用户名: 密码: 验证码:
解淀粉芽孢杆菌C1-6固体发酵生产γ--多聚谷氨酸的工艺及技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
γ多聚谷氨酸(poly-γ-glutamic acid,γ-PGA)是微生物利用D-和/或L-谷氨酸通过α-氨基与γ-羧基之间形成的γ-酰胺键聚合而成的一种阴离子型高分子聚合物,具有水溶性、可生物降解、可食用等特点,对人体和环境安全。其分子内含有大量游离羧基,对养分具有较大的亲和力,同时又具有较强的保湿和吸水性,近年来在食品工业、化妆品生产、制药业、污水处理和农业等方面具有广泛的应用。本论文将γ-PGA的微生物合成与固体废弃物资源化处理相结合,通过固体发酵生产γ-PGA,并以此开发出一种新型的生物有机肥,对产γ-PGA菌株的筛选鉴定及诱变选育、固体发酵参数及培养基的优化、γ-PGA及固体发酵产品的生物学效应、固体发酵体系内微生物群落变化、固体发酵体系内细菌总数和功能菌株的数量变化、γ-PGA降解酶基因ywtD的克隆与表达及YwtD的降解特性等方面进行了研究。主要研究结果如下:
     1.从菜园土中分离到39株菌落粘稠的的菌株,并从中筛选到一株细菌C1,其液体发酵产物的最大吸收波长为209nm,分子量大于130kDa,水解产物98%以上为谷氨酸,因此确定该产物为γ-PGA。经氨基酸分析仪测定与计算,菌株C1液体发酵γ-PGA的产量为18.4g/L。依据细胞形态、生理生化特征及16S rRNA基因序列分析将该菌株鉴定为一株解淀粉芽孢杆菌,并命名为Bacillus amyloliquefaciens C1。
     2.以B. amyloliquefaciens C1为出发菌株,对其进行紫外线-亚硝基胍复合诱变,选育到一株正突变菌株C1-6。该突变株液体发酵生产γ-PGA的产量为24.2g/L,比原始菌株提高了31.52%,且转接8次后产量仍能保持稳定。利用γ-PGA水溶液浸泡黄瓜种子,在缺水条件下,能够促进黄瓜种子发芽后根的生长,且这种促进作用随着γ-PGA浓度的提高而愈加显著。水培实验结果表明低营养条件下添加γ-PGA能够显著促进玉米幼苗的生长(株高和生物量),提高玉米幼苗叶绿素相对含量、根系活力和N、P、K累积量。
     3.以工农业生产的固体废弃物为主要基质,利用单因子实验和响应曲面法分别对菌株C1-6固体发酵生产γ-PGA的参数及培养基配方进行优化。结果显示,在小规模的发酵条件下(20g发酵基质,初始含水量50%,初始pH7.0),菌株C1-6在成分为5.51g腐熟牛粪,1.91g豆粕,0.57g玉米粉,2.15g味精粕,1.5g麸皮,0.5g菜饼,0.1g柠檬酸,0.05gMgSO4·7H2O和0.03gMnSO4·H2O的优化培养基中,37℃下静置发酵48小时可以生产4.37%(w/w)的γ-PGA,分子量大于130kDa。以此发酵产物作为生物有机肥(CBIOF)进行盆栽实验,结果表明,施用普通有机肥(OF)和CBIOF均能够提高玉米苗期的生物量、株高、叶长、叶宽和茎粗、可溶性蛋白、可溶性糖含量和根系活性。同等施肥量条件下,施用CBIOF对玉米幼苗的促生效果显著优于施用OF的处理。
     4.将优化培养基成分按等比例放大,进行室外大规模发酵实验。整个固体发酵过程按温度变化可以分成3个阶段:常温预备期(1~2天)、高温发酵期(3~29天)、降温成熟期(30~33天)。发酵20天后,γ-PGA的产量达到0.60%(w/w),在此之后有所下降,并在发酵结束时,维持在0.57%。PCR-DGGE结果显示,固体发酵体系内微生物主要分为6大目:Firmicutes Bacillales; Firmicutes Lactobacillales; Actinobacteria Actinobacteridae; Proteobacteria Alphaprobacteria; Proteobacteria Deltaprobacteria; Proteobacteria Gammaprobacteria.随着固体发酵的进行,发酵体系中微生物群落多样性有所减少。在固体发酵的常温阶段,Proteobacteria是发酵基质中微生物群落的主要组成成分;然而在高温阶段,Proteobacteria逐渐被Firmicutes和Actinobacteria取代。在固体发酵的成熟阶段,微生物群落逐渐趋于稳定。接种的功能菌株B.amyloliquefaciens C1-6始终是整个固体发酵过程中的主要微生物。利用PCR-DGGE手段检测固体发酵过程中微生物群落的变化能够在大规模生产中指示发酵的成熟进程。
     5.固体发酵过程中细菌数量和发酵功能菌株数量对固体发酵进程、发酵产物特点具有决定性的作用。利用SYBR Green real-time PCR方法对y-PGA固体发酵体系中细菌总数量进行检测,同时设计针对Bamyloliquefaciens的特异性引物(pgsB726-f/pgsB791-r)和探针(pgsB-probe)并利用TaqMan real-time PCR技术对固体发酵体系中功能菌株B. amyloliquefaciens C1-6的数量进行检测。结果显示,在固体发酵初始阶段,固体发酵体系内细菌总量为2.20×10916S rRNA gene copies/g样品,B.amyloliquefaciens数量为2.62×106pgsB gene copies/g样品。随着固体发酵的进行细菌总量和B. amyloliquefaciens菌体数量逐渐增加。在固体发酵结束时,细菌总量为3.95R10916S rRNA gene copies/g样品,相对于固体发酵开始时变化较小。而B.amyloliquefaciens数量为2.48×108pgsB gene copies/g样品,较固体发酵开始时增长了两个数量级,约占整个发酵体系中细菌总量的5.17%,成为发酵体系中的优势菌群。
     6.将B. amyloliquefaciens C1-6编码γ-PGA降解酶的基因ywtD克隆到表达载体pET29a(+)获得重组质粒pET29α-ywtD,并转化至E. coli BL21感受态细胞。所得的重组转化子通过IPTG诱导能够表达成熟的YwtD蛋白。SDS-PAGE结果显示YwtD的分子量为46.6kDa。将YwtD通过金属亲和层析的方法纯化,并在细胞外进行该酶的降解特性研究。结果显示,该蛋白以内切酶形式降解γ-PGA,并能够在较广的温度(25~45℃)和pH(4.0~8.0)范围内降解γ-PGA.在最适降解条件下(30℃和pH4.0),YwtD经过16h可以将分子量为1,800kDa的γ-PGA降解为375.2kDa的片段,降解效率高达79.2%。Zn2+能够显著抑制YwtD的活性,而Ca2+、Fe3+、Mn2+、Ni2+、Mg2+对YwtD降解活性均没有显著影响。
Poly-y-glutamic acid (y-PGA), a naturally occurring anionic high molecular weight biopolymer, was connected by y-amide bonds between y-carboxyl and a-amino groups of D-and/or L-glutamic acid by certain microbial species. y-PGA is water-soluble, biodegradable, edible and nontoxic to human and environment. In addition, it has a good affinity to nutrients and a strong ability to preserve moisture and retain water because there are large amounts of free carboxyl in its intramolecules. In recent years, y-PGA has been used for various applications in foods, cosmetics, medicine, waste water treatments and agriculture. The objective of this dissertation is to develop a new type of bio-organic fertilizer by solid-state fermentation (SSF). The present work consists of:(1) isolation and identification of the strain producing y-PGA;(2) mutation breeding of the y-PGA productive strain;(3) optimization of the parameters and medium of SSF for producing y-PGA;(4) the effects of y-PGA on germination of cucumber seeds and the effects of the products of SSF on growth of maize seedlings repectively;(5) the dynamics shifts of microbial communities during SSF by denaturing gradient gel electrophoresis (DGGE);(6) quantification of the total amount of bacteria and B. amyloliquefaciens in the solid-state fermentation by real-time PCR assay;(7) cloning and heterologous expression of y-PGA degradation gene, ywtD. The main results obtained in this study were summarized as below:
     1.39strains with viscous colonies on plates were isolated from vegetable soil, among which a strain that can produce y-PGA with a yield of18.4g/L was screened. The product of C1produced by liquid fermentation had a maximum absorption wavelength at209nm and its molecular weight was more than130kDa. With the analysis of colony morphology, physiological and biochemical characteristics, as well as the phylogenetic analysis of16S rRNA gene sequence, Cl was identified as a Bacillus amyloliquefaciens, which was named as Bacillus amyloliquefaciens C1.
     2. B. amyloliquefaciens C1was treated with an ultraviolet-nitrosoguanidine composite mutation. The resulted mutant strain C1-6was screened with a y-PGA productivity of24.2g/L, which was increased by31.52%compared with the wild strain and had a good genetic stability after8streaks. Soaking cucumber seeds with y-PGA could promote the growth of germinative cucumber seeds under water shortage condition. In contrast with the treatment of full-strength nutrient solution, remarkable increase of root and shoot biomass, height and accumulation of N, P and K of the maize seedlings were obtained under low-strength nutrient solution treatments. In addition, all y-PGA treatments increased the relative chlorophyll content (SPAD) of maize seedlings.
     3. The parameters and medium components of SSF for the production of y-PGA by B. amyloliquefaciens C1-6were optimized by single-factor experiments and response surface methodology (RSM) using agro-industrial organic wastes as basic substrate respectively. The optimal SSF medium (20g substrates with50%initial moisture and initial pH7.0) was determined to contain5.51g dairy manure compost,1.91g soybean cake,0.57g corn flour,2.15g monosodium glutamate production residues (MGPR),1.5g wheat bran,0.5g rapeseed cake,0.1g citric acid,0.05g MgSO4·7H2O and0.03g MnSO4·H2O, in which C1-6produced y-PGA up to4.37%when fermented for48h at37℃.SDS-PAGE showed that the molecular weight of the y-PGA produced by SSF was more than130kDa. The SSF product was applied as bio-organic fertilizer (CBIOF) in pot experiments, which showed that the biomass and height of maize seedlings, length and width of leaf, and stem thickness were significantly increased. Besides, the contents of soluble protein, soluble sugar, and root activity were all increased in the CBIOF treatment. At equal fertilization level, the promotion effects on maize seedlings by applied with CBIOF was much better than applied with regular organic fertilizer (OF).
     4. Scale-up SSF experiments based on the result of optimized medium in flask were carried out outdoor. The whole SSF process could be divided into three phases:an initial short mesophilic period (1~2days), followed by a long thermophilic period (3-29days) and a curing period with a decrease in temperature (30-33days). The production of y-PGA reached a maximum of0.6%after20days fermentation, and then it decreased a little to0.57%at the end of the fermentation. PCR-DGGE profile showed that the microbes in the substrate of SSF could be classed into6orders:Firmicutes Bacillales; Firmicutes Lactobacillales; Actinobacteria Actinobacteridae; Proteobacteria Alphaprobacteria; Proteobacteria Deltaprobacteria; Proteobacteria Gammaprobacteria. A remarkable reduction of microbial diversity was detected during the fermentation process, while the inoculum, B. amyloliquefaciens C1-6, was detected as the dominant organism through the whole process. In the mesophilic phase of SSF, Proteobacteria was the dominant microbe, which was replaced by Firmicutes and Actinobacteria in the thermophilic phase. In the mature stage of fermentation, the microbial community gradually tended to be stable. The molecular analysis of the bacterial diversity has significant potential for instructing the maturing process of SSF to produce y-PGA at a large-scale level, which could be a benefit in the production of high quality and stable SSF products.
     5. The total number of bacteria and the starting functional strain played an important role in controlling the process of solid-state fermentation and characterize of the fermentation products. SYBR Green real-time PCR and TaqMan real-time PCR were employed to quantify the total number of bacteria and the starting functional strain B. amyloliquefaciens respectively in solid-state fermentation that produce y-PGA. For the development of the methodology based on TaqMan probe, the primer pair pgsB726-f/pgsB791-r and the pgsB-probe were designed from one of the y-PGA synthetase gene (pgsB) of B. amyloliquefaciens. SYBR Green real-time PCR showed the amount of total bacteria reached3.95×10916S rRNA gene copies/g sample after30days, which was about only twice compared with that at the beginning. TaqMan real-time PCR revealed that the number of B. amyloliquefaciens was2.62×106pgsB gene copies/g sample at the beginning of the fermentation, while it increased to2.482×108pgsB gene copies/g sample at the end of the fermentation. B. amyloliquefaciens growed well and became the dominant strain in the fermentation product thus increased the y-PGA production.
     6. A key property of y-PGA required for practical applications is molecular weight. The ywtD gene, which expresses an enzyme that degrades y-PGA, was cloned from B. amyloliquefaciens Cl-6and ligated to an expression vector pET29a(+) to obtain pET29a-ywtD). The recombinant plasmid was then transformed into the competence cell of E. coli BL21. Histidine-tagged YwtD was induced by1mM IPTG and purified by Ni-chelating affinity chromatography from sonicated cells of the positive transformant. YwtD, which had a molecular weight of46.6kDa detected by SDS-PAGE, was proved to be an endo-hydrolase enzyme and exhibited a remarkable activity in y-PGA degradation at a wide range of temperature (25~45℃) and pH (pH4.0~8.0). The optimal condition for YwtD was at30℃and pH4.0, under which y-PGA with a molecular weight of1,800kDa was degraded to375.2kDa. The activity of YwtD enzyme was found to be inhibited by Zn2+, while Ca2+, Fe3+, Mn2+, Ni2+and Mg2+showed no effects on the activity of YwtD.
引文
Abe, K.1997. Purification and properties of two isozymes of gamma-glutamyltranspeptidase from Bacillus subtilis TAM-4. Bioscience Biotechnology and Biochemistry,61,1621-1625.
    Amann, R.I., Ludwig, W., Schleifer, K.1995. Phylogenetic identification and in situ detection of individual microbial cells without cultivation. Microbiological Reviews,59,143-169.
    Asano, R., Otawa, K.., Ozutsumi, Y., Yamamoto, N.2010. Development and analysis of microbial characteristics of an acidulocomposting system for the treatment of garbage and cattle manure. Journal of Bioscience and Bioengineering,110,419-425
    Ashiuchi, M.2010. Occurrence and Biosynthetic Mechanism of Poly-Gamma-Glutamic Acid. In: Hamano Y, editor. Amino-Acid Homopolymers Occurring in Nature. Microbiology Monographs, 15,77-93.
    Ashiuchi, M., Kamei, T., Baek, H., Sung, H., Soda, K., Yagi, T., Misono, H.2001a. Isolation of Bacillus subtilis (chungkookjang), a poly-y-glutamate producer with high genetic competence. Applied Microbiology and Biotechnology,57,764-769.
    Ashiuchi, M., Kamei, T., Misono, H.2003a. Poly-y-glutamate synthetase of Bacillus subtilis. Journal of Molecular Catalysis,23,101-106.
    Ashiuchi, M., Misono, H.2002. Biochemistry and molecular genetics of poly-y-glutamate synthesis. Applied Microbiology and Biotechnology,59,9-14.
    Ashiuchi, M., Nakamura, H., Yamamoto, T., Kamei, T., Soda, K., Park, C, Sung, M.-h., Yagi, T., Misono, H.2003b. Poly-y-glutamate depolymerase of Bacillus subtilis:production, simple purification and substrate selectivity. Journal of Molecular Catalysis,23,249-255.
    Ashiuchi, M., Nawa, C, Kamei, T., Song, J.-j., Hong, S.-p., Sung, M.-h.2001b. Physiological and biochemical characteristics of poly-γ-glutamate synthetase complex of Bacillus subtilis. European Journal of Biochemistry,268,5321-5328.
    Ashiuchi, M., Shimanouchi, K., Horiuchi, T., Kamei, T., Misono, H.2006. Genetically Engineered Poly-y-glutamate Producer from Bacillus subtilis ISW1214. Bioscience Biotechnology and Biochemistry,70(7),1794-1797.
    Ashiuchi, M., Soda, K., Misono, H.1999. A Poly-γ-glutamate Synthetic System of Bacillus subtilis IFO 3336:Gene Cloning and Biochemical Analysis of Poly-y-glutamate Produced by Escherichia coli Clone Cells. Biochemical and Biophysical Research Communications,12,6-12.
    Ashiuchi, M., Tani, K., Soda, K., Misono, H.1998. Properties of Glutamate Racemase from Bacillus subtilis IFO 3336 producing poly-γ-glutamate. Journal of Biochemistry,123,1156-1163.
    Bajaj IB, Singhal RS.2009. Flocculation properties of poly (y-glutamic acid) produced from Bacillus subtilis isolate. Food and Bioprocess Technology,4,745-752.
    Bajaj, I., Singhal, R.2011. Poly (glutamic acid)-An Emerging Biopolymer of Commercial Interest. Bioresource Technology, doi:10.1016/j.biortech.2011.02.047.
    Bajaj IB, RS, S.2009. Sequential optimization approach for enhanced production of poly (y-glutamic acid) from Bacillus subtilis of marine origin. Food Technology and Biotechnology,47,313-322.
    Bajaj, I.B., Lele, S.S., Singhal, R.S.2008. Enhanced production of poly (y-glutamic acid) from Bacillus licheniformis NCIM 2324 in solid state fermentation. Journal Of Industrial Microbiology,35, 1581-1586.
    Bassam, B.J., Caetano-Anolles, G, Gresshoff, P.M.1991. Fast and sensitive silver staining of DNA in polyacrylamide gels. Analytical biochemistry,196,80-83.
    Ben-Zur, N., Goldman, D.M.2007. y-poly glutamic acid:A novel peptide for skin care. Cosmetics Toiletries Magazine,122,64-72.
    Bhattacharyya D, Hestekin JA, Brushaber P, Cullen L, Bachas LG, SK, S.1998. Novel polyglutamic acid functionalized microfiltration membranes for sorption of heavy metals at high capacity. Journal of Membrane Science,141,121-135.
    Birrer, GA., Cromwick, A., Grosst, R.A.1994. y-Poly (glutamic acid) formation by Bacillus licheniformis 9945a:physiological and biochemical studies. International Journal of Biological Macromolecules,16(5),265-275.
    Borbely M, Nagasaki Y, Borbely J, Fan K, Bhogle A, M, S.1994. Biosyntehsis and chemical modification of poly (y-glutamic acid). Polymer Bulletin,32,127-32.
    Bovarnick, M.1942. The formation of extracellular D(-) glutamic acid polypeptide by Bacillus subtilis. Journal of Biological Chemistry,145,415-424.
    Bueno, A.S., Pereira, C.M., Menegassi, B., Castro, I.A.2009. Effect of extrusion on the emulsifying properties of soybean proteins and pectin mixtures modelled by response surface methodology. Journal of Food Engineering,90,504-510.
    Bustin, S.a., Benes, V., Garson, J.a., Hellemans, J., Huggett, J., Kubista, M., Mueller, R., Nolan, T, Pfaffl, M.W., Shipley, GL., Vandesompele, J., Wittwer, C.T.2009. The MIQE guidelines: minimum information for publication of quantitative real-time PCR experiments. Clinical chemistry,55,611-22.
    Candela, T., Fouet, A.2005. Bacillus anthracis CapD, belonging to the γ-glutamyltranspeptidase family, is required for the covalent anchoring of capsule to peptidoglycan. Molecular Microbiology, 57(3),717-726.
    Candela, T., Fouet, A.2006. Poly-gamma-glutamate in bacteria. Molecular Microbiology,60, 1091-1098.
    Candela, T., Mock, M., Fouet, A.2005. CapE, a 47-Amino-Acid Peptide, Is Necessary for Bacillus anthracis Polyglutamate Capsule Synthesis. Journal of Bacteriology,187(22),7765-7772.
    Cassity T R, Kolodziej B J.1984. Roles of the capsule produced by Bacillus megaterium ATCC19213 in the accumulation of metallic cation. Microbios,41,117-125.
    Ceuppens, S., Boon, N., Rajkovic, A., Heyndrickx, M., Van de Wiele, T., Uyttendaele, M.2010. Quantification methods for Bacillus cereus vegetative cells and spores in the gastrointestinal environment. Journal of Microbiological Methods,83(2),202-210.
    Chen, L., Yang, X., Raza, W., Luo, J., Zhang, F., Shen, Q.2011. Solid-state fermentation of agro-industrial wastes to produce bioorganic fertilizer for the biocontrol of Fusarium wilt of cucumber in continuously cropped soil. Bioresource Technology,102(4),3900-10.
    Chen, X.-c, Bai, J.-x., Cao, J.-m., Li, Z.-j., Xiong, J., Zhang, L., Hong, Y., Ying, H.-j.2009. Medium optimization for the production of cyclic adenosine 3',5'-monophosphate by Microbacterium sp. no.205 using response surface methodology. Bioresource Technology,100(205),919-924.
    Chen, X.2005. High yield of poly-γ-glutamic acid from Bacillus subtilis by solid-state fermentation using swine manure as the basis of a solid substrate. Bioresource Technology,96,1872-1879.
    Chen, X., Shouwen, C., Ming, S., Ziniu, Y.2005. Medium optimization by response surface methodology for poly-y-glutamic acid production using dairy manure as the basis of a solid substrate. Applied Microbiology and Biotechnology,69,390-396.
    Cheng C, Asada Y, T, A.1989. Production of y-polyglutamic acid by Bacillus subtilis A35 under denitrifying conditions. Agri. Biol. Chem.,53,2369-2375.
    Choi, H.J., Sadanobu, J., Kunioka, M.1995. Synthesis and characterization of PH-sensitive and biodegradable hydrogels prepared by y-irradiation using microbial poly (a-glatamic acid) and poly(e-Iysine). Journal of Applied Polymer Science,58,807-814.
    CHUNHACHART, O., HANAYAMA, T., HIDESAKI, M., TANIMOTO, H., TAHARA, Y.2006. Structure of the Hydrolyzed Product (F-2) Released from y-Polyglutamic Acid by y-Glutamyl Hydrolase YwtD of Bacillus subtilis. Bioscience Biotechnology and Biochemistry,70, 2289-2291.
    Cormwick, A.M., Birerr, G.A., Gross, R.A.1996. Efficients of PH and aeration on y-Poly (glutamic acid of formation by Bacillus licheniformis in controlled batch fermentor cultures. Biotechnology and Bioengineering,50,222-227.
    Cromwick A M, Gross R A.1995a. Effects of manganese (Ⅱ) on Bacillus licheniformis ATCC 9945A physiology and poly (y-glutamic acid) formation. International Journal of Biological Macromolecules,17,259-267.
    Cromwick A M, Gross R A.1995b. Investigation by NMR of metabolic routes to bacterial poly(y-glutamic acid) using 13C labled citrate and glutamate as media carbon source. Canadian Journal of Microbiology,41,902-909.
    Daniel, R.2005. The metagenomics of soil. Nature Reviews Microbiology,3,470-478.
    Danon, M., Franke-whittle, I.H., Insam, H., Chen, Y., Hadar, Y.2008. Molecular analysis of bacterial community succession during prolonged compost curing. FEMS Microbiology Ecology,65, 133-144.
    Dekie, L.2000. poly-y-glutamic acid derivatives as vectors for gene therapy. Journal of Controlled Release,65,187-202.
    Do J., H Chang, Lee, S.2001. Efficient recovery of gamma-poly-(glutamic acid) from highly viscous culture broth. Biotechnology and Bioengineering,76,219-223.
    Du G, Yang G, Qu Y, Chen J, S, L.2005. Effects of glycerol on the production of poly (y-glutamic acid) by Bacillus licheniformis. Process Biochem.40,2143-2147.
    Dubruel P., L. Dekie, Schacht, E.2003. Poly-y-glutamic acid derivatives as multifunctional vectors for gene delivery. Part A. Synthesis and physicochemical evaluation. Biomacromolecules,4, 1168-1176.
    Dwevedi, A., Kayastha, A.M.2009. Optimal immobilization of β-galactosidase from Pea (PsBGAL) onto Sephadex and chitosan beads using response surface methodology and its applications. Bioresource Technology,100,2667-2675.
    Ehling-Schulz, M., Fricker, M., Scherer, S.2004. Identification of emetic toxin producing Bacillus cereus strains by a novel molecular assay. FEMS Microbiology Letters,232,189-195.
    Ehling-Schulz, M., Guinebretiere, M.-H., Monthan, A., Berge, O., Fricker, M., Svensson, B.2006. Toxin gene profiling of enterotoxic and emetic Bacillus cereus. FEMS Microbiol. Lett.,260,232-240.
    Ellaia h, P., Prabhakar, T., Ramakrishna, B., Taleb, A.T., Adinarayana, K.2002. Strain improvement of Aspergillus niger for the production of lipase. Indian Journal of Microbiology,42,151-153.
    Eveland, S.S., Pompliano, D.L., Anderson, M.S.1997. Conditionally lethal Escherechia coli murein mutants contain point defects that map to regions conserved among murein and folyl poly-y-glutamate ligases:identification of a ligase superfamily. Biochemstry,36,6223-6229.
    Fracchia, L., Dohrmann, A.B., Martinotti, M.G., Tebbe, C.C.2006. Bacterial diversity in a finished compost and vermicompost:differences revealed by cultivation-independent analyses of PCR-amplified 16S rRNA genes. Applied and Environmental Microbiology,71,942-952.
    Fredlund, E., Gidlund, A., Olsen, M., Borjesson, T., Spliid, N.H.H., Simonsson, M.2008. Method evaluation of Fusarium DNA extraction from mycelia and wheat for down-stream real-time PCR quantification and correlation to mycotoxin levels. Journal of Microbiological Methods,73, 33-40.
    Fricker, M., MesselhauBer, U., Busch, U., Scherer, S., Ehling-Schulz, M.2007. Diagnostic real-time PCR assays for the detection of emetic Bacillus cereus strains in foods and recent food-borne outbreaks. Applied and Environmental Microbiology,73(6),1892-1898.
    Fujita, O., Tatsumi, M., Tanabayashi, K., Yamada, A.2006. Development of a real-time PCR assay for detection and quantification of Francisella tularensis. Japanese Journal of Infectious Diseases, 59,46-51.
    Fumio, Y., Yoshihiro, O., Mamoru, K., Katsumi, Y., Hiroshi, M.1996. Detection of γ-Polyglutamic Acid(y-PGA) by SDS-PAGE. Bioscience Biotechnology and Biochemistry,60(2),255-258.
    Garcia-Alvarez M, Lopez-Carrasquero F, Morillo M, S, M.-G.1997. Ultrasonic degradation of polyaspartates and polyglutamates. Journal of Polymer Science Part B:Polymer Physics,35, 2379-2384.
    Gardner, J.M., Troy, F.A.1979. Chemistry and Biosynthesis of the Poly (γ-D-glutamyl) Capsule in Bacillus licheniformis. Journal of Biological Chemistry,254(14),6262-6269.
    Giraffa, G.2004. Studying the dynamics of microbial populations during food fermentation. FEMS Microbiology Reviews,28,251-60.
    Gonzales D, Fan K, M, S.1996. Synthesis and swelling characterizations of a poly (y-glutamic acid) hydrogel. Journal Polymer Science Part A:Polymer Chemistry,34,2019-2027.
    Goto, A., Kunioka, M.1992. Biosynthesis and hydrolysis of poly (γ-glutamic acid) from Bacillus subtilis IFO3335. Bioscience Biotechnology and Biochemistry,56(7),1031-1035.
    Guo, W.-q., Ren, N.-q., Wang, X.-j., Xiang, W.-s., Ding, J., You, Y., Liu, B.-f.2009. Optimization of culture conditions for hydrogen production by Ethanoligenens harbinense B49 using response surface methodology. Bioresource Technology,100,1192-1196.
    Haruta, S., Ueno, S., Egawa, I., Hashiguchi, K., Fujii, A., Nagano, M., Ishii, M., Igarashi, Y.2006. Succession of bacterial and fungal communities during a traditional pot fermentation of rice vinegar assessed by PCR-mediated denaturing gradient gel electrophoresis. International Journal of Food Microbiology,109,79-87.
    He L M, Neu M P, Vanderberg, L.A.2000. Bacillus licheniformis y-glutamyl exopolymer: physiochemical characterization and U (VI) interaction. Environmental Science and Technology, 34,1694-1701.
    Head, I.M., Saunders, J.R., Pickup, R.W.1998. Microbial evolution, diversity, and ecology:a decade of ribosomal RNA analysis of uncultivated microorganisms. Microbial Ecology 35,1-21.
    Heid, C.A., Stevens, J., Livak, K.J., Williams, P.M.1996. Real time quantitative PCR. Genome Research, 6,986-994.
    Hezayen F F, Rehm B H A, J, T.B.2001. Transfer of Natrialba asiatica B1T to Natrialba taiwanensis sp. nov., a novel extremely halophilic, aerobic, non-pigmented member of Archaea from Egypt that produces wxtracellular poly (glutamic acid). International Journal of Systematic Evolutionary Microbiology,51,1133-1142.
    Hierro, N., Esteve-Zarzoso, B., Gonzalez, A., Mas, A., Guillamo, J.M.2006. Real-time quantitative PCR (qPCR) and reverse transcription-qPCR for detection and enumeration of total Yeasts in wine. Applied and Environmental Microbiology,72(11),7148-7155.
    Hirose, I., Sano, K., Shioda, I., Kumano, M., Nakamura, K., Yamane, K.2000. Proteome analysis of Bacillus subtilis extracellular proteins:a two-dimensional protein electrophoretic study. Microbiology,65-75.
    Hoste K, L.Seymour.2000. New derivatives of polyglutamic acid as drug carrier systems. Controlled Release,64,53-61.
    Hsieh CY, Tasi SP, Wang DM, Chang YN, HJ, H.2005. Preparation of y-PGA/chitosan composite tissue engineering matrices. Biomaterials,26,5617-5623.
    Huang, X., Chen, L., Ran, W., Shen, Q., Yang, X.2011. Trichoderma harzianum strain SQR-T37 and its bio-organic fertilizer could control Rhizoctonia solani damping-off disease in cucumber seedlings mainly by the mycoparasitism. Applied and Environmental Microbiology,91(3), 741-55.
    Hugenholtz, P., Goebel, B.M., Pace, N.R.1998. Impact of Culture-Independent Studies on the Emerging Phylogenetic View of Bacterial Diversity. Journal of Bacteriology,180,4765-4774
    Innerebner, G., Knapp, B., Vasara, T., Romantschuk, M., Insam, H.2006. Traceability of ammonia-oxidizing bacteria in compost-treated soils. Soil Biology and Biochemistry,38, 1092-1100.
    Ito Y, Tanaka T., Ohmachi T., Y, A.1996. Glutamic acid independent production of poly (y-glutamic acid) by Bacillus subtilis TAM-4. Bioscience Biotechnology and Biochemistry,60,1239-1242.
    Ivanovics, G, Bruckner, V.1937. Chemishe und immunologiche Studien uber den Mechansmus der milzbrandinfektin und Immunitat; die chemische Struktor der Kapselsubstanz des Milzbrandbazillus und der serologisch identischen spezifischen Subtanz des Bazillus mesentericus. Z. Immunitatsforsch,90,304-18.
    Kambourova, M., Tangney, M., Priest, F.G.2001. Regulation of Polyglutamic Acid Synthesis by Glutamate in Bacillus licheniformis and Bacillus subtilis. Applied and Environmental Microbiology,67(2),1004-1007.
    Kar, S., Ray, R.C., Mohapatra, U.B.2008. Alpha-amylase production by Streptomyces erumpens MTCC 7317 in solid state fermentation using response surface methodology (RSM). Polish Journal of Microbiology,57(4),289-96.
    Kimura, K., Fujimoto, Z.2010. Enzymatic Degradation of Poly-Gamma-Glutamic Acid. Microbiology Monographs,15,95-117.
    Kimura, K., Tran, L.-S.P., Do, T.-H., Itoh, Y.2009. Expression of the pgsB encoding the poly-gamma-DL-glutamate synthetase of Bacillus subtilis (natto). Bioscience Biotechnology and Biochemistry,73(5),1149-1155.
    Kimura, K., Tran, L.-s.P., Itoh, Y.2004. Characterization of Bacillus subtilis γ-glutamyltransferase and its involvement in the degradation of capsule poly-γ-glutamate. Microbiology,150,4115-4123.
    King, E.C., Blacker, A.J., Bugg, T.D.H.2000. Enzymatic Breakdown of Poly-y-D-glutamic Acid in Bacillus licheniformis:Identification of a Polyglutamyl γ-Hydrolase Enzyme. Biomacromolecules,1(1),75-83.
    Kinnersley A, Koskan L P, Strom D, Y, M.A.R.1994. Composition and method for enhanced fertilizer uptake by plant. US patent,5350735.
    Kishida A., Kubota H., T, E.1998. Aqueous solution properties of bacterial polyglutamate. Journal of Bioactive Compatible Polymers,13,270-273.
    Ko Y H, Gross R A.1998. Effects of glucose and glycerol in γ-poly (glutamic acid) formation by Bacillus licheniformis ATCC 9945A. Biotechnology and Bioengineering,57,430-437.
    Konno A, Taguchi T, T, Y.1989. Bakery products and noodles containing poly (y-glutamic acid). US patent,4888193.
    Konstantinov, S.R., Zhu, W.-y., Williams, B.A., Tamminga, S.2003. Effect of fermentable carbohydrates on piglet faecal bacterial communities as revealed by denaturing gradient gel electrophoresis analysis of 16S ribosomal DNA. FEMS Microbiology Ecology,43,225-235.
    Koskan, L.P., A, R., Y, M.1998. Method and composition for enhanced hydroponic plant productivity with polyamino acids. US patent,5783523.
    Kubota H, Matsunobu T, Uotani K, Takebe H, Satoh A, T, T.1993. Production of poly (y-glutamic acid) by Bacillus subtilis F-2-01. Bioscience Biotechnology and Biochemistry,57,1212-1213.
    Kubota H, Nambu Y, T, E.1996. Alkaline hydrolysis of poly (y-glutamic acid) produced by microorganism. Journal of Polymer Science Part A:Polymer Chemistry,34,1345-1351.
    Kumar, K.S., Manimaran, A., Permaul, K., Singh, S.2009. Production of β-xylanase by a Thermomyces lanuginosus MC 134 mutant on corn cobs and its application in biobleaching of bagasse pulp. Journal of Bioscience and Bioengineering,107(5),494-498.
    Kunioka, M.1997. Biosynthesis and chemical reactions of poly (amino acid)s from microorganisms. Applied and Environmental Microbiology,47,469-475.
    Kunioka, M.1995. Biosynthesis of poly (y-glutamic acid) from L-glutamine, citric acid and ammonium sulfate in Bacillus subtilis IF03335. Applied and Environmental Microbiology,44,501-506.
    Kunioka, M.1993. Properties of hydrogels prepared by irradiation in microbial poly (γ-glutamic acid) aqueous solution. Japanese Journal of Polymer Science and Technology,50,2877-2878.
    Kunioka M, Choi H J.1998. Hydrolytic degradation and mechanical properties of hydrogels prepared from microbial poly(amino acid)s. Polymer Degradation and Stability,59,33-37.
    Kunioka, M., Goto, A.1994. Biosynthesis of poly (γ-glutamic acid) from L-glutamic acid, citric acid, and ammonium sulfate in Bacillus subtilis IFO3335. Applied and Environmental Microbiology, 40,867-872.
    LaMontagne, M.G., Jr., F.C.M., Holden, P.A., Reddy, C.A.2002. Evaluation of extraction and purification methods for obtaining PCR-amplifiable DNA from compost for microbial community analysis. Journal of Microbiological Methods,49,255-264.
    Lang, J., Hu, J., Ran, W., Xu, Y., Shen, Q.2011. Control of cotton Verticillium wilt and fungal diversity of rhizosphere soils by bio-organic fertilizer. Biology and Fertility of Soils,48,191-203.
    Leonard C. G., Housewright, R.D., C.B., T.1958. Effect of some metallic ions on glutamyl polypeptide synthesis by Bacillus subtilis. Journal of Bacteriology,76,499-503.
    Ling, N., Xue, C., Huang, Q., Yang, X., Xu, Y., Shen, Q.2010. Development of a mode of application of bioorganic fertilizer for improving the biocontrol efficacy to Fusarium wilt. BioControl,55(5), 673-683.
    Lisa, M., James, A.2004. Comparison of immobilized poly-L-aspartic acid and poly-L-glutamic acid for chelation of metal cations. Analytica Chimica Acta,517,187-193.
    Liu, J., He, D., Li, X.-z., Gao, S., Wu, H., Liu, W., Gao, X., Zhou, T.2010. γ-Polyglutamic acid (y-PGA) produced by Bacillus amyloliquefaciens C06 promoting its colonization on fruit surface. International Journal of Food Microbiology,142(1-2),190-197.
    Liu, L., Gumpertz, M.L., Hu, S.J., Ristaino, J.B.2007. Long-term effects of organic and synthetic soil fertility amendments on soil microbial communities and the development of southern blight. Biology and Bioehemistry,39,2302-2316.
    Low, K.C.1993. Synthetic polyaspartic acid and its uses. Poylmer Engineering and Science.,69, 253-254.
    Maeda, K., Morioka, R., Hanajima, D.2010. The Impact of Using Mature Compost on Nitrous Oxide Emission and the Denitrifier Community in the Cattle Manure Composting Process. Microbial Ecology,59,25-36.
    Makino, S.-i., Uchida, I., Terakado, N., Sasakawa, C., Yoshikawa, M.1989. Molecular Characterization and Protein Analysis of the cap Region, Which Is Essential for Encapsulation in Bacillus anthracis. Journal of Bacteriology,171(2),722-730.
    Mark SS, Crusberg TC, DaCunha CM, AA, D.I.2006. A heavy metal biotrap for wastewater remediation using poly-y-glutamic acid. Biotechnology Progress.,22,523-531.
    Markland P., G.Amidon, V.Yang.1999. Modified polypeptides containing y benzyl glutamic acid as drug delivery platforme. International Journal of Pharmaceutics,178,183-192.
    Martinez-Blanch, J.F., Sanchez, G., Garay, E., Aznar, R.2009. Development of a real-time PCR assay for detection and quantification of enterotoxigenic members of Bacillus cereus group in food samples. International Journal of Food Microbiology,135(1),15-21.
    Mieszkin, S., Furet, J.-P., Corthier, G., Gourmelonl, M.2009. Estimation of Pig Fecal Contamination in a River Catchment by Real-Time PCR Using Two Pig-Specific Bacteroidales 16S rRNA Genetic Markers. Applied and Environmental Microbiology,75(10),3045-3054.
    Mitsuiki M, Mizuno A, Tanimoto H, M, M.1998. Relationship between the antifreeze antivites and the chemical structure of oligo-and poly (glutamic acid)s. Journal of Agricultural and Food Chemistry,46,891-895.
    Moore, E.R.B., Mau, M., Arnscheidt, A., Bottger, E.C., Hutson, R.A., Collins, M.D.1996. The determination and comparison of the 16S rRNA gene sequences of species of the genus Pseudomonas (sensu stricto) and estimation of the natural intrageneric relationships. Systematic and Applied Microbiology,19,478-492.
    Moore, T., R. Adhikari, Gunatillake, P.2005. Chemosynthesis of bioresorbable poly (gamma-butyrolactone) by ring-opening polymerisation:a review. Biomaterials,26,3771-3782.
    Muyzer, G., Waal, E.C.D., Uitierlinden, A.G.1993. Profiling of Complex Microbial Populations by Denaturing Gradient Gel Electrophoresis Analysis of Polymerase Chain Reaction-Amplified Genes Coding for 16S rRNA. Applied and Environmental Microbiology,59,695-700.
    Myers, R.M., Fischer, S.G., Lerman, L.S., Maniatis, T.1985. Nearly all single base substitution in DNA fragments joined to a GC-clamp can be detected by denaturing gradient gel electrophoresis. Nucleic Acids Research,13(9),3131-3145.
    Nakasaki, K., Sasaki, M., Shoda, M., Kubota, H.1985. Characteristics of mesophilic bacteria isolated during thermophilic composting of sewage-sludge. Applied and Environmental Microbiology, 49,42-45.
    Niemetz R, Karcher U, O, K.1997. The cell wall polymer of the extremely halophilic archaeon. Natronococcus occultus, European Journal of Biochemistry,249,905-911.
    Niladevi, K.N., Sukumaran, R.K., Jacob, N., Anisha, GS., Prema, P.2009. Optimization of laccase production from a novel strain-Streptomyces psammoticus using response surface methodology. Microbiological Research,164,105-113.
    Ogawa, Y., Yamaguchi, F., Yuasa, K., Tahara, Y.1997. Efficient production of y-poly glutamic acid by Bacillus licheniformis (natto) in jar fermenters. Bioscience Biotechnology and Biochemistry,61 1684-1687.
    Ohnishi, R., Ishikawa, S., Sekiguchi, J.1999. Peptidoglycan Hydrolase LytF Plays a Role in Cell Separation with CwlF during Vegetative Growth of Bacillus subtilis. Journal of Bacteriology, 181(10),3178-3184.
    Oldham, E.A.2000. Comparison of action of paclitaxel and poly(L-glutamic acid)-paclitaxel conjugate in human breast cance cells. International Journal of Oncology,16,125-132.
    Oppermann-Sanio, F.B., Pickartz, S., Steinbuchel, A.1998. Biodegradation of polyamides. Polymer Degradation and Stability,59,337-344.
    Otani Y, Tabada Y, Y, I.1998a. Effect of additives on gelatin and tissue adhesion of gelatin-poly (L-glutamic acid). Biomaterials,19,2167-2173.
    Otani Y, Tabada Y, Y, I.1998b. Hemostatic capability of rapidly curable from gelatin, poly (L-glutamic acid), and carbodiimide. Biomaterials,19,2091-2098.
    Pandey, A.2003. Solid-state fermentation. Biochemical Engineering Journal,13,81-84.
    Perez-Camero G, Congredado F, Bou J J, S, M.-G.1999. Biosynthesis and ultrasonic degradation of bacterial poly(y-glutamic acid). Biotechnology and Bioengineering,63,110-115.
    Perez-Camero G, Vazquez B, S, M.-G.2001. Water-soluble esters of biosynthetic poly(y-glutamic acid). Journal of Applied Polymer Science,82,2027-2036.
    Peters, S., Koschinsky, S., Schwieger, F., Tebbe, C.C.2000. Succession of Microbial Communities during Hot Composting as Detected by PCR-Single-Strand-Conformation Polymorphism-Based Genetic Profiles of Small-Subunit rRNA Genes. Applied and Environmental Microbiology,66, 930-936.
    Petrosino, J.F., Highlander, S., Luna, R.A., Gibbs, R.A., Versalovic, J.2009. Metagenomic pyrosequencing and microbial identification. Clinical Chemistry,55(5),856-66.
    Potter, M., F.B. Oppermann-Sanio, A.Steinbuchel.2001. Cultivation of bacteria producing polyamino acids with liquid manure as carbon and nitrogen source. Applied and Environmental Microbiology,67,617-622.
    Rai, S.K., Konwarh, R., Mukherjee, A.K.2009. Purification, characterization and biotechnological application of an alkaline β-keratinase produced by Bacillus subtilis RM-01 in solid-state fermentation using chicken-feather as substrate. Biochemical Engineering Journal,45,218-225.
    Raza, W., Wu, H.S., Shen, Q.R.2010. Use of response surface methodology to evaluate the effect of metal ions by Paenibacillus polymyxa. Bioresource Technology,101(6),1904-1912.
    Relman, D.A., Schmidt, T.M., MacDermott, R.P., Falkow, S.1992. Identification of the uncultured bacillus of Whipple's disease. The New England Journal of Medicine,327,293-301.
    Reva, O.N., Dixelius, C., Meijer, J., Priest, F.G.2004. Taxonomic characterization and plant colonizing abilities of some bacteria related to Bacillus amyloliquefaciens and Bacillus subtilis. FEMS Microbiology Ecology,48,249-259.
    Richard, A., Margaritis, A.2006. Kinetics of molecular weight reduction of poly (glutamic acid) by in situ depolymerization in cell-free broth of Bacillus subtilis. Biochemical Engineering Journal, 30,303-307.
    Richard, G.1984. Immunotoxin conjugate which comprises arsanilic acid, useful fortreating malignant tumors, particularly pancreatic cancer. US patent,4485093.
    Rodriguez, A., Luque, M.I., Andrade, M.J., Rodriguez, M., Asensio, M.A., Cordoba, J.J.2011. Development of real-time PCR methods to quantify patulin-producing molds in food products. Food Microbiology,28(6),1190-9.
    Rubinder, K., Chadha, B.S., Singh, N., Saini, H.S., Singh, S.2002. Amylase hyperproduction by deregulated mutants of the thermophilic fungus us Thermomyces lanuginosus. Journal of Industrial Microbiology and Biotechnology,29,70-74.
    Ruckert, C., Blom, J., Chen, X., Reva, O., Borriss, R.2011. Genome sequence of B. amyloliquefaciens type strain DSM7T reveals differences to plant-associated B. amyloliquefaciens FZB42. Journal of Biotechnology,155(1),78-85.
    Saikaly, P.E., Barlaz, M.A., Reyes Ⅲ, F.L.2007. Development of quantitative real-time PCR assays for detection and quantification of surrogate biological warfare agents in building debris and leachate. Applied and Environmental Microbiology,73,6557-6565.
    Sakai K, Sonoda C, K, M.2000. Bitterness relieving agent. JP patent, WO0021390.
    Sandaf, Fujuyama T., T, E.2001. Chemical synthesis of polygamma glutamic acid by poly condensation of gamma glutamic acid dimmer:synthesis and reaction of poly gamma glutamic acid methyester. Polymer Science Part A,39,732-741.
    Sasaki, H., Yano, H., Sasaki, T., Nakai, Y.2005. A survey of ammonia-assimilating micro-organisms in cattle manure composting. Journal of Applied Microbiology,99,1356-1363.
    Schloss, P.D., Hay, A.G., Wilson, D.B., Walker, L.P.2003. Tracking temporal changes of bacterial community fingerprints during the initial stages of composting. FEMS Microbiology Ecology, 46,1-9.
    Shi, F., Xu, Z., Cen. Peilin.2006. Optimization of y-polyglutamic acid production by Bacillus subtilis ZJU-7 using a Surface-response Methodology. Biotechnology and Bioprocess engineering,11, 251-257.
    Shih, I.L., Wu, P.J., Shieh, C.J.2005. Microbial production of a poly (y-glutamic acid) derivative by Bacillus subtilis. Process Biochemistry,40(8),2827-2832.
    Shih, I.L., Chang, Y.N.2002. Application of statistical experimental methods to optimize production of poly(γ-glutamic acid) by Bacillus licheniformis CCRC 12826. Enzyme and Microbial Technology,31,213-220.
    Shih, I.L., Van, Y.T.2001. The production of poly-(y-glutamic acid) from microorganisms and its various applications. Bioresource Technology,79,207-225.
    Shoji, S.1984. Antimicrobial action of ε-poly-L-lysine. The Journal of Antibiotics,37,1449-1455.
    Siao F.Y., Lu J.F.,, Wang J.S.2009. In vitro binding of heavy metals by an edible biopolymer poly (gamma-glutamic acid). Journal of Agricultural and Food Chemistry,57(2),777-784.
    Smith, T.J., Foster, S.J.2000. Autolysins of Bacillus subtilis:multiple enzymes with multiple functions. Microbiology,249-262.
    Strom, P.F.1985a. Effect of temperature on bacterial species diversity in thermophilic solid-waste composting. Applied and Environmental Microbiology,50,899-905.
    Strom, P.F.1985b. Identification of thermophilic bacteria in solid-waste composting. Applied and Environmental Microbiology,50,906-913.
    Suanthie, Y, Cousin, M.A., Woloshuk, C.P.2009. Multiplex real-time PCR for detection and quantification of mycotoxigenic Aspergillus, Penicillium and Fusarium. Journal of Stored Products Research,45,139-145.
    Suzuki, T., Tahara, Y.2003. Characterization of the Bacillus subtilis ywtD Gene, Whose Product Is Involved in y-Polyglutamic Acid Degradation. Journal of Bacteriology,185(7),2379-2382.
    Tang, J.C., Shibata, A., Zhou, Q., Katayama, A.2007. Effect of Temperature on Reaction Rate and Microbial Community in Composting of Cattle Manure with Rice Straw. Journal of Bioscience and Bioengineering,104,321-328.
    Tang, J., Maie, N., Tada, Y, Katayama, A.2006. Characterization of the maturing process of cattle manure compost. Process Biochemistry,41,380-389.
    Tanimoto, H.2010. Food Applications of Poly-Gamma-Glutamic Acid. Amino-Acid Homopolymers Occurring in Nature,15,155-168.
    Tanimoto H, Mori M, Motoli M, Torii K, Kadowaki M, T, N.2001. Natto mucilage containing poly-γ-glutamic acid increases soluble calcium in the rat small intestine. Bioscience, Biotechnology, and Biochemistry,65,516-521.
    Thorne C.B., Gomez G.G., Noyes H.E., Housewright, R.D.1954. Production of glutamyl polypeptide by Bacilllus subtilis. Journal of Bacteriology,68,307-315.
    Treichel, H., Mazutti, M.A., Maugeri, F., Rodrigues, M.I.2009. Use of a sequential strategy of experimental design to optimize the inulinase production in a batch bioreactor. Journal Of Industrial Microbiology,36,895-900.
    Troy, F.A.1973. Chemistry and biosynthesis of the poly(γ-D-glutamyl) capsule in Bacillus licheniformis. Ⅰ. Properties of the membrane-mediated biosynthetic reaction. Journal of Biological Chemistry, 248(1),305-315.
    Urushibata, Y., Tokuyama, S., Tahara, Y.2002. Characterization of the Bacillus subtilis ywsC Gene, Involved in γ-Polyglutamic Acid Production YwsC protein. Journal of Bacteriology,184(2), 337-343.
    Veronse F.M., Ceriotli G., P, C.1991. Slow release of narciclasine from matrixes obtained by radiation-induced polymerization. Controlled Release,16,291-293.
    Wang, H.-Y., Zhang, X.-J., Zhao, L.-P., Xu, Y.2008a. Analysis and comparison of the bacterial community in fermented grains during the fermentation for two different styles of Chinese liquor. Journal of Industrial Microbiology and Biotechnology,35,603-609.
    Wang, J., Wan, W.2009. Experimental design methods for fermentative hydrogen production:A review. Hydrogen Energy,34,235-244.
    Wang, Q., Shouwen, C., Jibin, Z., Ming, S., Ziduo, L., Ziniu, Y.2008b. Co-producing lipopeptides and poly-γ-glutamic acid by solid-state fermentation of Bacillus subtilis using soybean and sweet potato residues and its biocontrol and fertilizer synergistic effects. Bioresource Technology 99 3318-3323.
    Weber, J.1990. Poly(γ-glutamic acid)s are the major constituents of nematocysts in Hydra(Hydrozoa Cnidaria). Journal of Biological Chemistry,265,9664-9669.
    Wei, Z., Yang, X., Yin, S., Shen, Q., Ran, W., Xu, Y.2011. Efficacy of Bacillus-fortified organic fertiliser in controlling bacterial wilt of tomato in the field. Applied Soil Ecology,48(2),152-159.
    Weisburg, W.G., Barns, S.M., Pelletier, D.A., Lane, D.J.1991.16S ribosomal DNA amplification for phylogenetic study. Journal of Bacteriology,173,697-703.
    Whitman, D.F., Dunbar, S.A.2008. Real-Time Polymerase Chain Reaction Detection Methods. Recent Patents on DNA and Gene Sequences,2,20-26.
    Wu, Q., Xu, H., Shi, N., Yao, J., Li, S., Ouyang, P.2008. Improvement of poly (gamma-glutamic acid) biosynthesis and redistribution of metabolic flux with the presence of different additives in Bacillus subtilis CGMCC 0833. Applied microbiology and biotechnology,79,527-535.
    Wu, Q., Xu, H., Xu, L., Ouyang, P.2006. Biosynthesis of poly (γ-glutamic acid) in Bacillus subtilis NX-2:Regulation of stereochemical composition of poly (γ-glutamic acid). Process Biochemistry,41,1650-1655.
    Xiaoyu Yong, Waseem Raza, Guanghui Yu, Wei Ran, Qirong Shen, Yang, X.2011. Optimization of the production of poly-c-glutamic acid by Bacillus amyloliquefaciens C1 in solid-state fermentation using dairy manure compost and monosodium glutamate production residues as basic substrates. Bioresource Technology,102,7548-7554.
    Xu, H., Jiang, M., Li, H., Lu, D., Ouyang, P.2005a. Efficient production of poly (γ-glutamic acid) by newly isolated Bacillus subtilis NX-2. Process Biochemistry,40(5),519-523.
    Xu, J., Shouwen, C., Ziniu, Y.2005b. Optimization of process parameters for poly-γ-glutamate production under solid state fermentation from Bacillus subtilis CCTCC202048. Process Biochemistry,40,3075-3081.
    Xu, W., Huang, Z., Zhang, X., Li, Q., Lu, Z., Shi, J., Xu, Z., Ma, Y.2011. Monitoring the microbial community during solid-state acetic acid fermentation of Zhenjiang aromatic vinegar. Food Microbiology,28(6),1175-81.
    Yamaguchi, H.1996. Detection of poly glutamic acid by SDS-PAGE. Bioscience, Biotechnology, and Biochemistry,60(2),255-258.
    Yamamoto, S., Kasai, H., Arnold, D.L., Jackson, R.W., Vivian, A., Harayama, S.2000. Phylogeny of the genus Pseudomonas:intrageneric structure reconstructed from the nucleotide sequences of gyrB and rpoD genes. Microbiology,146,2385-2394.
    Yang, C.-H., Crowley, D.E.2000. Rhizosphere Microbial Community Structure in Relation to Root Location and Plant Iron Nutritional Status. Applied and Environmental Microbiology,66, 345-351.
    Yang, L., Jinbin, W., Guanhuei, H., al, e.2008. Effects of poly-gamma-glutamic acid on calcium absorption in rats. Bioscience, Biotechnology, and Biochemistry,72(12),3084-3090.
    Yao, J., Jing, J., Xu, H., Liang, J., Wu, Q., Feng, X., Ouyang, P.2009. Investigation on enzymatic degradation of γ-polyglutamic acid from Bacillus subtilis NX-2. Journal of Molecular Catalysis B:Enzymatic,56,158-164.
    Yasuyoshi A, Yuji F, K, S.1993-4-20. Health food with poly(y-glutamic acid) as the chief ingredient. JP patent,5095767A2.
    Yong, X., Cui, Y., Chen, L., Ran, W., Shen, Q., Yang, X.2011a. Dynamics of bacterial communities during solid-state fermentation using agro-industrial wastes to produce poly-gamma-glutamic acid, revealed by real-time PCR and denaturing gradient gel electrophoresis (DGGE). Applied microbiology and biotechnology,92(4),717-725.
    Yong, X., Raza, W., Yu, G., Ran, W., Shen, Q., Yang, X.2011b. Optimization of the production of poly-gamma-glutamic acid by Bacillus amyloliquefaciens C1 in solid-state fermentation using dairy manure compost and monosodium glutamate production residues as basic substrates. Bioresource Technology,102(16),7548-54.
    Yoon, S.H., Do, J.H., Lee, S.Y., Chang, H.N.2000. Production of poly-y-glutamic acid by fed-batch culture of Bacillus licheniformis. Biotechnology Letters,22,585-588.
    Yoshihito,1., Takeshi, T., Tetsuo, O., Yoshihiro, A.1996. Glutamic acid independent production of poly(y-glutamic acid) by Bacillus subtilis TAM-4. Bioscience, Biotechnology, and Biochemistry, 60(8),1239-1242.
    Yu, Z., Dong, B., Lu, W.2009. Dynamics of bacterial community in solid-state fermented feed revealed by 16S rRNA. Letters in Applied Microbiology,49,166-172.
    Zhang, Y.C., Ronimus, R.S., Turner, N., Zhang, Y., Morgan, H.W.2002. Enumeration of Thermophilic species in Composts and Identification with a Random Amplification Polymorphic DNA (RAPD) Protocol. Systematic and Applied Microbiology,25,618-626.
    Zhu, W.-y., Williams, B.A., Konstantinov, S.R., Tamminga, S.2003. Analysis of 16S rDNA reveals bacterial shift during in vitro fermentation of fermentable carbohydrate using piglet faeces as inoculum. Anaerobe,9,175-180.
    王秀丽,孙波.2008.红壤旱地施用有机肥的氮素淋失过程.土壤学报,45,745-749.
    王建平,王晓丽,王昌军,等.2007.聚-γ-谷氨酸对烟草种子萌发及苗期生长的影响.华中农业大学学报,26(3),340-343.
    王莉,张强,牛西午,杨治平,等.2007.黄土高原丘陵区不同土地利用方式对土壤理化性质的影响.中国农业生态学报,15,53-56.
    王瑞良,张永娥,姚静,等.2009.“EM"菌发酵有机肥对番茄生长发育及土壤理化性状的影响.蔬菜,11,21-24.
    王传海.2004.保水剂新材料Y-聚谷氨酸的吸水性能和生物学效应的初步研究.中国农业气象,25,19-22.
    王启军.2008.枯草芽孢杆菌B6-1产脂肽和聚-γ-谷氨酸及抗几种植物病原菌的研究.武汉:华中农业大学.
    王嫱.2007.高聚合粘度γ-多聚谷氨酸产生菌的诱变筛选及其水凝胶的制备和研究.成都:四川大学.
    冷一欣,芮新生,何佩华.2005.施用聚天冬氨酸增加玉米产量的研究.玉米科学,13(3),100-102.
    李合生,孙群,赵世杰.2000.植物生理生化实验原理和技术.北京:高等教育出版社.
    李自刚.2006.农业有机固体废弃物堆肥过程中微生物多样性与物质转化关系研究.南京:南京农业大学.
    李自刚,黄为一.2005.有机堆肥PCR-DGGE的微生物分子多态性分析.土壤学报,42(6),1047-1049.
    李志宁.2003a.生态环境下的资源问题.广东社会科学,5,83-88.
    李志宁.2003b.我国资源消耗年限.科学决策,8,20-23.
    李家康.2003.21世纪中国化肥应用前景.北京:中国农业出版社,175-188.
    李汉涛,杨国正,柯云,等.2010.聚γ-谷氨酸增效复合肥对油菜产量及其构成因素的影响.湖北农业科学,49,2395-2397.
    杜沛,宴正,陈双喜.2010.丫-聚谷氨酸高产菌株的选育及发酵条件优化.河南大学学报(自然科学版),40(2),179-184.
    汪家铭.2010.聚γ-谷氨酸增效复合肥的发展与应用.四川化工,2,1-5.
    林瑞余,林豪森,孙小霞,等.2007.不同施肥条件对鱼腥草甲基正壬酮和可溶性糖含量的影响.中国中药杂志,32(22),2352-2356.
    邵丽,刘建军,赵祥颖.2007.一株产聚γ-谷氨酸菌株的筛选.山东食品发酵,4,5-7.
    姜雯,周登博,张洪生,等.2007.不同施肥水平下聚天冬氨酸对玉米幼苗生长的影响.玉米科学,15(5),121-124.
    柳建国,卞新民,李慧,等.2008.农业有机固体废弃物资源化的研究.浙江农业科学,2,175-177.
    徐艳萍,王树英,李华钟,等.2004.聚γ-谷氨酸高产突变株的选育及摇瓶发酵条件.无锡轻工大学学报,23(5),6-10.
    高定,陈同斌,刘斌,等.2006.我国畜禽养殖业粪便污染风险与控制策略.地理研究,25,311-319.
    梁金钟,李艳华,范洪臣.2007.玉米原料高产γ-聚谷氨酸优良菌株的选育及发酵条件优化.中国生物工程杂志,27(12),46-51.
    傅以钢,王峰,何培松,夏四清,赵建夫.2005.DGGE污泥堆肥工艺微生物种群结构分析.中国环境科学,25,98-101.
    喻三保,张红艳,陈守文,等.2010.聚-γ-谷氨酸施用对草莓产量和果实品质的影响.湖北农业科学,49,1638-1641.
    惠明.2005.枯草芽孢杆菌B53的分离鉴定及产聚γ-谷氨酸的研究.北京:中国农业大学.
    惠明,马晓娜,贾洁,等.2005.一株产聚谷氨酸芽孢杆菌的分离与鉴定.中国农业大学学报,10(1),6-9.
    惠明,齐冬梅,马晓娜,等.2005.碳氮源对Bacillus sp.B53发酵产聚谷氨酸的影响.食品与发酵工业,31(1),70-73.
    董惠钧,赵鹏,王卉,等.2003.均聚氨基酸及其应用.食品科学,24,163-165.
    路克国,朱数华,张连忠.2003.有机肥对土壤理化性质和红富士苹果果实品质的影响.石河子大学学报(自然科学版),7,205-208.
    戴志铖.2010.施肥量对糯玉米青食果穗氨基酸与可溶性糖的影响.现代化农业,2,12-13.
    东绣珠,蔡妙英.2001.常见细菌系统鉴定手册.北京:科学出版社,349-412.
    冯国胜.2009.活化有机肥对烟草根系生长和根际土壤微生物数量的影响.河南农业科学,11,69-72.
    刘文玉,史应武,王杏芹,等.2008.亚硝基胍诱变选育低温p-半乳糖苷酶高产菌.生物技术通报,4,185-187.
    刘有胜,杨朝晖,曾光明,等.2007PCR-DGGE技术对城市餐厨垃圾堆肥中细菌种群结构分析.环境科学学报,27(7),1151-1156.
    刘端义,梅金先,张旅峰,等.2010.聚-γ-谷氨酸及其增效肥在水稻上的应用.湖北农业科学,49,2391-2394.
    孙建利.2010.对过量使用化肥危害的思考.现代农业科技,16,278-279.
    孙辉,赵其国.2002.高固氮植物篱模式对坡耕土壤养分的影响.中国农业生态学报,10,79-82.
    张文朴.2008.加强秸秆综合利用研究,促进农业循环经济发展.中国资源综合利用,26,19-21.
    张敏,王正银.2006.生物有机肥料与农业可持续发展.磷肥与复肥,21,58-59.
    张新民,姚克敏,徐虹.2004.新型高效吸水材料(y-PGA)的农业应用研究初报.南京气象学院学报,27(2),224-229.
    张宝涛,王立群,伍宁丰,等.2006PCR-DGGE技术及其在微生物生态学中的应用.生物信息学,3,132-134.
    张辉,李维炯,倪永珍.2006.生物有机无机复混肥对土壤性质的影响.土壤通报,37,273-277.
    杨俐.2007.贵州绿僵菌产壳聚糖酶的纯化鉴定及高产菌株的诱变选育.成都:四川大学.
    杨品,李太华.2000.大肠杆菌中外源基因表达的研究进展.微生物学免疫学进展,28(2),69-72.
    杨革.2001.细菌聚-γ-谷氨酸的研究.无锡:江南大学.
    杨革,陈坚,曲音波.2002a.碳源和Mn2+对地衣芽胞杆菌B.licheniformis WBL-3发酵生产γ-PGA的影响.化工学报,53,317-320.
    杨革,陈坚,曲音波,等.2002b.细菌聚-γ-谷氨酸表征的研究.高分子材料科学与工程,18, 133-136.
    许海萍.2011.浅谈化肥对生态环境的影响与对策.生态建设,175-176.
    谢凝子.2008.产纤维素酶解淀粉芽抱杆菌Tx26的筛选及基因在大肠杆菌中的表达.武汉.华中农业大学,34.
    钟希琼,王慧珍,邓日烈.2005.生物有机肥对蔬菜生理性状和品质的影响.佛山科技技术学院学报(自然科学版),2,74-76.
    钱伯章.2008.聚γ氨酸增效剂增产省肥.化肥工业,35,70.
    陈雄.2005.枯草芽胞杆菌高产聚-γ-谷氨酸及其应用研究.武汉:华中农业大学,87-101.
    鲍士旦.2000.土壤农化分析(第三版).北京:中国农业出版社.
    黄为一.2004.微生物在化肥缓释和土壤养分活化中的作用.北京:中国农业出版社,27-28.
    黄国锋,吴启堂,孟庆强,等.2001.有机固体废弃物在持续农业中的资源化利用.土壤与环境,10,246-249

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700