用户名: 密码: 验证码:
膜生物反应器工艺中膜污染因素及控制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
膜生物反应器(MBR),作为传统的活性污泥法和膜过滤相结合的一种工艺技术,已越来越多地应用于市政和工业废水处理中,因为其固液分离效率高、出水水质好、占地面积小、污泥产量少等优点,成为国内外污水处理工艺的研究热点。
     随着我国工业飞速发展,石油工业成为排污大户,从石油精炼行业中产生的废水中含有大量的有毒污染物,如烃类、芳香族有机化合物、重金属等,会严重危害环境和人类的身体健康。许多研究者试图利用MBR技术处理炼油废水,然而,膜污染问题,以及炼油废水中含有的大量不能生物降解的有害污染物,给膜生物反应器技术带了很大困难。本文尝试向处理炼油废水的MBR系统中投加粉末活性碳来提高有机物去除率。结果表明粉末活性炭(PAC)的加入对化学需氧量(COD)、氨氮、毒性的去除都有明显提高的作用,但是磷的去除率没有变化。随PAC投加量的增加,COD的去除有明显增加的趋势。反应器运行前期,PAC的加入有助于提高硝化作用。在运行稳定后,所有反应器进水中氨氮几乎全部去除,但是对氨氮的突然增加所表现出的稳定性不高。另外,所有四个反应器对磷的去除几乎没有差别,因此,反应器对于氨氮和磷的去除主要是由于微生物的作用,PAC的加入对其影响不大。Microtox毒性分析结果表明活性炭的加入对于不能生物降解的有毒物质的去除效果非常明显,并且0.04g/L·d的日投加量(R2)就可以很好的出去污水中的有毒物质。
     另外,随着PAC投加量的增多,主要膜污染物,溶解性微生物产物(SMP)的浓度下降,膜透过阻力也随之下降。另外,结合别的工作者的研究结果,对PAC改善膜污染趋势的机理做了分析,发现PAC对膜污染的改善的主要原因是污泥颗粒沉降性的改善作用。通过对COD物料平衡模型的分析,发现低PAC加入的反应器中,对于COD的去除的主要作用机理仍是微生物的降解作用,而高PAC投加量的COD主要是由PAC的吸附作用去除,因此,过高的PAC投加量会增加成本,在本文研究条件下,对MBR处理炼油废水的最佳PAC投加量为0.08g/L·d。
     由于在极端短污泥停留时间和水力停留时间的条件下,污水中的有机物成为被提取的能源来源,并转移到污泥中,污泥消化后产生甲烷或者焚烧释放来自污水中的能量,不仅可以节省能源,降低曝气成本,还可以提高生态效益,许多研究者试图用这种方式使处理工艺实现能源自给,但是这种操作条件下的膜污染研究较少。因此,本文对短污泥停留时间(SRT)(2d)和短水力停留时间(HRT)(1h)条件下,污泥性质尤其是SMP的组成和浓度以及对膜污染的影响做了研究,结果表明降低SRT对污泥浓度,沉降性,SMP产出量等性质的影响都小于降低HRT对其的影响,极短HRT尤其对膜污染的影响巨大。虽然极短HRT(1h)能够使反应器中微生物快速生长,产生大量污泥,利于有效回收污水中的COD,但是膜污染非常严重,这种条件下对于MBR运行的可行性提出质疑。并证明了改变SRT对SMP组分中多聚糖的影响较大。
     SMP是MBR实际应用中膜污染的主要物质以及出水中的主要残留有机物,其测定方法的准确性非常重要,本文还分别比较了标准曲线法(SCM),传统的标准加入法(CSAM)和H-point标准加入法(HPSAM)对人工配制的主要成分为SMP组分的水样,和三个不同生物反应器中实际污泥样品的SMP组分的测定,建议Lowry显色法对蛋白质的测定不适用于城市污水处理的研究中,并提出HPSAM提供了一个更加准确且精确的测定SMP中碳水化合物的分析方法。
     本文最后利用双氧水、次氯酸纳和表面活性剂(BOCs)三种不同的清洗剂,对长期运行膜生物反应器的不可逆污染膜进行清洗,试图找出能够替代次氯酸纳溶液的更加环保的清洗剂。膜污染阻力去除率的研究结果显示,虽然次氯酸纳溶液清洗效果最好,但是最适用量较大(500mg/L),长期使用对膜有损害,且对环境会造成污染,双氧水的处理效果略低于氯,但是用量少(50-100mg/L),且产物是水,不会对环境造成污染。另外,双氧水对有机物的氧化受外界条件影响较大,本实验的结果看最佳恢复清洗时间为24h,最适pH为8.5。红外光谱分析的结果表明,膜表面不可逆污染物为多糖,双氧水和次氯酸纳溶液都可以有效去除,而BOCs反而会对膜造成二次污染。总之,在最佳清洗条件下,包括浓度,清洗时间,pH值,双氧水可以作为对不可逆污染膜进行恢复清洗的一种更加无害的清洗剂。而本实验结果表明BOCs不适宜做城市污水处理膜的化学清洗剂。
Membrane bioreactors (MBR), known as a combination of the conventionalactivated sludge process and the membrane filtration, have been increasingly used inmunicipal and industrial wastewater treatment because of its excellent solid-liquidseparation efficiency, high quality effluent, small footprint and reduced sludgeproduction. The wastewater generated from petroleum refinery industries contains alarge number of toxic contaminants from hydrocarbons, aromatic organic compounds toheavy metals, which can result in environmental and human health effects.
     Treatment of refinery wastewater using submerged MBR has been proved to befeasible. Therefore, this work was to evaluate the influence of different PAC dosageson the pollutants removal efficiencies of refinery wastewater and membrane foulingmitigation potential in membrane bioreactors. The effect of different powderedactivated carbon (PAC) dosages (0,1,2and5g/L) on the refinery wastewater treatmentin bench scale (1L) membrane bioreactors was examined. The reactors were run forapproximately130days at a sludge retention time (SRT) of25d and hydraulic retentiontime (HRT) of24h. The removal efficiency of COD increased with PAC dosageincreasing. Microtox tests showed that effluent quality with respect to toxicity wasbetter in all the MBRs with PAC addition than the MBR operated without PAC.
     The short term membrane filtration tests indicate that the addition of PACdecreased the membrane fouling resistance. Sludge volume index (SVI) decreasingwith the increasing PAC dosage might contribute to the improvement of foulingpropensity during MBR processes. Additionally, in order to understand the mechanismsof COD removal in the system, the fate of COD was determined using a mass balancemodel. The results indicate that biodegradation was main mechanism in reactorswithout or with low dosages of PAC (1and2g/L). In contrast, at a higher dosage ofPAC (5g/L), the influent COD was removed by the combined mechanisms ofdegradation by biomass and adsorption by PAC.
     In order to reduce external energy usage and even to become energy self-sufficient, organic carbons in wastewater become a source of energy to be extracted and convertedinto biomass. They can be digested to produce methane gas or incinerated to release theenergy originally present in wastewater, saving not only on energy and aeration costsbut providing ecological benefits. In this case, extremely short SRT and HRT areneeded. However, limited works were conducted to study the performance efficienciesof MBR at the conditions of short SRT and HRT. In the present work, thecharacteristics of activated sludge and membrane fouling potential were investigatedunder the short SRT of2days and HRT of1hour. Results show the MBR was capableof achieving excellent quality effluent at the extremely short SRT and HRT. All theCOD removal efficiencies were more than80%during the MBR operation. It wasfound that the reduction of HRT took more effects on sludge properties, includingmixed liquor suspended sludge concentrations, sludge settle ability, the fractions andconcentrations of soluble microbial products and membrane performance. Thetransmembrane pressure (TMP) increased significantly with HRT decreasing. Therefore,the feasibility on municipal wastewater treatment by MBR under the conditions ofextremely short HRT is still a problem, though shorter HRT may produce morebiomass.
     The standard curve method was performed alongside the H-point standard additionmethod of SMP analysis on many different samples including both artificial and realwastewater samples. Similar errors in the standard curve and H-point standard additionanalyses of artificial samples indicate that the matrix effects are lower (or virtuallyeliminated through the use of formula) in the artificial samples. The large difference inconcentration of each SMP in actual wastewater as determined by standard curvemethod compared to the H-point standard addition method indicates a significantamount of matrix interference. This matrix interference may be eliminated through theuse of H-point standard addition and formulae for carbohydrates. The lack of viableresults from the H-point standard addition of protein and humics in the wastewatersamples indicate strong matrix effects which could not be fully corrected by Lowrymethod.
     In water and wastewater treatment processes, membrane cleaning is of paramount economic and scientific importance and has significant impact on process operations.Chlorine solution is usually employed for the membrane cleaning in MBRs because itscheapness and efficiency. However, the use of chlorine can lead to the formation ofby-products such as THM in presence of organic carbon in solution, which has harmfuleffects on both environment and human health. Hence, hydrogen peroxide, biocatalystagent (BOCs) and chlorine were employed to remove long-term membrane fouling inorder to figure out an alternative cleaning agent in this work.
     The removal rate of membrane fouling resistance results showed that the cleaningefficiencies of sodium hypochlorite solution were still better than other agents. Thelong-term usage of Chlorine might damage the membrane surface because of the highconcentration, and will pollute the environment. With lower optimal concentration(50-100mg/L), the cleaning effect of hydrogen peroxide was slightly lower than thechlorine, whereas, the product is more friendly with the environment. Many conditionsmay influent the organic matters removal efficiency of hydrogen peroxide, includingagent concentration, pH, cleaning time. The results of this experiment illustrated thatthe best cleaning time was24h and the optimum pH was8.5. The results of infraredspectroscopic analysis (FTIR) indicated that both hydrogen peroxide and chlorineremoved polysaccharides efficiently, which is the main membrane foulant. Using BOCsas cleaning agent, however, seldom reduction of organic matters on membrane surfacewas observed. Therefore, under the optimum cleaning conditions, includingconcentrations, cleaning time and pH value, hydrogen peroxide can be used as aharmless cleaning agent instead of chlorine to remove long-term membrane fouling.
引文
[1] Metcalf&Eddy, Wastewater Engineering, Treatment and Reuse-Fourth Edition [M],McGraw-Hill.(2003).
    [2] P. Le-Clech, V. Chen, T.A.G. Fane, Fouling in membrane bioreactors used in wastewatertreatment, J.Membr.Sci.284(2006)17-53.
    [3] K. Yamamoto, M. Hiasa, T. Mahmood, T. Matsuo, Direct Solid-Liquid Separation usingHollow Fiber Membrane in an Activated-Sludge Aeration Tank, Water Science and Technology.21(1989)43-54.
    [4]岑运华,膜生物反应器在污水中的应用[J],水处理技术.17(1991)12-14.
    [5] A. Drews, Membrane fouling in membrane bioreactors-Characterisation, contradictions, causeand cures, J.Membr.Sci.363(2010)1-28.
    [6] K.H. Choo, C.H. Lee, Effect of anaerobic digestion broth composition on membranepermeability, Water Science and Technology.34(1996)173-179.
    [7] N. Yamato, K. Kimura, T. Miyoshi, Y. Watanabe, Difference in membrane fouling inmembrane bioreactors (MBRs) caused by membrane polymer materials, J.Membr.Sci.280(2006)911-919.
    [8] J.G. Choi, T.H. Bae, J.H. Kim, T.M. Tak, A.A. Randall, The behavior of membrane foulinginitiation on the crossflow membrane bioreactor system, J.Membr.Sci.203(2002)103-112.
    [9] I.S. Chang, S.O. Bag, C.H. Lee, Effects of membrane fouling on solute rejection duringmembrane filtration of activated sludge, Process Biochemistry.36(2001)855-860.
    [10] I.S. Chang, S.N. Kim, Wastewater treatment using membrane filtration-effect of biosolidsconcentration on cake resistance, Process Biochemistry.40(2005)1307-1314.
    [11] H. Hasar, C. Kinaci, A. Unlu, H. Togrul, U. Ipek, Rheological properties of activated sludge ina sMBR, Biochem. Eng. J.20(2004)1-6.
    [12] S. Rosenberger, K. Kubin, M. Kraume, Rheology of activated sludge in membrane activationreactors, Chemie Ingenieur Technik.74(2002)487-494.
    [13] M. Lousada-Ferreira, S. Geilvoet, A. Moreau, E. Atasoy, P. Krzeminski, A. vanNieuwenhuijzen, et al., MLSS concentration: Still a poorly understood parameter in MBRfilterability, Desalination.250(2010)618-622.
    [14] F. Wicaksana, A.G. Fane, V. Chen, Fibre movement induced by bubbling using submergedhollow fibre membranes, J.Membr.Sci.271(2006)186-195.
    [15] E. Germain, T. Stephenson, Biomass characteristics, aeration and oxygen transfer inmembrane bioreactors: Their interrelations explained by a review of aerobic biological processes,Reviews in Environmental Science and Bio/Technology.4(2005)223-233.
    [16] J.R. Pan, Y. Su, C. Huang, Characteristics of soluble microbial products in membranebioreactor and its effect on membrane fouling, Desalination.250(2010)778-780.
    [17] C. Jarusutthirak, G. Amy, Role of soluble microbial products (SMP) in membrane fouling andflux decline, Environ.Sci.Technol.40(2006)969-974.
    [18] S. Liang, C. Liu, L. Song, Soluble microbial products in membrane bioreactor operation:Behaviors, characteristics, and fouling potential, Water Res.41(2007)95-101.
    [19] F. Meng, F. Yang, J. Xiao, H. Zhang, Z. Gong, A new insight into membrane foulingmechanism during membrane filtration of bulking and normal sludge suspension, J.Membr.Sci.285(2006)159-165.
    [20] A.L. Lim, R. Bai, Membrane fouling and cleaning in microfiltration of activated sludgewastewater, J.Membr.Sci.216(2003)279-290.
    [21] R. Bai, H. Leow, Microfiltration of activated sludge wastewater-the effect of systemoperation parameters, Sep.Purif.Technol.29(2002)189-198.
    [22] C.S. Laspidou, B.E. Rittmann, A unified theory for extracellular polymeric substances, solublemicrobial products, and active and inert biomass, Water Res.36(2002)2711-2720.
    [23] A. Ramesh, D. Lee, S.G. Hong, Soluble microbial products (SMP) and soluble extracellularpolymeric substances (EPS) from wastewater sludge, Appl.Microbiol.Biotechnol.73(2006)219-225.
    [24] B. Tsai, C. Chang, D. Lee, FRACTIONATION OF SOLUBLE MICROBIAL PRODUCTS(SMP) AND SOLUBLE EXTRACELLULAR POLYMERIC SUBSTANCES (EPS) FROMWASTEWATER SLUDGE, Environ.Technol.29(2008)1127-1138.
    [25] M.C. Gao, Y. Min, H.Y. Li, Y.M. Wang, P. Feng, Nitrification and sludge characteristics in asubmerged membrane bioreactor on synthetic inorganic wastewater, Desalination.170(2004)177-185.
    [26] Y. Liu, H.H.P. Fang, Influences of extracellular polymeric substances (EPS) on flocculation,settling, and dewatering of activated sludge, Crit. Rev. Environ. Sci. Technol.33(2003)237-273.
    [27] D.J. Barker, D.C. Stuckey, A review of soluble microbial products (SMP) in wastewatertreatment systems, Water Res.33(1999)3063-3082.
    [28] V.J. Boero, A.R. Bowers, W.W. Eckenfelder, Molecular weight distribution of solublemicrobial products in biological systems, Water Science and Technology.34(1996)241-248.
    [29] Y. Lee, J. Cho, Y. Seo, J. Lee, K. Ahn, Modeling of submerged membrane bioreactor processfor wastewater treatment, Desalination.146(2002)451-457.
    [30] S. Rosenberger, C. Laabs, B. Lesjean, R. Gnirss, G. Amy, M. Jekel, et al., Impact of colloidaland soluble organic material on membrane performance in membrane bioreactors for municipalwastewater treatment, Water Res.40(2006)710-720.
    [31] A. Farquharson, H. Zhou, Relationships of activated sludge characteristics to fouling rate andcritical flux in membrane bioreactors for wastewater treatment, Chemosphere.79(2010)149-155.
    [32] S. Rosenberger, M. Kraume, Filterability of activated sludge in membrane bioreactors,Desalination.146(2002)373-379.
    [33] A. Drews, J. Mante, V. Iversen, M. Vocks, B. Lesjean, M. Kraume, Impact of ambientconditions on SMP elimination and rejection in MBRs, Water Res.41(2007)3850-3858.
    [34] J.S. Zhang, C.H. Chuan, J.T. Zhou, A.G. Fane, Effect of sludge retention time on membranebio-fouling intensity in a submerged membrane bioreactor, Sep.Sci.Technol.41(2006)1313-1329.
    [35] U. Metzger, P. Le-Clech, R.M. Stuetz, F.H. Frimmel, V. Chen, Characterisation of polymericfouling in membrane bioreactors and the effect of different filtration modes, J.Membr.Sci.301(2007)180-189.
    [36] P. Grelier, S. Rosenberger, A. Tazi-Pain, Influence of sludge retention time on membranebioreactor hydraulic performance, Desalination.192(2006)10-17.
    [37] H. Harada, K. Momonoi, S. Yamazaki, S. Takizawa, Application of Anaerobic-Uf MembraneReactor for Treatment of a Waste-Water Containing High-Strength Particulate Organics, WaterScience and Technology.30(1994)307-319.
    [38] T. Miyoshi, T. Tsuyuhara, R. Ogyu, K. Kimura, Y. Watanabe, Seasonal variation in membranefouling in membrane bioreactors (MBRs) treating municipal wastewater, Water Res.43(2009)5109-5118.
    [39] S. Ognier, C. Wisniewski, A. Grasmick, Characterisation and modelling of fouling inmembrane bioreactors, Desalination.146(2002)141-147.
    [40] S.G. Lu, T. Imai, M. Ukita, M. Sekine, T. Higuchi, M. Fukagawa, A model for membranebioreactor process based on the concept of formation and degradation of soluble microbial products,Water Res.35(2001)2038-2048.
    [41] H.Y. Kim, K.M. Yeon, C.H. Lee, S. Lee, T. Swaminathan, Biofilm structure and extracellularpolymeric substances in low and high dissolved oxygen membrane bioreactors, Sep.Sci.Technol.41(2006)1213-1230.
    [42] K. Kimura, N. Yamato, H. Yamamura, Y. Watanabe, Membrane fouling in pilot-scalemembrane Bioreactors (MBRs) treating municipal wastewater, Environ.Sci.Technol.39(2005)6293-6299.
    [43] S. Judd, Fouling control in submerged membrane bioreactors, Water Sci.Technol.51(2005)27-34.
    [44] S.S. Madaeni, A.G. Fane, D.E. Wiley, Factors influencing critical flux in membrane filtrationof activated sludge, Journal of Chemical Technology and Biotechnology.74(1999)539-543.
    [45] I.S. Chang, P. Le Clech, B. Jefferson, S. Judd, Membrane fouling in membrane bioreactors forwastewater treatment, J.Environ.Eng.-ASCE.128(2002)1018-1029.
    [46] R.W. Field, D. Wu, J.A. Howell, B.B. Gupta, Critical Flux Concept for Microfiltration Fouling,J.Membr.Sci.100(1995)259-272.
    [47] F. Fan, H. Zhou, Interrelated effects of aeration and mixed liquor fractions on membranefouling for submerged membrane bioreactor processes in wastewater treatment,Environ.Sci.Technol.41(2007)2523-2528.
    [48] J.S. Park, K.M. Yeon, C.H. Lee, Hydrodynamics and microbial physiology affectingperformance of a new MBR, membrane-coupled high-performance compact reactor, Desalination.172(2005)181-188.
    [49] F. Meng, A. Drews, R. Mehrez, V. Iversen, M. Ernst, F. Yang, et al., Occurrence, Source, andFate of Dissolved Organic Matter (DOM) in a Pilot-Scale Membrane Bioreactor,Environ.Sci.Technol.43(2009)8821-8826.
    [50] R.S. Trussell, R.P. Merlo, S.W. Hermanowicz, D. Jenkins, Influence of mixed liquorproperties and aeration intensity on membrane fouling in a submerged membrane bioreactor at highmixed liquor suspended solids concentrations, Water Res.41(2007)947-958.
    [51] E.J. McAdam, E. Cartmell, S.J. Judd, Comparison of dead-end and continuous filtrationconditions in a denitrification membrane bioreactor, J.Membr.Sci.369(2011)167-173.
    [52] J. Nywening, H. Zhou, Influence of filtration conditions on membrane fouling and scouringaeration effectiveness in submerged membrane bioreactors to treat municipal wastewater, WaterRes.43(2009)3548-3558.
    [53] T. Jiang, M.D. Kennedy, V.D. Schepper, S. Nam, I. Nopens, P.A. Vanrolleghem, et al.,Characterization of Soluble Microbial Products and Their Fouling Impacts in MembraneBioreactors, Environ.Sci.Technol.44(2010)6642-6648.
    [54] P. Le-Clech, A. Fane, G. Leslie, A. Childress, MBR focus: the operator's perspective,Filtration Sep.42(2005)20-23.
    [55] J.S. Kim, C.H. Lee, H.D. Chun, Comparison of ultrafiltration characteristics between activatedsludge and BAC sludge, Water Res.32(1998)3443-3451.
    [56] J.S. Kim, C.H. Lee, Effect of powdered activated carbon on the performance of an aerobicmembrane bioreactor: Comparison between cross-flow and submerged membrane systems, WaterEnviron.Res.(2003)300-307.
    [57] Y.Z. Li, Y.L. He, Y.H. Liu, S.C. Yang, G.J. Zhang, Comparison of the filtration characteristicsbetween biological powdered activated carbon sludge and activated sludge in submergedmembrane bioreactors, Desalination.174(2005)305-314.
    [58] Z. Ying, G. Ping, Effect of powdered activated carbon dosage on retarding membrane foulingin MBR, Separation and purification technology.52(2006)154-160.
    [59] C.A. Ng, D. Sun, A.G. Fane, Operation of membrane bioreactor with powdered activatedcarbon addition, Sep.Sci.Technol.41(2006)1447-1466.
    [60] M. Remy, P. van der Marel, A. Zwijnenburg, W. Rulkens, H. Temmink, Low dose powderedactivated carbon addition at high sludge retention times to reduce fouling in membrane bioreactors,Water Res.43(2009)345-350.
    [61] M. Remy, V. Potier, H. Temmink, W. Rulkens, Why low powdered activated carbon additionreduces membrane fouling in MBRs, Water Res.44(2010)861-867.
    [62] S. Ishak, A. Malakahmad, M.H. Isa, Refinery wastewater biological treatment: A short review,J.Sci.Ind.Res.71(2012)251-256.
    [63] M.H. El-Naas, S. Al-Zuhair, A. Al-Lobaney, S. Makhlouf, Assessment of electrocoagulationfor the treatment of petroleum refinery wastewater, J.Environ.Manage.91(2009)180-185.
    [64] B.P. Sarathy, P.M. Hoy, S.J.B. Duff, Removal of oxygen demand and acute toxicity duringbatch biological treatment of a petroleum refinery effluent, Water Qual.Res.J.Can.37(2002)399-411.
    [65] R.D. Tyagi, F.T. Tran, A.K.M.M. Chowdhury, Biodegradation of petroleum refinerywastewater in a modified rotating biological contactor with polyurethane foam attached to the disks,Water Res.27(1993)91-99.
    [66] C.K. Lin, T.Y. Tsai, J.C. Liu, M.C. Chen, Enhanced biodegradation of petrochemicalwastewater using ozonation and BAC advanced treatment system, Water Res.35(2001)699-704.
    [67] M.H. El-Naas, S. Al-Zuhair, M. Abu Alhaija, Reduction of COD in refinery wastewaterthrough adsorption on date-pit activated carbon, J.Hazard.Mater.173(2010)750-757.
    [68] B.H. Diya’uddeen, W.M.A.W. Daud, A.R. Abdul Aziz, Treatment technologies for petroleumrefinery effluents: A review, Process Saf.Environ.Prot.89(2011)95-105.
    [69] M.A. Tony, P.J. Purcell, Y. Zhao, Oil refinery wastewater treatment using physicochemical,Fenton and Photo-Fenton oxidation processes, Journal of Environmental Science and Health PartA-Toxic/hazardous Substances&Environmental Engineering.47(2012)435-440.
    [70] C.C. Teodosiu, M.D. Kennedy, H.A. Van Straten, J.C. Schippers, Evaluation of secondaryrefinery effluent treatment using ultrafiltration membranes, Water Res.33(1999)2172-2180.
    [71] L. Zhidong, Integrated Submerged Membrane Bioreactor Anaerobic/Aerobic (ISMBR-A/O)for Nitrogen and Phosphorus Removal During Oil Refinery Wastewater Treatment, Petrol SciTechnol.28(2010)286-293.
    [72] S.R.P. Shariati, B. Bonakdarpour, N. Zare, F.Z. Ashtiani, The effect of hydraulic retentiontime on the performance and fouling characteristics of membrane sequencing batch reactors usedfor the treatment of synthetic petroleum refinery wastewater, Bioresour.Technol.102(2011)7692-7699.
    [73] B.M. Souza, A.C. Cerqueira, G.L. Sant'Anna Jr., M. Dezotti, Oil-Refinery WastewaterTreatment Aiming Reuse by Advanced Oxidation Processes (AOPs) Combined with BiologicalActivated Carbon (BAC), Ozone-Science&Engineering.33(2011)403-409.
    [74] Environment Canada, Petroleum Refinery Liquid Effluent Regulations, The Minister of Justiceof Canada.(2012).
    [75] J.J. Qin, M.H. Oo, G. Tao, K.A. Kekre, Feasibility study on petrochemical wastewatertreatment and reuse using submerged MBR, J.Membr.Sci.293(2007)161-166.
    [76] A.F. Viero, T.M. de Melo, A.P.R. Torres, N.R. Ferreira, G.L. Sant'Anna Jr., C.P. Borges, et al.,The effects of long-term feeding of high organic loading in a submerged membrane bioreactortreating oil refinery wastewater, J.Membr.Sci.319(2008)223-230.
    [77] E. Yuliwati, A.F. Ismail, W.J. Lau, B.C. Ng, A. Mataram, M.A. Kassim, Effects of processconditions in submerged ultrafiltration for refinery wastewater treatment: Optimization of operatingprocess by response surface methodology, Desalination.287(2012)350-361.
    [78] A. Asatekin, A.M. Mayes, Oil Industry Wastewater Treatment with Fouling ResistantMembranes Containing Amphiphilic Comb Copolymers, Environ.Sci.Technol.43(2009)4487-4492.
    [79] M. Ji, Activated Sludge Properties in MBR Deeply Treating Pulp-making Wastewater,3rdInternational Conference on Bioinformatics and Biomedical Engineering.(2009)4790-4793.
    [80]陈蕊,好氧颗粒污泥膜生物反应器处理畜禽废水的研究,博士学位论文.(2007).
    [81] B. Frolund, R. Palmgren, K. Keiding, P.H. Nielsen, Extraction of extracellular polymers fromactivated sludge using a cation exchange resin, Water Res.30(1996)1749-1758.
    [82] A.C. Avella, T. G rner, P. de Donato, The pitfalls of protein quantification in wastewatertreatment studies, Sci.Total Environ.408(2010)4906-4909.
    [83] K. Kimura, T. Naruse, Y. Watanabe, Changes in characteristics of soluble microbial productsin membrane bioreactors associated with different solid retention times: Relation to membranefouling, Water Res.43(2009)1033-1039.
    [84] C.M. Potvin, H. Zhou, Interference by the activated sludge matrix on the analysis of solublemicrobial products in wastewater, Chemosphere.85(2011)1139-1145.
    [85] A. Akram, D.C. Stuckey, Flux and performance improvement in a submerged anaerobicmembrane bioreactor (SAMBR) using powdered activated carbon (PAC), Process Biochem.43(2008)93-102.
    [86] Y. Satyawali, M. Balakrishnan, Effect of PAC addition on sludge properties in an MBRtreating high strength wastewater, Water Res.43(2009)1577-1588.
    [87] C.A. Ng, D. Sun, J. Zhang, B. Wu, A.G. Fane, Mechanisms of Fouling Control in MembraneBioreactors by the Addition of Powdered Activated Carbon, Sep.Sci.Technol.45(2010)873-889.
    [88] J.A. Aruldoss, T. Viraraghavan, Toxicity testing of refinery wastewater using Microtox,Bull.Environ.Contam.Toxicol.60(1998)456-463.
    [89] O.J. Hao, C.J. Shin, C.F. Lin, F.T. Jeng, Z.C. Chen, Use of microtox tests for screeningindustrial wastewater toxicity, Water Science and Technology.34(1996)43-50.
    [90] A. Ng, M.K. Stenstrom, D.R. Marrs, Nitrification Enhancement in the Powdered ActivatedCarbon-Activated Sludge Process for the Treatment of Petroleum Refinery Wastewaters, JournalWater Pollution Control Federation.59(1987)199-211.
    [91] B. Frolund, T. Griebe, P.H. Nielsen, Enzymatic-Activity in the Activated-Sludge Floc Matrix,Appl.Microbiol.Biotechnol.43(1995)755-761.
    [92] C. Lin, Y. Huang, O.J. Hao, Ultrafiltration processes for removing humic substances: effect ofmolecular weight fractions and PAC treatment, Water Res.33(1999)1252-1264.
    [93] C.F. Lin, T.Y. Lin, O.J. Hao, Effects of humic substance characteristics on UF performance,Water Res.34(2000)1097-1106.
    [94] F. Fan, H. Zhou, H. Husain, Identification of wastewater sludge characteristics to predictcritical flux for membrane bioreactor processes, Water Res.40(2006)205-212.
    [95] S. Lyko, D. Al-Halbouni, T. Wintgens, A. Janot, J. Hollender, W. Dott, et al., Polymericcompounds in activated sludge supernatant characterisation and retention mechanisms at afull-scale municipal membrane bioreactor, Water Res.41(2007)3894-3902.
    [96] H.Y. Ng, S.W. Hermanowicz, Membrane bioreactor operation at short solids retention times:performance and biomass characteristics, Water Res.39(2005)981-992.
    [97] J. Cook, J. Beyea, Bioenergy in the United States: progress and possibilities, Biomass&Bioenergy.18(2000)441-455.
    [98] I. Akanyeti, H. Temmink, M. Remy, A. Zwijnenburg, Feasibility of bioflocculation in ahigh-loaded membrane bioreactor for improved energy recovery from sewage, Water Sci.Technol.61(2010)1433-1439.
    [99] F. Meng, B. Shi, F. Yang, H. Zhang, Effect of hydraulic retention time on membrane foulingand biomass characteristics in submerged membrane bioreactors, Bioprocess and BiosystemsEngineering.30(2007)359-367.
    [100] D. Al-Halbouni, J. Traber, S. Lyko, T. Wintgens, T. Melin, D. Tacke, et al., Correlation ofEPS content in activated sludge at different sludge retention times with membrane foulingphenomena, Water Res.42(2008)1475-1488.
    [101] S.A. Huber, A. Balz, M. Abert, W. Pronk, Characterisation of aquatic humic and non-humicmatter with size-exclusion chromatography–organic carbon detection–organic nitrogen detection(LC-OCD-OND), Water Res.45(2011)879-885.
    [102] S. Malamis, A. Andreadakis, Fractionation of proteins and carbohydrates of extracellularpolymeric substances in a membrane bioreactor system, Bioresour.Technol.100(2009)3350-3357.
    [103] D. Gao, Y. Tao, R. An, Digested sewage treatment using membrane-based process atdifferent hydraulic retention times, Desalination.286(2012)187-192.
    [104] G.L. Peterson, Rosebrough, Farr and Randall, Review of the foline phenol proteinquantitation method of Lowry, Anal.Biochem.100(1979)201-220.
    [105] S. Arabi, G. Nakhla, Impact of molecular weight distribution of soluble microbial productson fouling in membrane bioreactors, Separation and Purification Technology.73(2010)391-396.
    [106] S.L.R. Ellison, M. Thompson, Standard additions: myth and reality, Analyst.133(2008)992-997.
    [107] M. Hasani, A. Rezaei, H. Abdollahi, Kinetic spectrophotometric determination of Fe(II) inthe presence of Fe(III) by H-point standard addition method in mixed micellar medium,Spectroc.Acta Pt.A-Molec.Biomolec.Spectr.68(2007)414-419.
    [108] K. Zarei, M. Atabati, M. Karami, H-point standard addition method applied to simultaneouskinetic determination of antimony(III) and antimony(V) by adsorptive linear sweep voltammetry,J.Hazard.Mater.179(2010)840-844.
    [109] L. Martinez, P. Falco, A. Cabeza, Comparison of several methods used for the determinationof cephalosporins. Analysis of cephalexin in pharmaceutical samples, J.Pharm.Biomed.Anal.29(2002)405-423.
    [110] Y. Ni, M. Qi, S. Kokot, Simultaneous spectrophotometric determination of ternary mixturesof Tartrazine, Sunset Yellow, and Ponceau4R by H-point standard addition method, Anal.Lett.34(2001)2585-2596.
    [111] Y. Moliner-Martinez, P. Campins-Falco, R. Herraez-Hernandez, Influence of the presence ofsurfactants and humic acid in waters on the indophenol-type reaction method for ammoniumdetermination, Talanta.69(2006)1038-1045.
    [112] M. Thompson, S.L.R. Ellison, A review of interference effects and their correction inchemical analysis with special reference to uncertainty, Accred Qual Assur.10(2005)82-97.
    [113] F.B. Reig, P.C. Falcó, H-point standard additions method. Part1. Fundamentals andapplication to analytical spectroscopy, Analyst.113(1988)1011-1016.
    [114] E. Hund, D.L. Massart, J. Smeyers-Verbeke, Evaluation of the H-point standard additionsmethod (HPSAM) and the generalized H-point standard additions method (GHPSAM) for theUV-analysis of two-component mixtures, J.Pharm.Biomed.Anal.21(1999)23-42.
    [115] J.H. Waterborg, H.R. Matthews, The Lowry method for protein quantitation, Methods inmolecular biology (Clifton, N.J.).1(1984)1-3.
    [116] Y. Shen, K. Xiao, P. Liang, J. Sun, S. Sai, X. Huang, Characterization of soluble microbialproducts in10large-scale membrane bioreactors for municipal wastewater treatment in China,J.Membr.Sci.415(2012)336-345.
    [117] B. Lesjean, S. Rosenberger, C. Laabs, M. Jekel, R. Gnirss, G. Amy, Correlation betweenmembrane fouling and soluble/colloidal organic substances in membrane bioreactors for municipalwastewater treatment, Water Science and Technology.51(2005)1-8.
    [118] K. Ng, C. Lin, S.K. Lateef, S.C. Panchangam, P.A. Hong, P. Yang, The effect of solublemicrobial products on membrane fouling in a fixed carrier biological system, Separation andPurification Technology.72(2010)98-104.
    [119] S. Judd, The status of membrane bioreactor technology, Trends Biotechnol.26(2008)109-116.
    [120] A. Grelot, C. Machinal, K. Drouet, A. Tazi-Pain, J.C. Schrotter, A. Grasmick, et al., In thesearch of alternative cleaning solutions for MBR plants, Water Sci.Technol.58(2008)2041-2049.
    [121] F. Valentini, A. Diamanti, G. Palleschi, New bio-cleaning strategies on porous buildingmaterials affected by biodeterioration event, Appl.Surf.Sci.256(2010)6550-6563.
    [122] K.J. Howe, K.P. Ishida, M.M. Clark, Use of ATR/FTIR spectrometry to study fouling ofmicrofiltration membranes by natural waters, Desalination.147(2002)251-255.
    [123] S. Madaeni, S. Samieirad, Chemical cleaning of reverse osmosis membrane fouled bywastewater, Desalination.257(2010)80-86.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700