]阚文杰,吴启堂.一个定量综合评价土壤肥力的方法初探[J].土壤通报,1994,6:245-247
    [289]李长生.土壤碳储量减少:中国农业之隐患—中美农业生态系统碳循环对比研究[J].第四纪研究,2000,20(4):345-350
    [290]李长生,肖向明,Frolking S,等.中国农田的温室气体排放[J].第四纪研究,2003,23(5):493-503
    [291]李江涛,张斌,彭新华,等.施肥对红壤性水稻土颗粒有机物形成及团聚体稳定性的影响[J].土壤学报,2004,41(6):912-917
    [292]李菊梅,徐明岗,秦道珠,等.有机肥无机肥配施对稻田氨挥发和水稻产量的影响[J].植物营养与肥料学报,2005,11(1):51-56
    [293]李曼莉,徐阳春,沈其荣,等.覆草早作稻田CH4和N20的排放[J].中国环境科学,2003,23(6):576-582
    [294]黎孟波,张先婉.土壤肥力研究进展tM].北京:中国科学技术出版社,1991.208-213
    [295]李庆逵.中国农业持续发展中的肥料问题.江西:江西科学技术出版社,1997
    [296]李世清,李生秀.影响土壤尿素水解速率的一些因子[J].植物营养与肥料学报,1999,5(2):156-162
    [297]李书田,金继运.中国不同区域农田养分输入、输出与平衡[J].中国农业科学,2011,44(20):4207-4229
    [298]李鑫,巨晓棠,张丽娟,等.不同施肥方式对土壤氨挥发和氧化亚氮排放的影响[J].应用生态学报,2008,19(1):99_104
    [299]李新旺,门明新,王树涛,等.长期施肥对华北平原潮土作物产量及农田养分平衡的影响[J].草业学报,2009,18(1):9_16
    [300]李兆富,吕宪国,杨青,等.湿地土壤C02通量研究进展[J].生态学杂志,2002,21(6):47-50
    [301]李忠芳,徐明岗,张会民,等.长期施肥下中国主要粮食作物产量的变化[J].中国农业科学,2009,42(7):2407-2414
    [302]李忠佩,吴大付.红壤水稻土有机碳库的平衡值确定及固碳潜力分析[J].土壤学报,2006,43(1):46_52
    [303]梁国庆,林葆,林继雄,等.长期施肥对石灰性潮土氮素形态的影响[J].植物营养与肥料学报,2000,6(1):3-10
    [304]林葆,李家康.我国化肥的肥效及其提高的途径[J].土壤学报,1989,26(3):273-279
    [305]凌莉,李世清,李生秀.石灰性土壤氨挥发损失的研究[J].土壤侵蚀与水土保持学报,1999,5(6):119-122
    [306]刘更另,陈永安,陈福兴.双季稻绿肥轮作制度下的施肥体系[M].红壤丘陵区农业发展研究.北京:中国农业科技出版社,1995:141-145
    [307]刘绍辉,方精云.土壤呼吸的影响因素及全球尺度下温度的影响[J].生态学报,1997,17(5):469-476
    [308]刘守龙,童成立,张文菊,等.湖南省稻田表层土壤固碳潜力模拟研究[J].自然资源学报,2006,21(1):118-125
    [309]刘杏兰,高宗,刘存寿,等.有机-无机肥配施的增产效应及对土壤肥力影响的定位研究[J].土壤学报,1996,33(2):138-147
    [310]刘英,王允青,张祥明,等.种植紫云英对土壤肥力和水稻产量的影响[J].安徽农学通报,2007,13(1):98-99
    [311]刘巽浩,高旺盛,朱文栅.秸秆还田的机理与技术模式[M].北京:中国农业出版社.2001
    [312]鲁如坤,刘鸿翔,闻大中,等.我国典型地区农业生态系统养分循环和平衡研究.Ⅰ.农田养分支出参数[J].土壤通报,1996a,27(4):145-151
    [313]鲁如坤,刘鸿翔,闻大中,等.我国典型地区农业生态系统养分循环和平衡研究.Ⅲ.全国和典型地区养分循环和平衡现状[J].土壤通报,1996b,27(5):193-196
    [314]鲁如坤,时正元.退化红壤肥力障碍特征及重建措施.Ⅲ.典型地区红壤磷素积累及其环境意义[J].土壤,2001,5:227-231
    [315]陆允甫,吕晓男.中国测土施肥的进展和展望[J].土壤学报,1995,32(3):241-251
    [316]骆伯胜,钟继洪,陈俊坚.土壤肥力数值化综合评价研究[J].土壤,2004,36(1):104-106
    [317]罗良国,闻大中,沈善敏.北方稻田生态系统养分平衡研究[J].应用生态学报,1999,10(3):301-304
    [318]吕晓男,陆允甫,王人潮.土壤肥力综合评价初步研究[J].浙江大学学报(农业与生命科学版),1999,25(2):378-382
    [319]潘根兴,焦少俊.低施磷水平下不同施肥对太湖地区黄泥土磷迁移性的影响[J].环境科学,2003,3:91-95
    [320]潘根兴,李恋卿,郑聚锋,等.土壤碳循环研究及中国稻田土壤固碳研究的进展与问题[J].土壤学报,2008,45(5):901-914
    [321]潘根兴,赵其国.我国农田土壤碳库演变研究:全球变化和国家粮食安全[J].地球科学进展,2005,20(4):384-393
    [322]潘根兴,周萍,李恋卿,等.固碳土壤学的核心问题与研究进展[J].土壤学报,2007,44(2):327-337
    [323]彭少兵,黄见良,钟旭华,等.提高中国稻田氮肥利用率的研究策略[J].中国农业科学,2002,35(9):1095-1103
    [324]齐玉春,董云社.土壤氧化亚氮产生、排放及其影响因素[J].地理学报,1999,54(6):534-539
    [325]秦晓波,李玉娥,刘克樱,等.长期施肥对湖南稻田甲烷排放的影响[J].中国农业气象,2006,27(1):19-22
    [326]任春梅,胡续丽,谢家义,等.长期定位施肥对土壤养份及水稻产量的影响[J].垦殖与稻作, 2005,4:37-40
    [327]上官行健,王明星.稻田甲烷排放的影响因子研究进展[J].中国农业气象,1993,14(4):48-53
    [328]上官行建,王明星,陈德章.稻田CH4的传输[J].地球科学进展,1993,8(5):13-22
    [329]上官行健,王明星,沈壬兴,等.我国华中地区稻田CH4排放特征[J].大气科学,1994,18:358-365
    [330]沈汉.土壤评价中参评因素的选定与分级指标的划分[J].华北农学报,1990,5(3):63-69
    [331]沈善敏.农业生态系统中碳与主要营养元素循环及中国农田土壤养分收支[M].见:沈善敏主编.中国土壤肥力.中国农业出版社,1998,pp57-110
    [332]沈善敏,刘鸿翔,王凯荣,等.农业生态系统养分循环再利用作物产量增益的地理分异[J].应用生态学报,1998,9(4):379-385
    [333]石孝均,毛知耘,赵秉强,等.稻草还田对紫色水稻土肥力及水稻产量影响的定位试验研究[J].植物营养与肥料学报,2002,8(增刊):16-20
    [334]孙波,张桃林,赵其国.我国东南丘陵山区土壤肥力的综合评价[J].土壤学报,1995,32(4):362-369
    [335]孙宏德,朱平,刘淑环,等.有机无机肥料对黑土肥力和作物产量影响的监测研究[J].植物营养与肥料学报,2002,8(增刊):110-116
    [336]孙文涛,肖千明,娄春荣,等.土壤中甲烷的形成、排放及影响因素[J].杂粮作物,2000,20(5):44-47
    [337]田光明,何云峰,李勇先.水肥管理对稻田土壤甲烷和氧化亚氮排放的影响[J].土壤与环境,2002,11(3):294-298
    [338]田秀英,石孝均.定位试验对水稻产量与品质的影响[J].西南农业大学学报,2005,27(5):725-732
    [339]万运帆,李玉娥,林而达,等.静态箱法测定旱地农田温室气体时密闭时间的研究[J].中国农业气象,2005,27(2):122-124
    [340]王步军,过益仙.稻田甲烷排放研究的进展与成果[J].作物杂志,1996(6):3-6
    [341]王朝辉,刘学军,巨晓棠,等.田间土壤氨挥发的原位测定[J].植物营养与肥料学报,2002,8(2):205-209
    [342]王或,黄耀,张稳,等.中国农业植被净初级生产力模型(Ⅱ)—模型的验证与净初级生产力估算[J].自然资源学报,2006,21(6):916-925
    [343]王明星.中国稻田甲烷排放[M].北京:科学出版社,2001
    [344]王明星,李晶,郑循华,等.稻田甲烷排放及产生、转化、输送机理[J].大气科学,1998,22(4):600_612
    [345]王明星,上官行健,沈壬兴,等.华中稻田甲烷排放的施肥效应及施肥策略[J].中国农业气象,1995,16(2):1_5
    [346]王平,陈新平,田长彦,等.不同水氮管理对棉花产量、品质及养分平衡的影响[J].中国农 业科学,2005,38(4):761-769
    [347]王绍明.不同施肥方式下紫色水稻土土壤肥力变化规律研究[J].农村生态环境,2000,16(3):23-26
    [348]王胜佳,陈义,李实烨.多熟制稻田土壤有机质平衡的定位研究[J].土壤学报,2002,39(1):9-15
    [349]王效科,李长生,欧阳志云.温室气体排放与中国粮食生产[J].生态环境,2003,12(4):379-383
    [350]王跃思.大气中痕量化学成分的分析方法研究及实际应用[D].北京:中国科学院大气物理研究所
    [351]吴乐知,蔡祖聪.基于长期试验资料对中国农田表土有机碳含量变化的估算[J].生态环境,2007,16(6):1768-1774
    [352]吴萍萍.不同施肥制度下红壤稻田氨挥发与氧化亚氮排放的研究[D].南京农业大学,2008
    [353]谢军飞,李玉娥.农田土壤温室气体排放机理与影响因素研究进展[J].中国农业气象,2002,23(4):47-52
    [354]熊明彪,宋光煜,曹叔尤.长期施肥的土壤生态效应[J].中国水土保持,2005,3:24-26
    [355]熊正琴,邢光熹,鹤田治雄,等.豆科绿肥和化肥氮对双季稻田氧化亚氮排放贡献的研究[J].土壤学报,2003a,40(5):704-710
    [356]熊正琴,邢光熹,施书莲,等.轮作制度对水稻生长季节稻田氧化亚氮排放的影响[J].应用生态学报,2003b,14(10):1761-1764
    [357]徐华,蔡祖聪,李小平.土壤Eh和温度对稻田甲烷排放季节变化的影响[J].农业环境保护,1999,18(4):145-149
    [358]徐华,邢光熹,蔡祖聪,等.土壤水分状况和质地对稻田N2O排放的影响[J].土壤学报,2000,37(4):499-505
    [359]徐艳,张凤荣,汪景宽,等.20年来中国潮土区与黑土区土壤有机质变化的对比研究[J].土壤通报,2004,35(2):102-105
    [360]俞海,黄季煜,Bozelle S.中国东部地区耕地土壤肥力变化趋势研究[J].地理研究,2003,22(3):380-388
    [361]岳进,梁巍,吴杰,等.黑土稻田CH4和N20排放及减排措施研究[J].应用生态学报,2003,14(11):2015-2018
    [362]袁颖红,李辉信,黄欠如,等.不同施肥处理对红壤性水稻土微团聚体有机碳汇的影响[J].生态学报,2004,24(12):2961-2966
    [363]曾江海,王智平,张玉铭,等.小麦-玉米轮作期土壤排放N20通量及总量估算[J].环境科学,1995,16(1):32-35
    [364]曾宪坤.中国化肥工业的现状与展望[J].土壤学报,1995,32(2):117-124
    [365]张爱平,杨世琦,杨淑静,等.不同供氮水平对春小麦产量、氮肥利用率及氮平衡的影响[J].中国农学通报,2009,25(17):137-142
    [366]张福锁,王激清,张卫峰,等.中国主要粮食作物肥料利用率现状与提高途径[J].土壤学报,2008,45(5):915-924
    [367]张华,张甘霖.土壤质量指标和评价方法[J].土壤,2001,6:326_330
    [368]张奇春,王光火.长期不同施肥下杂交水稻与常规稻的产量与土壤养分平衡[J].植物营养与肥料学报,2006,12(3):340_345
    [369]张庆利,张民,杨越超,等.碳酸氢铵和尿素在山东省主要土壤类型上的氨挥发特性研究[J].土壤通报,2002,33(1):32-34
    [370]张士贤.中国土地资源保护与平衡施肥对策[A].施肥与环境学术讨论会论文集[C].北京:中国农业科技出版社,1994.1-10
    [371]张兴昌.土壤肥力的数学评价初探[J].陕西农业科学,1993,4:8-11
    [372]张秀君,徐慧,陈冠雄.影响森林土壤N20排放和CH4吸收的主要因素[J].环境科学,2002,23(5):8-12
    [373]张永铭.农田排水中磷素对苏南太湖水系污染[J].环境科学,1993,14(6):24-29
    [374]郑循华,王明星.温度对农田N20产生与排放的影响[J].环境科学,1997,18(5):1-5
    [375]郑循华,王明星,王跃思,等.稻麦轮作生态系统中土壤湿度对N20产生与排放的影响[J].应用生态学报,1996,7(3):273_279
    [376]郑循华,王明星,王跃思,等.华东稻田CH4和N20排放[J].大气科学,1997,21(2):23_23
    [377]郑远长.林冠分配降雨过程的模拟与模型[J].林业科学,1987,23(3):253-265
    [378]《中国农业年鉴》编辑委员会.中国农业年鉴[M].北京:中国农业出版社,2005
    [379]周健民,陈小琴,谢建昌,等.中国农田生态系统养分平衡状况及管理对策[M].见:周健民主编,农田养分管理与对策.南京:河海大学出版社,2000,pp 42-52
    [380]周萍,宋国涵,潘根兴,等.三种南方典型水稻土长期试验下有机碳积累机制研究—II.团聚体内有机碳的化学结合机制[J].土壤学报,2009,46(2):263-273
    [381]周萍,张旭辉,潘根兴.长期不同施肥对太湖地区黄泥土总有机碳及颗粒态有机碳的影响[J].植物营养与肥料学报,2006,12(6):765-771
    [382]朱兆良.稻田土壤中氮素的转化与氮肥的合理施用[J].化学通报,1994,9:15_22
    [383]朱兆良.农田中氮肥的损失与对策[J].土壤与环境,2000,9:1-6
    [384]朱兆良.我国土壤供氮和化肥氮去向研究的进展[J].土壤,1985,17(1):2-9
    [385]朱兆良.我国土壤氮素研究中的某些进展[M].见:周健民,石元亮主编.面向农业与环境的土壤科学(综述篇).北京:科学出版社,2004,7_12
    [386]朱兆良,文启孝.中国土壤氮素[M].江苏科学技术出版社,1992
    [387]邹长明,颜晓元,八木一行.淹水条件下的氨挥发研究[J].中国农学通报,2005,21(2):167-170
    [388]邹建文.稻麦轮作生态系统温室气体(CO2、CH,和N20)排放研究[D].南京农业大学,2005
    [389]邹建文,黄耀,郑循华,等.基于静态暗箱法的陆地生态系统-大气CO2净交换估算[J].科学 通报,2004,49(3):258_264
    [390]邹建文,黄耀,宗良纲,等.不同种类有机肥使用对稻田CH4和N20排放的综合影响[J].环境科学,·2003a,24(4):8-12
    [391]邹建文,黄耀,宗良纲,等.稻田CO2、CH4和N20排放及其影响因素[J].环境科学学报,2003b,23(6):758-764

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700