用户名: 密码: 验证码:
大型管件管端过弯矫圆工艺及智能化控制技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
大型钢铁管件是基础设施建设中不可缺少的组成部分,相关研究表明:全球100%的天然气、85%以上的石油都依靠钢铁管道运输,而在核电和热电设施,城市的地下“大动脉”——城市管网中也需要相当可观的大型钢铁管件。近年来随着我国基础设施建设的不断推进,其中所需的大型管件的产量也在逐步增加。大型管件需求的激增促使了大型管件生产厂家之间竞争的日益残酷,从而使生产厂家对管件质量提出了新的要求。
     管坯的椭圆度是衡量管件品质的重要标准之一。管端的椭圆度超差后将直接影响管件间的连接工艺,然而,在大型管件的生产过程中往往由于管件材料性能的波动和管件成形工序中一些不良因素的影响造成管件管端的椭圆度超差,因此需要对其进行矫圆处理。按照矫圆过程是否伴随有管件截面中性层周长尺寸的变化矫圆可分为整径矫圆和过弯矫圆。而后者虽然在生产厂家应用广泛但是技术却相对落后,因此急需改进。
     首先,在工程应用精度的许可下,为简化过弯矫圆工艺的理论分析难度,本文采用物理实验的方法验证了曲梁纯弯等价原理,即曲梁纯弯曲过程等价与直梁纯弯曲过程叠加曲梁初始曲率的结果和过弯矫圆等价原理,即管坯矫圆与管坯压扁之间的等价关系。
     其次,基于平面弯曲弹复方程和通过将管坯离散化,对管坯整体压扁过程进行了解析,确立了管坯卸载后椭圆度和相对压下量之间的线性关系,从而为过弯矫圆工艺的定量化提供了理论依据。
     再次,通过物理实验对比得到了管端压扁过程和相同型号、相同材质的短管坯整体压扁之间的相似关系。并在此基础上建立了二步法过弯矫圆控制策略和三步法过弯矫圆控制策略。即首先通过两步或者三步对同批次首支管件进行压制从而获得管坯的压扁过程弹复规律,其次在后续管件的矫圆过程中利用该弹复规律直接预测管坯的最佳矫圆压下量,并根据矫圆结果对该弹复规律实时修正。这为管坯过弯矫圆智能化系统的搭建奠定了基础。
     第四,为改变目前大型管件椭圆度测量主要依赖工作人员的手工完成的现状,基于CCD机器识别系统的特点,在VC++程序语言的基础上开发了管端椭圆度的自动识别系统,从而实现了管端椭圆度的非接触式的自动测量。该系统详细研究了管端图像预处理、图像内椭圆的最小二乘法识别与检测、三角形边线的识别与检测等算法,并提出了一种基于正三角形的标定方法。最终利用实验验证了椭圆度识别系统的可靠性。
     最后,在控制策略和椭圆度识别系统的基础上建立了大型管件管端过弯矫圆智能化控制系统。通过物理实验表明该系统具有稳定性好、自动化程度高、矫圆效果理想等优点。
Large steel pipes are one of the indispensable parts in the construction ofinfrastructure. The relative research indicates that100%global gas and85%globalpetroleum rely steel pipeline transportation, there is also a considerable number of largesteel pipes in the nuclear power and thermoelectric facilities and municipal supplynetworks. In recent years, along with China’s infrastructure construction progresses, theneeded large pipes production is gradually increasing. However, the sharp rise of the pipesmakes increasingly brutal competition between manufacturers, thus to allowmanufacturers to put forward new requirements for the quality of the pipes.
     Ovality of pipe is one of the main standard to measure the quality of the pipes. And ifthe ovality of the pipe-end is out of standard, it will directly affect the connection processbetween pipes. In the production process of the pipes, it is unavoidable to produce somepipe with ovality oversize because of the fluctuations of the material properties and manybad factors in production process. So the setting round process is needed. According towhether perimeter changes of the pipe section neutral layer, the setting round process canbe divided into “sizing and setting round” and “over-bending settiong round”. However,the latter is widely applied by the manufacturers although technological backwardness.Thus, the advanced methods are veritably needed.
     Firstly, under the range of engineering applications accuracy, and to simplify thetheoretical analysis difficulty of the over-bending setting round, this paper proofsequivalence principle of curved beam pure bending, which means the pure bendingprocess of curved beam is equivalent to the addition of pure bending results of straightlybeam and the initial curvature of curved beam, and equivalence principle of over-bendingsetting round, which means the setting round process is equivalent to compressing ovalprocess.
     Secondly, according to conventional bending theory and finite element meshing idea,the theoretical analysis for the compressing oval process of the whole pipe is finished, andthe relationship between the ovality after springback and the relative reduction is built. This lay the theoretical foundation for the over-bending setting round.
     Thirdly, when the materials and the specifications are the same, the similarity relationbetween the pipe-end compressing oval process and the whole pipe compressing ovalprocess is given by experiment. Based on this, the “two steps” and “three steps”over-bending setting round control policy are built. Which means to obtain thespring-back law of the compressing oval process firstly by compressing the first pipetwice or three times, and then to set round the next pipe by the spring-back law, at last tomodify the spring-back law according to the setting round results. This lay the foundationfor the over-banding setting round intelligent control system.
     Fourthly, for the purpose of changing the situation that the ovality measuring workare finished by handwork, according to the characteristic of CCD machine cognition, thepipe-end ovality recognition system is developed in the VC++program language. Thesystem researches into primary algorithms, such as the pipe-end image pre-processing, theoval recognition based least square method, the triangle foul line recognition and so on,and put forward a new camera calibration method. The final experiment proves thereliability of the system.
     At last, base on the control policy and the pipe-end ovality recognition system, theover-bending setting round intelligent control system for pipe-end of large pipes is built.The system is proved to be good stability, high degree of automation and reaching idealeffect.
引文
[1]杨秀琴.关于我国钢管行业发展战略的思考(下)[J].钢管,2006,(2):10-14.
    [2]杨秀琴.关于我国钢管行业发展战略的思考(上)[J].钢管,2006,(1):12-18.
    [3] Ansi/Api Specification5L, Forty-foruth Edition, ISO3183:2007, Specification for Line Pipe,[S].Washington DC:2009.
    [4]王青斌,岳金成,何应东.钢管整径矫直机的研制[J].机械研究与应用,2009,(5):58-59.
    [5]张永兰.我国油气长输管道建设及冶金工业面对的新课题[J].钢管,2002,(1):1-4.
    [6]周勇刚.西气东输能否撑起能源运输大动脉[N].江苏经济报,2012-12-23(A03).
    [7]王晓香.我国天然气工业和管线钢管发展展望[J].焊管,2010,(3):5-9.
    [8]张远生,李延丰.大口径直缝埋弧焊钢管生产线简介[J].焊管,2001,24(6):35-37.
    [9]余洋.中国油气管道发展现状及前景展望[J].国际石油经济,2007,15(3):27-29.
    [10]曾明,江海涛,胡水平,等.高钢级X100管线钢的组织与性能[J].材料科学与工程学报,2011,29(3):386-391.
    [11]陈妍,牟昊,丁伟.国内外管线钢最新研发进展[J].轧钢,2012,29(2):37-42.
    [12]张斌,钱成文,王玉梅,等.国内外高钢级管线钢的发展及应用[J].石油工程建设,2012,38(1):1-4.
    [13]郑宏伟,唐荻,武会宾,等.控轧控冷工艺对X120管线钢碳氮化物析出的影响[J].华南理工大学学报(自然科学版),2012,40(7):128-134.
    [14]刘志军,张歌,李超,等. X120管线钢管的开发及其力学性能[J].焊管,2011,34(10):78-82.
    [15]沈姚崧.对于我国核电发展的一些思考[J].科学对社会的影响,2011,01(4):43-52.
    [16]钟甸.我国核电装机容量2015年将超过四千万千瓦[J].广西电业,2011,(6):14.
    [17]成海涛,郭元蓉.核电用管现状及国产化进展[J].钢管,2008,37(4):1-5.
    [18]成海涛,赵彦芬,郭元蓉,等.我国核电用无缝钢管国产化的新进展[J].钢管,2011,40(1):8-11.
    [19]郭元蓉,胡铂,鄢勇.核电管、高压锅炉管液压精拔新工艺的研究与实践[C].中国金属学会轧钢学会钢管学术委员会六届一次年会论文集,成都:中国金属学会轧钢学会,2011:92-96.
    [20]赵英.火力发电用高压锅炉管现状及需求探究[J].北京电力高等专科学校学报:自然科学版,2011,28(11):68-68.
    [21]吴勇,徐可可.超超临界电站锅炉管国产化步履维艰[N].中国冶金报,2012-03-06(C04).
    [22]解周楠.城市管网的建设[J].科技传播,2011(13):201-202.
    [23]包斯文.城市燃气管线市场巨大推动钢管需求增长[N],中国冶金报.2012-07-03(C04).
    [24]张澄清,罗志军,龙红伟.炼油装置用大直径钢管的选择[J].石油化工腐蚀与防护,2010,27(2):54-57.
    [25]熊建新.石油化工行业用钢管的现状及发展[J].钢管,2005,34(6):7-9.
    [26]殷璟,赵军,孙红磊,等.大型管件的模压式精确缩径矫圆[J].光学精密工程,2011,19(9):2072-2078.
    [27]殷璟,赵军,屈晓阳,等.大型管件扩径矫圆弹复分析[J].机械工程学报,2011,47(12):32-42.
    [28] Karrech A, Seibi A. Analytical Model for the Expansion of Tubes Under Tension[J]. Journal ofMaterials Processing Technology,2010,210(2):356-362.
    [29] Weicker K, Salahifar R, Mohareb M. Shell Analysis of Thin-walled Pipes (Part I)-FieldEquations and Solution[J]. International Journal of Pressure Vessels and Pipe,2010,87(7):402-413.
    [30]李聚群,杨晓红,姚志英.管材扩径时摩擦对变形状态的影响[J].锻压技术,2008(1):133-135.
    [31]胡念军,林大为.圆管扩径力的解析[J].锻压技术,2006,(2):32-33.
    [32]唐立峰,王立君,杨春阁.大口径直缝焊管扩径后外表面周向残余应力的估算[J].焊管,2006,(2):13-16.
    [33]潘鑫,陈鹏,钱勇.大口径直缝焊管整圆定径工艺过程的数值模拟[J].钢管,2009,38(5):70-73.
    [34]贺幼良,乔进先,贾春德.焊管整圆工艺研究[J].焊管,1998,(3):22-24.
    [35]王关荣.压力容器整圆模的设计和应用[J].压力容器,1991,6:40-44.
    [36] Li Jian, Zhao Jun, Sun Hong-lei, et al. Improvement of Springback Prediction of Wide SheetMetal Air BendingProcess[J]. Cent. South Univ. Technol.,2008,(2):310-315.
    [37] Papeleux L, Ponthot J P. Finite Element Simulation of Springback in Sheet Metal Forming[J]:Journal of Materials Processing Technology,2002,125:785-791.
    [38] Ye F D, Hondgson P. Experimental and Numerical Studies of Springback in Air v-bendingProcess for Cold Rolled TRIP Steels[J]. Nuclear Engineering and Design,2006,236(18):1847-1851.
    [39] Roy P, Ghosh S. Statistical Characterisation of B2for Nuclear Pipe Bends: In-plane ClosingMoment[J]. Nuclear Engineering and Design,2012,249:268-274.
    [40]贾美慧,唐承统.不锈钢管材弯曲成形回弹预测模型研究[J].北京理工大学学报,2012,32(9):910-914.
    [41] Niknejad A, Moeinifard M. Theoretical and Experimental Studies of the External InversionProcess in the Circular Metal Tubes[J]. Materials&Design,2012,40:324-330.
    [42] Li H,Yang H,Song F F, et al. Springback Characterization and Behaviors of High-StrengthTi–3Al–2.5V Tube in Cold Rotary Draw Bending[J]. Journal of Materials Processing Technology,2012,212(9):1973-1987.
    [43]张渝,安治国.基于径向基神经网络的中厚板热弯成形收缩特性分析[J].热加工工艺,2012(3):22-24.
    [44]孙五明.大直径厚壁钢管等弯矩加载热弯技术试验研究[J].建筑技术,2010,(8):736-739.
    [45] Seong D Y, Yang D Y. Semi-analytic Approach for Sandwich Plate U-bending ConsideringShear Deformation of the Core[J]. International Journal of Mechanical Sciences,2012,64(1):258-272.
    [46] Jeong C, Oya T, Yanagimoto J. Analysis of Fracture Behavior and Stress–strain Distribution ofMartensite/Austenite Multilayered Metallic Sheet[J]. Journal of Materials Processing Technology,2013,213(4):614-620.
    [47] Hill R. The Mathematical Theory of Plasticity[M]. London: Oxford University Press,1950:31-78.
    [48]白象忠.材料力学[M].北京:中国建材工业出版社,2003:10-12.
    [49] Li An-hai, Zhao Jun, Wang Dong,et al. Three-point Bending Fatigue Behavior of WC–CoCemented Carbides[J]. Materials&Design,2013,45:271-278.
    [50] Ng H W,Wey P. Strain Gage Evaluation with Four-point Bending at Moderate Temperatures[J].Experimental Mechanics,1997,37(3):237-244.
    [51] Yoshihara, Hiroshi. Shear Properties of Wood Measured by the Asymmetric Four-point BendingTest of Notched Specimen[J]. Holzforschung,2009,63(2):211-216.
    [52]曹祖青.关于弯曲理论的基本假设[J].南平师专学报,2000,(2):29-32.
    [53]李建,赵军,高颖,等.宽板V型自由弯曲回弹模拟精度及回弹影响因素研究[J].燕山大学学报,2008,32(3):193-196.
    [54] Li Jian, Zhao Jun, SUN Hong-lei, et al. Improvement of Springback Prediction of Wide SheetMetal Air Bending Process[J]. Cent. South Univ. Technol.,2008,(2):310-315.
    [55] Natarajan A, Peddieson J. Simulation of Beam Plastic Forming with Variable BendingMoments[J]. International Journal of Non-Linear Mechanics.2011,46:14-22.
    [56] Fu Ze-min, Mo Jian-hua. Springback Prediction of High-strength Sheet Metal under Air BendingForming and Tool Design Based on GA–BPNN[J]. International Journal of AdvancedManufacturing Technology,2011,53:473-483.
    [57]朱学凯,李炳文,任锐,等.基于Pro/E与ANSYS Workbench的超静定液压支架的设计[J].煤矿机械,2012(7):26-28.
    [58]贾连春,计静.超静定钢杆体系非线性有限元分析[J].低温建筑技术,2011,(5):71-72.
    [59] Frese M, Blan H J. Statistics of Damages to Timber Structures in Germany[J]. EngineeringStructures,2011,33(11):2969-2977.
    [60] Yoo Y S,Ando K. Plastic Collapse and Lbb Behavior of Statically Indeterminate Piping SystemSubjected to A Static Load [J]. Nuclear Engineering and Design.2001,207:341–350.
    [61] Liu Sung-po, Kotoji A. Leak-before-break and Plastic Collapse Behaviour of StaticallyIndeterminate Pipe System with Circumferential Crack[J]. Nuclear Engineering and Design.2000,195:261–270.
    [62]李会知,刘敏珊,董其伍.集中荷载作用下一次超静定梁的弹性力学解[J].郑州大学学报(理学版),2005,(4):101-104.
    [63]李会知,刘敏珊,陈淮,等.均布荷载作用下一次超静定梁的弹塑性分析[J].工程力学,2006,(10):86-90.
    [64]连晓东.智能化不是潮流是革命[N].中国电子报,2012-11-27(006).
    [65]郎冰.“数字化+智能化”重构制造业[N].经济日报,2012-12-10(016).
    [66]王学林.金属加工自动化初探[J].中国高新技术企业,2009,(8):37-38.
    [67]陈海.浅谈金属加工的自动化[J].电脑知识与技术,2008,(28):225,229.
    [68] Sing W M, Rao K P. Knowledge-Based Process Layout System for Axisymmetrical DeepDrawing Using Decision Tables[J]. Computer&Industrial Engineering,1997,32(2):299-319.
    [69] Sekhon G S, Singh R. An Expert System for Optimal Selection of a Press for a Sheet MetalOperation[J]. Journal of Materials Processing Technology,1999,86(1-3):131-138.
    [70] Endow J. Recent Trend of Intelligent Mechine in Metal Forming[J]. Japan Society forTechnology of Plasticity.2001,42(484):379-384.
    [71] Koyama H, Manabe K, Yoshihara S. Development of Database and FEM Assisted IntelligentControl Press Forming System[J]. Japan Society for Technology of Plasticity.2002,43(503):1162-1167.
    [72]何新波,方伟,韩勇,等.基于人工神经网络的粉末注射成形智能化控制仿真系统[J].北京科技大学学报,2011,(5):623-626.
    [73]韩勇,何新波,曲选辉,等.人工神经网络在金属注射成形技术中的应用[J].粉末冶金技术,2010,(1):66-72.
    [74]赵军.圆锥形件拉深成形智能化的研究[D].哈尔滨:哈尔滨工业大学博士学位论文,1997:128-129.
    [75]王凤琴.盒形件拉深智能化控制关键技术的研究[D].秦皇岛:燕山大学博士学位论文,2003:92-94.
    [76]官英平.板材弯曲智能化控制技术的研究[D].秦皇岛:燕山大学博士学位论文,2004:85-86.
    [77]李建.大口径直缝埋弧焊管JCO成形智能化控制技术的研究[D].秦皇岛:燕山大学博士学位论文,2009:7-8.
    [78]孙红磊,赵军,殷璟,等.大型管件JCOE成形智能化控制中的材料性能参数识别[J].燕山大学学报,2011,(3):223-227.
    [79]赵军,秦泗吉,曹宏强,等.轴对称曲面件智能化拉深成形过程的解析定量描述[J].塑性工程学报,1998,5(4):47-48.
    [80]赵军,李硕本,吕炎.板材冲压成形的智能化控制技术[J].塑性工程学报,1999,6(4):10-21.
    [81]赵军,罗亚军,官英平,等.基于神经网络的材料性能参数和摩擦系数的实时识别[J].塑性工程学报,2001,8(2):36-39.
    [82]宋玉泉,管志平,聂毓琴,管晓芳.圆管的弯曲刚度和强度分析[J].中国科学E辑,技术科学,36(11):1263-1272.
    [83]李卫文曲梁的非线性稳定分析[D].太原:太原理工大学硕士学位论文,2007:7-9.
    [84]殷璟,赵军,屈晓阳.大型管件扩径矫圆弹复分析[J].机械工程学报,2011,47(12):32-42.
    [85]赵军,曹宏强,马瑞,展培培.纯弯曲过弯矫直等价原理及其试验验证[J].机械工程学报,2012,48(8):28-33.
    [86]臧勇,王会刚,崔福龙.型钢辊式矫直压弯挠度的弹塑性解析[J],机械工程学报,2005,(11):47-52.
    [87]曾国,来新民,于忠奇,郭永进多道次辊弯成形数值模拟技术[J],上海交通大学学报,2007,41(10):1598-1602.
    [88]王元清,刘莉媛,丁大益.大跨结构箱形曲梁承载性能的影响因素分析[J].建筑科学,2011,27(5):1-5.
    [89] Nam-II K, Shin D K. A Series Solution for Spatially Coupled Deflection Analysis ofThin-walled Timoshenko Curved Beam with and Without Elastic Foundation[J]. Journal ofMechanical Science and Technology,2009,(23):475-488.
    [90]李硕本.冲压工艺理论与新技术[M].北京:机械工业出版社,2002:40-13.
    [91] Laila S. Bayoumi, Ahmed S. Attia. Determination of the Forming Tool Load in Plastic Shapingof a Round Tube into a Square Tubular Section[J]. Journal of Materials Processing Technology,.2009,209:1835–1842.
    [92] Zhao Jun, Yin Jing, Ma Rui, MA Li-xia,. Springback Equation of Small Curvature PlaneBending[J]. Science China: Technological Sciences.2011,54(9):2386-2396.
    [93] S·铁摩辛柯.材料力学[M].天津:天津科学技术出版社,1898:40-43.萧敬勋,刘文秀.译.
    [94]刘振宇,赵彬,邹风山.机器视觉技术在工件分拣中的应用[J].计算机应用与软件,2012,(11):87-91.
    [95]杨庆华,陈亮,荀一,等.基于机器视觉的PCB裸板缺陷自动检测方法[J].中国机械工程,2012,(22):2661-2666.
    [96]高雪梅.基于机器视觉的带钢表面缺陷检测系统研究[D].保定:河北大学学位论文,2011:8-10.
    [97]伍慧.基于图像处理的目标自动检测与定位的研究[D].大连:大连理工大学学位论文,2009:8-11.
    [98]刘兆祥,陈艳,籍颖,等.基于机器视觉的农业车辆路径跟踪[J].农业机械学报,2009(S1):18-22.
    [99]李伟.曲线拟合在钢管计数中的应用与研究[D].成都:西南交通大学学位论文,2010:10-12.
    [100]张业鹏,何涛,文昌俊,等.机器视觉在工业测量中的应用与研究[J].光学精密工程,2001,(4):324-329.
    [101]王晓东,宋洪侠,刘超,等.基于机器视觉的微小型零件测量与装配控制[J].哈尔滨工程大学学报,2011,(9):1117-1122.
    [102]雷经发,王德麾,袁中凡.基于机器视觉的平面夹角测量方法[J].华南理工大学学报(自然科学版),2011,(8):54-59.
    [103]商彦良.基于机器视觉的平面几何构型特征识别系统[D].秦皇岛:燕山大学学位论文,2012:6-7.
    [104]马超.基于机器视觉的管端矫圆几何特征识别系统研究[D].秦皇岛:燕山大学学位论文,2010:4-6.
    [105]牛晓霞,胡正平,杨苏.局部PCA参数约束的Hough多椭圆分层检测算法[J].计算机应用,2009,(5):1365-1368.
    [106]李粉兰,徐可欣.一种应用于人脸正面图像的眼睛自动定位算法[J].光学精密工程,2006,(2):320-326.
    [107]杜亚娟,潘泉,张洪才.一种新的不变矩特征在图像识别中的应用[J].系统工程与电子技术,1999,(10):73-76,87.
    [108]邹益民,汪渤.一种基于最小二乘的不完整椭圆拟合算法[J].仪器仪表学报,2006,(7):808-812.
    [109]闫蓓,王斌,李媛.基于最小二乘法的椭圆拟合改进算法[J].北京航空航天大学学报,2008,(3):295-298.
    [110]安新源,周宗潭,胡德文.椭圆拟合的非线性最小二乘方法[J].计算机工程与应用,2009,(18):188-190.
    [111] Abdel-Aziz Y I, Karara H M. Direct Linear Transformation from Comparator Coordinates intoObject Space Coordinates in Close-range Photo Grammetry[D]. Urbana: Academic Dissertation inUniversity. of Illinois Symposium on Close-Range Photogrammetry,1997:45-50.
    [112] Tsai R Y. An Efficient and Accurate Camera Calibration Technique for3D Machine Vision[C].Miami: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition,1986:364-374.
    [113] Zhang Z Y. A Flexible new Technique for Camera Calibration[J]. IEEE Transactions onPattern Analysis and Machine Intelligence,2000,22(11):1330-1334.
    [114] Zhang Z Y. Flexible Camera Calibration by Viewing a Plane from Unknown Orientations[C].Corfu: International Conference on Computer Vision(ICCV’99),1999:666-673.
    [115]丁雅斌,彭翔,田劲东,等.基于点阵编码的三维主动视觉标定[J].光子学报,2006,35(11):1774-1779.
    [116] Faugeras O, Luong Q T,Maybank S.Camera Self-calibration:Theory and Experiments[J]. In:Proceecings of the2nd European Conference on Computer Vision, Italy,1992.321~334.
    [117] Maybank S, Faugeras O. A Theory of Self-calibration of a Moving Camera[J]. InternationalJournal of Computer Vision,1992,8(2);123~151.
    [118]张虎,达飞鹏,李勤.基于两相同圆的自标定方法[J].仪器仪表学报,2010,31(3):618-624.
    [119]林立财,李其申,江泽涛.混合优化算法的摄像机自标定方法研究[J].计算机应用研究,2009,26(12):4844-4846.
    [120]王涛,李恒宇,谢少荣.一种双目视觉传感器的快速自标定方法[J].计算机工程,2012,38(12):291-292.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700