用户名: 密码: 验证码:
空斗墙及HPFL加固空斗墙的抗震性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
综述国内外砌体结构抗震性能、结构加固和砌体结构有限元仿真分析的研究现状和发展趋势。在大量试验和有限元仿真分析的基础上,对空斗墙片和HPFL条带加固空斗墙片的抗震性能进行了较系统的研究。
     对砌体分离式有限元模型进行了研究。建立了考虑砂浆与砖块之间黏结作用和剪切滑移作用的双剪面单砖砌体试件的三维有限元模型。由于砖与砂浆之间的黏结滑移关系目前研究尚不成熟,本文提出了一种黏结滑移关系曲线,并以试件在剪压作用下的试验结果为目标函数,提出一种改进的遗传算法,通过APDL语言编制反演程序,在有限元软件ANSYS中实现黏结滑移关系曲线的参数反演。该分离式有限元模型和黏结滑移关系曲线能用于砌体墙片的有限元分析中。
     对24片空斗墙试件和3片实砌墙试件进行了拟静力试验。通过墙片的拟静力试验观察墙片的整个破坏过程,分析墙片的破坏形态和抗剪承载力、滞回曲线、骨架曲线、延性等抗震性能指标。
     建立了空斗墙分离式有限元模型。在试验结果和有限元分析的基础上,系统的研究了砌筑方式、砌筑材料强度、高宽比和竖向压力对空斗墙抗剪性能的影响。砌筑方式不同,对空斗墙抗剪性能有所影响,但影响不大,在实际工程应用中,均可按全斗墙考虑,偏于安全。不同的砌筑材料强度对空斗墙抗震性能的影响较大。随着砂浆强度的提高,空斗墙的开裂荷载和极限荷载均提高。随着高宽比增大,墙体抗剪承载力减小。在相同条件,竖向压应力较小的情况下,随着竖向压应力增大,空斗墙的抗震承载力和变形能力均增大;当竖向压应力达到空斗墙竖向承载能力的0.6倍左右时,竖向压应力继续增大,空斗墙的抗震承载力反倒减小。
     依据库仑理论、主拉应力理论以及主压应力强度理论,首次提出了剪压状态下空斗砌体的破坏准则。提出了空斗墙的抗剪强度计算公式。
     对9片采用高性能复合砂浆钢筋网(HPFL)条带修复已损坏空斗墙和9片HPFL条带加固未损坏空斗墙与9片修复前的墙体和3片未加固墙体的对比墙体进行了拟静力试验,分析墙片的破坏形态和开裂荷载、极限荷载、滞回曲线、骨架曲线、刚度退化等性能指标。研究表明,采用HPFL条带修复的方法能恢复甚至提高受损空斗墙结构的抗震性能;采用HPFL条带加固无损空斗墙结构,能大幅提高墙体的极限承载力,改善墙体的延性和刚度退化。
     建立了HPFL条带加固空斗墙的分离式有限元模型。在试验结果和有限元分析的基础上,系统分析了加固条带宽度、加固面层砂浆强度、加固层钢筋网密度、砌筑砂浆强度、墙片高宽比和竖向压应力等因素对加固效果的影响。加固条带宽度对HPFL条带加固性能的影响很大,增大加固条带的宽度是提高墙体抗剪承载力的最有效方式。随着加固面层砂浆强度的提高,墙体的抗剪承载力随之提高。随着加固层钢筋网格尺寸加密,极限承载力略有增大,但提高效果不明显。不同砂浆强度砌筑的墙体,HPFL条带加固均能较大幅度的提高墙体的极限承载力;砌筑砂浆强度较高的墙体,加固后极限承载力的提高幅度略大于砌筑砂浆强度较低的墙体。经过HPFL条带加固的空斗墙的效果受高宽比变化的影响较小,HPFL条带圈梁构造柱式加固方式对各种高宽比的空斗墙都是有效的。HPFL条带圈梁构造柱式加固空斗墙,受竖向压应力大小的影响,条带的受力原理有所不同,但该加固方式对各种竖向压应力下的空斗墙都是有效的。
     提出了HPFL条带加固空斗墙的抗剪强度计算公式。
A thorough review is given to research status and development trend of seismicbehavior, reinforcement and finite element analysis of masonry structure. Based onthe test and finite element analysis, a study of row-lock cavity wall and its seismicperformance reinforced with HPFL strip is carried systematically.
     The masonry structure micro-model is studied. A three-dimensional finite elementmodel of double shear test of brick masonry specimen is established consideringbond-slip function of mortar and brick. As bond-slip relation of brick and mortar hasnot been studied in depth, bond-slip relation curves is proposed. Improved geneticalgorithm is presented, according to experimental results of double shear test. Andinversion program is compiled by APDL language, and parametric inversion ofbond-slip relation curves is implemented. The micro-model and bond-slip relationcurves are available to finite element analysis on masonry wall.
     Pseudo-static tests on twenty-four specimens of row-lock cavity wall and threespecimens of solid wall are conducted. According to experimental results of the wholefailure process, its failure mode and seismic performance indexes of shear capacity,hysteric curves, skeleton curves and ductility is dicussed.
     The row-lock cavity wall micro-model is studied. Based on the experimentalresults and finite element analysis, a systemically study of shear behavior effectfactors on row-lock cavity wall is conducted, such as brick-work mode, masonrymaterial strength, aspect ratio and vertical compressed stress. Shear behavior ofrow-lock cavity wall is affected by brickwork mode, but the impact is slight. In actualengineering, it is safe though disregarded. Material strength differs greatly on seismicbehavior of row-lock cavity wall. Both cracking load and ultimate load increase asmortar strength increased. The shear bearing capacity reduced as aspect ratioincreased. When N/Nu is less than0.6, shear bearing capacity and deformabilityincreases as vertical compressed stress increased. When N/Nu is more than0.6, thecapacity reduced as vertical compressed stress increased.
     According to Mohr-Coulomb theory, principal tensile and compressive theory,failure criteria of row-lock cavity wall is first proposed. The shear capability formulaof row-lock cavity wall is put forward.
     To analyze behavior indexes of wall failure mode, cracking load, ultimate load,hysteric curves, skeleton curves and rigidity degeneration, a series of pseudo-static tests on nine damaged row-lock cavity walls repaired by HPFL, nine undamagedrow-lock walls strengthened by HPFL, and three unreinforced comparison walls areconducted. The results indicates that HPFL helps to restore and improve seismicperformances of damaged row-lock cavity wall, and it helps to enhance wall ultimateload, improve ductility and rigidity degeneration of undamaged row-lock cavity wall.
     Finite element method of row-lock cavity wall separation-type model reinforcedwith HPFL is developed. Based on the experimental results and finite elementanalysis, a systemic study of reinforcement effect factors of band width reinforcement,mortar intensity reinforcement of surface course, steel fabric density reinforcement,masonry mortar’s strength, aspect ratio and vertical compressed stress are conductedrespectively. Band width reinforcement exerts great influences on HPFL stripreinforcement behavior, and width-broadening is the most effective to increase wallshear load. Wall shear load increases as the mortar intensity reinforcement of surfacecourse increased. Ultimate load increases slightly as steel fabric densityreinforcement increased, but the effect is not so big. Effects of HPFL enforcementdiffers in masonry mortar strengths, and a positive correlation between masonrymortar strength and HPFL enforcement effect on wall shear load is exited. Row-lockcavity wall of different aspect ratio strengthened by HPFL are confirmed to beeffective, though the aspect ratio effect is slight. Rowlock wall of different verticalcompressed stress strengthened by HPFL are confirmed to be effective, thoughmechanical principle of the HPFL reinforcement bands differs in vertical compressedstresses.
     The shear capability formula of row-lock cavity wall reinforced with HPFL stripis put forward.
引文
[1] Yokel F Y, Fattal S G. Failure hypothesis for masonry shear wall. Journal of theStructural Division,1976,102(3):515-532
    [2] Ahmad A H, Robert G D. Concrete masonry under combined shear andcompression along the mortar joint. ACI Journal,1980,77(5):314-320
    [3]砖石结构设计规范抗震设计研究组.无筋墙体的抗震剪切强度[J].建筑结构学报,1984,5(6):1-11
    [4]冯建国,巴荣光,傅书麟.无筋墙体的抗震剪切强度[J].西安冶金建筑学院学报,1985,41(1):35-54
    [5] Riddington J R, Chazali M Z. Hypothesis for shear failure in masonry joints.Proc. Instn Civ. Engrs,1990,l(3):89-102
    [6] Abdel-Dayem M S, Hamid A A. Lateral response of unreinforced solid masonryshear walls. In:Seventh Canadian Masonry Symposium. Ottawa,1995,110-125
    [7]骆万康,朱希成,廖春盛.砌体抗剪强度研究的回顾与新的计算方法[J].重庆建筑大学学报,1995,17(4):41-49
    [8] Tomazevic M, Lutman M, Petkovic L. Seismic Behavior of Masonry WallsExperimental Simulatio. Journal of Structural Engineering,1996,122(9):1040-1047
    [9] Tomazevic M, Lutman M. Seismic Behavior of Masonry Walls. Journal ofStructural Engineering,1996,122(9):1048-1054
    [10] Andreaus U. Failure Criteria for Masonry Panels Under In-plane Loading.Journal of Structural Engineering,1996,122(1):37-46
    [11]骆万康,王勇.砖砌体剪压复合受力的动力特性研究[J].重庆建筑大学学报,1999,21(5):57-63
    [12]骆万康,李锡军.砖砌体剪压复合受力动、静力特性与抗剪强度公式[J].重庆建筑大学学报,2000,22(4):13-19
    [13]洪峰,王绍博.砌体结构抗震抗剪强度分析[J].地震工程与工程振动,2000,20(3):28-33
    [14]刘桂秋,施楚贤,刘一彪等.平面受力砌体的破坏准则.见:2000年全国砌体结构学术会议论文集一现代砌体结构.北京:中国建筑工业出版社,2000,19-24
    [15]李晓文,王庆霖,梁兴文.无筋墙体抗剪计算.见:2000年全国砌体结构学术会议论文集—现代砌体结构.北京:中国建筑工业出版社,2000,59-65
    [16]刘桂秋,施楚贤,周万能等.无筋砖墙的受剪性能分析[J].建筑结构,2003,33(12):55-59
    [17]刘桂秋,施楚贤,吕伟荣.砌体剪力墙的受剪性能及其承载力计算[J].建筑结构学报,2005,26(5):81-90,117
    [18]陈梦静,徐明.无筋砌体墙抗剪承载力计算方法的比较[J].江苏建筑,2010,23(2):25-28
    [19]梁建国,方亮.砖砌体墙的屈服准则及其抗剪强度计算[J].土木工程学报,2010,43(6):42-47
    [20]肖良丽, Li Y, Bulleit W M.地震作用下无筋砌体墙的抗剪可靠度分析[J].土木工程学报,2010,43(增刊):48-53
    [21] Priestley M J N. Seismic Behaviour of Unreinforced Masonry Walls[J]. Bulletinof the New Zealand National Society for Earthquake Engineering,1985,18(2):191-205
    [22] Doherty K, Griffith M C, Lam N et al. Displacement-based seismic analysis forout-of-plan bending of unreinforced masonry walls[J]. Earthquake Engineeringand Structural Dynamic,2002,31(4):833-850
    [23] Griffith M C, Magenes G, Melis G et al. Evaluation of out-of-plane stability ofunreinforced masonry walls subjected to seismic excitation[J]. Journal ofEarthquake Engineering,2003,7(1):141-169
    [24] Sharif I, Meisl C S, Elwood K J. Assessment of ASCE41height-to-thicknessratio limits for URM walls[J]. Earthquake Spectra A,2007,23(4):893-908
    [25] Grififth M C, Vaculik J, Lam N T K. Cyclic testing of unreinforced masonrywalls in two-way bonding[J]. Earthquake engineering and structural dynamic,2007,36(6):801-821
    [26] Milani G, Paulo L, Antonio T. Homogenization approach for the limit analysis ofout-of-plane loaded masonry walls[J]. Journal OF Structural Engineering,2006,132(10):1650-1663
    [27]周广春,谢玲燕,佘志鹏.预测面外荷载下砌体墙板破坏模式的CA模型.哈尔滨工业大学学报,2007,39(10):1517-1519
    [28]周赛江.夹芯墙体平面外结构分析研究:[长沙理工大学硕士学位论文].长沙:长沙理工大学,29-57
    [29]于洋.配筋砌体结构墙体出平面反应试验研究[J].地震工程与工程振动,2009,29(6):149-153
    [30]陈东华.砖砌体墙平面外受力性能研究:[北京工业大学硕士学位论文].北京:北京工业大学,2010,7-22
    [31]冮明姝,蔡贤辉,仲伟秋.砌体填充墙平面外受力分析及简化模型[J].建筑科学与工程学报,2012,29(1):121-126
    [32]刘昌茂,冯卫,杨良荣.空斗墙房屋抗震性能及加固的试验研究[J].地震学刊,1990,10(2):10-15
    [33]邓民宪,宋龙伯.空斗砖房的震害预测[J].地震学刊,1991,11(1):76-84
    [34]冯守仁.常熟一太仓地震中空斗墙房屋的震害及今后建房的若干建议[J].工程抗震,1991,13(1):38-40
    [35]施平.对农房空斗墙抗震性能的探讨[J].村镇建设,1994,12(1):22
    [36]葛学礼,朱立新,于文等.江西九江一瑞昌M5.7级地震空斗砖墙房屋震害分析[J].工程抗震与加固改造,2006,28(1):10-17
    [37]葛学礼,朱立新.浙江文成地震村镇空斗墙建筑震害分析[J].工程抗震与加固改造,2006,28(1):106-109
    [38]魏文晖,熊利剑,吴亚丽.空斗墙砌体结构检测与非线性有限元动力分析[J].华中科技大学学报(城市科学版),2009,26(4):20-24
    [39]奉杰超,尚守平,刘沩等.空斗墙墙片的拟静力试验研究[J].铁道科学与工程学报,2009,6(3):31-35
    [40]李校兵,汤伟民,张清华等.空斗墙片墙抗侧力性能试验研究[J].自然灾害学报,2010,19(2):8-12
    [41]葛学礼,朱立新,于文等.温州大仑砖空斗墙房屋模型振动台试验研究[J].工程抗震与加固改造,2010,32(6):104-110,116
    [42]王卓琳,蒋利学.低强度空斗墙的受力性能试验研究[J].工业建筑,2011,41(增刊):87-92,126
    [43]骆万康,王天贤.预应力砖墙在低周反复荷载下抗裂及承载力试验研究[J].建筑工程学院学报,1994,16(4):52-66
    [44]黄忠邦.国外关于钢筋网水泥砂浆抗震加固的研究[J].建筑结构,1991,21(5):44-47
    [45]朱伯龙,吴明舜,蒋志贤.砖墙用钢筋网水泥砂浆面层加固的抗震能力研究[J].地震工程与工程振动,1984,4(1):70-81
    [46]楼永林.夹板墙的试验研究与加固设计[J].建筑结构学报,1988,9(4):1-12
    [47]黄忠邦.水泥砂浆及钢筋网水泥砂浆面层加固砖砌体试验[J].天津大学学报,1994,27(6):764-770
    [48]黄忠邦.钢筋网水泥砂浆加固砖墙中关于拉结筋的试验研究[J].实验力学,1994,9(4):383-389
    [49]苏三庆,王清敏,丰定国.用夹板墙加固混合结构房屋的弹塑性地震反应分析[J].西安建筑科技大学学报,1998,30(3):253-256
    [50]苏三庆,王清敏,丰定国.用钢筋网水泥砂浆抹面加固砖墙的抗震性能试验研究[J].西安建筑科技大学学报,1998,30(3):228-232
    [51]赵根田,田志昌,吕宏云.开裂墙体加固后的弯剪性能研究[J].工程抗震,2000,23(1):18-20
    [52]谈永奎.砖墙体加固抗震性能的试验比较[J].工业建筑,2001,31(7):65-67,5
    [53]王天贤.加固在役KP1砖墙的抗震性能试验研究[J].重庆建筑大学学报,2003,25(3):51-54
    [54]李明,王志浩.钢筋网水泥砂浆加固低强度砂浆砖砌体的试验研究[J].建筑结构,2003,33(10):34-36
    [55]翁大根,贺强,吕西林等.砖砌体墙片的抗震加固试验.见:第六届全国地震工程学会会议现代地震工程进展,2005:865-870
    [56]蔡勇,余志武.高性能砂浆-钢丝(筋)网加固砖砌体抗压强度试验研究[J].铁道科学与工程学报,2007,4(5):1-5
    [57]许清风,江欢成,朱雷.钢筋网水泥砂浆加固旧砖墙的试验研究[J].土木工程学报,2009,42(4):77-84
    [58] Triantafillo T C, Fardis M N. Advanced Composites for Strengthening HistoricStructures. In: Proceedings of IABSE Symposium on Structural Preservation ofthe Architectural Heritage. Rome:IABSE,1993,92-112
    [59] Triantafillo T C. Strengthening of Masonry Structures Using Epoxy-bonded FRPLaminates [J]. Journal of Composites for Construction,1998,2(2):96-104
    [60] Triantafillo T C, Antonopoulos C P. Design of Concrete Flexural MembersStrengthened in Shear with FRP [J]. Journal of Composites for Construction,2000,4(4):198-205
    [61] International Conference of Building Officials. Acceptance Criteria for Concreteand Reinforced and Unreinforced Masonry Strengthened Using Fiber-reinforcedPolymers, Composite Systems[R]. Whittier: ICBO,2001
    [62]赵彤,张晨军,谢剑等.碳纤维布用于砖砌体抗震加固的试验研究[J].地震工程与工程振动,2001,21(2):89-95
    [63]林磊,叶列平.FRP加固砖砌体墙的试验研究与分析[J].建筑结构,2005,35(3):21-27
    [64] Gu X L, Zhang W P, Ouyang Y et al. Shearing Capacity of Masonry StructuralWalls Strengthened by CFRP Plates[J]. Science and Engineering of CompositeMaterials,2005,12(3):193-202
    [65]顾祥林,叶芳菲,张伟平等.CFRP板加固砖墙的抗剪承载力[J].结构工程师,2005,21(6):64-67
    [66]张祥顺.碳纤维布加固砌体结构试验研究:[武汉理工大学硕士学位论文].武汉:武汉理工大学,2003,39-43
    [67]阮积敏.普通玻璃纤维布加固多孔砖砌体的试验研究:[浙江大学硕士学位论文].杭州:浙江大学,2003,48-53
    [68]王欣.纤维复合材料加固砌体墙片的抗震试验研究:[同济大学硕士学位论文].上海:同济大学,2003,45-52
    [69]温利明.芳纶纤维加固砖砌体的抗震性能试验研究:[华侨大学硕士学位论文].泉州:华侨大学,2003,47-59
    [70]潘华,邱洪兴,朱星彬.碳纤维布抗震加固砖砌体墙的试验研究[J].建筑结构,2006,36(7):67-70
    [71]谷倩,彭波,刘卫国等.碳纤维布抗震加固开门窗洞口砌体墙片的试验研究与受剪承载力分析[J].建筑结构学报,2007,28(1):80-88
    [72]由世岐,刘新强,刘斌等.斜向粘贴FRP加固砖砌体墙受剪试验[J].沈阳建筑大学学报(自然科学版),2008,24(5):803-808
    [73]王全凤,黄奕辉.纤维增强复合材料与砖界面剥离模型[J].工程力学,2009,26(10):50-58
    [74]王世雄,刘松波,李思明.空斗墙房屋的抗震加固设计[J].四川建筑科学研究,1981,7(2):86-93
    [75]田世民.空斗墙加固技术的理论研究和试验分析及其基础纠偏分析:[浙江大学硕士学位论文].杭州:浙江大学,2007,14-30
    [76]田世民,廖娟.钢板网片在空斗墙加固中的应用[J].住宅科技,2000,20(6):35-38
    [77]廖娟,陈龙珠,田世民.空斗墙采用钢板网片加固试验及应用[J].建筑技术,2001,32(6):373-374
    [78]尚卿,刘沩.农村砖砌空斗墙建筑的抗震加固[J].广西大学学报(自然科学版),2009,34(5):603-608
    [79]尚守平,季超群,刘沩.高性能复合砂浆钢筋网加固空斗墙的试验研究[J].湘潭大学自然科学学报,2010,32(2):51-56
    [80]尚守平,罗致,奉杰超等.HPFL加固前后空斗墙片抗侧刚度试验[J].广西大学学报(自然科学版),2010,35(4):519-523
    [81]汤伟民,孙林柱,金国平等.空斗墙墙片抗震修复与加固伪静力试验研究.见:第19届全国结构工程学术会议论文集(第Ⅲ册),2010,385-391
    [82]尚守平,罗业雄.带剪切销钉的复合砂浆加固砌体界面抗剪性能研究[J].建筑结构学报,2011,32(2):54-59
    [83]汤伟民,周坚毅,吴策等.空斗墙加固后的抗震性能试验研究[J].结构工程师,2011,27(增刊):201-205
    [84]王卓琳,蒋利学.高强钢绞线-聚合物砂浆加固低强度空斗墙的试验研究[J].工业建筑,2011,41(11):60-65
    [85] ACI Committee. A Guide for the Design, Construction and Repair of Ferrocement[J]. ACI Structural journal,85(3):323-351
    [86] Andrews G, Shamra A K. Repaired Reinforced Concrete Beams[J]. ConcreteInternational,10(4):47-51
    [87] Basaunbul I A, Gubati A, Al-Sulaimani et al. Repaired Reinforced ConcreteBeams[J]. ACI Material Jounral,87(4):345-354
    [88] Al-Sulaimani G J, Basunbul I A, Mousselhy E A. Shear Behvaior of FerrocementBox Beams[J]. Cement&Concrete Composites,13(l):29-36
    [89] Sharma A K. Tests of Reinforced Concrete Continuous Beams with and WithoutFerrocement[J]. Concrete International,14(3):36-40
    [90] Paramasivam P, Ong K C G, Lim C T E. Repair of Damage RC Beams UsingFerrocement Laminates. In: Proc. Fourth International Conf. On StructuralFailure, Durability and Retrofitting, Singapore, July1993:613-620
    [91] Nedwell P J, Ramesht M H, Rafei-taghanaki S. Investigation into the Repair ofShort square Columns Using Ferrocement. In: Proceeding of the FifthInternational Symposium on Ferrocement. London,1994,277-285
    [92] Fahmy E H, Shaheen Y B I, Korany Y S. Repairing Reinforced Concrete Beamsby Ferrocement[J]. Journal of Ferrocement,1997,27(l):19-32
    [93] Paramasivam P, Lim C T E, Ong K C G. Strengthening of RC Beams withFerrocement Laminates[J]. Cement&Concrete Composites,1998,20(l):53-65
    [94] Fahmy E H, Shaheen Y B I, Korany Y S. Repairing Reinforced Concrete ColumnsUsing Ferrocement Laminates[J]. Journal of Ferrocement,1999,29(2):115-124
    [95] Abdulah, Katsuki Takiguchi. An investigation into the behavior and strength ofReinforced concrete columns strengthened with ferrocement jackets[J]. Cement&Concrete Composites,2003,25(2):233-242
    [96]聂建国,王寒冰,张天申等.高强不锈钢绞线网-渗透性聚合砂浆抗弯加固的试验研究[J].建筑结构学报,2005,26(2):1-9
    [97]聂建国,王寒冰,张天申等.高强不锈钢绞线网-渗透性聚合砂浆抗剪加固的试验研究[J].建筑结构学报,2005,26(2):10-17
    [98]卜良桃.高性能复合砂浆钢筋网加固RC梁的性能研究:[湖南大学博士学位论文].长沙:湖南大学,2006,21-93
    [99]蒋隆敏.钢筋网高性能水泥复合砂浆加固RC柱在静载与低周反复荷载作用下的性能研究:[湖南大学博士学位论文].长沙:湖南大学,2006,36-172
    [100] Dhansekar M, Kleeman P W, Page A W. Biaxial stress-strain relations for brickmasonry[J]. Journal of Structural Engineering, ASCE,1985,111(5):1085-1100
    [101] ALI S, PAGE A W. Finite element model for masonry subjected to concentratedloads[J]. Journal of Structural Engineering, ASCE,1988,114(8):1761-1784
    [102] Lotfi H R, Shing P B. Interface Model Applied to Fracture of MasonryStructures[J]. Journal of Engineering Mechanics,1994,120(1):63-80
    [103]朱伯龙,金国芳.“混用体系”中型砌块墙片有限元弹塑性分析[J].同济大学学报,1994,22(1):1-6
    [104]王述红,唐春安,吴献等.砌体构件裂缝开展相互作用与贯通数值分析[J].东北大学学报(自然科学版),2002,23(11):1108-1110
    [105]王述红,唐春安,朱浮声等.砌体结构开裂过程细观损伤数值模型及其分析方法[J].建筑结构学报,2003,24(2):64-69
    [106]王述红,唐春安,吴献等.砌体开裂过程数值模型及其模拟分析[J].工程力学,2005,22(2):56-61
    [107]王述红,孙豁然,张娟霞等.砌体受压开裂过程数值模拟及其力学特性研究[J].哈尔滨工业大学学报,2006,38(4):644-648
    [108] Asteris P G, Syrmakezis C A. Strength of unreinforced masonry walls underconcentrated compression loads. Practice Periodical on Structural Design andConstruction,ASCE,2005,10(2):133-140
    [109]吕伟荣,施楚贤.剪压复合作用下普通砖砌体的ANSYS分析.见:2005年全国砌体结构理论与工程应用学术会议论文集.上海:同济大学出版社,2005,126-130
    [110]苗吉军,顾祥林,张伟平等.地震作用下砌体结构倒塌反应的数值模拟计算分析[J].土木工程学报,2005,38(9):45-52
    [111]叶芳菲,顾祥林,张伟平等.碳纤维板加固砖墙抗剪性能的有限元分析[J].结构工程师,2005,21(3):19-24
    [112]李英民,韩军,刘立平.ANSYS在砌体结构非线性有限元分析中的应用研究[J].重庆建筑大学学报,2006,28(5):90-96,105
    [113]岳增国,金伟良,傅军.基于分离式模型的砌体结构有限元分析.见:砌体结构理论与新型墙材应用—2007年全国砌体结构基本理论与工程应用学术会议论文集.北京:中国城市出版社,2007:69-73
    [114] Calderini C, Lagornarsin S. Continuum model for in-plane anisotropic inelasticbehavior of masonry. Journal of Structural Engineering, ASCE,2008,134(2):209-220
    [115]林旭川,陆新征,叶列平.砌体结构的地震倒塌模拟与分析[R].汶川地震建筑震害调查与灾后重建分析报告.北京:中国建筑工业出版社,2008:285-292
    [116]张维.碳纤维加固砌体试验研究及有限元分析[J].武汉理工大学学报,2008,30(10):85-88
    [117]杨曌,彭少民,谷倩.碳纤维布加固开洞砖墙体试验研究及有限元分析[J].建筑科学,2009,25(7):33-36
    [118]孙贇峰,左宏亮,朱琳琳.横向粘贴CFRP砖砌体墙在水平荷载作用下有限元分析[J].低温建筑技术,2009,138(12):57-59
    [119]左宏亮,孙赟峰,朱琳琳.粘贴碳纤维布砖砌体墙在低周反复荷载作用下的有限元分析[J].沈阳建筑大学学报(自然科学版),2010,26(2):276-281
    [120] Da Porto F, Guidi Gi, Garbin E et al. In-plane behavior of clay masonry walls:experimental testing and finite-element modeling. Journal of StructuralEngineering, ASCE,2010,136(11):1379-1392
    [121]赵永志,陈友川,郑津洋.砌体结构破坏倒塌过程的离散单元模拟[J].计算力学学报,2011,28(4):523-529
    [122]刘立鹏,唐岱新.无筋砌体材料本构模型评述[J].哈尔滨工业大学学报,2004,35(9):1256-1259
    [123] Lourenco P B, Rots J G, Blaauwendraad J. Continuum model for masonry:parameter estimation and validation. Journal of Structural Engineering,1998,124(6):642-652
    [124] Lourenco P B. Computational strategies for masonry structures.Netherlands:Delft University Press,1996,1-210
    [125] Ma G, Hao H, Lu Y. Homogenization of Masonry Using NumericalSimulations[J]. ASCE Journal of Engineering Mechanics,2001,127(5):421-431
    [126]刘振宇,叶燎原,潘文.等效体积单元(RVE)在砌体结构中的应用[J].工程力学,2003,20(2):31-35
    [127] Gambarota L, Lagomarsino S. Damage models for the seismic response of brickmasonry shear walls. Part I:themortar joint model and its applications[J].Earthquake Engineering And Structural Dynamics,1997,26:423-439
    [128]王达诠.砌体RVE均质过程的有限元分析[J].重庆建筑大学学报,2002,24(4):35-39
    [129]王达诠.应用RVE均质化方法的砌体非线性分析:[重庆大学硕士学位论文].重庆:重庆大学,2002,51-79
    [130] Milani G, Lourenco P, Tralli A. Homogenization Approach for the LimitAnalysis of Out-of-Plane Loaded Masonry Walls[J]. Journal of StructuralEngineering,2006,10:1650-1663
    [131]王茂龙,刘明,朱浮声等.有限元法在砌体结构分析中的应用[J].沈阳建筑大学学报,2006,22(1):40-44
    [132]彭燕伟.RVE在砌体结构力学性能研究中的应用:[河南大学硕士学位论文].开封:河南大学,2010,45-68
    [133]丁阳,汪明,李忠献等.利用等效砌体材料模型分析爆炸荷载作用下砌体墙碎片尺寸分布[J].工程力学,2010,27(7):186-191,204
    [134]刘立鹏,唐岱新.无筋砌体材料本构模型述评[J].哈尔滨工业大学学报,2004,36(9):1256-1259
    [135]杭翠翠.砌体结构抗压及抗震承载力仿真分析与试验对比:[湖南大学硕士学位论文].长沙:湖南大学,2011,21-60
    [136] Lourenco P B, Rots J G. Multisurface Interface Model for Analysis of MasonryStructures[J]. Journal of Engineering Mechanics,1997,123(7):660-668
    [137] Goodman R E, Taylor R L, Brekke T. A Model for the Mechanics of JointedRock. Proc, ASCE,1968,99(5):637-660
    [138]刘桂秋.砌体结构基本受力性能的研究:[湖南大学博士学位论文].长沙:湖南大学,2005,13-51
    [139]过镇海,时旭东.钢筋混凝土原理和分析.北京:清华大学出版社,2003,15-23
    [140]施楚贤.砌体结构理论与设计.北京:中国建筑工业出版社,1992,16-18
    [141]惲为民,席裕庚.遗传算法的全局收敛性和计算效率分析[J].控制理论与应用,1996,13(4):455-460
    [142] Srinivas M, Patnaik L M.Adaptive Probabilities of Crossover and Mutationin Genetic Algorithms.IEEE Trans on Systems, Man, and Cybernetics,1994,24(4):656-666
    [143]吴少岩,张青富,陈火旺.基于家族优生学的进化算法[J].软件学报,1997,8(2):137-144
    [144] Ye J,Tanaka M, Tanino T.Eugenics-Based Genetic Algorithm[J]. IEICE Trans.on Information and Systems,1996,79(5):600-607
    [145] Kim J H, Chae H K,Jeon J Y et al. Identification and Control of Systems withFriction Using Accelerated Evolutionary Programming.IEEE ControlSystems,1996,16(4):38-47
    [146]冯守仁.常熟-太仓地震中空斗墙房屋的震害及今后建房的若干建议[J].工程抗震,1991,13(1):38-40
    [147]葛学礼,于文,朱立新.我国村镇空斗墙房屋地震、台风灾害与抗御措施[J].工程抗震与加固改造,2011,33(2):143-149
    [148] GBJ3-88砌体结构设计规范[S].北京:建筑工业出版社,1988,52
    [149]陆能源,吕宏远.空斗砖墙模型试验初步报告[J].华南工学院学报,1957,1(1):63-72
    [150] Lourenco P B, Rots J G. A solution for the macro-modeling of masonrystructures. In: Proceeding of11th International Brick/Block MasonryConference. Shanghai: Tongji University,1997,1239-1249
    [151] Andreaus U. Failure criteria for masonry panels under in-plane loading[J].Journal of Structural Engineering, ASCE,1996(1):37-46
    [152]蔡勇,施楚贤,马超等.砌体在剪-压作用下抗剪强度研究[J].建筑结构学报,2004,25(5):118-123
    [153]刘桂秋,施楚贤,黄靓.对砌体剪-压破坏准则的研究[J].湖南大学学报(自然科学版),2007,34(4):19-23
    [154]骆万康,朱希成.预应力砌体房屋抗震性能与设计方法研究[R].重庆:重庆建筑大学建筑工程学院,1999,16-22
    [155]吕伟荣,施楚贤,刘桂秋.剪压复合作用下砌体的静力与抗震抗剪强度[J].工程力学,2008,25(4):158-164
    [156]骆万康.砌体抗剪强度计算建议公式与砌体规范和抗震规范的拟合.见:2000年全国砌体结构学术会议论文集—现代砌体结构.北京:中国建筑工业出版社,2000,52-58
    [157]朱伯龙,吴明舜,蒋志贤.在周期荷载作用下砖砌体基本性能的试验研究[J].同济大学学报,1980,8(2):1-14
    [158]杨玉成,杨亚玲,楼永林等.砖墙体抗剪强度试验结果的统计分析.见:全国地震工程会议论文选集.上海,1984,154-155
    [159]骆万康.砌体抗剪摩擦系数的修正.见:2000年全国砌体结构学术会议论文集《现代砌体结构》.重庆:2000,39-51
    [160]尚守平,曾令宏,彭晖等.复合砂浆钢丝网加固RC受弯构件的试验研究[J].建筑结构学报,2003,24(6):87-91
    [161]尚守平,蒋隆敏,张毛心.钢筋网水泥复合砂浆加固RC偏心受压柱的试验研究[J].建筑结构学报,2005,26(2):18-25
    [162]刘沩,尚守平.高性能水泥复合砂浆钢筋网薄层(HPFL)加固混凝土结构斜截面承载力计算[J].施工技术,2008,37(4):11-14
    [163]郑代华.杂交结构界面力学性能的理论研究与数值分析:[北方交通大学硕士学位论文].北京:北方交通大学,2000,64-70
    [164]陈莹,王全凤,黄奕辉等.GFRP复合材料与砖界面粘结性能的数值模拟[J].工程力学,2007,24(5):119-124
    [165] Lu X Z, Teng J G, Ye L P et al. Bond-slip models for FRP sheet/plate-to concreteinterfaces. In:Proc.2nd International Conference of Advanced PolymerComposites for Structural Applications in Construction (ACIC2004).Cambridge, England: Woodhead Publishing Limited,2004,152-161
    [166]张子潇,叶列平,陆新征.U型FRP加固钢筋混凝土梁受剪剥离性能的有限元分析[J].工程力学,2005,22(4):155-162
    [167]廖书堂.水泥砂浆、钢筋网水泥砂浆加固砖墙的简化计算[J].四川建筑科学研究,1979,5(12):29-37
    [168]钮泽蓁.砖结构抗震修复加固计算[J].建筑结构学报,1980,1(4):45-53
    [169]廖书堂.夹板墙钢筋布置探讨[J].四川建筑科学研究,1980,6(4):63-70
    [170]杨建平,李爱群,王亚勇等.高强钢绞线-聚合物砂浆加固低强度砖砌体的试验研究[J].防灾减灾工程学报,2008,28(4):473-478
    [171]张蔚,李爱群,姚秋来等.高强钢绞线-聚合物砂浆抗震加固既有建筑砖墙体试验研究[J].建筑结构学报,2009,30(4):55-60
    [172]周新刚,韦昌芹,叶列平.CFRP加固砌体结构的力学性能分析[J].工程力学,2008,25(6):51-59

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700