用户名: 密码: 验证码:
基于潮河流域非点源污染分布特征的BMPs优化配置研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
国内外开展的多项研究表明,农业非点源污染是导致水环境污染的最主要原因之一。目前对非点源污染进行控制和管理主要是通过采取各种“最佳管理措施”(Best Management Practices, BMPs)来实现的。虽然小区(plot)与农田地块(field)尺度的实地监测发现BMPs对营养盐及泥沙的控制非常有效,但受限于点位差异性及气候等因素影响,简单地将其在流域尺度大范围进行应用,很难达到预期污染控制目标,而且可能会造成预算的严重超支。因此,如何在有限的资金及人力条件下,通过最佳管理措施的空间优化配置,实现流域尺度非点源污染的有效控制己越来越受到科研人员及环保、水利部门的关注。本论文以密云水库上游潮河流域为研究区,从提升最佳管理措施(BMPs)实施效率的角度出发,识别不同空间尺度非点源磷污染负荷分布特征,为BMPs配置方案的提出与概念化流域的构建提供依据;揭示水质显著改善概率(Pw)与流域污染负荷削减比例(Rw)响应关系,生成更有针对性的BMPs实施效果评价指标;辨析不同空间配置下BMPs的成本效益曲线变化趋势,筛选最佳空间配置方案。最终提出一套适用于研究区的BMPs空间层次配置方案,为有效控制水土流失与非点源污染,促进水源地保护和流域健康,提供理论依据和技术支持。论文主要研究结论可概括为以下几个方面:
     (1)根据区域非点源污染物空间分布特征构建概念化流域,能够在水文地貌及气象特征可控的条件下,有效地规避大尺度天然流域内各子流域及地块间存在的空间自相关问题,并运用统计模拟的方法将自然流域污染负荷的空间分布特征以相应比例的形式反映到虚拟的流域之中,进而对其采用不同空间配置的BMPs组合配置方案,能够为流域尺度和地块尺度BMPs的优化配置及成本效益优选提供理论依据。
     (2) HSPF模型模拟结果符合研究需求,97个子流域的磷污染物负荷主要集中在汛期的6-9月份,泥沙负荷汛期占全年比例的78%~90%,汛期是潮河流域土壤侵蚀和氮、磷非点源污染防治的关键时期。各子流域中平均磷污染负荷为21.32kg,最大为113.85kg,最小为0.91kg,空间上呈正态分布。从修正的磷指数(PI)评价结果来看,研究区内磷流失风险呈正态分布,即高风险区(7.95%)与中值区(19.63%)只占很小一部分,大部分为低风险区(72.42%)。流域尺度的磷流失风险值与实际流失值具有显著的相关关系,有效系数R2=0.67,地块尺度的磷流失量平均值为2.94kg,最低为2.07kg,最高为17.24kg,符合空间上的正态分布,可以为概念化流域的构建提供有效依据。
     (3)运用随机抽样的方法,构建的概念化景观负荷模型(100个子流域,10000个地块)经正态分布检验证实能够满足研究需要,可以代表潮河流域磷污染空间分布特征。研究区河道内总磷浓度的时空变化差异较为显著,多个点位的多年监测数据为不同BMPs措施实施比例下水质显著改善概率的估算提供了有力的数据支撑,因此成功地建立了流域负荷削减比例(Rw)与水质显著改善概率(Pw)间的定量关系为:Pw=1+60(e-13.2·Rw)/1.059=-0.059,识别了河流水质改善的人为正面干扰阈值。通过对四种BMPs空间配置方案的成本效益曲线对比发现,目标聚集配置方案为最优方案。从BMPs地块削减效率、不同尺度的磷负荷空间分布规律及水质采样点数量三个角度进行敏感性分析,结果表明该方案在BMPs削减效率值Rf=0.65时的结论是稳定可靠的。
Nonpoint source pollution (NPS) problem can be controlled by implementing various best management practices (BMPs) in the watershed. Although application of conservation practices can effectively reduce nutrients and sediment from plots and fields, simple placement of these mitigation measures in watershed usually can not meet the pollution control target. The reducing efficiency may be influnced by many factors, such as soils, topography, land use, and human activities, etc. Thus, how to optimize spatial placement of BMPs in watershed scale for effective control of NPS with limited funds and labor has been more and more attention from researchers and environmental protection departments. This dissertation took the Chaohe River watershed as the study area and adopted Geographic Information System (GIS), Hydrological Simulation Program-Fortran (HSPF) and Statistical Technique to achieve the objectives which are:1) to identify the spatial distribution frequency of phosphorus pollution loads at two scales (subwatershed and field) and provide the basic data for the development of the conceptual watershed,2) to examine the relationship between probability of statistically significant water quality improvement (Pw) and reduction proportion of pollution load in watershed (Rw)and generate more effect evaluation indices,3) to discriminate the change treands of the four approaches benefit/cost curves for geographically allocating conservation effort. This work will be helpful to further controlling soil erosion and non-point source pollution and protecting drinking water resource watershed. The main results of this doctoral dissertation are listed as follows:
     1) Based on the spatial distribution features of agricultural non-point source pollution that were drived from simulated experiments. A simple and easy integrated approach will be established for the purpose of identifying the distribution pattern of phosphorus loading at two spatial scales (watershed and filed) so that different allocation plans of BMPs can be designed. More effective performance benefit index will be generated through identifying relationship between the ratio of TP loading mitigation and the probability of detecting a statistically TP improvement. By comparing the thresholds of logistic curve of cost-benefit, the best allocation plan will be determined. The expected results will be very useful for agricultural nonpoint source pollution control and drinking water source protection in Chaohe River watershed.
     2) The HSPF model simulation results can meet the need of conceptual subwatershed construction. The phosphorus load from Chaohe River flowed into Miyun reservoir mainly in June-September (flood season). The loss of sediment in flood season accounted for78%-90%of the whole year load. Thus, the flood season is a critical period for soil erosion control and non-point source pollution prevention. For each subwatershed, the average pollution load was21.32kg, the max value was113.85kg and the min value was0.91kg, respectively. The phosphorus index (PI) results showed that frequency distribution of field P load estimates was best fit by a normal probability distribution. High risk area, moderate risk area and low risk area account for7.95%,19.63%,72.42%of the total area. PI value has a significant correlation (R2=0.67) with the actual loss value at watershed scale. The average values of phosphorus from field scale is2.94kg, the max and min value were17.24kg and2.07kg, fitting a spatial normal distribution. Therefore, it can be used as data basis for the conceptual watershed construction.
     3) Conceptual watershed included100model subwatersheds and10000model fields, which were selected for random order among the Chaohe river basin. The pollution load of model landscape had spatial normal probability distribution feature. The phosphorus concentration had significant spatial and temporal difference. The dataset consists of time series of P concentrations from thirty tributaries with more than40%watershed agriculture and provides the best available estimate of P variability in Chaohe River. Based on statistical simulations and stream P concentrations data, a statistically significant waterquality improvement at the outlet of a watershed (PW) was calculated as:Pw=1.059/1+69(e-13.2·Rw)-1.038In realistic implementation scenarios, the aggregated and targeted approach most efficiently improves water quality. The sensitivity analysis (reduction proportion of fied load, load spatial distribution and sample number) indicated that the superiority of the aggregated and targeted approach was robust to uncertainties in model parameters and to assumption choices.
引文
[1]李强坤,胡亚伟,李怀恩.农业非点源污染物在排水沟渠中的模拟与应用.环境科学,2011(5):1273-1278.
    [2]贺缠生,傅伯杰,陈利顶.非点源污染的管理及控制.环境科学,1998(5):88~92.
    [3]Chen L, Qian X, Shi Y. Critical Area Identification of Potential Soil Loss in a Typical Watershed of the Three Gorges Reservoir Region. Water Resour Manag,2011,25(13):3445-3463.
    [4]周慧平,高超,朱晓东.关键源区识别:农业非点源污染控制方法.生态学报,2005(12):3368~3374.
    [5]Frey M P, Schneider M K, Dietzel A, Reichert P, Stamm C. Predicting critical source areas for diffuse herbicide losses to surface waters:Role of connectivity and boundary conditions. J Hydrol,2009, 365(1-2):23-36.
    [6]Liu R, Zhang P, Wang X, Chen Y, Shen Z. Assessment of effects of best management practices on agricultural non-point source pollution in Xiangxi River watershed. Agr Water Manage,2013,117(31): 9-18.
    [7]Giri S, Nejadhashemi A P, Woznicki S A. Evaluation of targeting methods for implementation of best management practices in the Saginaw River Watershed. J Environ Manage,2012,103(30):24-40.
    [8]Meals D W, Dressing S A, Davenport T E. Lag Time in Water Quality Response to Best Management Practices:A Review. Journal of Environmental Quality-Abstract,2009,39(1):85-96.
    [9]万金保,孙蕾,刘峰,汤爱萍.鄱阳湖区农村面源污染控制中最佳管理措施示范研究.水土保持通报,2012(3):296~300.
    [10]Babbar-Sebens M, Karthikeyan R. Consideration of sample size for estimating contaminant load reductions using load duration curves. J Hydrol,2009,372(1-4):118-123.
    [11]Jung Y J, Stenstrom M K, Jung D I, Kim L H, Min K S. National pilot projects for management of diffuse pollution in Korea. Desalination,2008,226(1-3):97-105.
    [12]叶兴平,张玉超TMDL计划在污染物总量控制中的应用初探.环境科学与管理,2008(8):13-16.
    [13]王彩艳,彭虹,张万顺,李志军TMDL技术在东湖水污染控制中的应用.武汉大学学报(工学版),2009(5):665~668.
    [14]牛丽冬,王晓燕.基于‘TMDL的WARMF模型在水污染控制管理中的应用.水资源保护,2012(2):20~24.
    [15]He X, Xu Y, Zhang X. Traditional farming system for soil conservation on slope farmland in southwestern China. Soil and Tillage Research,2007,94(1):193-200.
    [16]Zhang X, M.Z. Modeling effectiveness of agricultural BMPs to reduce sediment load and organophosphate pesticides in surface runoff. Sci Total Environ,2011,409(10):1949-1958.
    [17]李振炜,于兴修,姚孝友,井光花.农业非点源污染关键源区识别方法研究进展.生态学杂志,2011(12):2907~2914.
    [18]孟凡祥,赵倩,马建,陈欣,史奕.农业非点源污染负荷及现状评价——以大苏河地区为例.农业环境科学学报,2010:145-150.
    [19]Li X. A Study on Environmental Pollution of Agriculture and Countermeasures under the Double Failure. Energy Procedia,2011,5:204-208.
    [20]USEPA. National water quality inventory:Report to congress,2004 Reporting Cycle. Washington DC: USEPA,2009.
    [21]Vighi M, Chiaudani G. Eutrophication in Europe:the Role of Agricultural Activities. Reviews of Environmental Toxicology,1987.213-257.
    [22]Boers P C M. Nutrient emissions from agriculture in the Netherlands:causes and remedies. Water Sci Technol. (G. B),1996,33.
    [23]Leba B V. Nutrient preserving in riverine transitional strip. Journal of Human Environment,1994,3(6): 342-347.
    [24]Uunk E J B. Eutrophication of Surface Waters and the Contribution of Agriculture. Proceeding of the Fertilizer Society,1991,303:55.
    [25]王建兵,程磊.农业面源污染现状分析.江西农业大学学报(社会科学版),2008(3):35~39.
    [26]廖谦,沈珍瑶.农业非点源污染模拟不确定性研究进展.生态学杂志,2011(7):1542~1550.
    [27]王晓燕.非点源污染过程机理与控制管理:以北京密云水库流域为例.北京:科学出版社,2011.
    [28]黄生斌,刘宝元,孙江,刘晓霞,路炳军,段淑怀.密云县密云水库流域坡耕地养分流失特征.生态与农村环境学报,2007(3):51~54.
    [29]李子君,李秀彬.潮白河上游1961—2005年径流变化趋势及原因分析.北京林业大学学报,2008:82~87.
    [30]Zhang X, Zhang M. Modeling effectiveness of agricultural BMPs to reduce sediment load and organophosphate pesticides in surface runoff. Sci Total Environ,2011,409(10):1949-1958.
    [31]王晓燕,张雅帆,欧洋,阎育梅.最佳管理措施对非点源污染控制效果的预测——以北京密云县太师屯镇为例.环境科学学报,2009(11):2440~2450.
    [32]Gitau M W, Veith T L. Quantifying the effects of phosphorus control best management practices//. Modeling Phosphorus in the Environment. Boca Raton, Florida:CRC Press,2006.351-381.
    [33]Panagopoulos Y, Makropoulos C, Mimikou M. Decision support for diffuse pollution management. Environ Modell Softw,2012,30:57-70.
    [34]王晓燕.非点源污染及其管理.北京:海洋出版社,2003.
    [35]陈荷生,华瑶青.太湖流域非点源污染控制和治理的思考.水资源保护,2004(1):33~36.
    [36]阎伍玖,鲍祥.巢湖流域农业活动与非点源污染的初步研究.水土保持学报,2001(4):129~132.
    [37]杨苏树,倪喜云.大理州洱海流域农业非点源污染现状.农业环境与发展,1999(2):44~45.
    [38]陈吉宁.流域面源污染控制技术—以滇池流域为例.北京:中国环境科学出版社,2009.
    [39]Granlund K, Raike A, Ekholm P, Rankinen K, Rekolainen S. Assessment of water protection targets for agricultural nutrient loading in Finland. J Hydrol,2005,304(1-4):251-260.
    [40]Merriman K. R, Gitau M W, Chaubey I. A Tool for estimating best management practice effectiveness in Arkansas. Appl Eng Agric,2009,25(2):199-213.
    [41]王晓燕,张雅帆,欧洋,段淑怀.流域非点源污染控制管理措施的成本效益评价与优选.生态环境学报,2009(2):540~548.
    [42]Logan T J. Agricultural best management practices for water pollution control:current issues. Agriculture, Ecosystems and Environment,1993,46:223-231.
    [43]金可礼,陈俊,龚利民.最佳管理措施及其在非点源污染控制中的应用.水资源与水工程学报,2007(1):37~40.
    [44]代才江,杨卫东,王君丽,刘春光.最佳管理措施(BMPs)在流域农业非点源污染控制中的应用.农业环境与发展,2009(4):65~67.
    [45]杨开宝,郭培才.梯田田坎水分耗散及其对作物产量的影响初探.水土保持通报,1994(4):43~47.
    [46]阮伏水,周伏建.坡地果园开发水土保持新模式.农村生态环境,1995(2):7~10.
    [47]史德明.山坡地开发利用中的水土保持新技术——介绍山边沟及其应用前景.水土保持通报,1997(1):35~36.
    [48]吴建强,黄沈发,吴健,熊丽君.缓冲带径流污染物净化效果研究及其与草皮生物量的相关性.湖泊科学,2008(6):761~765.
    [49]李怀恩,张亚平,蔡明,王清华,李越.植被过滤带的定量计算方法.生态学杂志,2006(1):108~112.
    [50]李怀恩,邓娜,杨寅群,史冬庆.植被过滤带对地表径流中污染物的净化效果.农业工程学报,2010(7):81-86.
    [51]Jin C X, Romkens M J M. Experiment studies of factors in determining sediment trapping in vegetative filter strips. Transactions of the American Society of Agricultural Engineers,2001,44(2):277-288.
    [52]Koelsch R, Lorimor J, Mankin K. Vegetative treatment systems for management of open lot runoff: review of literature. Appl Eng Agric,2006,22(1):141-153.
    [53]Lim T T, Edwards D R, Workman S R, Larson B T, Dunn L. Vegetated filter strip removal of cattle manure constituents in runoff. T Asae,1998,41(5):1375-1381.
    [54]李明,周巧红,吴振斌,万成炎,蔡林林.人工湿地对病原体去除的研究概况.环境科学与技术,2011:134~138.
    [55]彭超英,朱国洪,尹国,余以刚,曾姗姗.人工湿地处理污水的研究.重庆环境科学,2000(6):43-45.
    [56]Goulet R R, Leclair E N, Pick F R. The evaluation of metal retention by a constructed wetland using the Pulmonate Gastropod Helisoma trivolvis (Say). Archives of Environmental Contamination Toxicology, 2001,40(3):303-310.
    [57]陈明利,吴晓芙,陈永华,蒋丽娟,纪智慧,马群.景观型人工湿地污水处理系统构建及植物脱氮效应研究.环境科学,2010(3):660~666.
    [58]Diaz F J, Geen A T O, Dahlgren R A. Efficacy of constructed wetlands for removal of bacterial contamination from agricultural return flows. Agr Water Manage,2010,2010(97):1813-1821.
    [59]段志勇,施汉昌,黄霞,胡洪营.人工湿地控制滇池面源水污染适用性研究.环境工程,2002(6):64-66.
    [60]杨欣翥,康会峰,黄新春,刘志宾.基于嵌入式系统的农业节水灌溉系统的应用研究.安徽农业科学,2009(6):2793~2794.
    [61]姜训宇,段生梅,母利.节水灌溉自动化技术的发展及前景分析.安徽农学通报(上半月刊),2011(15):207~208.
    [62]陈洪波,王业耀.国外最佳管理措施在农业非点源污染防治中的应用.环境污染与防治,2006(4):279~282.
    [63]韩秀娣.最佳管理措施在非点源污染防治中的应用.上海环境科学,2000,19(3):102~104.
    [64]张海林,高旺盛,陈阜,朱文珊.保护性耕作研究现状、发展趋势及对策.中国农业大学学报,2005(1):16~20.
    [65]Gowda P H, Mulla D J, Jaynes D B. Simulated long-term nitrogen losses for a Midwestern agricultural watershed in the United States. Agr Water Manage,2008,95:616-624.
    [66]Munodawafa A. Assessing nutrient losses with soil erosion under different tillage systems and their implications on water quality. Phys Chem Earth,2007,32:1135-1140.
    [67]Gassman P W, Osei E, Saleh A, Rodecap J, Norvell S, Williams J. Alternative practices for sediment and nutrient loss control on livestock farms in northeast Iowa. Agriculture,Ecosystems and Environment, 2006,117:135-144.
    [68]何进,李洪文,高焕文.中国北方保护性耕作条件下深松效应与经济效益研究.农业工程学报,2006(10):62~67.
    [69]陈洪波,王业耀.国外最佳管理措施在农业非点源污染防治中的应用.环境污染与防治,2006(4):279~282.
    [70]孙辉,唐亚,谢嘉穗.植物篱种植模式及其在我国的研究和应用.水土保持学报,2004(2):114~117.
    [71]Alegre J C, Rao M R. Soil and Water conservation by contour hedging in the humid tropics of peru. Agr. Ecosyst. and Environ,1995,57(1):17-25.
    [72]蔡强国,卜崇峰.植物篱复合农林技术措施效益分析.资源科学,2004,26(增刊):7~11.
    [73]Bannerman R T, Corsi S R, Horwatich J A, Walker J F, Wang L. Effects of best-management practices in Otter Creek in the Sheboygan River Priority Watershed, Wisconsin,1990-2002. U.S. Geological Survey Scientific Investigations Report 2005-5009,2006. Middleton, WI.
    [74]D A J. Landscape and riverscapes:the influence of land use on river ecosystems. Annual Review of Ecology and Systematics,2004,35:257-284.
    [75]Diebel M W, Maxted J T, Nowak P J, Zanden M J V. Landscape planning for agricultural nonpoint source pollution reduction I:A geographical allocation framework. Environ Manage,2008,42(5): 789-802.
    [76]Rao N S, Easton Z M, Schneiderman E M, Zion M S, Lee D R, Steenhuis T S. Modeling watershed scale effectiveness of agricultural best management practices to reduce phosphorus loading. J Environ Manage, 2009,90(3):1385-1395.
    [77]Tapia-Vargas M, Tiscareno-Lopez M, Stone J J, Oropeza-Mota J L, Velazquez-Valle M. Tillage system effects on runoff and sediment yield in hillslope agriculture. Field Crop Res,2001,69(2):173-182.
    [78]H W, E G M. Diainon transport through inter-row vegetative filter stripe:micro-ecosystem modeling. J Hydrol,2001,247:183-199.
    [79]尹澄清,毛战坡.用生态工程技术控制农村非点源水污染.应用生态学报,2002(2):229~232.
    [80]Schreibe J D, Rebich R A, Cooper C M. Dynamics of diffuse pollution from US southern watersheds. Water Res,2001,35(10):2534-2542.
    [81]Kronvang B, Jeppesen E, Conley D J, S(?)ndergaard M, Larsen S E, Ovesen N B, Carstensen J. Nutrient pressures and ecological responses to nutrient loading reductions in Danish streams,lakes and coastal waters. J Hydrol,2005,304(1-4):274-288.
    [82]Cuttle S P, Macleod C J A, Chadwick D R, Scholefield D, Haygarth P M. An inventory of methods to control diffuse water pollution from agriculture:user manual. Defra project ES0203,2007:Available at http://www.defra.gov.uk/science/default.htm.
    [83]Hector G R, Popp J, Maringanti C, Chaubey I. Selection and placement of best management practices used to reduce water quality degradation in Lincoln Lake watershed. Water Resource Research,2011,47: 1-13.
    [84]Cherry K A, Shepherd M, Withers P J A, Mooney S J. Assessing the effectiveness of actions to mitigate nutrient loss from agriculture:A review of methods. Science of the Total Environment,2008,406(1-2): 1-23.
    [85]White M J, Storm D E, Busteed P R, Stoodley S H, Phillips S J. Evaluating nonpoint source critical source area contributions at the watershed scale. J Environ Qual,2009,38(4):1654-1663.
    [86]Chaubey I, Chiang L, Gitau M W, Mohamed S. Effectiveness of best management practices in improving water quality in a pasture-dominated watershed. J Soil Water Conserv,2010,65(6):424-437.
    [87]Doody D G, Archbold M, Foy R H, Flynn R. Approaches to the implementation of the Water Framework Directive:targeting mitigation measures at critical source areas of diffuse phosphorus in Irish catchments. J Environ Manage,2012,93(1):225-234.
    [88]Sharpley A N, Weld J L, Beegle D B, Kleinman P J A, Gburek W J, Moore P A, Mullins G. Development of phosphorus indices for nutrient management planning strategies in the United States. J Soil Water Conserv,2003,58(3):137-152.
    [89]Lemunyon L J, Gilbert G R. The concept and need for a phosphorus assessment tools. Journal of Production Agriculture,1993,6(4):483-486.
    [90]Heckrath G, Bechmann M, Ekholm P, Ulen B, Djodjic F, Andersen H E. Review of indexing tools for identifying high risk areas of phosphorus loss in Nordic catchments. J Hydrol,2008,349(1-2):68-87.
    [91]Hewett C J M, Quinn P F, Heathwaite A L, Doyle A, Burke S, Whitehead P G, Lerner D N. A multi-scale framework for strategic management of diffuse pollution. Environ Modell Softw,2009,24(1):74-85.
    [92]李娜,郭怀成.农业非点源磷流失潜在风险评价——磷指数法研究进展.地理科学进展,2010(11):1360~1367.
    [93]Heathwaite A L, Quinn P F, Hewett C J M. Modelling and managing critical source areas of diffuse pollution from agricultural land using flow connectivity simulation. J Hydrol,2005,304(1-4):446-461.
    [94]Flynn N J, Paddison T, Whitehead P G. INCA modelling of the Lee system:strategies for the reduction of nitrogen loads. Hydrol Earth Syst Sc,2002,6(3):467-484.
    [95]Heathwaite A L, Dils R M. Characterising phosphorus loss in surface and subsurface hydrological pathways. Sci Total Environ,2000(251-252):523-538.
    [96]Wriedt G, Rode M. Modelling nitrate transport and turnover in a lowland catchment system. J Hydrol, 2006,328(1-2):157-176.
    [97]Czymmek K J, Ketterings Q M, Geohring L. Phosphorus and agriculture VII:the new phosphorus index for New York State. What's Cropping Up in Agronomy,11(4):1-3.
    [98]Bechmann M E, Stlnacke P, H K S. Testing the Norwegian phosphorus index at the field and subcatchment scale. Agriculture Ecosystems Environment,2007,120(2-4):117-128.
    [99]Cecchi G, Munafo M, Baiocco F, Andreani P, Mancini L. Estimating river pollution from diffuse sources in the Viterbo province using the potential non-point pollution index. Annali dell' Istituto superiore di sanita,2007,43(3):295-301.
    [100]武晓峰,李婷.流域内污染负荷分布的评价模型研究——以密云县蛇鱼川小流域为例.中国环境科学,2011(4):680~687.
    [101]Brown L, Scholefield D, Jewkes E C, Lockyer D R, Prado A D. NGAUGE:a decision support system to optimise N fertilisation of British grassland for economic and environmental goals. Agriculture, Ecosystems and Environment,2005,109(1-2):20-39.
    [102]Prado A D, Misselbrook T, Chadwick D, Hopkins A, Dewhurst R J, Davison P, Butler A, Schroder J, Scholefield D. SIMSDAIRY:A modelling framework to identify sustainable dairy farms in the UK. Framework description and test for organic systems and N fertiliser optimisation. Sci Total Environ,2011, 409(19):3993-4009.
    [103]Johnes P J, Foy R, Butterfield D, Haygarth P M. Land use scenarios for England and Wales:evaluation of management options to support good ecological status in surface freshwaters. Soil Use Manage,2007, 23(S1):176-194.
    [104]Ding X, Shen Z, Hong Q, Yang Z, Wu X, Liu R. Development and test of the export coefficient model in the upper reach of the Yangtze River. J Hydrol,2010,383(3-4):233-244.
    [105]田耀武,黄志霖,肖文发.三峡库区黑沟小流域非点源污染物输出的动态变化.环境科学,2011(2): 423~427.
    [106]于涛,孟伟,E Ongley,郑丙辉,邓义祥.我国非点源负荷研究中的问题探讨.环境科学学报,2008(3):401~407.
    [107]Heathwaite A L, Fraser A I, Johnes P J, Hutchins M, Lord E, Butterfield D. The phosphorus indicators tool:a simple model of diffuse P loss from agricultural land to water. Soil Use Manage,2003,19(1): 1-11.
    [108]Panagopoulos Y, Makropoulos C, Mimikou M. Decision support for diffuse pollution management. Environmental Modelling and Software,2012,30:57-70.
    [109]Bouraoui F, Dillaha T. ANSWERS-2000:Runoff and Sediment Transport Model. Journal of Environmental Engineering,1996,122(6):493-502.
    [110]Haregeweyn N, Yohannes F. Testing and evaluation of the agricultural non-point source pollution model (AGNPS) on Augucho catchment, western Hararghe, Ethiopia. Agriculture, Ecosystems & Environment, 2003,99(1-3):201-212.
    [111]Santhi C, Arnold J G, Williams J R, Dugas W A, Srinivasan R, Hauck L M. Validation of The SWAT model on a large rwer basin with point and nonpoint sources. J Am Water Resour As,2001,37(5): 1169-1188.
    [112]Bicknell B R, Imhoff J C, Kittle J L. Hydrological Simulation Program-Fortran user's manual for release 11[EB/OL],1996:1996-1999.
    [113]Ullrich A, Volk M. Application of the soil and Water Assessment Tool(SWAT) to predict the impact of alternative management practices on water quality and quantity. Agr Water Manage,2009,96(8): 1207-1217.
    [114]罗运祥,苏保林,杨武志,袁军营.基于SWAT的柴河水库流域非点源污染识别与评价.北京师范大学学报(自然科学版),2012(5):510~514.
    [115]汤洁,刘畅,杨巍,李昭阳,吴佳曦.基于SWAT模型的大伙房水库汇水区农业非点源污染空间特性研究.地理科学,2012(10):1247~1253.
    [116]张兰影,庞博,马金辉,岳卫峰.基于SWAT模型的古浪河流域径流模拟.北京师范大学学报(自然科学版),2012(5):520~523.
    [117]王晓燕,林青慧.DEM分辨率及子流域划分对AnnAGNPS模型模拟的影响.中国环境科学,2011(31):46~52.
    [118]赵中华,邱祖民AnnAGNPS模型数据库的建立及径流模拟应用——以桃江流域农业区为例.环境 科学与技术,2012(11):162~166.
    [119]高银超,鲍玉海,唐强,贺秀斌,朱宏伟,郭丰.基于AnnAGNPS模型的三峡库区小江流域非点源污染负荷评价.长江流域资源与环境,2012:119-126.
    [120]李兆富,刘红玉,李燕HSPF水文水质模型应用研究综述.环境科学,2012(7):2217-2223.
    [121]张恒,曾凡棠,房怀阳,张恒军,萧洁儿,林澍.基于HSPF及回归模型的淡水河流域非点源负荷计算.环境科学学报,2012(4):856-864.
    [122]邢可霞,郭怀成,孙延枫,贺彬,黄永泰.基于HSPF模型的滇池流域非点源污染模拟.中国环境科学,2004(2):102~105.
    [123]Gburek W J, Sharpley A N. Hydrologic Controls on Phosphorus Loss from Upland Agricultural Watersheds. Journal of Environmental Quality-Abstract,1998,27:267-277.
    [124]Rothwell J J, Dise N B, Taylor K G. Predicting river water quality across North West England using catchment characteristics. J Hydrol,2010,395(3-4):153-162.
    [125]Ou Y, Wang X Y. GIS and ordination techniques for studying watershed characteristics influence on river water quality. Water Science & Technology,2011,64(4):861-870.
    [126]Ou Y, Xiaoyan W. Identification of critical source areas for non-point source pollution in Miyun reservoir watershed near Beijing, China. Water Science & Technology,2008,58(11):2235-2241.
    [127]欧洋,王晓燕.景观对河流生态系统的影响.生态学报,2010(23):6624~6634.
    [128]Shober A L, Sims J T. Integrating Phosphorus Source and Soil Properties into Risk Assessments for Phosphorus Loss. Soil Science Society of America Journal-Abstract,2007,71(2):551-560.
    [129]Veith T L, Wolfe M L, Heatwole C D. Cost-effective BMP placement:optimization versus targeting. T Asae,2004,47(5):1585-1594.
    [130]Heatwole C D, Bottcher A B, Baldwin L B. Modeling cost-effectiveness of agricultural nonpoint pollution abatement programs on two Florida basins. Water Resources Bulletin,1987,23(1):127-131.
    [131]Dickinson W T, Rudra R P, Wall G J. Targeting remedial measures to control nonpoint-source pollution. Water Resources Bulletin,1990,26(3):499-507.
    [132]Willis L M, Forrest S B, Nissen J A, Hiscock J G, Kirby P V. Analysis of on-farm best management practices in the Everglades agricultural area. In Environmentally Sound Agriculture:Proc. Second Conference,1994:93-99.
    [133]Chang C, Chiueh P, Peng Y. A vulnerability analysis in the Fei-tsui reservoir watershed in Taiwan. Environ Monit Assess,2008,143(1-3):9-14.
    [134]Hsieh C, Yang W. Optimal nonpoint source pollution control strategies for a reservoir watershed in Taiwan. J Environ Manage,2007,85(4):908-917.
    [135]刘永波,吴辉,刘军志.加拿大最佳管理措施流域评价项目评述.生态与农村环境学报,2012(4):337~342.
    [136]Hong Q, Xu L, Sun Z L, Tian T, Liu R M, Shen Z Y. Small-scale watershed extended method for non-point source pollution estimation and case study in part of Three Gorges Reservoir Region. International Journal of Environmental Science and Technology,2012,9(4):595-604.
    [137]洪倩.三峡库区农业非点源污染及其管理措施研究.北京:北京师范大学博士学位论文,2011.
    [138]高超,朱继业,窦贻俭,张桃林.基于非点源污染控制的景观格局优化方法与原则.生态学报,2004(1):109~116.
    [139]许其功,席北斗,沈珍瑶,霍守亮,余红,范丽丽.耕作措施对三峡库区土壤侵蚀和养分流失的影响.生态与农村环境学报,2007(3):41~45.
    [140]Liu X, Zhang S, Zhang X, Ding G, Cruse R M. Soil erosion control practices in Northeast China:A mini-review. Soil and Tillage Research,2011,117:44-48.
    [141]Tian Y, Huang Z, Xiao W. Reductions in non-point source pollution through different management practices for an agricultural watershed in the Three Gorges Reservoir Area. Journal of Environmental Sciences,2010,22(2):184-191.
    [142]黄志霖,田耀武,肖文发,刘志彦.农业管理措施对三峡库区流域非点源污染削减效果评价.应用生态学报,2010,21(6):1530~1536.
    [143]杨育红,阎百兴.中国东北地区非点源污染研究进展.应用生态学报,2010(3):777~784.
    [144]Ouyang W, Hao F, Wang X. Regional non point source organic pollution modeling and critical area identification for watershed best environmental management. Water, Air, & Soil Pollution,2008, 187(1-4):251-261.
    [145]Veith T L. Agricultural BMP placement for cost-effective pollution control at the watershed level,2002, Ph.D. Dissertation, Biological Systems Engineering, Virginia Polytechnic Institute and State University,205 pp:205.
    [146]Maringanti C, Chaubey I, Popp J. Development of a multiobjective optimization tool for the selection and placement of best management practices for nonpoint source pollution control. Water Resour Res, 2009,45:1-15.
    [147]Alexander R B, Smith R A, Schwarz G E. Differences in phosphorus and nitrogen delivery to the Gulf of Mexico from the Mississippi River Basin. Environ Sci Technol,2008,42(3):822-830.
    [148]Chang C L, Lo S L, Huang S M. Optimal strategies for best management practice placement in a synthetic watershed. Environmental Monitoring and Assessment,2009,153(1-4):359-364.
    [149]吕刚,班小峰,雷泽勇,吴祥云.东北黑土区坡耕地治理过程中的水土保持效应.水土保持研究,2009(6):51-55.
    [150]张艳君.黑背山小流域保护性耕作防治坡耕地水土流失效应的研究.水土保持通报,2012(1):103~105.
    [151]王雪平,魏伟,王永梅,张飞,康健.基于GIS的黄土高原地区退耕还林绩效分析.人民黄河,2012(8):88~91.
    [152]董燕,王正银,丁华平,李会合,苏胜齐,曾洪.平衡施肥对生菜产量和品质的影响.西南农业大学学报(自然科学版),2004(6):740~744.
    [153]卜崇峰,蔡强国,袁再健.三峡库区等高植物篱的控蚀效益及其机制.中国水土保持科学,2006(4):14~18.
    [154]Weld J, Sharpley A N. Phosphorus indices//Radcliffe D E, Cabrera M L, eds. Modeling Phosphorus in the Environment//. Boca Raton, Florida:CRC Press,2006.301-332.
    [155]Wang L Z, Robertson D M, Garrison P J. Linkages between nutrients and assemblages of macroinverte-brates and fish in wadeable streams:implication to nutrient criteria development. Environ Manage,2007, 39(2):194-212.
    [156]Bernhardt E S, Palmer M A, Allan J D. Synthesizing US river restoration efforts. Science,2005,308: 636-637.
    [157]Donohue I, McGarrigle M L, Mills P. Linking catchment characteristics and water chemistry with the ecological status of Irish rivers. Water Res,2006,40(1):91-98.
    [158]王丽艳,吕昌河,姚治君.潮白河上游土地利用的时空变化特征与驱动力分析.地理科学进展,2005(5):90~98.
    [159]孙宁,李秀彬,冉圣洪,李子君.潮河上游降水-径流关系演变及人类活动的影响分析.地理科学进展,2007(5):41~47.
    [160]王金凤.捞渔河流域非点源污染模拟与控制研究.北京:北京大学硕士学位论文,2007.
    [161]薛亦峰.基于HSPF模型的潮河流域非点源污染模拟研究.北京:首都师范大学硕士学位论文,2009.
    [162]李明涛.潮河流域非点源污染模型的比较与不确定性研究.北京:首都师范大学硕士学位论文, 2011.
    [163]郭旭东,陈利顶,傅伯杰.土地利用/土地覆被变化对区域生态环境的影响.环境科学进展,1999,7(6):67~75.
    [164]Daniel E S, White M, Smolen M D. Modeling phosphorous loading for the lake eucha basin. Stillwater, Oklahoma:Biosystems and Agricultural Engineering Department of Oklahoma State University,2001.
    [165]王丽华.密云县境内密云水库上游地区磷流失危险性评价.北京:首都师范大学硕士学位论文,2006.
    [166]欧洋.基于GIS的流域非点源污染关键源区识别与控制.北京:首都师范大学硕士学位论文,2008.
    [167]孙峰.基于GIS的官厅水库流域非点源污染负荷计算研究.北京:北京师范大学硕士学位论文,2004.
    [168]张淑荣.于桥水库流域农业非点源污染评价.北京:中科院生态环境研究中心硕士学位论文,2002.
    [169]Johnes P J, Heathwaite A L. Modelling the impact of land use change on water quality in agricultural catchments,1997,11:269-286.
    [170]Gburek W J, Sharpley A N, Heathwaite L. Phosphorus management at the watershed scale:a modification of the phosphorus index. Environ. Qual,2000,29:130-144.
    [171]Pote D H, Daniel T C, Nichols D J. Nichols et al. Relationship between phosphorus levels in threeUltsoils and phosphorus concentrations in runof. Environ. Qual,1999,28:170-175.
    [172]华珞,张志刚,冯琰,赵红,李俊波,王向荣,朱凤云.用137Cs示踪法研究密云水库周边土壤侵蚀与氮磷流失.农业工程学报,2006(1):73~78.
    [173]Manguerra H B, Engel B A. Hydrologic parameterization of watershed for runoff prediction using SWAT. J Am Water Resour As,1998,34(5):1149-1162.
    [174]Kincheloe S. Tools to aid management-the use of site-specific management. Soil Water Conserv,1994, 49(2):43-45.
    [175]Harris G, Heathwaite A L. Inadmissible evidence:knowledge and prediction in land and riverscapes. J Hydrol,2005,304(1-4):3-19.
    [176]Vagstad N, Stalnacke P, Andersen H E, Deelstra J, Jansons V, Kyllmar K, Loigu E, Rekolainen S, Tumas R. Regional variations in diffuse nitrogen losses from agriculture in the Nordic and Baltic regions. Hydrol Earth Syst Sc,2004,8(4):651-662.
    [177]Mostaghimi S, Park S W, Cooke R A, Wang S Y. Assessment of Management alternatives on a small agricultural watershed. Water Resour,1997,31(8):1867-1878.
    [178]Chesapeake Bay Program. Available technology for the control of nutrient pollution in the Chesapeake Bay watershed,1987:e4324.
    [179]万金保,刘峰,汤爱萍,兰新怡.小流域典型面源污染最佳管理措施(BMPs)研究.水土保持学报,2010(6):181~184.
    [180]唐浩,黄沈发,熊丽君.农业面源污染滨岸缓冲带控制技术BMPs体系研究.环境科学与技术,2011(9):195~200.
    [181]冯永忠,谢晓军,杨引禄,曹艳春,杨改河.基于BMPs的宁夏黄河灌区农业非点源污染控制方案.西北农林科技大学学报(自然科学版),2011(7):171~176.
    [182]Dorioz J M, Wang D, Poulenard J. The effect of grass buffer strips on phosphorus dynamics-A critical review and synthesis as a basis for application in agricultural landscapes in France. Agriculture, Ecosystems and Environment,2006,117(1):4-21.
    [183]Gitau M W, Gburek W J, Jarrett A R. A tool for estimating best management practice effectiveness for phosphorus pollution control. Soil Water Conserv,2005,60(1):1-10.
    [184]欧洋.密云水库上游流域多尺度景观与水质响应关系研究.北京:首都师范大学博士学位论文,2011.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700