用户名: 密码: 验证码:
母线负荷预测技术及负荷特性对电网影响的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
准确的短期母线负荷预测是实现节能降耗与调度精细化管理的基础,研究电力系统母线负荷预测技术具有重要的实用价值和理论意义。本文在分析短期母线负荷预测特点、内容的基础上,结合当前国内外研究现状,对研究中存在的问题进行阐述。电气化铁路负荷是一类单相、非线性、冲击性强的母线负荷,220kV高铁负荷在运行中对电网的影响,110kV电铁负荷的电能质量问题对电网的危害值得关注和研究。围绕短期母线负荷预测工作中坏数据预处理、相似日选择、预测方法,以及高铁负荷在运行中的仿真计算、电铁负荷的负序与谐波特性等问题展开分析与研究,具体工作如下:
     原始数据分析是提高短期母线负荷预测精度的重要环节,提出了一种基于特性矩阵分层分析的坏数据处理策略。首先研究划分样本集最优簇结构的AFS聚类算法。参照特征曲线,计算反映负荷点性质的横向及纵向特征向量,进而形成特性矩阵。运用判别准则对日负荷曲线的特性矩阵进行分层分析,并针对不同变化特性的母线负荷制定相应的坏数据处理策略。
     合理的相似日选择结果可有效提高母线负荷预测精度,提出了一种基于最优相似日选取的综合预测方法。计算日特征相关因素对负荷水平的影响,并将各因素的重要程度加权于模糊目标函数,得到目标日的负荷水平相似集。建立各类形状相似集的判别函数,并将目标日归类。对待预测日的负荷水平与曲线形状相似集,取两者的交集作为相似日选择结果。以该交集中与目标日日期差最小的样本为虚拟预测对象,计算综合预测中各算法的权重。
     提出了一种基于解耦机制的预测方法。将预测过程分为负荷水平预测和标幺曲线预测两部分,并制定适应其各自特点的预测策略。利用负荷水平相似选择结果,由最小二乘支持向量机训练相似集进而做出预测;将目标日的标幺曲线归类,并根据相似度加权平均该类历史标幺曲线。
     高铁负荷是典型的大功率冲击型母线负荷,将其作为研究对象,分析它在运行中对电网的影响。首先对高铁负荷特性作出分析。利用PSCAD搭建了适用于高速铁路的牵引供电仿真系统。设置UMEC模型中分段线性的U-I曲线来等效铁芯的饱和特性,并进行空载合闸仿真。在此基础上,对电网侧进行单相短路故障仿真、三相短路故障时的有载合闸仿真。
     以电铁负荷作为单相非线性母线负荷的代表,分析它的负序与谐波特性。为深入研究电铁负荷的负序分量对电网的影响,建立适合于负序特性分析与潮流计算的电铁牵引负载负序源模型至关重要。提出了一种基于负序特性分类与综合的建模方法。选取基波负序电流的实测响应空间与机车的实际运行状态为特征向量,对样本集进行聚类趋势分析。在确保样本集可聚的前提下,利用聚类有效性函数得到最优分类结果。通过对牵引负载的负序特性机理分析确定模型的结构,并采用逐步多元回归的方法得到最优模型表达式。对新增样本,将其归入与聚类中心欧氏距离最小的那个类,并对该类模型进行检验。
     在大量实测电铁录波数据的基础上,运用总体测辨的建模思想,首先建立了在不同牵引工况下以机车与网侧系统交换的三相基波正序有功功率、无功功率为激励,谐波电流的实部和虚部为响应的谐波源模型,而后确定了每类模型的推荐参数。
     在所建负序及谐波电流源模型的基础上,编制了负序与谐波潮流计算系统。程序包括基波负序潮流计算和谐波潮流计算。用户只需输入发电机、变压器、输电线路、普通负荷、牵引负荷的相关数据,就可得到网络中各节点的谐波或负序电压,进而可以求解网络中各条支路的谐波或负序电流。
     为便于电力调度中心更好地实现分散式的负荷管理,研发了一套湖南电网母线负荷预测系统。该系统采用先进的多层体系Browser/Server(B/S)结构,基于Microsoft Visual Studio.NET平台和Microsoft SQL Server数据库,由母线负荷预测、母线数据查询、母线负荷分析、母线负荷统计、上报与考核、系统管理中心六个大模块组成。
An accurate short-term bus load forecasting is the foundation of realizing energysaving, consumption reducing and meticulous management of dispatching. Theresearch for bus load forecasting technology on power system has important practicalvalue and theoretical significance. Combining with current researches both domesticand abroad, on the basis of analyzing the contents and characteristics of theshort-term bus load forecasting, the existing problems in this aspect was elaborated.Specifically, electrified railway load is one kind of single-phase and nonlinear busload with strong impact. The impacts or hazards to the power system, leading by thepenetration of220kV high-speed railway traction load and the power quality problemsof110kV electric locomotive load, are worthy of attention and study. Focusing onanalyzing and studying certain issues of the short-term bus load forecastingincludingbad data pre-processing, similar days selection, forecasting methods, simulations ofthe high-speed railway traction load, negative sequence and harmonic characteristicsof the electric locomotive load, etc, the following specific work had been done:
     As an important link, the original data analysis would improve the accuracy ofshort-term bus load forecasting a lot. Thus, a bad data processing strategy based onstratified analysis of characteristic matrix was presented. Firstly, the AFS clusteringalgorithm for dividing sample set optimal clustering structure was studied. Referringto the characteristic curves, the horizontal and vertical eigenvectors reflectingproperties of the load points were calculated, and the characteristic matrix was formed.By applying the discriminant criterion, the stratified analysis for the characteristicmatrix of daily load curve was carried out, thereafter the corresponding bad dataprocessing strategies focusing on bus loads which had different variation ofcharacteristics were established.
     Appropriate selection of the similar days can effectively improve the accuracy ofbus load forecasting, and an integrated forecasting method based on the selection ofoptimal similar days was presented. In order to obtain a set of curves whose load levelis similar to the target date, the effects of daily characteristics factors on the loadlevel was calculated, and fuzzy object function is weighted over each factorimportance degree. Establishing discriminant function of all sets with similar shape,and target date was classified. Taking the intersection of load level set and curve shape set as the result of similar day selection. Sample with minimum date interval totarget date was selected as virtual predict object, and then the weight of eachalgorithm in integrated forecasting was calculated.
     A forecasting method based on decoupling mechanism was presented.Forecasting process was divided into two parts, i.e., the load level prediction andper-unit curve prediction, and prediction strategies were developed to adapt to theircharacteristics respectively. The results were selected according to the similar loadlevel, and the similar sets were trained by utilizing the least square-support vectormachine method for predictions. In addition, the per-unit curves of the target datewere classified and the weighted average processing was carried out upon thesehistorical per-unit curves according to the similarity.
     High-speed railway load, as a typical high power bus load with impact, waschosen as the study object with its influence upon power grid in operationanalyzed.The characteristics of the high-speed railway traction load were primarilyanalyzed, and then PSCAD was utilized to build suitable traction power supplysimulation system for high-speed railway. The piecewise linear U-I curve of UMECmodel was equivalent to saturated characteristics of the iron core, and then madeno-load closing simulation. On this basis, simulations of single-phase short circuitfaults and switch-in with load when three-phase short circuit faults in line side wereperformed.
     Electric locomotive load was selected as the instance of single-phase nonlinearbus loads, with its negative sequence and harmonic characteristics studyed.In order todeeply analyze the impacts of the negative sequence component on power grid fromelectric locomotive load, establishing the negative sequence source model suitable fornegative sequence characteristics analysis and power flow calculation was vitallyimportant. A modeling method based on the classification and synthesis of negativesequence characteristics was proposed. The clustering tendency analysis wasconducted on the sample set, with the measured response space of fundamentalnegative sequence current and the actual running state of locomotive as eigenvectors.On the premise of clustering possibility, the clustering validity function was used,aiming at obtaining the optimal classification result of the sample set. By means ofmechanism analysis for the negative sequence characteristics of traction load, themodel structure was determined, while the optimal model expression was achievedapplying the method of stepwise multiple regression. Besides, the newly addedsample was classified into the class within the minimum Euclidean distance from the clustering center, and the related model was tested.
     According to lots of measured recorded data of electrified railway and by use ofthe modeling idea based on overall measurement-identification, harmonic sourcemodels under different traction operation conditions were built, in which three-phasefundamental positive-sequence active and reactive power exchanged betweenlocomotive and traction power supply system were regarded as the energizing and thereal and imaginary parts as the responses, and then recommended parameters for eachkind of harmonic source model were determined.
     On the basis of the negative sequence source model and harmonic source model,a system for computing power flow was achieved. The program included thefundamental negative sequence power flow calculation and the harmonic power flowcalculation. By simply inputting the data of generators, transformers, transmissionlines, general loads and traction loads, the users could obtain the harmonic or negativesequence voltages for all network nodes, and thereafter can solve harmonic ornegative sequence currents of each branch.
     In order to realize distributed management of load conveniently for the ElectricPower Dispatching Center, a bus load forecasting system for Hunan power grid hadbeen developed. The system, which was based on the Microsoft Visual Studio.NETplatform and Microsoft SQL Server database, employed the advanced multi-layersystem Browser/Server (B/S) as its structure and was consisted of six modules,including bus load forecasting, bus data query, bus load analysis, bus load statistics,reporting and evaluation and system management center.
引文
[1] Kassaei H.R,Keyhani A,Woung T,et al.A Hybrid Fuzzy,Neural Network BusLoad Modeling and Predication.IEEE Transactions on Power Systems,1999,14(2):718-724
    [2]余贻鑫,吴建中.基于事例推理模糊神经网络的中压配电网短期节点负荷预测.中国电机工程学报,2005,25(12):18-23
    [3]陈亚红,穆钢,段方丽.短期电力负荷预报中几种异常数据的处理.东北电力学院学报,2002,22(2):1-5
    [4]陈新宇,康重庆,陈刚等.规避坏数据影响的母线负荷预测新策略.中国电力,2009,42(9):27-31
    [5]李光珍,刘文颖,云会周等.母线负荷预测中样本数据预处理的新方法.电网技术,2010,34(2):149-154
    [6]莫维仁,张伯明,孙宏斌等.扩展短期负荷预测方法的应用.电网技术,2003,27(5):6-9
    [7]张国江,邱家驹,李继红.基于人工神经网络的电力负荷坏数据辨识与调整.中国电机工程学报,2001,21(8):104-113
    [8]张晓星,程其云,周湶等.基于数据挖掘的电力负荷脏数据动态智能清洗.电力系统自动化,2005,29(8):60-64
    [9]叶锋,何桦,顾全等.EMS中负荷预测不良数据的辨识与修正.电力系统自动化,2006,30(15):85-88
    [10]陈建华,戴铁潮,张宁等.确定性合同分解中异常负荷数据的识别与修正.电力系统自动化,2009,33(6):21-43
    [11]顾民,葛良全,秦健.基于改进ART2网络的电力负荷脏数据辨识与调整.电力系统自动化,2007,31(16):70-74
    [12]杨理才,张文磊,周勇等.间接预测法在母线负荷预测中的应用.电网技术,2011,35(12):177-182
    [13]高山,单渊达.小波奇异性检测在负荷数据纠错和平滑处理中的应用.中国电机工程学报,2001,21(11):105-108
    [14]黎灿兵,李晓辉,赵瑞等.电力短期负荷预测相似日选取算法.电力系统自动化,2008,32(9):69-73
    [15]牛东晓,谷志红,邢棉等.基于数据挖掘的SVM短期负荷预测方法研究.中国电机工程学报,2006,26(18):6-12
    [16] Ricardo Menezes Salgado,Takaaki Ohishi,Rosangela Ballini.A Short-term BusLoad Forecasting System.In:International Conference on Hybird IntelligentSystems.2010,55-60
    [17] Senjyu T,Takara H,Uezato K,Funabashi T.One-hour-ahead load forecasting usingneural network.IEEE Trans on Power Systems,2002,17(1):113-118
    [18] Henrique S H,Charlos E P,Reinaldo C S.Neural networks for short-term loadforecasting:a review and evaluation.IEEE Trans on PowerSystems,2001,16(1):44-55
    [19]杨正瓴,田勇,张广涛等.相似日短期负荷预测的非线性理论基础与改进.电网技术,2006,30(6):63-66
    [20]莫维仁,张伯明,孙宏斌等.短期负荷预测中选择相似日的探讨.清华大学学报(自然科学版),2004,44(1):106-109
    [21]金义雄,段建民,徐进等.考虑气象因素的相似聚类短期负荷组合预测方法.电网技术,2007,31(19):60-64
    [22]廖峰,刘清良,贺辉等.基于改进灰色模型与综合气象因素的母线负荷预测.电网技术,2011,35(10):183-188
    [23]刘梦良,刘晓华,高荣.基于相似日小波支持向量机的短期电力负荷预测.电工技术学报,2006,21(11):59-64
    [24]姜惠兰,刘晓津,关颖等.基于硬C均值聚类算法和支持向量机的电力系统短期负荷预测.电网技术,2006,30(8):81-85
    [25]姚李孝,宋玲芳,李庆宇等.基于模糊聚类分析与BP网络的电力系统短期负荷预测.电网技术,2005,29(1):20-23
    [26]罗军,何光宇,张思远等.基于负荷点相似的地区短期负荷预测新方法.电网技术,2007,31(6):67-71
    [27]粟然,刘宇,黎静华等.基于改进决策树算法的日特征负荷预测研究.中国电机工程学报,2005,25(23):36-41
    [28]康重庆,夏清,张伯明.电力系统负荷预测研究综述与发展方向的探讨.电力系统自动化,2004,28(17):1-11
    [29]罗滇生,姚建刚,何洪英等.基于自适应滚动优化的电力负荷多模型组合预测系统的研究与开发.中国电机工程学报,2003,23(5):58-61
    [30] MIN Jin,Xiang Zhou,Zhi M.Zhang,et al.Short-term power load forecasting usinggrey correlation contest modeling.Expert Systems with Applications,2012,39(1):773-779
    [31]朱六璋.短期负荷预测的组合数据挖掘算法.电力系统自动化,2006,30(14):82-86
    [32]唐杰明,刘俊勇,杨可等.基于灰色模型和最小二乘支持向量机的电力短期负荷组合预测.电网技术,2009,33(3):63-68
    [33]谢开贵,李春燕,周家启.基于神经网络的负荷组合预测模型研究.中国电机工程学报,2002,22(7):85-89
    [34]黎静华,韦化.基于诱导有序加权平均算子的最优组合短期负荷预测.电网技术,2011,35(10):177-182
    [35]李蔚,盛德仁,陈坚红等.双重BP神经网络组合模型在实时数据预测中的应用.中国电机工程学报,2007,27(17):94-97
    [36]张亚军,刘志刚,张大波.一种基于多神经网络的组合负荷预测模型.电网技术,2006,30(21):21-25
    [37] Nima Amjady.Short-Term Bus Load Forecasting of Power Systems by a NewHybird Method.IEEE Transactions on Power Systems,2007,22(1):333-341
    [38]雷绍兰,孙才新,周湶等.基于径向基神经网络和自适应神经模糊系统的电力短期负荷预测方法.中国电机工程学报,2005,26(22):78-82
    [39]朱成骐,孙宏斌,张伯明.基于最大信息熵原理的短期负荷预测综合模型.中国电机工程学报,2005,25(19):1-6
    [40]高峰,康重庆,夏清等.负荷预测中多模型的自动筛选方法.电力系统自动化,2004,28(6):11-13
    [41]顾峰,艾芊,凌建凤.基于小生境免疫算法的月负荷预测组合模型.电网技术,2007,31(1):1-5
    [42]廖峰,徐聪颖,姚建刚等.常德地区负荷特性及其影响因素分析.电网技术,2012,36(7):117-125
    [43]张小瑜,吴俊勇.高速铁路牵引供电系统的供电可靠性评估方法.电网技术,2007,31(11):27-32
    [44]董锡明.高速动车组工作原理与结构特点.北京:中国铁道出版社,2007,6-10
    [45]陈民武,李群湛,解绍锋等.高速铁路牵引变压器综合选型新方法.变压器,2009,46(10):31-36
    [46] Sagareli S.Tranction power systems reliability concepts.In:Proc of the2004ASME/IEEE Joint Rail Conference.Maryland,2004,35-39
    [47]熊列彬.全并联AT供电方式下供电臂保护控制方案.电力系统自动化,2006,30(22):73-76
    [48] Kneschke T A,Control of unility system unbalance caused by single-phaseelectric trantion.IEEE Transactions on Industry Applications,1985,21(6):1559-1569
    [49]吴传平,罗安,徐先勇等.采用V/v变压器的高速铁路牵引供电系统负序和谐波综合补偿方法.中国电机工程学报,2010,30(16):111-117
    [50]杨少兵,吴命利.基于实测数据的高速动车组谐波分布特性与概率模型研究.铁道学报,2010,32(3):33-38
    [51]王奇,刘志刚,白玮莉等.基于PSCAD/EMTDC的牵引供电系统仿真模型研究.电力系统保护与控制,2009,37(6):35-40
    [52]胡宗耀,李欣然,朱湘有等.电气化铁路牵引负荷的支持向量机负序源建模.电力系统及其自动化学报,2010,22(3):102-107
    [53]姚金雄,张涛,林榕等.牵引供电系统负序电流和谐波对电力系统的影响及其补偿措施.电网技术,2008,32(9):61-64
    [54]韩柳,谈顺涛.电气化铁路对电网的影响与对策.江苏电机工程,2005,24(3):8-11
    [55]张力强,罗文杰,吕利君.电气化铁路牵引负荷的不利影响及治理方案.电网技术,2006,30(S1):196-198
    [56]张志文,刘福生,熊芝耀,罗隆福.阻抗匹配平衡变压器的电量变换和运行计算.电工技术学报,2000,15(2):6-11
    [57]周勇,王绪雄,刘中元.阻抗匹配平衡变压器的负序电流.郑州大学学报(工学版),2002,23(4):43-45
    [58] Shi-Lin Chen, Ray-Jong Li, Pao-Hsiang His.Traction System UnbalaneeProblem Analysis Methodologies.IEEE Transactions on Power Delivery,2004,19(4):1877-1883
    [59] Dai Wenjin,Wu Songhui.Real-Time Detecting Method of Negative SequeneeCurrent in Traction System.Proceedings of ICEMI2007,Xi’an,2007:3,829-832
    [60]高志建.三相V/V接线牵引变压器负序电流分析.变流技术与电力牵引,2008,9(5):8-10
    [61]张丽艳,李群湛,余丹.阻抗匹配平衡牵引变压器负序分析.电力系统及其自动化学报,2005,17(6):80-83
    [62]姚宗溥,侯世英,祝石厚.电气化铁路牵引负荷对固原电网的影响.电网技术,2007,31(1):15-19
    [63]王慧芳,何奔腾.电气化铁路负荷最大电流突变量的估算方法.电力系统自动化,2008,32(9):79-82
    [64]周勇.电力机车负荷注人电网的负序和谐波.郑州工学院学报,1996,17(2):69-72
    [65]赵贺,林海雪.电网中非线性负荷谐波功率方向的确定.电网技术,2007,31(17):47-50
    [66]解绍锋,李群湛,赵丽平.电气化铁道牵引负载谐波分布特征与概率模型研究.中国电机工程学报,2005,25(16):44-47
    [67]吴笃贵,徐政.电力负荷的谐波建模.电网技术,2004,28(3):20-24
    [68] Chang G W,Lin H,Chen S.Modeling characteristics of harmonic currentsgenerated by high-speed railway traction drive converters.IEEE Transactions onPower Delivery,2004,19(2):766-773
    [69]周勇.电力系统三相不对称潮流计算.电网技术,1996,20(1):24-29
    [70]王钦仁,赵书强,刘宝仁,周勇.电力系统不对称谐波潮流研究.郑州工学院学报,1990,11(4):16-24
    [71]赵书强,刘宝仁,王钦仁.含电力机车负荷的一种不对称潮流计算方法.电力系统自动化,1994,18(8):34-39
    [72]王勇,肖利民,郝剑欣.含牵引负荷的电力系统三相不对称谐波潮流计算.电力系统自动化,1999,23(17):26-30
    [73]唐云龙,罗建,颜伟,刘方,王官洁.三相不对称相分量谐波潮流计算.重庆大学学报,2003,26(5):30-36
    [74]潘云江,赵书强,陈斌发,沈琦.电力系统不对称谐波潮流的一种实用计算方法.电力系统自动化,2000,5(9):60-62
    [75]卢恩,张步涵,龚世缨.电力系统谐波潮流的一种解耦算法.电网技术,2003,27(2):34-36
    [76]王星华,余欣梅.谐波潮流建模及求解算法研究综述.电气应用,2008,27(2):4-9
    [77] Kenji N.F,Anna D.P.L,Carlos R.M.Short-term Multinodal Load ForecastingUsing a Modified General Regression Neural Network.IEEE Transactions onPower Delivery,2011,26(4):2862-2869
    [78]廖峰,周勇,贺辉等.集中式省地一体化母线负荷预测系统.电力需求侧管理,2011,13(3):54-58
    [79] Frey B J, Dueck D. Clustering by passing messages between datapoints.Science,2007,315(5814):972-976
    [80]高新波.模糊聚类分析及其应用.西安:西安电子科技大学出版社,2004:49-54
    [81] Dudoit S,Fridlyand J.A prediction-based resampling method for estimating thenumber of clusters in a dataset.Genome Biology,2002,3(7):1-21
    [82]王开军,李健,张军英,等.半监督的仿射传播聚类.计算机工程,2007,33(23):197-201
    [83]许文竹,徐立鸿.基于仿射传播聚类的自适应关键帧提取.计算机科学,2010,37(1):268-270
    [84]李培强,李欣然,陈辉华等.基于减法聚类的模糊神经网络负荷建模.电工技术学报,2006,21(9):2-12
    [85]裴继红,范九伦,谢维信.聚类中心的初始化方法.电子科学学刊,1999,21(3):320-325
    [86]李欣然,姜学皎,钱军等.基于用户日负荷曲线的用电行业分类与综合方法.电力系统自动化,2010,34(10):56-60
    [87] Velamuru P K,Renaut R A,Guo H B,et al.Robust clustering of positronemission tomography data.In:Joint Interface CSNA.USA:2005
    [88] Dembele D, Kastner P. Fuzzy C-means method for clustering microarraydata.Bioinformatics,2003,19(8):973-980
    [89]张振高,杨正瓴.短期负荷预测中的负荷求导法及天气因素的使用.电力系统及其自动化学报,2006,18(5):79-82
    [90]康重庆,夏清,刘梅.电力系统负荷预测.北京:中国电力出版社,2007:213-215
    [91]黎灿兵,刘梅,单业才等.基于解耦机制的小地区短期负荷预测方法.电网技术,2008,32(5):87-92
    [92]汪峰,于尔铿,阎承山等.基于因素影响的电力系统短期负荷预报方法的研究.中国电机工程学报,1999,19(8):54-58
    [93]邓聚龙.灰理论基础.武汉:华中科技大学出版社,2002:71-82
    [94]袁志发,周静芋.多元统计分析.北京:科学出版社,2003:235-241
    [95] Suykens J A K, Vandewalle J. Recurrent least squares support vectormachines[J].IEEE Trans on Circuits and Systems,2000,47(7):1109-1114.
    [96] Barreto G A,Araujo A F R.Identification and control of dynamical systemsusing the self-organizing map. IEEE Trans on Neural Network,2004,15(5):1244-1259
    [97] Chen B J,Chang M W,Lin C J.Load forecasting using support vector machine:astudy on EUNITE competition2001. IEEE Trans on PowerSystems,2004,19(4):1821-1830
    [98] Wu Haishan,Zhang Shen.Power load forecasting with least squares supportvector machines and chaos theory.IEEE International Conference on NeuralNeural Networks and Brain,2005:1020-1024
    [99] Xu Tao,He Renmu,Wang Peng,et al.Input dimension reduction for loadforecasting based on support vector machines[C].International Conference onDRPT,Hong Kong,2004:510-514
    [100]耿艳,韩学山,韩力.基于最小二乘支持向量机的短期负荷预测.电网技术,2008,32(18):72-76
    [101] Jiles D C,Atherton D L.Theory of ferromagnetic hysteresis.Journal ofMagnetism and Magnetic Materials,1986,61(2):48-60
    [102] W.Enright,O.B.Nayak,G.D.Irwin,and J.Arrillaga.An electromagnetictransient model of multi-limb transformers using normalized coreconcept.Proc.Int.Conf.Power syst.Transients,1997:93-98
    [103]王奇,刘志刚,白玮莉,等.基于PSCAD/EMTDC的牵引供电系统仿真模型研究.电力系统保护与控制,2009,37(6):35-40
    [104]刘中平,陆于平,袁宇波.变压器外部故障切除后恢复性涌流的研究.电力系统自动化,2005,29(8):41-44
    [105]姚建刚,陈亮,戴习军,等.混沌神经网络负荷建模的理论研究.中国电机工程学报,2002,22(3):99-102
    [106]文劲宇,吴青华,程时杰,等.利用就地测量量进行负荷静态等效的新算法.中国电机工程学报,1999,19(10):17-21
    [107]张红斌,贺仁睦,刘应梅,等.基于KOHONEN神经网络的电力系统负荷动特性聚类与综合.中国电机工程学报,2003,23(5):1-5
    [108]鞠平,金艳,吴峰,等.综合负荷特性的分类综合方法及其应用.电力系统自动化,2005,28(1):64-68
    [109]李欣然,林舜江,刘杨华,等.基于实测响应空间的负荷动特性分类原理与方法.中国电机工程学报,2006,26(8):39-44
    [110] Cross G R,JAIN A K.Measurement of clustering tendency. In:IFACSymposium on Digital Control.New Delhi,India:IEEE,1982.
    [111]高新波,裴继红,谢维信.基于统计检验指导的聚类分析方法.电子科学学刊,2000,22(1):6-12.
    [112] Pal N R,Bezdek J C.On clustering for the fuzzy c-mean model.IEEE Trans.on FS,1995,3(3):370-379.
    [113]范九伦,裴继红,谢维信.基于可能性分布的聚类有效性.电子学报,1998,26(4):113-114
    [114]于剑,程乾生.模糊聚类方法中的最佳聚类数的搜索范围.中国科学:E辑,2002,32(2):274-280
    [115] Xia D, Heydt G.Harmonic power flow studies part I-formulation andsolution.IEEE Trans on Power Apparatus and systems,1982,101(6):1257-1265
    [116] Task force on harmonic modelling and simulation.Modelling and simulationof the propagation of harmonics in electric power networks part I:Concepts,Models,and Simulation Techniques.IEEE Trans, on Power Delivery,1996,11(1):452-465
    [117]周胜军,于坤山,冯满盈,等.电气化铁路供电电能质量测试主要结果分析.电网技术,2009,33(13):54-63
    [118]章健.电力系统负荷模型与辨识.北京:中国电力出版社,2007:25-29
    [119]蔺小林,蒋耀林.现代数值分析.北京:国防工业出版社,2004:245-249
    [120]郑晓雨,贺仁睦,马进.逐步多元回归法在负荷模型扩展中的应用[J].中国电机工程学报,2011,31(4):73-76
    [121] Peng F Z.Harmonic sources and filtering approaches.IEEE Ind,2001,7(4):18-25
    [122] Rice D E.A detailed analysis of six-pulse converter harmonic currents.IEEETrans Ind Appl,1994,30(2):294-304
    [123]李欣然,张广东,朱湘有,等.牵引供电系统综合负荷模型结构.电力系统及其自动化,2009,33(16):71-75
    [124]王兆安,杨君,刘进军,等.谐波抑制和无功功率补偿.北京:机械工业出版社,2005:23-26
    [125] Hiyama,Hamman M S A A,Ortmeyer T H.Distribution system modellingwith distributed harmonic sources.IEEE Trams on Power Delivery,1989,4(2):1297-1304
    [126] IEEE PES Harmonic Working Group. Characteristics and modeling ofharmonic sources-power electronic devices.IEEE Trans on Power Delivery,2001,16(4):791-800
    [127] Thunberg E,Soder L.A norton approach to distrubution network modellingfor harmonic studies.IEEE Trans on Power Delivery,1999,14(1):272-277
    [128] FauriM. Harmonic modeling of non-linear load by means of crossedfrequency admittance matrix.IEEE Trans on Power System,1997,12(4):1632-1638
    [129]胡航帆.电气化铁路牵引负荷的谐波源模型研究:[湖南大学硕士学位论文].长沙:湖南大学,2009,41-45
    [130]夏焰坤,李群湛,邹大云.一种基于有源滤波器的同相牵引供电方案.电网技术,2010,34(10):131-134
    [131]施汉基.三相不对称负荷的无功功率对称化补偿.电网技术,1998,22(2):40-45
    [132] Wu J C,Jou H L.Sin plefied control method for the single-Phase activePower filter.IEEE Proe Electric Power.Appl,1996,143(3):123-126
    [133] Bhavaraju V B,EnjetiP N.Analysis and design of an active power filter forbalancing unbalanced loads.IEEE Trans Power Electric.1993,8(4):134-137
    [134] Li Chun,Xu Wisun.On defining harmonic contributions at the Point ofcommon coupling.IEEE Power Engineering Review,2002,22(7):44-45
    [135] Xu Wilsun, Liu Yilu. A method for determining customer and uti1ityharmonic contributions at the point of common coupling.IEEE Trans on PowerDelivery,2000,15(2):804-811
    [136] Chen Chaoying,Liu Xiuling,KovalD,etal.Critieal impedance method a newdeteeting harmonic sources method in distribution systems.IEEE Trans onPower Delivery,2004,19(1):288-297
    [137]李凤样,赵不贿.谐波抑制和无功补偿技术的研究.电力系统及其自动化学报,2001,3(5):26-30
    [138] Busse D. System Elcetrical Parameters and Their Effeets4n BearingCurrent.IEEEAPECProe,1996,570-578
    [139] Sasakz H,Yaehzda T.A new method to eliminate ac harmonic currents bymagnetic comPensation consideration on basie design. Power ApplicationsSystem,IEEE Transactions,on Volume:90,Issue:5,Sep-Oet.1971,Pale(s):2009-2019
    [140]陈谦.基于对称分量坐标系的电力系统三相不对称潮流计算:[东南大学硕士学位论文].南京:东南大学,2000,15-36
    [141] Lo K L,Goh K M.Harmonic analysis for power netwoeks.Electric PowerSystem Research,1986,10:189-203
    [142] Xu W,Jose J R,Dommel H W.A multiphase harmonic load flow solutiontechnique.IEEE Transaction on Power Systems,1991,6(2):174-182
    [143] Pileggi D J,Chandra N H,Emanual A E.Prediction of harmonic voltage indistribution system.IEEE Transaction on PAS,1981,PAS-100(3):1307-1315.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700